parNewGeneration.cpp revision 10977:9c5d445a7962
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/cms/compactibleFreeListSpace.hpp"
27#include "gc/cms/concurrentMarkSweepGeneration.hpp"
28#include "gc/cms/parNewGeneration.inline.hpp"
29#include "gc/cms/parOopClosures.inline.hpp"
30#include "gc/serial/defNewGeneration.inline.hpp"
31#include "gc/shared/adaptiveSizePolicy.hpp"
32#include "gc/shared/ageTable.inline.hpp"
33#include "gc/shared/copyFailedInfo.hpp"
34#include "gc/shared/gcHeapSummary.hpp"
35#include "gc/shared/gcTimer.hpp"
36#include "gc/shared/gcTrace.hpp"
37#include "gc/shared/gcTraceTime.inline.hpp"
38#include "gc/shared/genCollectedHeap.hpp"
39#include "gc/shared/genOopClosures.inline.hpp"
40#include "gc/shared/generation.hpp"
41#include "gc/shared/plab.inline.hpp"
42#include "gc/shared/preservedMarks.inline.hpp"
43#include "gc/shared/referencePolicy.hpp"
44#include "gc/shared/space.hpp"
45#include "gc/shared/spaceDecorator.hpp"
46#include "gc/shared/strongRootsScope.hpp"
47#include "gc/shared/taskqueue.inline.hpp"
48#include "gc/shared/workgroup.hpp"
49#include "logging/log.hpp"
50#include "memory/resourceArea.hpp"
51#include "oops/objArrayOop.hpp"
52#include "oops/oop.inline.hpp"
53#include "runtime/atomic.inline.hpp"
54#include "runtime/handles.hpp"
55#include "runtime/handles.inline.hpp"
56#include "runtime/java.hpp"
57#include "runtime/thread.inline.hpp"
58#include "utilities/copy.hpp"
59#include "utilities/globalDefinitions.hpp"
60#include "utilities/stack.inline.hpp"
61
62ParScanThreadState::ParScanThreadState(Space* to_space_,
63                                       ParNewGeneration* young_gen_,
64                                       Generation* old_gen_,
65                                       int thread_num_,
66                                       ObjToScanQueueSet* work_queue_set_,
67                                       Stack<oop, mtGC>* overflow_stacks_,
68                                       PreservedMarks* preserved_marks_,
69                                       size_t desired_plab_sz_,
70                                       ParallelTaskTerminator& term_) :
71  _to_space(to_space_),
72  _old_gen(old_gen_),
73  _young_gen(young_gen_),
74  _thread_num(thread_num_),
75  _work_queue(work_queue_set_->queue(thread_num_)),
76  _to_space_full(false),
77  _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
78  _preserved_marks(preserved_marks_),
79  _ageTable(false), // false ==> not the global age table, no perf data.
80  _to_space_alloc_buffer(desired_plab_sz_),
81  _to_space_closure(young_gen_, this),
82  _old_gen_closure(young_gen_, this),
83  _to_space_root_closure(young_gen_, this),
84  _old_gen_root_closure(young_gen_, this),
85  _older_gen_closure(young_gen_, this),
86  _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
87                      &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
88                      work_queue_set_, &term_),
89  _is_alive_closure(young_gen_),
90  _scan_weak_ref_closure(young_gen_, this),
91  _keep_alive_closure(&_scan_weak_ref_closure),
92  _strong_roots_time(0.0),
93  _term_time(0.0)
94{
95  #if TASKQUEUE_STATS
96  _term_attempts = 0;
97  _overflow_refills = 0;
98  _overflow_refill_objs = 0;
99  #endif // TASKQUEUE_STATS
100
101  _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
102  _hash_seed = 17;  // Might want to take time-based random value.
103  _start = os::elapsedTime();
104  _old_gen_closure.set_generation(old_gen_);
105  _old_gen_root_closure.set_generation(old_gen_);
106}
107
108void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
109                                              size_t plab_word_size) {
110  ChunkArray* sca = survivor_chunk_array();
111  if (sca != NULL) {
112    // A non-null SCA implies that we want the PLAB data recorded.
113    sca->record_sample(plab_start, plab_word_size);
114  }
115}
116
117bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
118  return new_obj->is_objArray() &&
119         arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
120         new_obj != old_obj;
121}
122
123void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
124  assert(old->is_objArray(), "must be obj array");
125  assert(old->is_forwarded(), "must be forwarded");
126  assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
127  assert(!old_gen()->is_in(old), "must be in young generation.");
128
129  objArrayOop obj = objArrayOop(old->forwardee());
130  // Process ParGCArrayScanChunk elements now
131  // and push the remainder back onto queue
132  int start     = arrayOop(old)->length();
133  int end       = obj->length();
134  int remainder = end - start;
135  assert(start <= end, "just checking");
136  if (remainder > 2 * ParGCArrayScanChunk) {
137    // Test above combines last partial chunk with a full chunk
138    end = start + ParGCArrayScanChunk;
139    arrayOop(old)->set_length(end);
140    // Push remainder.
141    bool ok = work_queue()->push(old);
142    assert(ok, "just popped, push must be okay");
143  } else {
144    // Restore length so that it can be used if there
145    // is a promotion failure and forwarding pointers
146    // must be removed.
147    arrayOop(old)->set_length(end);
148  }
149
150  // process our set of indices (include header in first chunk)
151  // should make sure end is even (aligned to HeapWord in case of compressed oops)
152  if ((HeapWord *)obj < young_old_boundary()) {
153    // object is in to_space
154    obj->oop_iterate_range(&_to_space_closure, start, end);
155  } else {
156    // object is in old generation
157    obj->oop_iterate_range(&_old_gen_closure, start, end);
158  }
159}
160
161void ParScanThreadState::trim_queues(int max_size) {
162  ObjToScanQueue* queue = work_queue();
163  do {
164    while (queue->size() > (juint)max_size) {
165      oop obj_to_scan;
166      if (queue->pop_local(obj_to_scan)) {
167        if ((HeapWord *)obj_to_scan < young_old_boundary()) {
168          if (obj_to_scan->is_objArray() &&
169              obj_to_scan->is_forwarded() &&
170              obj_to_scan->forwardee() != obj_to_scan) {
171            scan_partial_array_and_push_remainder(obj_to_scan);
172          } else {
173            // object is in to_space
174            obj_to_scan->oop_iterate(&_to_space_closure);
175          }
176        } else {
177          // object is in old generation
178          obj_to_scan->oop_iterate(&_old_gen_closure);
179        }
180      }
181    }
182    // For the  case of compressed oops, we have a private, non-shared
183    // overflow stack, so we eagerly drain it so as to more evenly
184    // distribute load early. Note: this may be good to do in
185    // general rather than delay for the final stealing phase.
186    // If applicable, we'll transfer a set of objects over to our
187    // work queue, allowing them to be stolen and draining our
188    // private overflow stack.
189  } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
190}
191
192bool ParScanThreadState::take_from_overflow_stack() {
193  assert(ParGCUseLocalOverflow, "Else should not call");
194  assert(young_gen()->overflow_list() == NULL, "Error");
195  ObjToScanQueue* queue = work_queue();
196  Stack<oop, mtGC>* const of_stack = overflow_stack();
197  const size_t num_overflow_elems = of_stack->size();
198  const size_t space_available = queue->max_elems() - queue->size();
199  const size_t num_take_elems = MIN3(space_available / 4,
200                                     ParGCDesiredObjsFromOverflowList,
201                                     num_overflow_elems);
202  // Transfer the most recent num_take_elems from the overflow
203  // stack to our work queue.
204  for (size_t i = 0; i != num_take_elems; i++) {
205    oop cur = of_stack->pop();
206    oop obj_to_push = cur->forwardee();
207    assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
208    assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
209    assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
210    if (should_be_partially_scanned(obj_to_push, cur)) {
211      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
212      obj_to_push = cur;
213    }
214    bool ok = queue->push(obj_to_push);
215    assert(ok, "Should have succeeded");
216  }
217  assert(young_gen()->overflow_list() == NULL, "Error");
218  return num_take_elems > 0;  // was something transferred?
219}
220
221void ParScanThreadState::push_on_overflow_stack(oop p) {
222  assert(ParGCUseLocalOverflow, "Else should not call");
223  overflow_stack()->push(p);
224  assert(young_gen()->overflow_list() == NULL, "Error");
225}
226
227HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
228  // If the object is small enough, try to reallocate the buffer.
229  HeapWord* obj = NULL;
230  if (!_to_space_full) {
231    PLAB* const plab = to_space_alloc_buffer();
232    Space* const sp  = to_space();
233    if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
234      // Is small enough; abandon this buffer and start a new one.
235      plab->retire();
236      size_t buf_size = plab->word_sz();
237      HeapWord* buf_space = sp->par_allocate(buf_size);
238      if (buf_space == NULL) {
239        const size_t min_bytes =
240          PLAB::min_size() << LogHeapWordSize;
241        size_t free_bytes = sp->free();
242        while(buf_space == NULL && free_bytes >= min_bytes) {
243          buf_size = free_bytes >> LogHeapWordSize;
244          assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
245          buf_space  = sp->par_allocate(buf_size);
246          free_bytes = sp->free();
247        }
248      }
249      if (buf_space != NULL) {
250        plab->set_buf(buf_space, buf_size);
251        record_survivor_plab(buf_space, buf_size);
252        obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
253        // Note that we cannot compare buf_size < word_sz below
254        // because of AlignmentReserve (see PLAB::allocate()).
255        assert(obj != NULL || plab->words_remaining() < word_sz,
256               "Else should have been able to allocate");
257        // It's conceivable that we may be able to use the
258        // buffer we just grabbed for subsequent small requests
259        // even if not for this one.
260      } else {
261        // We're used up.
262        _to_space_full = true;
263      }
264    } else {
265      // Too large; allocate the object individually.
266      obj = sp->par_allocate(word_sz);
267    }
268  }
269  return obj;
270}
271
272void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
273  to_space_alloc_buffer()->undo_allocation(obj, word_sz);
274}
275
276void ParScanThreadState::print_promotion_failure_size() {
277  if (_promotion_failed_info.has_failed()) {
278    log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
279                             _thread_num, _promotion_failed_info.first_size());
280  }
281}
282
283class ParScanThreadStateSet: StackObj {
284public:
285  // Initializes states for the specified number of threads;
286  ParScanThreadStateSet(int                     num_threads,
287                        Space&                  to_space,
288                        ParNewGeneration&       young_gen,
289                        Generation&             old_gen,
290                        ObjToScanQueueSet&      queue_set,
291                        Stack<oop, mtGC>*       overflow_stacks_,
292                        PreservedMarksSet&      preserved_marks_set,
293                        size_t                  desired_plab_sz,
294                        ParallelTaskTerminator& term);
295
296  ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
297
298  inline ParScanThreadState& thread_state(int i);
299
300  void trace_promotion_failed(const YoungGCTracer* gc_tracer);
301  void reset(uint active_workers, bool promotion_failed);
302  void flush();
303
304  #if TASKQUEUE_STATS
305  static void
306    print_termination_stats_hdr(outputStream* const st);
307  void print_termination_stats();
308  static void
309    print_taskqueue_stats_hdr(outputStream* const st);
310  void print_taskqueue_stats();
311  void reset_stats();
312  #endif // TASKQUEUE_STATS
313
314private:
315  ParallelTaskTerminator& _term;
316  ParNewGeneration&       _young_gen;
317  Generation&             _old_gen;
318  ParScanThreadState*     _per_thread_states;
319  const int               _num_threads;
320 public:
321  bool is_valid(int id) const { return id < _num_threads; }
322  ParallelTaskTerminator* terminator() { return &_term; }
323};
324
325ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
326                                             Space& to_space,
327                                             ParNewGeneration& young_gen,
328                                             Generation& old_gen,
329                                             ObjToScanQueueSet& queue_set,
330                                             Stack<oop, mtGC>* overflow_stacks,
331                                             PreservedMarksSet& preserved_marks_set,
332                                             size_t desired_plab_sz,
333                                             ParallelTaskTerminator& term)
334  : _young_gen(young_gen),
335    _old_gen(old_gen),
336    _term(term),
337    _per_thread_states(NEW_RESOURCE_ARRAY(ParScanThreadState, num_threads)),
338    _num_threads(num_threads)
339{
340  assert(num_threads > 0, "sanity check!");
341  assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
342         "overflow_stack allocation mismatch");
343  // Initialize states.
344  for (int i = 0; i < num_threads; ++i) {
345    new(_per_thread_states + i)
346      ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
347                         overflow_stacks, preserved_marks_set.get(i),
348                         desired_plab_sz, term);
349  }
350}
351
352inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
353  assert(i >= 0 && i < _num_threads, "sanity check!");
354  return _per_thread_states[i];
355}
356
357void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
358  for (int i = 0; i < _num_threads; ++i) {
359    if (thread_state(i).promotion_failed()) {
360      gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
361      thread_state(i).promotion_failed_info().reset();
362    }
363  }
364}
365
366void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
367  _term.reset_for_reuse(active_threads);
368  if (promotion_failed) {
369    for (int i = 0; i < _num_threads; ++i) {
370      thread_state(i).print_promotion_failure_size();
371    }
372  }
373}
374
375#if TASKQUEUE_STATS
376void ParScanThreadState::reset_stats() {
377  taskqueue_stats().reset();
378  _term_attempts = 0;
379  _overflow_refills = 0;
380  _overflow_refill_objs = 0;
381}
382
383void ParScanThreadStateSet::reset_stats() {
384  for (int i = 0; i < _num_threads; ++i) {
385    thread_state(i).reset_stats();
386  }
387}
388
389void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
390  st->print_raw_cr("GC Termination Stats");
391  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
392  st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
393  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
394}
395
396void ParScanThreadStateSet::print_termination_stats() {
397  LogHandle(gc, task, stats) log;
398  if (!log.is_debug()) {
399    return;
400  }
401
402  ResourceMark rm;
403  outputStream* st = log.debug_stream();
404
405  print_termination_stats_hdr(st);
406
407  for (int i = 0; i < _num_threads; ++i) {
408    const ParScanThreadState & pss = thread_state(i);
409    const double elapsed_ms = pss.elapsed_time() * 1000.0;
410    const double s_roots_ms = pss.strong_roots_time() * 1000.0;
411    const double term_ms = pss.term_time() * 1000.0;
412    st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
413                 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
414                 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
415  }
416}
417
418// Print stats related to work queue activity.
419void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
420  st->print_raw_cr("GC Task Stats");
421  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
422  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
423}
424
425void ParScanThreadStateSet::print_taskqueue_stats() {
426  if (!log_develop_is_enabled(Trace, gc, task, stats)) {
427    return;
428  }
429  LogHandle(gc, task, stats) log;
430  ResourceMark rm;
431  outputStream* st = log.trace_stream();
432  print_taskqueue_stats_hdr(st);
433
434  TaskQueueStats totals;
435  for (int i = 0; i < _num_threads; ++i) {
436    const ParScanThreadState & pss = thread_state(i);
437    const TaskQueueStats & stats = pss.taskqueue_stats();
438    st->print("%3d ", i); stats.print(st); st->cr();
439    totals += stats;
440
441    if (pss.overflow_refills() > 0) {
442      st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
443                   SIZE_FORMAT_W(10) " overflow objects",
444                   pss.overflow_refills(), pss.overflow_refill_objs());
445    }
446  }
447  st->print("tot "); totals.print(st); st->cr();
448
449  DEBUG_ONLY(totals.verify());
450}
451#endif // TASKQUEUE_STATS
452
453void ParScanThreadStateSet::flush() {
454  // Work in this loop should be kept as lightweight as
455  // possible since this might otherwise become a bottleneck
456  // to scaling. Should we add heavy-weight work into this
457  // loop, consider parallelizing the loop into the worker threads.
458  for (int i = 0; i < _num_threads; ++i) {
459    ParScanThreadState& par_scan_state = thread_state(i);
460
461    // Flush stats related to To-space PLAB activity and
462    // retire the last buffer.
463    par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
464
465    // Every thread has its own age table.  We need to merge
466    // them all into one.
467    AgeTable *local_table = par_scan_state.age_table();
468    _young_gen.age_table()->merge(local_table);
469
470    // Inform old gen that we're done.
471    _old_gen.par_promote_alloc_done(i);
472    _old_gen.par_oop_since_save_marks_iterate_done(i);
473  }
474
475  if (UseConcMarkSweepGC) {
476    // We need to call this even when ResizeOldPLAB is disabled
477    // so as to avoid breaking some asserts. While we may be able
478    // to avoid this by reorganizing the code a bit, I am loathe
479    // to do that unless we find cases where ergo leads to bad
480    // performance.
481    CompactibleFreeListSpaceLAB::compute_desired_plab_size();
482  }
483}
484
485ParScanClosure::ParScanClosure(ParNewGeneration* g,
486                               ParScanThreadState* par_scan_state) :
487  OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
488  _boundary = _g->reserved().end();
489}
490
491void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
492void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
493
494void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
495void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
496
497void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
498void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
499
500void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
501void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
502
503ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
504                                             ParScanThreadState* par_scan_state)
505  : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
506{}
507
508void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
509void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
510
511#ifdef WIN32
512#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
513#endif
514
515ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
516    ParScanThreadState* par_scan_state_,
517    ParScanWithoutBarrierClosure* to_space_closure_,
518    ParScanWithBarrierClosure* old_gen_closure_,
519    ParRootScanWithoutBarrierClosure* to_space_root_closure_,
520    ParNewGeneration* par_gen_,
521    ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
522    ObjToScanQueueSet* task_queues_,
523    ParallelTaskTerminator* terminator_) :
524
525    _par_scan_state(par_scan_state_),
526    _to_space_closure(to_space_closure_),
527    _old_gen_closure(old_gen_closure_),
528    _to_space_root_closure(to_space_root_closure_),
529    _old_gen_root_closure(old_gen_root_closure_),
530    _par_gen(par_gen_),
531    _task_queues(task_queues_),
532    _terminator(terminator_)
533{}
534
535void ParEvacuateFollowersClosure::do_void() {
536  ObjToScanQueue* work_q = par_scan_state()->work_queue();
537
538  while (true) {
539    // Scan to-space and old-gen objs until we run out of both.
540    oop obj_to_scan;
541    par_scan_state()->trim_queues(0);
542
543    // We have no local work, attempt to steal from other threads.
544
545    // Attempt to steal work from promoted.
546    if (task_queues()->steal(par_scan_state()->thread_num(),
547                             par_scan_state()->hash_seed(),
548                             obj_to_scan)) {
549      bool res = work_q->push(obj_to_scan);
550      assert(res, "Empty queue should have room for a push.");
551
552      // If successful, goto Start.
553      continue;
554
555      // Try global overflow list.
556    } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
557      continue;
558    }
559
560    // Otherwise, offer termination.
561    par_scan_state()->start_term_time();
562    if (terminator()->offer_termination()) break;
563    par_scan_state()->end_term_time();
564  }
565  assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
566         "Broken overflow list?");
567  // Finish the last termination pause.
568  par_scan_state()->end_term_time();
569}
570
571ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
572                             Generation* old_gen,
573                             HeapWord* young_old_boundary,
574                             ParScanThreadStateSet* state_set,
575                             StrongRootsScope* strong_roots_scope) :
576    AbstractGangTask("ParNewGeneration collection"),
577    _young_gen(young_gen), _old_gen(old_gen),
578    _young_old_boundary(young_old_boundary),
579    _state_set(state_set),
580    _strong_roots_scope(strong_roots_scope)
581{}
582
583void ParNewGenTask::work(uint worker_id) {
584  GenCollectedHeap* gch = GenCollectedHeap::heap();
585  // Since this is being done in a separate thread, need new resource
586  // and handle marks.
587  ResourceMark rm;
588  HandleMark hm;
589
590  ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
591  assert(_state_set->is_valid(worker_id), "Should not have been called");
592
593  par_scan_state.set_young_old_boundary(_young_old_boundary);
594
595  KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
596                                      gch->rem_set()->klass_rem_set());
597  CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
598                                           &par_scan_state.to_space_root_closure(),
599                                           false);
600
601  par_scan_state.start_strong_roots();
602  gch->gen_process_roots(_strong_roots_scope,
603                         GenCollectedHeap::YoungGen,
604                         true,  // Process younger gens, if any, as strong roots.
605                         GenCollectedHeap::SO_ScavengeCodeCache,
606                         GenCollectedHeap::StrongAndWeakRoots,
607                         &par_scan_state.to_space_root_closure(),
608                         &par_scan_state.older_gen_closure(),
609                         &cld_scan_closure);
610
611  par_scan_state.end_strong_roots();
612
613  // "evacuate followers".
614  par_scan_state.evacuate_followers_closure().do_void();
615}
616
617ParNewGeneration::ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
618  : DefNewGeneration(rs, initial_byte_size, "PCopy"),
619  _overflow_list(NULL),
620  _is_alive_closure(this),
621  _plab_stats("Young", YoungPLABSize, PLABWeight)
622{
623  NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
624  NOT_PRODUCT(_num_par_pushes = 0;)
625  _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
626  guarantee(_task_queues != NULL, "task_queues allocation failure.");
627
628  for (uint i = 0; i < ParallelGCThreads; i++) {
629    ObjToScanQueue *q = new ObjToScanQueue();
630    guarantee(q != NULL, "work_queue Allocation failure.");
631    _task_queues->register_queue(i, q);
632  }
633
634  for (uint i = 0; i < ParallelGCThreads; i++) {
635    _task_queues->queue(i)->initialize();
636  }
637
638  _overflow_stacks = NULL;
639  if (ParGCUseLocalOverflow) {
640    // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
641    typedef Stack<oop, mtGC> GCOopStack;
642
643    _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
644    for (size_t i = 0; i < ParallelGCThreads; ++i) {
645      new (_overflow_stacks + i) Stack<oop, mtGC>();
646    }
647  }
648
649  if (UsePerfData) {
650    EXCEPTION_MARK;
651    ResourceMark rm;
652
653    const char* cname =
654         PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
655    PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
656                                     ParallelGCThreads, CHECK);
657  }
658}
659
660// ParNewGeneration::
661ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
662  DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
663
664template <class T>
665void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
666#ifdef ASSERT
667  {
668    assert(!oopDesc::is_null(*p), "expected non-null ref");
669    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
670    // We never expect to see a null reference being processed
671    // as a weak reference.
672    assert(obj->is_oop(), "expected an oop while scanning weak refs");
673  }
674#endif // ASSERT
675
676  _par_cl->do_oop_nv(p);
677
678  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
679    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
680    _rs->write_ref_field_gc_par(p, obj);
681  }
682}
683
684void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
685void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
686
687// ParNewGeneration::
688KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
689  DefNewGeneration::KeepAliveClosure(cl) {}
690
691template <class T>
692void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
693#ifdef ASSERT
694  {
695    assert(!oopDesc::is_null(*p), "expected non-null ref");
696    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
697    // We never expect to see a null reference being processed
698    // as a weak reference.
699    assert(obj->is_oop(), "expected an oop while scanning weak refs");
700  }
701#endif // ASSERT
702
703  _cl->do_oop_nv(p);
704
705  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
706    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
707    _rs->write_ref_field_gc_par(p, obj);
708  }
709}
710
711void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
712void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
713
714template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
715  T heap_oop = oopDesc::load_heap_oop(p);
716  if (!oopDesc::is_null(heap_oop)) {
717    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
718    if ((HeapWord*)obj < _boundary) {
719      assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
720      oop new_obj = obj->is_forwarded()
721                      ? obj->forwardee()
722                      : _g->DefNewGeneration::copy_to_survivor_space(obj);
723      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
724    }
725    if (_gc_barrier) {
726      // If p points to a younger generation, mark the card.
727      if ((HeapWord*)obj < _gen_boundary) {
728        _rs->write_ref_field_gc_par(p, obj);
729      }
730    }
731  }
732}
733
734void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
735void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
736
737class ParNewRefProcTaskProxy: public AbstractGangTask {
738  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
739public:
740  ParNewRefProcTaskProxy(ProcessTask& task,
741                         ParNewGeneration& young_gen,
742                         Generation& old_gen,
743                         HeapWord* young_old_boundary,
744                         ParScanThreadStateSet& state_set);
745
746private:
747  virtual void work(uint worker_id);
748private:
749  ParNewGeneration&      _young_gen;
750  ProcessTask&           _task;
751  Generation&            _old_gen;
752  HeapWord*              _young_old_boundary;
753  ParScanThreadStateSet& _state_set;
754};
755
756ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
757                                               ParNewGeneration& young_gen,
758                                               Generation& old_gen,
759                                               HeapWord* young_old_boundary,
760                                               ParScanThreadStateSet& state_set)
761  : AbstractGangTask("ParNewGeneration parallel reference processing"),
762    _young_gen(young_gen),
763    _task(task),
764    _old_gen(old_gen),
765    _young_old_boundary(young_old_boundary),
766    _state_set(state_set)
767{ }
768
769void ParNewRefProcTaskProxy::work(uint worker_id) {
770  ResourceMark rm;
771  HandleMark hm;
772  ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
773  par_scan_state.set_young_old_boundary(_young_old_boundary);
774  _task.work(worker_id, par_scan_state.is_alive_closure(),
775             par_scan_state.keep_alive_closure(),
776             par_scan_state.evacuate_followers_closure());
777}
778
779class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
780  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
781  EnqueueTask& _task;
782
783public:
784  ParNewRefEnqueueTaskProxy(EnqueueTask& task)
785    : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
786      _task(task)
787  { }
788
789  virtual void work(uint worker_id) {
790    _task.work(worker_id);
791  }
792};
793
794void ParNewRefProcTaskExecutor::execute(ProcessTask& task) {
795  GenCollectedHeap* gch = GenCollectedHeap::heap();
796  WorkGang* workers = gch->workers();
797  assert(workers != NULL, "Need parallel worker threads.");
798  _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
799  ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
800                                 _young_gen.reserved().end(), _state_set);
801  workers->run_task(&rp_task);
802  _state_set.reset(0 /* bad value in debug if not reset */,
803                   _young_gen.promotion_failed());
804}
805
806void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) {
807  GenCollectedHeap* gch = GenCollectedHeap::heap();
808  WorkGang* workers = gch->workers();
809  assert(workers != NULL, "Need parallel worker threads.");
810  ParNewRefEnqueueTaskProxy enq_task(task);
811  workers->run_task(&enq_task);
812}
813
814void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
815  _state_set.flush();
816  GenCollectedHeap* gch = GenCollectedHeap::heap();
817  gch->save_marks();
818}
819
820ScanClosureWithParBarrier::
821ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
822  ScanClosure(g, gc_barrier)
823{ }
824
825EvacuateFollowersClosureGeneral::
826EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
827                                OopsInGenClosure* cur,
828                                OopsInGenClosure* older) :
829  _gch(gch),
830  _scan_cur_or_nonheap(cur), _scan_older(older)
831{ }
832
833void EvacuateFollowersClosureGeneral::do_void() {
834  do {
835    // Beware: this call will lead to closure applications via virtual
836    // calls.
837    _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen,
838                                       _scan_cur_or_nonheap,
839                                       _scan_older);
840  } while (!_gch->no_allocs_since_save_marks());
841}
842
843// A Generation that does parallel young-gen collection.
844
845void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
846  assert(_promo_failure_scan_stack.is_empty(), "post condition");
847  _promo_failure_scan_stack.clear(true); // Clear cached segments.
848
849  remove_forwarding_pointers();
850  log_info(gc, promotion)("Promotion failed");
851  // All the spaces are in play for mark-sweep.
852  swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
853  from()->set_next_compaction_space(to());
854  gch->set_incremental_collection_failed();
855  // Inform the next generation that a promotion failure occurred.
856  _old_gen->promotion_failure_occurred();
857
858  // Trace promotion failure in the parallel GC threads
859  thread_state_set.trace_promotion_failed(gc_tracer());
860  // Single threaded code may have reported promotion failure to the global state
861  if (_promotion_failed_info.has_failed()) {
862    _gc_tracer.report_promotion_failed(_promotion_failed_info);
863  }
864  // Reset the PromotionFailureALot counters.
865  NOT_PRODUCT(gch->reset_promotion_should_fail();)
866}
867
868void ParNewGeneration::collect(bool   full,
869                               bool   clear_all_soft_refs,
870                               size_t size,
871                               bool   is_tlab) {
872  assert(full || size > 0, "otherwise we don't want to collect");
873
874  GenCollectedHeap* gch = GenCollectedHeap::heap();
875
876  _gc_timer->register_gc_start();
877
878  AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
879  WorkGang* workers = gch->workers();
880  assert(workers != NULL, "Need workgang for parallel work");
881  uint active_workers =
882       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
883                                               workers->active_workers(),
884                                               Threads::number_of_non_daemon_threads());
885  workers->set_active_workers(active_workers);
886  _old_gen = gch->old_gen();
887
888  // If the next generation is too full to accommodate worst-case promotion
889  // from this generation, pass on collection; let the next generation
890  // do it.
891  if (!collection_attempt_is_safe()) {
892    gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
893    return;
894  }
895  assert(to()->is_empty(), "Else not collection_attempt_is_safe");
896
897  _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
898  gch->trace_heap_before_gc(gc_tracer());
899
900  init_assuming_no_promotion_failure();
901
902  if (UseAdaptiveSizePolicy) {
903    set_survivor_overflow(false);
904    size_policy->minor_collection_begin();
905  }
906
907  GCTraceTime(Trace, gc) t1("ParNew", NULL, gch->gc_cause());
908
909  age_table()->clear();
910  to()->clear(SpaceDecorator::Mangle);
911
912  gch->save_marks();
913
914  // Set the correct parallelism (number of queues) in the reference processor
915  ref_processor()->set_active_mt_degree(active_workers);
916
917  // Need to initialize the preserved marks before the ThreadStateSet c'tor.
918  _preserved_marks_set.init(active_workers);
919
920  // Always set the terminator for the active number of workers
921  // because only those workers go through the termination protocol.
922  ParallelTaskTerminator _term(active_workers, task_queues());
923  ParScanThreadStateSet thread_state_set(active_workers,
924                                         *to(), *this, *_old_gen, *task_queues(),
925                                         _overflow_stacks, _preserved_marks_set,
926                                         desired_plab_sz(), _term);
927
928  thread_state_set.reset(active_workers, promotion_failed());
929
930  {
931    StrongRootsScope srs(active_workers);
932
933    ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
934    gch->rem_set()->prepare_for_younger_refs_iterate(true);
935    // It turns out that even when we're using 1 thread, doing the work in a
936    // separate thread causes wide variance in run times.  We can't help this
937    // in the multi-threaded case, but we special-case n=1 here to get
938    // repeatable measurements of the 1-thread overhead of the parallel code.
939    if (active_workers > 1) {
940      workers->run_task(&tsk);
941    } else {
942      tsk.work(0);
943    }
944  }
945
946  thread_state_set.reset(0 /* Bad value in debug if not reset */,
947                         promotion_failed());
948
949  // Trace and reset failed promotion info.
950  if (promotion_failed()) {
951    thread_state_set.trace_promotion_failed(gc_tracer());
952  }
953
954  // Process (weak) reference objects found during scavenge.
955  ReferenceProcessor* rp = ref_processor();
956  IsAliveClosure is_alive(this);
957  ScanWeakRefClosure scan_weak_ref(this);
958  KeepAliveClosure keep_alive(&scan_weak_ref);
959  ScanClosure               scan_without_gc_barrier(this, false);
960  ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
961  set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
962  EvacuateFollowersClosureGeneral evacuate_followers(gch,
963    &scan_without_gc_barrier, &scan_with_gc_barrier);
964  rp->setup_policy(clear_all_soft_refs);
965  // Can  the mt_degree be set later (at run_task() time would be best)?
966  rp->set_active_mt_degree(active_workers);
967  ReferenceProcessorStats stats;
968  if (rp->processing_is_mt()) {
969    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
970    stats = rp->process_discovered_references(&is_alive, &keep_alive,
971                                              &evacuate_followers, &task_executor,
972                                              _gc_timer);
973  } else {
974    thread_state_set.flush();
975    gch->save_marks();
976    stats = rp->process_discovered_references(&is_alive, &keep_alive,
977                                              &evacuate_followers, NULL,
978                                              _gc_timer);
979  }
980  _gc_tracer.report_gc_reference_stats(stats);
981  _gc_tracer.report_tenuring_threshold(tenuring_threshold());
982
983  if (!promotion_failed()) {
984    // Swap the survivor spaces.
985    eden()->clear(SpaceDecorator::Mangle);
986    from()->clear(SpaceDecorator::Mangle);
987    if (ZapUnusedHeapArea) {
988      // This is now done here because of the piece-meal mangling which
989      // can check for valid mangling at intermediate points in the
990      // collection(s).  When a young collection fails to collect
991      // sufficient space resizing of the young generation can occur
992      // and redistribute the spaces in the young generation.  Mangle
993      // here so that unzapped regions don't get distributed to
994      // other spaces.
995      to()->mangle_unused_area();
996    }
997    swap_spaces();
998
999    // A successful scavenge should restart the GC time limit count which is
1000    // for full GC's.
1001    size_policy->reset_gc_overhead_limit_count();
1002
1003    assert(to()->is_empty(), "to space should be empty now");
1004
1005    adjust_desired_tenuring_threshold();
1006  } else {
1007    handle_promotion_failed(gch, thread_state_set);
1008  }
1009  _preserved_marks_set.reclaim();
1010  // set new iteration safe limit for the survivor spaces
1011  from()->set_concurrent_iteration_safe_limit(from()->top());
1012  to()->set_concurrent_iteration_safe_limit(to()->top());
1013
1014  plab_stats()->adjust_desired_plab_sz();
1015
1016  TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1017  TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1018
1019  if (UseAdaptiveSizePolicy) {
1020    size_policy->minor_collection_end(gch->gc_cause());
1021    size_policy->avg_survived()->sample(from()->used());
1022  }
1023
1024  // We need to use a monotonically non-decreasing time in ms
1025  // or we will see time-warp warnings and os::javaTimeMillis()
1026  // does not guarantee monotonicity.
1027  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1028  update_time_of_last_gc(now);
1029
1030  rp->set_enqueuing_is_done(true);
1031  if (rp->processing_is_mt()) {
1032    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
1033    rp->enqueue_discovered_references(&task_executor);
1034  } else {
1035    rp->enqueue_discovered_references(NULL);
1036  }
1037  rp->verify_no_references_recorded();
1038
1039  gch->trace_heap_after_gc(gc_tracer());
1040
1041  _gc_timer->register_gc_end();
1042
1043  _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1044}
1045
1046size_t ParNewGeneration::desired_plab_sz() {
1047  return _plab_stats.desired_plab_sz(GenCollectedHeap::heap()->workers()->active_workers());
1048}
1049
1050static int sum;
1051void ParNewGeneration::waste_some_time() {
1052  for (int i = 0; i < 100; i++) {
1053    sum += i;
1054  }
1055}
1056
1057static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1058
1059// Because of concurrency, there are times where an object for which
1060// "is_forwarded()" is true contains an "interim" forwarding pointer
1061// value.  Such a value will soon be overwritten with a real value.
1062// This method requires "obj" to have a forwarding pointer, and waits, if
1063// necessary for a real one to be inserted, and returns it.
1064
1065oop ParNewGeneration::real_forwardee(oop obj) {
1066  oop forward_ptr = obj->forwardee();
1067  if (forward_ptr != ClaimedForwardPtr) {
1068    return forward_ptr;
1069  } else {
1070    return real_forwardee_slow(obj);
1071  }
1072}
1073
1074oop ParNewGeneration::real_forwardee_slow(oop obj) {
1075  // Spin-read if it is claimed but not yet written by another thread.
1076  oop forward_ptr = obj->forwardee();
1077  while (forward_ptr == ClaimedForwardPtr) {
1078    waste_some_time();
1079    assert(obj->is_forwarded(), "precondition");
1080    forward_ptr = obj->forwardee();
1081  }
1082  return forward_ptr;
1083}
1084
1085// Multiple GC threads may try to promote an object.  If the object
1086// is successfully promoted, a forwarding pointer will be installed in
1087// the object in the young generation.  This method claims the right
1088// to install the forwarding pointer before it copies the object,
1089// thus avoiding the need to undo the copy as in
1090// copy_to_survivor_space_avoiding_with_undo.
1091
1092oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
1093                                             oop old,
1094                                             size_t sz,
1095                                             markOop m) {
1096  // In the sequential version, this assert also says that the object is
1097  // not forwarded.  That might not be the case here.  It is the case that
1098  // the caller observed it to be not forwarded at some time in the past.
1099  assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1100
1101  // The sequential code read "old->age()" below.  That doesn't work here,
1102  // since the age is in the mark word, and that might be overwritten with
1103  // a forwarding pointer by a parallel thread.  So we must save the mark
1104  // word in a local and then analyze it.
1105  oopDesc dummyOld;
1106  dummyOld.set_mark(m);
1107  assert(!dummyOld.is_forwarded(),
1108         "should not be called with forwarding pointer mark word.");
1109
1110  oop new_obj = NULL;
1111  oop forward_ptr;
1112
1113  // Try allocating obj in to-space (unless too old)
1114  if (dummyOld.age() < tenuring_threshold()) {
1115    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1116    if (new_obj == NULL) {
1117      set_survivor_overflow(true);
1118    }
1119  }
1120
1121  if (new_obj == NULL) {
1122    // Either to-space is full or we decided to promote try allocating obj tenured
1123
1124    // Attempt to install a null forwarding pointer (atomically),
1125    // to claim the right to install the real forwarding pointer.
1126    forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1127    if (forward_ptr != NULL) {
1128      // someone else beat us to it.
1129        return real_forwardee(old);
1130    }
1131
1132    if (!_promotion_failed) {
1133      new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1134                                      old, m, sz);
1135    }
1136
1137    if (new_obj == NULL) {
1138      // promotion failed, forward to self
1139      _promotion_failed = true;
1140      new_obj = old;
1141
1142      par_scan_state->preserved_marks()->push_if_necessary(old, m);
1143      par_scan_state->register_promotion_failure(sz);
1144    }
1145
1146    old->forward_to(new_obj);
1147    forward_ptr = NULL;
1148  } else {
1149    // Is in to-space; do copying ourselves.
1150    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1151    assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1152    forward_ptr = old->forward_to_atomic(new_obj);
1153    // Restore the mark word copied above.
1154    new_obj->set_mark(m);
1155    // Increment age if obj still in new generation
1156    new_obj->incr_age();
1157    par_scan_state->age_table()->add(new_obj, sz);
1158  }
1159  assert(new_obj != NULL, "just checking");
1160
1161  // This code must come after the CAS test, or it will print incorrect
1162  // information.
1163  log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1164                                  is_in_reserved(new_obj) ? "copying" : "tenuring",
1165                                  new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1166
1167  if (forward_ptr == NULL) {
1168    oop obj_to_push = new_obj;
1169    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1170      // Length field used as index of next element to be scanned.
1171      // Real length can be obtained from real_forwardee()
1172      arrayOop(old)->set_length(0);
1173      obj_to_push = old;
1174      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1175             "push forwarded object");
1176    }
1177    // Push it on one of the queues of to-be-scanned objects.
1178    bool simulate_overflow = false;
1179    NOT_PRODUCT(
1180      if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1181        // simulate a stack overflow
1182        simulate_overflow = true;
1183      }
1184    )
1185    if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1186      // Add stats for overflow pushes.
1187      log_develop_trace(gc)("Queue Overflow");
1188      push_on_overflow_list(old, par_scan_state);
1189      TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1190    }
1191
1192    return new_obj;
1193  }
1194
1195  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1196  // allocate it?
1197  if (is_in_reserved(new_obj)) {
1198    // Must be in to_space.
1199    assert(to()->is_in_reserved(new_obj), "Checking");
1200    if (forward_ptr == ClaimedForwardPtr) {
1201      // Wait to get the real forwarding pointer value.
1202      forward_ptr = real_forwardee(old);
1203    }
1204    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1205  }
1206
1207  return forward_ptr;
1208}
1209
1210#ifndef PRODUCT
1211// It's OK to call this multi-threaded;  the worst thing
1212// that can happen is that we'll get a bunch of closely
1213// spaced simulated overflows, but that's OK, in fact
1214// probably good as it would exercise the overflow code
1215// under contention.
1216bool ParNewGeneration::should_simulate_overflow() {
1217  if (_overflow_counter-- <= 0) { // just being defensive
1218    _overflow_counter = ParGCWorkQueueOverflowInterval;
1219    return true;
1220  } else {
1221    return false;
1222  }
1223}
1224#endif
1225
1226// In case we are using compressed oops, we need to be careful.
1227// If the object being pushed is an object array, then its length
1228// field keeps track of the "grey boundary" at which the next
1229// incremental scan will be done (see ParGCArrayScanChunk).
1230// When using compressed oops, this length field is kept in the
1231// lower 32 bits of the erstwhile klass word and cannot be used
1232// for the overflow chaining pointer (OCP below). As such the OCP
1233// would itself need to be compressed into the top 32-bits in this
1234// case. Unfortunately, see below, in the event that we have a
1235// promotion failure, the node to be pushed on the list can be
1236// outside of the Java heap, so the heap-based pointer compression
1237// would not work (we would have potential aliasing between C-heap
1238// and Java-heap pointers). For this reason, when using compressed
1239// oops, we simply use a worker-thread-local, non-shared overflow
1240// list in the form of a growable array, with a slightly different
1241// overflow stack draining strategy. If/when we start using fat
1242// stacks here, we can go back to using (fat) pointer chains
1243// (although some performance comparisons would be useful since
1244// single global lists have their own performance disadvantages
1245// as we were made painfully aware not long ago, see 6786503).
1246#define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1247void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1248  assert(is_in_reserved(from_space_obj), "Should be from this generation");
1249  if (ParGCUseLocalOverflow) {
1250    // In the case of compressed oops, we use a private, not-shared
1251    // overflow stack.
1252    par_scan_state->push_on_overflow_stack(from_space_obj);
1253  } else {
1254    assert(!UseCompressedOops, "Error");
1255    // if the object has been forwarded to itself, then we cannot
1256    // use the klass pointer for the linked list.  Instead we have
1257    // to allocate an oopDesc in the C-Heap and use that for the linked list.
1258    // XXX This is horribly inefficient when a promotion failure occurs
1259    // and should be fixed. XXX FIX ME !!!
1260#ifndef PRODUCT
1261    Atomic::inc_ptr(&_num_par_pushes);
1262    assert(_num_par_pushes > 0, "Tautology");
1263#endif
1264    if (from_space_obj->forwardee() == from_space_obj) {
1265      oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1266      listhead->forward_to(from_space_obj);
1267      from_space_obj = listhead;
1268    }
1269    oop observed_overflow_list = _overflow_list;
1270    oop cur_overflow_list;
1271    do {
1272      cur_overflow_list = observed_overflow_list;
1273      if (cur_overflow_list != BUSY) {
1274        from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1275      } else {
1276        from_space_obj->set_klass_to_list_ptr(NULL);
1277      }
1278      observed_overflow_list =
1279        (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1280    } while (cur_overflow_list != observed_overflow_list);
1281  }
1282}
1283
1284bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1285  bool res;
1286
1287  if (ParGCUseLocalOverflow) {
1288    res = par_scan_state->take_from_overflow_stack();
1289  } else {
1290    assert(!UseCompressedOops, "Error");
1291    res = take_from_overflow_list_work(par_scan_state);
1292  }
1293  return res;
1294}
1295
1296
1297// *NOTE*: The overflow list manipulation code here and
1298// in CMSCollector:: are very similar in shape,
1299// except that in the CMS case we thread the objects
1300// directly into the list via their mark word, and do
1301// not need to deal with special cases below related
1302// to chunking of object arrays and promotion failure
1303// handling.
1304// CR 6797058 has been filed to attempt consolidation of
1305// the common code.
1306// Because of the common code, if you make any changes in
1307// the code below, please check the CMS version to see if
1308// similar changes might be needed.
1309// See CMSCollector::par_take_from_overflow_list() for
1310// more extensive documentation comments.
1311bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1312  ObjToScanQueue* work_q = par_scan_state->work_queue();
1313  // How many to take?
1314  size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1315                                 (size_t)ParGCDesiredObjsFromOverflowList);
1316
1317  assert(!UseCompressedOops, "Error");
1318  assert(par_scan_state->overflow_stack() == NULL, "Error");
1319  if (_overflow_list == NULL) return false;
1320
1321  // Otherwise, there was something there; try claiming the list.
1322  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1323  // Trim off a prefix of at most objsFromOverflow items
1324  Thread* tid = Thread::current();
1325  size_t spin_count = ParallelGCThreads;
1326  size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1327  for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1328    // someone grabbed it before we did ...
1329    // ... we spin for a short while...
1330    os::sleep(tid, sleep_time_millis, false);
1331    if (_overflow_list == NULL) {
1332      // nothing left to take
1333      return false;
1334    } else if (_overflow_list != BUSY) {
1335     // try and grab the prefix
1336     prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1337    }
1338  }
1339  if (prefix == NULL || prefix == BUSY) {
1340     // Nothing to take or waited long enough
1341     if (prefix == NULL) {
1342       // Write back the NULL in case we overwrote it with BUSY above
1343       // and it is still the same value.
1344       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1345     }
1346     return false;
1347  }
1348  assert(prefix != NULL && prefix != BUSY, "Error");
1349  size_t i = 1;
1350  oop cur = prefix;
1351  while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1352    i++; cur = cur->list_ptr_from_klass();
1353  }
1354
1355  // Reattach remaining (suffix) to overflow list
1356  if (cur->klass_or_null() == NULL) {
1357    // Write back the NULL in lieu of the BUSY we wrote
1358    // above and it is still the same value.
1359    if (_overflow_list == BUSY) {
1360      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1361    }
1362  } else {
1363    assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1364    oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1365    cur->set_klass_to_list_ptr(NULL);     // break off suffix
1366    // It's possible that the list is still in the empty(busy) state
1367    // we left it in a short while ago; in that case we may be
1368    // able to place back the suffix.
1369    oop observed_overflow_list = _overflow_list;
1370    oop cur_overflow_list = observed_overflow_list;
1371    bool attached = false;
1372    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1373      observed_overflow_list =
1374        (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1375      if (cur_overflow_list == observed_overflow_list) {
1376        attached = true;
1377        break;
1378      } else cur_overflow_list = observed_overflow_list;
1379    }
1380    if (!attached) {
1381      // Too bad, someone else got in in between; we'll need to do a splice.
1382      // Find the last item of suffix list
1383      oop last = suffix;
1384      while (last->klass_or_null() != NULL) {
1385        last = last->list_ptr_from_klass();
1386      }
1387      // Atomically prepend suffix to current overflow list
1388      observed_overflow_list = _overflow_list;
1389      do {
1390        cur_overflow_list = observed_overflow_list;
1391        if (cur_overflow_list != BUSY) {
1392          // Do the splice ...
1393          last->set_klass_to_list_ptr(cur_overflow_list);
1394        } else { // cur_overflow_list == BUSY
1395          last->set_klass_to_list_ptr(NULL);
1396        }
1397        observed_overflow_list =
1398          (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1399      } while (cur_overflow_list != observed_overflow_list);
1400    }
1401  }
1402
1403  // Push objects on prefix list onto this thread's work queue
1404  assert(prefix != NULL && prefix != BUSY, "program logic");
1405  cur = prefix;
1406  ssize_t n = 0;
1407  while (cur != NULL) {
1408    oop obj_to_push = cur->forwardee();
1409    oop next        = cur->list_ptr_from_klass();
1410    cur->set_klass(obj_to_push->klass());
1411    // This may be an array object that is self-forwarded. In that case, the list pointer
1412    // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1413    if (!is_in_reserved(cur)) {
1414      // This can become a scaling bottleneck when there is work queue overflow coincident
1415      // with promotion failure.
1416      oopDesc* f = cur;
1417      FREE_C_HEAP_ARRAY(oopDesc, f);
1418    } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1419      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1420      obj_to_push = cur;
1421    }
1422    bool ok = work_q->push(obj_to_push);
1423    assert(ok, "Should have succeeded");
1424    cur = next;
1425    n++;
1426  }
1427  TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1428#ifndef PRODUCT
1429  assert(_num_par_pushes >= n, "Too many pops?");
1430  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1431#endif
1432  return true;
1433}
1434#undef BUSY
1435
1436void ParNewGeneration::ref_processor_init() {
1437  if (_ref_processor == NULL) {
1438    // Allocate and initialize a reference processor
1439    _ref_processor =
1440      new ReferenceProcessor(_reserved,                  // span
1441                             ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1442                             ParallelGCThreads,          // mt processing degree
1443                             refs_discovery_is_mt(),     // mt discovery
1444                             ParallelGCThreads,          // mt discovery degree
1445                             refs_discovery_is_atomic(), // atomic_discovery
1446                             NULL);                      // is_alive_non_header
1447  }
1448}
1449
1450const char* ParNewGeneration::name() const {
1451  return "par new generation";
1452}
1453