parNewGeneration.cpp revision 8528:01d947f8d411
1/*
2 * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/cms/compactibleFreeListSpace.hpp"
27#include "gc/cms/concurrentMarkSweepGeneration.hpp"
28#include "gc/cms/parNewGeneration.hpp"
29#include "gc/cms/parOopClosures.inline.hpp"
30#include "gc/serial/defNewGeneration.inline.hpp"
31#include "gc/shared/adaptiveSizePolicy.hpp"
32#include "gc/shared/ageTable.hpp"
33#include "gc/shared/copyFailedInfo.hpp"
34#include "gc/shared/gcHeapSummary.hpp"
35#include "gc/shared/gcTimer.hpp"
36#include "gc/shared/gcTrace.hpp"
37#include "gc/shared/gcTraceTime.hpp"
38#include "gc/shared/genCollectedHeap.hpp"
39#include "gc/shared/genOopClosures.inline.hpp"
40#include "gc/shared/generation.hpp"
41#include "gc/shared/plab.inline.hpp"
42#include "gc/shared/referencePolicy.hpp"
43#include "gc/shared/space.hpp"
44#include "gc/shared/spaceDecorator.hpp"
45#include "gc/shared/strongRootsScope.hpp"
46#include "gc/shared/taskqueue.inline.hpp"
47#include "gc/shared/workgroup.hpp"
48#include "memory/resourceArea.hpp"
49#include "oops/objArrayOop.hpp"
50#include "oops/oop.inline.hpp"
51#include "runtime/atomic.inline.hpp"
52#include "runtime/handles.hpp"
53#include "runtime/handles.inline.hpp"
54#include "runtime/java.hpp"
55#include "runtime/thread.inline.hpp"
56#include "utilities/copy.hpp"
57#include "utilities/globalDefinitions.hpp"
58#include "utilities/stack.inline.hpp"
59
60#ifdef _MSC_VER
61#pragma warning( push )
62#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
63#endif
64ParScanThreadState::ParScanThreadState(Space* to_space_,
65                                       ParNewGeneration* gen_,
66                                       Generation* old_gen_,
67                                       int thread_num_,
68                                       ObjToScanQueueSet* work_queue_set_,
69                                       Stack<oop, mtGC>* overflow_stacks_,
70                                       size_t desired_plab_sz_,
71                                       ParallelTaskTerminator& term_) :
72  _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
73  _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
74  _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
75  _ageTable(false), // false ==> not the global age table, no perf data.
76  _to_space_alloc_buffer(desired_plab_sz_),
77  _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
78  _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
79  _older_gen_closure(gen_, this),
80  _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
81                      &_to_space_root_closure, gen_, &_old_gen_root_closure,
82                      work_queue_set_, &term_),
83  _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
84  _keep_alive_closure(&_scan_weak_ref_closure),
85  _strong_roots_time(0.0), _term_time(0.0)
86{
87  #if TASKQUEUE_STATS
88  _term_attempts = 0;
89  _overflow_refills = 0;
90  _overflow_refill_objs = 0;
91  #endif // TASKQUEUE_STATS
92
93  _survivor_chunk_array =
94    (ChunkArray*) old_gen()->get_data_recorder(thread_num());
95  _hash_seed = 17;  // Might want to take time-based random value.
96  _start = os::elapsedTime();
97  _old_gen_closure.set_generation(old_gen_);
98  _old_gen_root_closure.set_generation(old_gen_);
99}
100#ifdef _MSC_VER
101#pragma warning( pop )
102#endif
103
104void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
105                                              size_t plab_word_size) {
106  ChunkArray* sca = survivor_chunk_array();
107  if (sca != NULL) {
108    // A non-null SCA implies that we want the PLAB data recorded.
109    sca->record_sample(plab_start, plab_word_size);
110  }
111}
112
113bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
114  return new_obj->is_objArray() &&
115         arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
116         new_obj != old_obj;
117}
118
119void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
120  assert(old->is_objArray(), "must be obj array");
121  assert(old->is_forwarded(), "must be forwarded");
122  assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
123  assert(!old_gen()->is_in(old), "must be in young generation.");
124
125  objArrayOop obj = objArrayOop(old->forwardee());
126  // Process ParGCArrayScanChunk elements now
127  // and push the remainder back onto queue
128  int start     = arrayOop(old)->length();
129  int end       = obj->length();
130  int remainder = end - start;
131  assert(start <= end, "just checking");
132  if (remainder > 2 * ParGCArrayScanChunk) {
133    // Test above combines last partial chunk with a full chunk
134    end = start + ParGCArrayScanChunk;
135    arrayOop(old)->set_length(end);
136    // Push remainder.
137    bool ok = work_queue()->push(old);
138    assert(ok, "just popped, push must be okay");
139  } else {
140    // Restore length so that it can be used if there
141    // is a promotion failure and forwarding pointers
142    // must be removed.
143    arrayOop(old)->set_length(end);
144  }
145
146  // process our set of indices (include header in first chunk)
147  // should make sure end is even (aligned to HeapWord in case of compressed oops)
148  if ((HeapWord *)obj < young_old_boundary()) {
149    // object is in to_space
150    obj->oop_iterate_range(&_to_space_closure, start, end);
151  } else {
152    // object is in old generation
153    obj->oop_iterate_range(&_old_gen_closure, start, end);
154  }
155}
156
157
158void ParScanThreadState::trim_queues(int max_size) {
159  ObjToScanQueue* queue = work_queue();
160  do {
161    while (queue->size() > (juint)max_size) {
162      oop obj_to_scan;
163      if (queue->pop_local(obj_to_scan)) {
164        if ((HeapWord *)obj_to_scan < young_old_boundary()) {
165          if (obj_to_scan->is_objArray() &&
166              obj_to_scan->is_forwarded() &&
167              obj_to_scan->forwardee() != obj_to_scan) {
168            scan_partial_array_and_push_remainder(obj_to_scan);
169          } else {
170            // object is in to_space
171            obj_to_scan->oop_iterate(&_to_space_closure);
172          }
173        } else {
174          // object is in old generation
175          obj_to_scan->oop_iterate(&_old_gen_closure);
176        }
177      }
178    }
179    // For the  case of compressed oops, we have a private, non-shared
180    // overflow stack, so we eagerly drain it so as to more evenly
181    // distribute load early. Note: this may be good to do in
182    // general rather than delay for the final stealing phase.
183    // If applicable, we'll transfer a set of objects over to our
184    // work queue, allowing them to be stolen and draining our
185    // private overflow stack.
186  } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
187}
188
189bool ParScanThreadState::take_from_overflow_stack() {
190  assert(ParGCUseLocalOverflow, "Else should not call");
191  assert(young_gen()->overflow_list() == NULL, "Error");
192  ObjToScanQueue* queue = work_queue();
193  Stack<oop, mtGC>* const of_stack = overflow_stack();
194  const size_t num_overflow_elems = of_stack->size();
195  const size_t space_available = queue->max_elems() - queue->size();
196  const size_t num_take_elems = MIN3(space_available / 4,
197                                     ParGCDesiredObjsFromOverflowList,
198                                     num_overflow_elems);
199  // Transfer the most recent num_take_elems from the overflow
200  // stack to our work queue.
201  for (size_t i = 0; i != num_take_elems; i++) {
202    oop cur = of_stack->pop();
203    oop obj_to_push = cur->forwardee();
204    assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
205    assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
206    assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
207    if (should_be_partially_scanned(obj_to_push, cur)) {
208      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
209      obj_to_push = cur;
210    }
211    bool ok = queue->push(obj_to_push);
212    assert(ok, "Should have succeeded");
213  }
214  assert(young_gen()->overflow_list() == NULL, "Error");
215  return num_take_elems > 0;  // was something transferred?
216}
217
218void ParScanThreadState::push_on_overflow_stack(oop p) {
219  assert(ParGCUseLocalOverflow, "Else should not call");
220  overflow_stack()->push(p);
221  assert(young_gen()->overflow_list() == NULL, "Error");
222}
223
224HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
225
226  // Otherwise, if the object is small enough, try to reallocate the
227  // buffer.
228  HeapWord* obj = NULL;
229  if (!_to_space_full) {
230    PLAB* const plab = to_space_alloc_buffer();
231    Space*            const sp   = to_space();
232    if (word_sz * 100 <
233        ParallelGCBufferWastePct * plab->word_sz()) {
234      // Is small enough; abandon this buffer and start a new one.
235      plab->retire();
236      size_t buf_size = plab->word_sz();
237      HeapWord* buf_space = sp->par_allocate(buf_size);
238      if (buf_space == NULL) {
239        const size_t min_bytes =
240          PLAB::min_size() << LogHeapWordSize;
241        size_t free_bytes = sp->free();
242        while(buf_space == NULL && free_bytes >= min_bytes) {
243          buf_size = free_bytes >> LogHeapWordSize;
244          assert(buf_size == (size_t)align_object_size(buf_size),
245                 "Invariant");
246          buf_space  = sp->par_allocate(buf_size);
247          free_bytes = sp->free();
248        }
249      }
250      if (buf_space != NULL) {
251        plab->set_word_size(buf_size);
252        plab->set_buf(buf_space);
253        record_survivor_plab(buf_space, buf_size);
254        obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
255        // Note that we cannot compare buf_size < word_sz below
256        // because of AlignmentReserve (see PLAB::allocate()).
257        assert(obj != NULL || plab->words_remaining() < word_sz,
258               "Else should have been able to allocate");
259        // It's conceivable that we may be able to use the
260        // buffer we just grabbed for subsequent small requests
261        // even if not for this one.
262      } else {
263        // We're used up.
264        _to_space_full = true;
265      }
266
267    } else {
268      // Too large; allocate the object individually.
269      obj = sp->par_allocate(word_sz);
270    }
271  }
272  return obj;
273}
274
275
276void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
277  to_space_alloc_buffer()->undo_allocation(obj, word_sz);
278}
279
280void ParScanThreadState::print_promotion_failure_size() {
281  if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
282    gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
283                        _thread_num, _promotion_failed_info.first_size());
284  }
285}
286
287class ParScanThreadStateSet: private ResourceArray {
288public:
289  // Initializes states for the specified number of threads;
290  ParScanThreadStateSet(int                     num_threads,
291                        Space&                  to_space,
292                        ParNewGeneration&       gen,
293                        Generation&             old_gen,
294                        ObjToScanQueueSet&      queue_set,
295                        Stack<oop, mtGC>*       overflow_stacks_,
296                        size_t                  desired_plab_sz,
297                        ParallelTaskTerminator& term);
298
299  ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
300
301  inline ParScanThreadState& thread_state(int i);
302
303  void trace_promotion_failed(const YoungGCTracer* gc_tracer);
304  void reset(uint active_workers, bool promotion_failed);
305  void flush();
306
307  #if TASKQUEUE_STATS
308  static void
309    print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
310  void print_termination_stats(outputStream* const st = gclog_or_tty);
311  static void
312    print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
313  void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
314  void reset_stats();
315  #endif // TASKQUEUE_STATS
316
317private:
318  ParallelTaskTerminator& _term;
319  ParNewGeneration&       _gen;
320  Generation&             _old_gen;
321 public:
322  bool is_valid(int id) const { return id < length(); }
323  ParallelTaskTerminator* terminator() { return &_term; }
324};
325
326
327ParScanThreadStateSet::ParScanThreadStateSet(
328  int num_threads, Space& to_space, ParNewGeneration& gen,
329  Generation& old_gen, ObjToScanQueueSet& queue_set,
330  Stack<oop, mtGC>* overflow_stacks,
331  size_t desired_plab_sz, ParallelTaskTerminator& term)
332  : ResourceArray(sizeof(ParScanThreadState), num_threads),
333    _gen(gen), _old_gen(old_gen), _term(term)
334{
335  assert(num_threads > 0, "sanity check!");
336  assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
337         "overflow_stack allocation mismatch");
338  // Initialize states.
339  for (int i = 0; i < num_threads; ++i) {
340    new ((ParScanThreadState*)_data + i)
341        ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
342                           overflow_stacks, desired_plab_sz, term);
343  }
344}
345
346inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
347{
348  assert(i >= 0 && i < length(), "sanity check!");
349  return ((ParScanThreadState*)_data)[i];
350}
351
352void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
353  for (int i = 0; i < length(); ++i) {
354    if (thread_state(i).promotion_failed()) {
355      gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
356      thread_state(i).promotion_failed_info().reset();
357    }
358  }
359}
360
361void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed)
362{
363  _term.reset_for_reuse(active_threads);
364  if (promotion_failed) {
365    for (int i = 0; i < length(); ++i) {
366      thread_state(i).print_promotion_failure_size();
367    }
368  }
369}
370
371#if TASKQUEUE_STATS
372void
373ParScanThreadState::reset_stats()
374{
375  taskqueue_stats().reset();
376  _term_attempts = 0;
377  _overflow_refills = 0;
378  _overflow_refill_objs = 0;
379}
380
381void ParScanThreadStateSet::reset_stats()
382{
383  for (int i = 0; i < length(); ++i) {
384    thread_state(i).reset_stats();
385  }
386}
387
388void
389ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
390{
391  st->print_raw_cr("GC Termination Stats");
392  st->print_raw_cr("     elapsed  --strong roots-- "
393                   "-------termination-------");
394  st->print_raw_cr("thr     ms        ms       %   "
395                   "    ms       %   attempts");
396  st->print_raw_cr("--- --------- --------- ------ "
397                   "--------- ------ --------");
398}
399
400void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
401{
402  print_termination_stats_hdr(st);
403
404  for (int i = 0; i < length(); ++i) {
405    const ParScanThreadState & pss = thread_state(i);
406    const double elapsed_ms = pss.elapsed_time() * 1000.0;
407    const double s_roots_ms = pss.strong_roots_time() * 1000.0;
408    const double term_ms = pss.term_time() * 1000.0;
409    st->print_cr("%3d %9.2f %9.2f %6.2f "
410                 "%9.2f %6.2f " SIZE_FORMAT_W(8),
411                 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
412                 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
413  }
414}
415
416// Print stats related to work queue activity.
417void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
418{
419  st->print_raw_cr("GC Task Stats");
420  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
421  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
422}
423
424void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
425{
426  print_taskqueue_stats_hdr(st);
427
428  TaskQueueStats totals;
429  for (int i = 0; i < length(); ++i) {
430    const ParScanThreadState & pss = thread_state(i);
431    const TaskQueueStats & stats = pss.taskqueue_stats();
432    st->print("%3d ", i); stats.print(st); st->cr();
433    totals += stats;
434
435    if (pss.overflow_refills() > 0) {
436      st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
437                   SIZE_FORMAT_W(10) " overflow objects",
438                   pss.overflow_refills(), pss.overflow_refill_objs());
439    }
440  }
441  st->print("tot "); totals.print(st); st->cr();
442
443  DEBUG_ONLY(totals.verify());
444}
445#endif // TASKQUEUE_STATS
446
447void ParScanThreadStateSet::flush()
448{
449  // Work in this loop should be kept as lightweight as
450  // possible since this might otherwise become a bottleneck
451  // to scaling. Should we add heavy-weight work into this
452  // loop, consider parallelizing the loop into the worker threads.
453  for (int i = 0; i < length(); ++i) {
454    ParScanThreadState& par_scan_state = thread_state(i);
455
456    // Flush stats related to To-space PLAB activity and
457    // retire the last buffer.
458    par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_gen.plab_stats());
459
460    // Every thread has its own age table.  We need to merge
461    // them all into one.
462    ageTable *local_table = par_scan_state.age_table();
463    _gen.age_table()->merge(local_table);
464
465    // Inform old gen that we're done.
466    _old_gen.par_promote_alloc_done(i);
467    _old_gen.par_oop_since_save_marks_iterate_done(i);
468  }
469
470  if (UseConcMarkSweepGC) {
471    // We need to call this even when ResizeOldPLAB is disabled
472    // so as to avoid breaking some asserts. While we may be able
473    // to avoid this by reorganizing the code a bit, I am loathe
474    // to do that unless we find cases where ergo leads to bad
475    // performance.
476    CFLS_LAB::compute_desired_plab_size();
477  }
478}
479
480ParScanClosure::ParScanClosure(ParNewGeneration* g,
481                               ParScanThreadState* par_scan_state) :
482  OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
483{
484  assert(_g->level() == 0, "Optimized for youngest generation");
485  _boundary = _g->reserved().end();
486}
487
488void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
489void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
490
491void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
492void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
493
494void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
495void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
496
497void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
498void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
499
500ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
501                                             ParScanThreadState* par_scan_state)
502  : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
503{}
504
505void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
506void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
507
508#ifdef WIN32
509#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
510#endif
511
512ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
513    ParScanThreadState* par_scan_state_,
514    ParScanWithoutBarrierClosure* to_space_closure_,
515    ParScanWithBarrierClosure* old_gen_closure_,
516    ParRootScanWithoutBarrierClosure* to_space_root_closure_,
517    ParNewGeneration* par_gen_,
518    ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
519    ObjToScanQueueSet* task_queues_,
520    ParallelTaskTerminator* terminator_) :
521
522    _par_scan_state(par_scan_state_),
523    _to_space_closure(to_space_closure_),
524    _old_gen_closure(old_gen_closure_),
525    _to_space_root_closure(to_space_root_closure_),
526    _old_gen_root_closure(old_gen_root_closure_),
527    _par_gen(par_gen_),
528    _task_queues(task_queues_),
529    _terminator(terminator_)
530{}
531
532void ParEvacuateFollowersClosure::do_void() {
533  ObjToScanQueue* work_q = par_scan_state()->work_queue();
534
535  while (true) {
536
537    // Scan to-space and old-gen objs until we run out of both.
538    oop obj_to_scan;
539    par_scan_state()->trim_queues(0);
540
541    // We have no local work, attempt to steal from other threads.
542
543    // attempt to steal work from promoted.
544    if (task_queues()->steal(par_scan_state()->thread_num(),
545                             par_scan_state()->hash_seed(),
546                             obj_to_scan)) {
547      bool res = work_q->push(obj_to_scan);
548      assert(res, "Empty queue should have room for a push.");
549
550      //   if successful, goto Start.
551      continue;
552
553      // try global overflow list.
554    } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
555      continue;
556    }
557
558    // Otherwise, offer termination.
559    par_scan_state()->start_term_time();
560    if (terminator()->offer_termination()) break;
561    par_scan_state()->end_term_time();
562  }
563  assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
564         "Broken overflow list?");
565  // Finish the last termination pause.
566  par_scan_state()->end_term_time();
567}
568
569ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* old_gen,
570                             HeapWord* young_old_boundary, ParScanThreadStateSet* state_set,
571                             StrongRootsScope* strong_roots_scope) :
572    AbstractGangTask("ParNewGeneration collection"),
573    _gen(gen), _old_gen(old_gen),
574    _young_old_boundary(young_old_boundary),
575    _state_set(state_set),
576    _strong_roots_scope(strong_roots_scope)
577  {}
578
579void ParNewGenTask::work(uint worker_id) {
580  GenCollectedHeap* gch = GenCollectedHeap::heap();
581  // Since this is being done in a separate thread, need new resource
582  // and handle marks.
583  ResourceMark rm;
584  HandleMark hm;
585
586  ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
587  assert(_state_set->is_valid(worker_id), "Should not have been called");
588
589  par_scan_state.set_young_old_boundary(_young_old_boundary);
590
591  KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
592                                      gch->rem_set()->klass_rem_set());
593  CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
594                                           &par_scan_state.to_space_root_closure(),
595                                           false);
596
597  par_scan_state.start_strong_roots();
598  gch->gen_process_roots(_strong_roots_scope,
599                         _gen->level(),
600                         true,  // Process younger gens, if any,
601                                // as strong roots.
602                         GenCollectedHeap::SO_ScavengeCodeCache,
603                         GenCollectedHeap::StrongAndWeakRoots,
604                         &par_scan_state.to_space_root_closure(),
605                         &par_scan_state.older_gen_closure(),
606                         &cld_scan_closure);
607
608  par_scan_state.end_strong_roots();
609
610  // "evacuate followers".
611  par_scan_state.evacuate_followers_closure().do_void();
612}
613
614#ifdef _MSC_VER
615#pragma warning( push )
616#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
617#endif
618ParNewGeneration::
619ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
620  : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
621  _overflow_list(NULL),
622  _is_alive_closure(this),
623  _plab_stats(YoungPLABSize, PLABWeight)
624{
625  NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
626  NOT_PRODUCT(_num_par_pushes = 0;)
627  _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
628  guarantee(_task_queues != NULL, "task_queues allocation failure.");
629
630  for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
631    ObjToScanQueue *q = new ObjToScanQueue();
632    guarantee(q != NULL, "work_queue Allocation failure.");
633    _task_queues->register_queue(i1, q);
634  }
635
636  for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
637    _task_queues->queue(i2)->initialize();
638
639  _overflow_stacks = NULL;
640  if (ParGCUseLocalOverflow) {
641
642    // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
643    // with ','
644    typedef Stack<oop, mtGC> GCOopStack;
645
646    _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
647    for (size_t i = 0; i < ParallelGCThreads; ++i) {
648      new (_overflow_stacks + i) Stack<oop, mtGC>();
649    }
650  }
651
652  if (UsePerfData) {
653    EXCEPTION_MARK;
654    ResourceMark rm;
655
656    const char* cname =
657         PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
658    PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
659                                     ParallelGCThreads, CHECK);
660  }
661}
662#ifdef _MSC_VER
663#pragma warning( pop )
664#endif
665
666// ParNewGeneration::
667ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
668  DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
669
670template <class T>
671void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
672#ifdef ASSERT
673  {
674    assert(!oopDesc::is_null(*p), "expected non-null ref");
675    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
676    // We never expect to see a null reference being processed
677    // as a weak reference.
678    assert(obj->is_oop(), "expected an oop while scanning weak refs");
679  }
680#endif // ASSERT
681
682  _par_cl->do_oop_nv(p);
683
684  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
685    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
686    _rs->write_ref_field_gc_par(p, obj);
687  }
688}
689
690void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
691void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
692
693// ParNewGeneration::
694KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
695  DefNewGeneration::KeepAliveClosure(cl) {}
696
697template <class T>
698void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
699#ifdef ASSERT
700  {
701    assert(!oopDesc::is_null(*p), "expected non-null ref");
702    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
703    // We never expect to see a null reference being processed
704    // as a weak reference.
705    assert(obj->is_oop(), "expected an oop while scanning weak refs");
706  }
707#endif // ASSERT
708
709  _cl->do_oop_nv(p);
710
711  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
712    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
713    _rs->write_ref_field_gc_par(p, obj);
714  }
715}
716
717void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
718void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
719
720template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
721  T heap_oop = oopDesc::load_heap_oop(p);
722  if (!oopDesc::is_null(heap_oop)) {
723    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
724    if ((HeapWord*)obj < _boundary) {
725      assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
726      oop new_obj = obj->is_forwarded()
727                      ? obj->forwardee()
728                      : _g->DefNewGeneration::copy_to_survivor_space(obj);
729      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
730    }
731    if (_gc_barrier) {
732      // If p points to a younger generation, mark the card.
733      if ((HeapWord*)obj < _gen_boundary) {
734        _rs->write_ref_field_gc_par(p, obj);
735      }
736    }
737  }
738}
739
740void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
741void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
742
743class ParNewRefProcTaskProxy: public AbstractGangTask {
744  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
745public:
746  ParNewRefProcTaskProxy(ProcessTask& task,
747                         ParNewGeneration& gen,
748                         Generation& old_gen,
749                         HeapWord* young_old_boundary,
750                         ParScanThreadStateSet& state_set);
751
752private:
753  virtual void work(uint worker_id);
754private:
755  ParNewGeneration&      _gen;
756  ProcessTask&           _task;
757  Generation&            _old_gen;
758  HeapWord*              _young_old_boundary;
759  ParScanThreadStateSet& _state_set;
760};
761
762ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
763                                               ParNewGeneration& gen,
764                                               Generation& old_gen,
765                                               HeapWord* young_old_boundary,
766                                               ParScanThreadStateSet& state_set)
767  : AbstractGangTask("ParNewGeneration parallel reference processing"),
768    _gen(gen),
769    _task(task),
770    _old_gen(old_gen),
771    _young_old_boundary(young_old_boundary),
772    _state_set(state_set)
773{
774}
775
776void ParNewRefProcTaskProxy::work(uint worker_id)
777{
778  ResourceMark rm;
779  HandleMark hm;
780  ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
781  par_scan_state.set_young_old_boundary(_young_old_boundary);
782  _task.work(worker_id, par_scan_state.is_alive_closure(),
783             par_scan_state.keep_alive_closure(),
784             par_scan_state.evacuate_followers_closure());
785}
786
787class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
788  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
789  EnqueueTask& _task;
790
791public:
792  ParNewRefEnqueueTaskProxy(EnqueueTask& task)
793    : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
794      _task(task)
795  { }
796
797  virtual void work(uint worker_id)
798  {
799    _task.work(worker_id);
800  }
801};
802
803
804void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
805{
806  GenCollectedHeap* gch = GenCollectedHeap::heap();
807  FlexibleWorkGang* workers = gch->workers();
808  assert(workers != NULL, "Need parallel worker threads.");
809  _state_set.reset(workers->active_workers(), _generation.promotion_failed());
810  ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
811                                 _generation.reserved().end(), _state_set);
812  workers->run_task(&rp_task);
813  _state_set.reset(0 /* bad value in debug if not reset */,
814                   _generation.promotion_failed());
815}
816
817void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
818{
819  GenCollectedHeap* gch = GenCollectedHeap::heap();
820  FlexibleWorkGang* workers = gch->workers();
821  assert(workers != NULL, "Need parallel worker threads.");
822  ParNewRefEnqueueTaskProxy enq_task(task);
823  workers->run_task(&enq_task);
824}
825
826void ParNewRefProcTaskExecutor::set_single_threaded_mode()
827{
828  _state_set.flush();
829  GenCollectedHeap* gch = GenCollectedHeap::heap();
830  gch->save_marks();
831}
832
833ScanClosureWithParBarrier::
834ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
835  ScanClosure(g, gc_barrier) {}
836
837EvacuateFollowersClosureGeneral::
838EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
839                                OopsInGenClosure* cur,
840                                OopsInGenClosure* older) :
841  _gch(gch), _level(level),
842  _scan_cur_or_nonheap(cur), _scan_older(older)
843{}
844
845void EvacuateFollowersClosureGeneral::do_void() {
846  do {
847    // Beware: this call will lead to closure applications via virtual
848    // calls.
849    _gch->oop_since_save_marks_iterate(_level,
850                                       _scan_cur_or_nonheap,
851                                       _scan_older);
852  } while (!_gch->no_allocs_since_save_marks(_level));
853}
854
855
856// A Generation that does parallel young-gen collection.
857
858void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
859  assert(_promo_failure_scan_stack.is_empty(), "post condition");
860  _promo_failure_scan_stack.clear(true); // Clear cached segments.
861
862  remove_forwarding_pointers();
863  if (PrintGCDetails) {
864    gclog_or_tty->print(" (promotion failed)");
865  }
866  // All the spaces are in play for mark-sweep.
867  swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
868  from()->set_next_compaction_space(to());
869  gch->set_incremental_collection_failed();
870  // Inform the next generation that a promotion failure occurred.
871  _old_gen->promotion_failure_occurred();
872
873  // Trace promotion failure in the parallel GC threads
874  thread_state_set.trace_promotion_failed(gc_tracer());
875  // Single threaded code may have reported promotion failure to the global state
876  if (_promotion_failed_info.has_failed()) {
877    _gc_tracer.report_promotion_failed(_promotion_failed_info);
878  }
879  // Reset the PromotionFailureALot counters.
880  NOT_PRODUCT(gch->reset_promotion_should_fail();)
881}
882
883void ParNewGeneration::collect(bool   full,
884                               bool   clear_all_soft_refs,
885                               size_t size,
886                               bool   is_tlab) {
887  assert(full || size > 0, "otherwise we don't want to collect");
888
889  GenCollectedHeap* gch = GenCollectedHeap::heap();
890
891  _gc_timer->register_gc_start();
892
893  AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
894  FlexibleWorkGang* workers = gch->workers();
895  assert(workers != NULL, "Need workgang for parallel work");
896  uint active_workers =
897       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
898                                               workers->active_workers(),
899                                               Threads::number_of_non_daemon_threads());
900  workers->set_active_workers(active_workers);
901  _old_gen = gch->old_gen();
902
903  // If the next generation is too full to accommodate worst-case promotion
904  // from this generation, pass on collection; let the next generation
905  // do it.
906  if (!collection_attempt_is_safe()) {
907    gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
908    return;
909  }
910  assert(to()->is_empty(), "Else not collection_attempt_is_safe");
911
912  _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
913  gch->trace_heap_before_gc(gc_tracer());
914
915  init_assuming_no_promotion_failure();
916
917  if (UseAdaptiveSizePolicy) {
918    set_survivor_overflow(false);
919    size_policy->minor_collection_begin();
920  }
921
922  GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, _gc_tracer.gc_id());
923  // Capture heap used before collection (for printing).
924  size_t gch_prev_used = gch->used();
925
926  age_table()->clear();
927  to()->clear(SpaceDecorator::Mangle);
928
929  gch->save_marks();
930
931  // Set the correct parallelism (number of queues) in the reference processor
932  ref_processor()->set_active_mt_degree(active_workers);
933
934  // Always set the terminator for the active number of workers
935  // because only those workers go through the termination protocol.
936  ParallelTaskTerminator _term(active_workers, task_queues());
937  ParScanThreadStateSet thread_state_set(active_workers,
938                                         *to(), *this, *_old_gen, *task_queues(),
939                                         _overflow_stacks, desired_plab_sz(), _term);
940
941  thread_state_set.reset(active_workers, promotion_failed());
942
943  {
944    StrongRootsScope srs(active_workers);
945
946    ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
947    gch->rem_set()->prepare_for_younger_refs_iterate(true);
948    // It turns out that even when we're using 1 thread, doing the work in a
949    // separate thread causes wide variance in run times.  We can't help this
950    // in the multi-threaded case, but we special-case n=1 here to get
951    // repeatable measurements of the 1-thread overhead of the parallel code.
952    if (active_workers > 1) {
953      workers->run_task(&tsk);
954    } else {
955      tsk.work(0);
956    }
957  }
958
959  thread_state_set.reset(0 /* Bad value in debug if not reset */,
960                         promotion_failed());
961
962  // Trace and reset failed promotion info.
963  if (promotion_failed()) {
964    thread_state_set.trace_promotion_failed(gc_tracer());
965  }
966
967  // Process (weak) reference objects found during scavenge.
968  ReferenceProcessor* rp = ref_processor();
969  IsAliveClosure is_alive(this);
970  ScanWeakRefClosure scan_weak_ref(this);
971  KeepAliveClosure keep_alive(&scan_weak_ref);
972  ScanClosure               scan_without_gc_barrier(this, false);
973  ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
974  set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
975  EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
976    &scan_without_gc_barrier, &scan_with_gc_barrier);
977  rp->setup_policy(clear_all_soft_refs);
978  // Can  the mt_degree be set later (at run_task() time would be best)?
979  rp->set_active_mt_degree(active_workers);
980  ReferenceProcessorStats stats;
981  if (rp->processing_is_mt()) {
982    ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
983    stats = rp->process_discovered_references(&is_alive, &keep_alive,
984                                              &evacuate_followers, &task_executor,
985                                              _gc_timer, _gc_tracer.gc_id());
986  } else {
987    thread_state_set.flush();
988    gch->save_marks();
989    stats = rp->process_discovered_references(&is_alive, &keep_alive,
990                                              &evacuate_followers, NULL,
991                                              _gc_timer, _gc_tracer.gc_id());
992  }
993  _gc_tracer.report_gc_reference_stats(stats);
994  if (!promotion_failed()) {
995    // Swap the survivor spaces.
996    eden()->clear(SpaceDecorator::Mangle);
997    from()->clear(SpaceDecorator::Mangle);
998    if (ZapUnusedHeapArea) {
999      // This is now done here because of the piece-meal mangling which
1000      // can check for valid mangling at intermediate points in the
1001      // collection(s).  When a minor collection fails to collect
1002      // sufficient space resizing of the young generation can occur
1003      // an redistribute the spaces in the young generation.  Mangle
1004      // here so that unzapped regions don't get distributed to
1005      // other spaces.
1006      to()->mangle_unused_area();
1007    }
1008    swap_spaces();
1009
1010    // A successful scavenge should restart the GC time limit count which is
1011    // for full GC's.
1012    size_policy->reset_gc_overhead_limit_count();
1013
1014    assert(to()->is_empty(), "to space should be empty now");
1015
1016    adjust_desired_tenuring_threshold();
1017  } else {
1018    handle_promotion_failed(gch, thread_state_set);
1019  }
1020  // set new iteration safe limit for the survivor spaces
1021  from()->set_concurrent_iteration_safe_limit(from()->top());
1022  to()->set_concurrent_iteration_safe_limit(to()->top());
1023
1024  if (ResizePLAB) {
1025    plab_stats()->adjust_desired_plab_sz(active_workers);
1026  }
1027
1028  if (PrintGC && !PrintGCDetails) {
1029    gch->print_heap_change(gch_prev_used);
1030  }
1031
1032  TASKQUEUE_STATS_ONLY(if (PrintTerminationStats) thread_state_set.print_termination_stats());
1033  TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) thread_state_set.print_taskqueue_stats());
1034
1035  if (UseAdaptiveSizePolicy) {
1036    size_policy->minor_collection_end(gch->gc_cause());
1037    size_policy->avg_survived()->sample(from()->used());
1038  }
1039
1040  // We need to use a monotonically non-decreasing time in ms
1041  // or we will see time-warp warnings and os::javaTimeMillis()
1042  // does not guarantee monotonicity.
1043  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1044  update_time_of_last_gc(now);
1045
1046  rp->set_enqueuing_is_done(true);
1047  if (rp->processing_is_mt()) {
1048    ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1049    rp->enqueue_discovered_references(&task_executor);
1050  } else {
1051    rp->enqueue_discovered_references(NULL);
1052  }
1053  rp->verify_no_references_recorded();
1054
1055  gch->trace_heap_after_gc(gc_tracer());
1056  _gc_tracer.report_tenuring_threshold(tenuring_threshold());
1057
1058  _gc_timer->register_gc_end();
1059
1060  _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1061}
1062
1063static int sum;
1064void ParNewGeneration::waste_some_time() {
1065  for (int i = 0; i < 100; i++) {
1066    sum += i;
1067  }
1068}
1069
1070static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1071
1072// Because of concurrency, there are times where an object for which
1073// "is_forwarded()" is true contains an "interim" forwarding pointer
1074// value.  Such a value will soon be overwritten with a real value.
1075// This method requires "obj" to have a forwarding pointer, and waits, if
1076// necessary for a real one to be inserted, and returns it.
1077
1078oop ParNewGeneration::real_forwardee(oop obj) {
1079  oop forward_ptr = obj->forwardee();
1080  if (forward_ptr != ClaimedForwardPtr) {
1081    return forward_ptr;
1082  } else {
1083    return real_forwardee_slow(obj);
1084  }
1085}
1086
1087oop ParNewGeneration::real_forwardee_slow(oop obj) {
1088  // Spin-read if it is claimed but not yet written by another thread.
1089  oop forward_ptr = obj->forwardee();
1090  while (forward_ptr == ClaimedForwardPtr) {
1091    waste_some_time();
1092    assert(obj->is_forwarded(), "precondition");
1093    forward_ptr = obj->forwardee();
1094  }
1095  return forward_ptr;
1096}
1097
1098void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1099  if (m->must_be_preserved_for_promotion_failure(obj)) {
1100    // We should really have separate per-worker stacks, rather
1101    // than use locking of a common pair of stacks.
1102    MutexLocker ml(ParGCRareEvent_lock);
1103    preserve_mark(obj, m);
1104  }
1105}
1106
1107// Multiple GC threads may try to promote an object.  If the object
1108// is successfully promoted, a forwarding pointer will be installed in
1109// the object in the young generation.  This method claims the right
1110// to install the forwarding pointer before it copies the object,
1111// thus avoiding the need to undo the copy as in
1112// copy_to_survivor_space_avoiding_with_undo.
1113
1114oop ParNewGeneration::copy_to_survivor_space(
1115        ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1116  // In the sequential version, this assert also says that the object is
1117  // not forwarded.  That might not be the case here.  It is the case that
1118  // the caller observed it to be not forwarded at some time in the past.
1119  assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1120
1121  // The sequential code read "old->age()" below.  That doesn't work here,
1122  // since the age is in the mark word, and that might be overwritten with
1123  // a forwarding pointer by a parallel thread.  So we must save the mark
1124  // word in a local and then analyze it.
1125  oopDesc dummyOld;
1126  dummyOld.set_mark(m);
1127  assert(!dummyOld.is_forwarded(),
1128         "should not be called with forwarding pointer mark word.");
1129
1130  oop new_obj = NULL;
1131  oop forward_ptr;
1132
1133  // Try allocating obj in to-space (unless too old)
1134  if (dummyOld.age() < tenuring_threshold()) {
1135    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1136    if (new_obj == NULL) {
1137      set_survivor_overflow(true);
1138    }
1139  }
1140
1141  if (new_obj == NULL) {
1142    // Either to-space is full or we decided to promote
1143    // try allocating obj tenured
1144
1145    // Attempt to install a null forwarding pointer (atomically),
1146    // to claim the right to install the real forwarding pointer.
1147    forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1148    if (forward_ptr != NULL) {
1149      // someone else beat us to it.
1150        return real_forwardee(old);
1151    }
1152
1153    if (!_promotion_failed) {
1154      new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1155                                      old, m, sz);
1156    }
1157
1158    if (new_obj == NULL) {
1159      // promotion failed, forward to self
1160      _promotion_failed = true;
1161      new_obj = old;
1162
1163      preserve_mark_if_necessary(old, m);
1164      par_scan_state->register_promotion_failure(sz);
1165    }
1166
1167    old->forward_to(new_obj);
1168    forward_ptr = NULL;
1169  } else {
1170    // Is in to-space; do copying ourselves.
1171    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1172    assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1173    forward_ptr = old->forward_to_atomic(new_obj);
1174    // Restore the mark word copied above.
1175    new_obj->set_mark(m);
1176    // Increment age if obj still in new generation
1177    new_obj->incr_age();
1178    par_scan_state->age_table()->add(new_obj, sz);
1179  }
1180  assert(new_obj != NULL, "just checking");
1181
1182#ifndef PRODUCT
1183  // This code must come after the CAS test, or it will print incorrect
1184  // information.
1185  if (TraceScavenge) {
1186    gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1187       is_in_reserved(new_obj) ? "copying" : "tenuring",
1188       new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1189  }
1190#endif
1191
1192  if (forward_ptr == NULL) {
1193    oop obj_to_push = new_obj;
1194    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1195      // Length field used as index of next element to be scanned.
1196      // Real length can be obtained from real_forwardee()
1197      arrayOop(old)->set_length(0);
1198      obj_to_push = old;
1199      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1200             "push forwarded object");
1201    }
1202    // Push it on one of the queues of to-be-scanned objects.
1203    bool simulate_overflow = false;
1204    NOT_PRODUCT(
1205      if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1206        // simulate a stack overflow
1207        simulate_overflow = true;
1208      }
1209    )
1210    if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1211      // Add stats for overflow pushes.
1212      if (Verbose && PrintGCDetails) {
1213        gclog_or_tty->print("queue overflow!\n");
1214      }
1215      push_on_overflow_list(old, par_scan_state);
1216      TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1217    }
1218
1219    return new_obj;
1220  }
1221
1222  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1223  // allocate it?
1224  if (is_in_reserved(new_obj)) {
1225    // Must be in to_space.
1226    assert(to()->is_in_reserved(new_obj), "Checking");
1227    if (forward_ptr == ClaimedForwardPtr) {
1228      // Wait to get the real forwarding pointer value.
1229      forward_ptr = real_forwardee(old);
1230    }
1231    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1232  }
1233
1234  return forward_ptr;
1235}
1236
1237#ifndef PRODUCT
1238// It's OK to call this multi-threaded;  the worst thing
1239// that can happen is that we'll get a bunch of closely
1240// spaced simulated overflows, but that's OK, in fact
1241// probably good as it would exercise the overflow code
1242// under contention.
1243bool ParNewGeneration::should_simulate_overflow() {
1244  if (_overflow_counter-- <= 0) { // just being defensive
1245    _overflow_counter = ParGCWorkQueueOverflowInterval;
1246    return true;
1247  } else {
1248    return false;
1249  }
1250}
1251#endif
1252
1253// In case we are using compressed oops, we need to be careful.
1254// If the object being pushed is an object array, then its length
1255// field keeps track of the "grey boundary" at which the next
1256// incremental scan will be done (see ParGCArrayScanChunk).
1257// When using compressed oops, this length field is kept in the
1258// lower 32 bits of the erstwhile klass word and cannot be used
1259// for the overflow chaining pointer (OCP below). As such the OCP
1260// would itself need to be compressed into the top 32-bits in this
1261// case. Unfortunately, see below, in the event that we have a
1262// promotion failure, the node to be pushed on the list can be
1263// outside of the Java heap, so the heap-based pointer compression
1264// would not work (we would have potential aliasing between C-heap
1265// and Java-heap pointers). For this reason, when using compressed
1266// oops, we simply use a worker-thread-local, non-shared overflow
1267// list in the form of a growable array, with a slightly different
1268// overflow stack draining strategy. If/when we start using fat
1269// stacks here, we can go back to using (fat) pointer chains
1270// (although some performance comparisons would be useful since
1271// single global lists have their own performance disadvantages
1272// as we were made painfully aware not long ago, see 6786503).
1273#define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1274void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1275  assert(is_in_reserved(from_space_obj), "Should be from this generation");
1276  if (ParGCUseLocalOverflow) {
1277    // In the case of compressed oops, we use a private, not-shared
1278    // overflow stack.
1279    par_scan_state->push_on_overflow_stack(from_space_obj);
1280  } else {
1281    assert(!UseCompressedOops, "Error");
1282    // if the object has been forwarded to itself, then we cannot
1283    // use the klass pointer for the linked list.  Instead we have
1284    // to allocate an oopDesc in the C-Heap and use that for the linked list.
1285    // XXX This is horribly inefficient when a promotion failure occurs
1286    // and should be fixed. XXX FIX ME !!!
1287#ifndef PRODUCT
1288    Atomic::inc_ptr(&_num_par_pushes);
1289    assert(_num_par_pushes > 0, "Tautology");
1290#endif
1291    if (from_space_obj->forwardee() == from_space_obj) {
1292      oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1293      listhead->forward_to(from_space_obj);
1294      from_space_obj = listhead;
1295    }
1296    oop observed_overflow_list = _overflow_list;
1297    oop cur_overflow_list;
1298    do {
1299      cur_overflow_list = observed_overflow_list;
1300      if (cur_overflow_list != BUSY) {
1301        from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1302      } else {
1303        from_space_obj->set_klass_to_list_ptr(NULL);
1304      }
1305      observed_overflow_list =
1306        (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1307    } while (cur_overflow_list != observed_overflow_list);
1308  }
1309}
1310
1311bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1312  bool res;
1313
1314  if (ParGCUseLocalOverflow) {
1315    res = par_scan_state->take_from_overflow_stack();
1316  } else {
1317    assert(!UseCompressedOops, "Error");
1318    res = take_from_overflow_list_work(par_scan_state);
1319  }
1320  return res;
1321}
1322
1323
1324// *NOTE*: The overflow list manipulation code here and
1325// in CMSCollector:: are very similar in shape,
1326// except that in the CMS case we thread the objects
1327// directly into the list via their mark word, and do
1328// not need to deal with special cases below related
1329// to chunking of object arrays and promotion failure
1330// handling.
1331// CR 6797058 has been filed to attempt consolidation of
1332// the common code.
1333// Because of the common code, if you make any changes in
1334// the code below, please check the CMS version to see if
1335// similar changes might be needed.
1336// See CMSCollector::par_take_from_overflow_list() for
1337// more extensive documentation comments.
1338bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1339  ObjToScanQueue* work_q = par_scan_state->work_queue();
1340  // How many to take?
1341  size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1342                                 (size_t)ParGCDesiredObjsFromOverflowList);
1343
1344  assert(!UseCompressedOops, "Error");
1345  assert(par_scan_state->overflow_stack() == NULL, "Error");
1346  if (_overflow_list == NULL) return false;
1347
1348  // Otherwise, there was something there; try claiming the list.
1349  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1350  // Trim off a prefix of at most objsFromOverflow items
1351  Thread* tid = Thread::current();
1352  size_t spin_count = ParallelGCThreads;
1353  size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1354  for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1355    // someone grabbed it before we did ...
1356    // ... we spin for a short while...
1357    os::sleep(tid, sleep_time_millis, false);
1358    if (_overflow_list == NULL) {
1359      // nothing left to take
1360      return false;
1361    } else if (_overflow_list != BUSY) {
1362     // try and grab the prefix
1363     prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1364    }
1365  }
1366  if (prefix == NULL || prefix == BUSY) {
1367     // Nothing to take or waited long enough
1368     if (prefix == NULL) {
1369       // Write back the NULL in case we overwrote it with BUSY above
1370       // and it is still the same value.
1371       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1372     }
1373     return false;
1374  }
1375  assert(prefix != NULL && prefix != BUSY, "Error");
1376  size_t i = 1;
1377  oop cur = prefix;
1378  while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1379    i++; cur = cur->list_ptr_from_klass();
1380  }
1381
1382  // Reattach remaining (suffix) to overflow list
1383  if (cur->klass_or_null() == NULL) {
1384    // Write back the NULL in lieu of the BUSY we wrote
1385    // above and it is still the same value.
1386    if (_overflow_list == BUSY) {
1387      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1388    }
1389  } else {
1390    assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1391    oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1392    cur->set_klass_to_list_ptr(NULL);     // break off suffix
1393    // It's possible that the list is still in the empty(busy) state
1394    // we left it in a short while ago; in that case we may be
1395    // able to place back the suffix.
1396    oop observed_overflow_list = _overflow_list;
1397    oop cur_overflow_list = observed_overflow_list;
1398    bool attached = false;
1399    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1400      observed_overflow_list =
1401        (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1402      if (cur_overflow_list == observed_overflow_list) {
1403        attached = true;
1404        break;
1405      } else cur_overflow_list = observed_overflow_list;
1406    }
1407    if (!attached) {
1408      // Too bad, someone else got in in between; we'll need to do a splice.
1409      // Find the last item of suffix list
1410      oop last = suffix;
1411      while (last->klass_or_null() != NULL) {
1412        last = last->list_ptr_from_klass();
1413      }
1414      // Atomically prepend suffix to current overflow list
1415      observed_overflow_list = _overflow_list;
1416      do {
1417        cur_overflow_list = observed_overflow_list;
1418        if (cur_overflow_list != BUSY) {
1419          // Do the splice ...
1420          last->set_klass_to_list_ptr(cur_overflow_list);
1421        } else { // cur_overflow_list == BUSY
1422          last->set_klass_to_list_ptr(NULL);
1423        }
1424        observed_overflow_list =
1425          (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1426      } while (cur_overflow_list != observed_overflow_list);
1427    }
1428  }
1429
1430  // Push objects on prefix list onto this thread's work queue
1431  assert(prefix != NULL && prefix != BUSY, "program logic");
1432  cur = prefix;
1433  ssize_t n = 0;
1434  while (cur != NULL) {
1435    oop obj_to_push = cur->forwardee();
1436    oop next        = cur->list_ptr_from_klass();
1437    cur->set_klass(obj_to_push->klass());
1438    // This may be an array object that is self-forwarded. In that case, the list pointer
1439    // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1440    if (!is_in_reserved(cur)) {
1441      // This can become a scaling bottleneck when there is work queue overflow coincident
1442      // with promotion failure.
1443      oopDesc* f = cur;
1444      FREE_C_HEAP_ARRAY(oopDesc, f);
1445    } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1446      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1447      obj_to_push = cur;
1448    }
1449    bool ok = work_q->push(obj_to_push);
1450    assert(ok, "Should have succeeded");
1451    cur = next;
1452    n++;
1453  }
1454  TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1455#ifndef PRODUCT
1456  assert(_num_par_pushes >= n, "Too many pops?");
1457  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1458#endif
1459  return true;
1460}
1461#undef BUSY
1462
1463void ParNewGeneration::ref_processor_init() {
1464  if (_ref_processor == NULL) {
1465    // Allocate and initialize a reference processor
1466    _ref_processor =
1467      new ReferenceProcessor(_reserved,                  // span
1468                             ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1469                             ParallelGCThreads,          // mt processing degree
1470                             refs_discovery_is_mt(),     // mt discovery
1471                             ParallelGCThreads,          // mt discovery degree
1472                             refs_discovery_is_atomic(), // atomic_discovery
1473                             NULL);                      // is_alive_non_header
1474  }
1475}
1476
1477const char* ParNewGeneration::name() const {
1478  return "par new generation";
1479}
1480