parNewGeneration.cpp revision 10706:969af18f3b36
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/cms/compactibleFreeListSpace.hpp"
27#include "gc/cms/concurrentMarkSweepGeneration.hpp"
28#include "gc/cms/parNewGeneration.inline.hpp"
29#include "gc/cms/parOopClosures.inline.hpp"
30#include "gc/serial/defNewGeneration.inline.hpp"
31#include "gc/shared/adaptiveSizePolicy.hpp"
32#include "gc/shared/ageTable.inline.hpp"
33#include "gc/shared/copyFailedInfo.hpp"
34#include "gc/shared/gcHeapSummary.hpp"
35#include "gc/shared/gcTimer.hpp"
36#include "gc/shared/gcTrace.hpp"
37#include "gc/shared/gcTraceTime.inline.hpp"
38#include "gc/shared/genCollectedHeap.hpp"
39#include "gc/shared/genOopClosures.inline.hpp"
40#include "gc/shared/generation.hpp"
41#include "gc/shared/plab.inline.hpp"
42#include "gc/shared/preservedMarks.inline.hpp"
43#include "gc/shared/referencePolicy.hpp"
44#include "gc/shared/space.hpp"
45#include "gc/shared/spaceDecorator.hpp"
46#include "gc/shared/strongRootsScope.hpp"
47#include "gc/shared/taskqueue.inline.hpp"
48#include "gc/shared/workgroup.hpp"
49#include "logging/log.hpp"
50#include "memory/resourceArea.hpp"
51#include "oops/objArrayOop.hpp"
52#include "oops/oop.inline.hpp"
53#include "runtime/atomic.inline.hpp"
54#include "runtime/handles.hpp"
55#include "runtime/handles.inline.hpp"
56#include "runtime/java.hpp"
57#include "runtime/thread.inline.hpp"
58#include "utilities/copy.hpp"
59#include "utilities/globalDefinitions.hpp"
60#include "utilities/stack.inline.hpp"
61
62ParScanThreadState::ParScanThreadState(Space* to_space_,
63                                       ParNewGeneration* young_gen_,
64                                       Generation* old_gen_,
65                                       int thread_num_,
66                                       ObjToScanQueueSet* work_queue_set_,
67                                       Stack<oop, mtGC>* overflow_stacks_,
68                                       PreservedMarks* preserved_marks_,
69                                       size_t desired_plab_sz_,
70                                       ParallelTaskTerminator& term_) :
71  _to_space(to_space_),
72  _old_gen(old_gen_),
73  _young_gen(young_gen_),
74  _thread_num(thread_num_),
75  _work_queue(work_queue_set_->queue(thread_num_)),
76  _to_space_full(false),
77  _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
78  _preserved_marks(preserved_marks_),
79  _ageTable(false), // false ==> not the global age table, no perf data.
80  _to_space_alloc_buffer(desired_plab_sz_),
81  _to_space_closure(young_gen_, this),
82  _old_gen_closure(young_gen_, this),
83  _to_space_root_closure(young_gen_, this),
84  _old_gen_root_closure(young_gen_, this),
85  _older_gen_closure(young_gen_, this),
86  _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
87                      &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
88                      work_queue_set_, &term_),
89  _is_alive_closure(young_gen_),
90  _scan_weak_ref_closure(young_gen_, this),
91  _keep_alive_closure(&_scan_weak_ref_closure),
92  _strong_roots_time(0.0),
93  _term_time(0.0)
94{
95  #if TASKQUEUE_STATS
96  _term_attempts = 0;
97  _overflow_refills = 0;
98  _overflow_refill_objs = 0;
99  #endif // TASKQUEUE_STATS
100
101  _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
102  _hash_seed = 17;  // Might want to take time-based random value.
103  _start = os::elapsedTime();
104  _old_gen_closure.set_generation(old_gen_);
105  _old_gen_root_closure.set_generation(old_gen_);
106}
107
108void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
109                                              size_t plab_word_size) {
110  ChunkArray* sca = survivor_chunk_array();
111  if (sca != NULL) {
112    // A non-null SCA implies that we want the PLAB data recorded.
113    sca->record_sample(plab_start, plab_word_size);
114  }
115}
116
117bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
118  return new_obj->is_objArray() &&
119         arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
120         new_obj != old_obj;
121}
122
123void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
124  assert(old->is_objArray(), "must be obj array");
125  assert(old->is_forwarded(), "must be forwarded");
126  assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
127  assert(!old_gen()->is_in(old), "must be in young generation.");
128
129  objArrayOop obj = objArrayOop(old->forwardee());
130  // Process ParGCArrayScanChunk elements now
131  // and push the remainder back onto queue
132  int start     = arrayOop(old)->length();
133  int end       = obj->length();
134  int remainder = end - start;
135  assert(start <= end, "just checking");
136  if (remainder > 2 * ParGCArrayScanChunk) {
137    // Test above combines last partial chunk with a full chunk
138    end = start + ParGCArrayScanChunk;
139    arrayOop(old)->set_length(end);
140    // Push remainder.
141    bool ok = work_queue()->push(old);
142    assert(ok, "just popped, push must be okay");
143  } else {
144    // Restore length so that it can be used if there
145    // is a promotion failure and forwarding pointers
146    // must be removed.
147    arrayOop(old)->set_length(end);
148  }
149
150  // process our set of indices (include header in first chunk)
151  // should make sure end is even (aligned to HeapWord in case of compressed oops)
152  if ((HeapWord *)obj < young_old_boundary()) {
153    // object is in to_space
154    obj->oop_iterate_range(&_to_space_closure, start, end);
155  } else {
156    // object is in old generation
157    obj->oop_iterate_range(&_old_gen_closure, start, end);
158  }
159}
160
161void ParScanThreadState::trim_queues(int max_size) {
162  ObjToScanQueue* queue = work_queue();
163  do {
164    while (queue->size() > (juint)max_size) {
165      oop obj_to_scan;
166      if (queue->pop_local(obj_to_scan)) {
167        if ((HeapWord *)obj_to_scan < young_old_boundary()) {
168          if (obj_to_scan->is_objArray() &&
169              obj_to_scan->is_forwarded() &&
170              obj_to_scan->forwardee() != obj_to_scan) {
171            scan_partial_array_and_push_remainder(obj_to_scan);
172          } else {
173            // object is in to_space
174            obj_to_scan->oop_iterate(&_to_space_closure);
175          }
176        } else {
177          // object is in old generation
178          obj_to_scan->oop_iterate(&_old_gen_closure);
179        }
180      }
181    }
182    // For the  case of compressed oops, we have a private, non-shared
183    // overflow stack, so we eagerly drain it so as to more evenly
184    // distribute load early. Note: this may be good to do in
185    // general rather than delay for the final stealing phase.
186    // If applicable, we'll transfer a set of objects over to our
187    // work queue, allowing them to be stolen and draining our
188    // private overflow stack.
189  } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
190}
191
192bool ParScanThreadState::take_from_overflow_stack() {
193  assert(ParGCUseLocalOverflow, "Else should not call");
194  assert(young_gen()->overflow_list() == NULL, "Error");
195  ObjToScanQueue* queue = work_queue();
196  Stack<oop, mtGC>* const of_stack = overflow_stack();
197  const size_t num_overflow_elems = of_stack->size();
198  const size_t space_available = queue->max_elems() - queue->size();
199  const size_t num_take_elems = MIN3(space_available / 4,
200                                     ParGCDesiredObjsFromOverflowList,
201                                     num_overflow_elems);
202  // Transfer the most recent num_take_elems from the overflow
203  // stack to our work queue.
204  for (size_t i = 0; i != num_take_elems; i++) {
205    oop cur = of_stack->pop();
206    oop obj_to_push = cur->forwardee();
207    assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
208    assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
209    assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
210    if (should_be_partially_scanned(obj_to_push, cur)) {
211      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
212      obj_to_push = cur;
213    }
214    bool ok = queue->push(obj_to_push);
215    assert(ok, "Should have succeeded");
216  }
217  assert(young_gen()->overflow_list() == NULL, "Error");
218  return num_take_elems > 0;  // was something transferred?
219}
220
221void ParScanThreadState::push_on_overflow_stack(oop p) {
222  assert(ParGCUseLocalOverflow, "Else should not call");
223  overflow_stack()->push(p);
224  assert(young_gen()->overflow_list() == NULL, "Error");
225}
226
227HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
228  // If the object is small enough, try to reallocate the buffer.
229  HeapWord* obj = NULL;
230  if (!_to_space_full) {
231    PLAB* const plab = to_space_alloc_buffer();
232    Space* const sp  = to_space();
233    if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
234      // Is small enough; abandon this buffer and start a new one.
235      plab->retire();
236      // The minimum size has to be twice SurvivorAlignmentInBytes to
237      // allow for padding used in the alignment of 1 word.  A padding
238      // of 1 is too small for a filler word so the padding size will
239      // be increased by SurvivorAlignmentInBytes.
240      size_t min_usable_size = 2 * static_cast<size_t>(SurvivorAlignmentInBytes >> LogHeapWordSize);
241      size_t buf_size = MAX2(plab->word_sz(), min_usable_size);
242      HeapWord* buf_space = sp->par_allocate(buf_size);
243      if (buf_space == NULL) {
244        const size_t min_bytes = MAX2(PLAB::min_size(), min_usable_size) << LogHeapWordSize;
245        size_t free_bytes = sp->free();
246        while(buf_space == NULL && free_bytes >= min_bytes) {
247          buf_size = free_bytes >> LogHeapWordSize;
248          assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
249          buf_space  = sp->par_allocate(buf_size);
250          free_bytes = sp->free();
251        }
252      }
253      if (buf_space != NULL) {
254        plab->set_buf(buf_space, buf_size);
255        record_survivor_plab(buf_space, buf_size);
256        obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
257        // Note that we cannot compare buf_size < word_sz below
258        // because of AlignmentReserve (see PLAB::allocate()).
259        assert(obj != NULL || plab->words_remaining() < word_sz,
260               "Else should have been able to allocate requested object size "
261               SIZE_FORMAT ", PLAB size " SIZE_FORMAT ", SurvivorAlignmentInBytes "
262               SIZE_FORMAT ", words_remaining " SIZE_FORMAT,
263               word_sz, buf_size, SurvivorAlignmentInBytes, plab->words_remaining());
264        // It's conceivable that we may be able to use the
265        // buffer we just grabbed for subsequent small requests
266        // even if not for this one.
267      } else {
268        // We're used up.
269        _to_space_full = true;
270      }
271    } else {
272      // Too large; allocate the object individually.
273      obj = sp->par_allocate(word_sz);
274    }
275  }
276  return obj;
277}
278
279void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
280  to_space_alloc_buffer()->undo_allocation(obj, word_sz);
281}
282
283void ParScanThreadState::print_promotion_failure_size() {
284  if (_promotion_failed_info.has_failed()) {
285    log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
286                             _thread_num, _promotion_failed_info.first_size());
287  }
288}
289
290class ParScanThreadStateSet: private ResourceArray {
291public:
292  // Initializes states for the specified number of threads;
293  ParScanThreadStateSet(int                     num_threads,
294                        Space&                  to_space,
295                        ParNewGeneration&       young_gen,
296                        Generation&             old_gen,
297                        ObjToScanQueueSet&      queue_set,
298                        Stack<oop, mtGC>*       overflow_stacks_,
299                        PreservedMarksSet&      preserved_marks_set,
300                        size_t                  desired_plab_sz,
301                        ParallelTaskTerminator& term);
302
303  ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
304
305  inline ParScanThreadState& thread_state(int i);
306
307  void trace_promotion_failed(const YoungGCTracer* gc_tracer);
308  void reset(uint active_workers, bool promotion_failed);
309  void flush();
310
311  #if TASKQUEUE_STATS
312  static void
313    print_termination_stats_hdr(outputStream* const st);
314  void print_termination_stats();
315  static void
316    print_taskqueue_stats_hdr(outputStream* const st);
317  void print_taskqueue_stats();
318  void reset_stats();
319  #endif // TASKQUEUE_STATS
320
321private:
322  ParallelTaskTerminator& _term;
323  ParNewGeneration&       _young_gen;
324  Generation&             _old_gen;
325 public:
326  bool is_valid(int id) const { return id < length(); }
327  ParallelTaskTerminator* terminator() { return &_term; }
328};
329
330ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
331                                             Space& to_space,
332                                             ParNewGeneration& young_gen,
333                                             Generation& old_gen,
334                                             ObjToScanQueueSet& queue_set,
335                                             Stack<oop, mtGC>* overflow_stacks,
336                                             PreservedMarksSet& preserved_marks_set,
337                                             size_t desired_plab_sz,
338                                             ParallelTaskTerminator& term)
339  : ResourceArray(sizeof(ParScanThreadState), num_threads),
340    _young_gen(young_gen),
341    _old_gen(old_gen),
342    _term(term)
343{
344  assert(num_threads > 0, "sanity check!");
345  assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
346         "overflow_stack allocation mismatch");
347  // Initialize states.
348  for (int i = 0; i < num_threads; ++i) {
349    new ((ParScanThreadState*)_data + i)
350        ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
351                           overflow_stacks, preserved_marks_set.get(i),
352                           desired_plab_sz, term);
353  }
354}
355
356inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
357  assert(i >= 0 && i < length(), "sanity check!");
358  return ((ParScanThreadState*)_data)[i];
359}
360
361void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
362  for (int i = 0; i < length(); ++i) {
363    if (thread_state(i).promotion_failed()) {
364      gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
365      thread_state(i).promotion_failed_info().reset();
366    }
367  }
368}
369
370void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
371  _term.reset_for_reuse(active_threads);
372  if (promotion_failed) {
373    for (int i = 0; i < length(); ++i) {
374      thread_state(i).print_promotion_failure_size();
375    }
376  }
377}
378
379#if TASKQUEUE_STATS
380void ParScanThreadState::reset_stats() {
381  taskqueue_stats().reset();
382  _term_attempts = 0;
383  _overflow_refills = 0;
384  _overflow_refill_objs = 0;
385}
386
387void ParScanThreadStateSet::reset_stats() {
388  for (int i = 0; i < length(); ++i) {
389    thread_state(i).reset_stats();
390  }
391}
392
393void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
394  st->print_raw_cr("GC Termination Stats");
395  st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
396  st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
397  st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
398}
399
400void ParScanThreadStateSet::print_termination_stats() {
401  LogHandle(gc, task, stats) log;
402  if (!log.is_debug()) {
403    return;
404  }
405
406  ResourceMark rm;
407  outputStream* st = log.debug_stream();
408
409  print_termination_stats_hdr(st);
410
411  for (int i = 0; i < length(); ++i) {
412    const ParScanThreadState & pss = thread_state(i);
413    const double elapsed_ms = pss.elapsed_time() * 1000.0;
414    const double s_roots_ms = pss.strong_roots_time() * 1000.0;
415    const double term_ms = pss.term_time() * 1000.0;
416    st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
417                 i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
418                 term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
419  }
420}
421
422// Print stats related to work queue activity.
423void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
424  st->print_raw_cr("GC Task Stats");
425  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
426  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
427}
428
429void ParScanThreadStateSet::print_taskqueue_stats() {
430  if (!log_develop_is_enabled(Trace, gc, task, stats)) {
431    return;
432  }
433  LogHandle(gc, task, stats) log;
434  ResourceMark rm;
435  outputStream* st = log.trace_stream();
436  print_taskqueue_stats_hdr(st);
437
438  TaskQueueStats totals;
439  for (int i = 0; i < length(); ++i) {
440    const ParScanThreadState & pss = thread_state(i);
441    const TaskQueueStats & stats = pss.taskqueue_stats();
442    st->print("%3d ", i); stats.print(st); st->cr();
443    totals += stats;
444
445    if (pss.overflow_refills() > 0) {
446      st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
447                   SIZE_FORMAT_W(10) " overflow objects",
448                   pss.overflow_refills(), pss.overflow_refill_objs());
449    }
450  }
451  st->print("tot "); totals.print(st); st->cr();
452
453  DEBUG_ONLY(totals.verify());
454}
455#endif // TASKQUEUE_STATS
456
457void ParScanThreadStateSet::flush() {
458  // Work in this loop should be kept as lightweight as
459  // possible since this might otherwise become a bottleneck
460  // to scaling. Should we add heavy-weight work into this
461  // loop, consider parallelizing the loop into the worker threads.
462  for (int i = 0; i < length(); ++i) {
463    ParScanThreadState& par_scan_state = thread_state(i);
464
465    // Flush stats related to To-space PLAB activity and
466    // retire the last buffer.
467    par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
468
469    // Every thread has its own age table.  We need to merge
470    // them all into one.
471    AgeTable *local_table = par_scan_state.age_table();
472    _young_gen.age_table()->merge(local_table);
473
474    // Inform old gen that we're done.
475    _old_gen.par_promote_alloc_done(i);
476    _old_gen.par_oop_since_save_marks_iterate_done(i);
477  }
478
479  if (UseConcMarkSweepGC) {
480    // We need to call this even when ResizeOldPLAB is disabled
481    // so as to avoid breaking some asserts. While we may be able
482    // to avoid this by reorganizing the code a bit, I am loathe
483    // to do that unless we find cases where ergo leads to bad
484    // performance.
485    CompactibleFreeListSpaceLAB::compute_desired_plab_size();
486  }
487}
488
489ParScanClosure::ParScanClosure(ParNewGeneration* g,
490                               ParScanThreadState* par_scan_state) :
491  OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
492  _boundary = _g->reserved().end();
493}
494
495void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
496void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
497
498void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
499void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
500
501void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
502void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
503
504void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
505void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
506
507ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
508                                             ParScanThreadState* par_scan_state)
509  : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
510{}
511
512void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
513void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
514
515#ifdef WIN32
516#pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
517#endif
518
519ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
520    ParScanThreadState* par_scan_state_,
521    ParScanWithoutBarrierClosure* to_space_closure_,
522    ParScanWithBarrierClosure* old_gen_closure_,
523    ParRootScanWithoutBarrierClosure* to_space_root_closure_,
524    ParNewGeneration* par_gen_,
525    ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
526    ObjToScanQueueSet* task_queues_,
527    ParallelTaskTerminator* terminator_) :
528
529    _par_scan_state(par_scan_state_),
530    _to_space_closure(to_space_closure_),
531    _old_gen_closure(old_gen_closure_),
532    _to_space_root_closure(to_space_root_closure_),
533    _old_gen_root_closure(old_gen_root_closure_),
534    _par_gen(par_gen_),
535    _task_queues(task_queues_),
536    _terminator(terminator_)
537{}
538
539void ParEvacuateFollowersClosure::do_void() {
540  ObjToScanQueue* work_q = par_scan_state()->work_queue();
541
542  while (true) {
543    // Scan to-space and old-gen objs until we run out of both.
544    oop obj_to_scan;
545    par_scan_state()->trim_queues(0);
546
547    // We have no local work, attempt to steal from other threads.
548
549    // Attempt to steal work from promoted.
550    if (task_queues()->steal(par_scan_state()->thread_num(),
551                             par_scan_state()->hash_seed(),
552                             obj_to_scan)) {
553      bool res = work_q->push(obj_to_scan);
554      assert(res, "Empty queue should have room for a push.");
555
556      // If successful, goto Start.
557      continue;
558
559      // Try global overflow list.
560    } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
561      continue;
562    }
563
564    // Otherwise, offer termination.
565    par_scan_state()->start_term_time();
566    if (terminator()->offer_termination()) break;
567    par_scan_state()->end_term_time();
568  }
569  assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
570         "Broken overflow list?");
571  // Finish the last termination pause.
572  par_scan_state()->end_term_time();
573}
574
575ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
576                             Generation* old_gen,
577                             HeapWord* young_old_boundary,
578                             ParScanThreadStateSet* state_set,
579                             StrongRootsScope* strong_roots_scope) :
580    AbstractGangTask("ParNewGeneration collection"),
581    _young_gen(young_gen), _old_gen(old_gen),
582    _young_old_boundary(young_old_boundary),
583    _state_set(state_set),
584    _strong_roots_scope(strong_roots_scope)
585{}
586
587void ParNewGenTask::work(uint worker_id) {
588  GenCollectedHeap* gch = GenCollectedHeap::heap();
589  // Since this is being done in a separate thread, need new resource
590  // and handle marks.
591  ResourceMark rm;
592  HandleMark hm;
593
594  ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
595  assert(_state_set->is_valid(worker_id), "Should not have been called");
596
597  par_scan_state.set_young_old_boundary(_young_old_boundary);
598
599  KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
600                                      gch->rem_set()->klass_rem_set());
601  CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
602                                           &par_scan_state.to_space_root_closure(),
603                                           false);
604
605  par_scan_state.start_strong_roots();
606  gch->gen_process_roots(_strong_roots_scope,
607                         GenCollectedHeap::YoungGen,
608                         true,  // Process younger gens, if any, as strong roots.
609                         GenCollectedHeap::SO_ScavengeCodeCache,
610                         GenCollectedHeap::StrongAndWeakRoots,
611                         &par_scan_state.to_space_root_closure(),
612                         &par_scan_state.older_gen_closure(),
613                         &cld_scan_closure);
614
615  par_scan_state.end_strong_roots();
616
617  // "evacuate followers".
618  par_scan_state.evacuate_followers_closure().do_void();
619}
620
621ParNewGeneration::ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
622  : DefNewGeneration(rs, initial_byte_size, "PCopy"),
623  _overflow_list(NULL),
624  _is_alive_closure(this),
625  _plab_stats("Young", YoungPLABSize, PLABWeight)
626{
627  NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
628  NOT_PRODUCT(_num_par_pushes = 0;)
629  _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
630  guarantee(_task_queues != NULL, "task_queues allocation failure.");
631
632  for (uint i = 0; i < ParallelGCThreads; i++) {
633    ObjToScanQueue *q = new ObjToScanQueue();
634    guarantee(q != NULL, "work_queue Allocation failure.");
635    _task_queues->register_queue(i, q);
636  }
637
638  for (uint i = 0; i < ParallelGCThreads; i++) {
639    _task_queues->queue(i)->initialize();
640  }
641
642  _overflow_stacks = NULL;
643  if (ParGCUseLocalOverflow) {
644    // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
645    typedef Stack<oop, mtGC> GCOopStack;
646
647    _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
648    for (size_t i = 0; i < ParallelGCThreads; ++i) {
649      new (_overflow_stacks + i) Stack<oop, mtGC>();
650    }
651  }
652
653  if (UsePerfData) {
654    EXCEPTION_MARK;
655    ResourceMark rm;
656
657    const char* cname =
658         PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
659    PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
660                                     ParallelGCThreads, CHECK);
661  }
662}
663
664// ParNewGeneration::
665ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
666  DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
667
668template <class T>
669void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
670#ifdef ASSERT
671  {
672    assert(!oopDesc::is_null(*p), "expected non-null ref");
673    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
674    // We never expect to see a null reference being processed
675    // as a weak reference.
676    assert(obj->is_oop(), "expected an oop while scanning weak refs");
677  }
678#endif // ASSERT
679
680  _par_cl->do_oop_nv(p);
681
682  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
683    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
684    _rs->write_ref_field_gc_par(p, obj);
685  }
686}
687
688void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
689void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
690
691// ParNewGeneration::
692KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
693  DefNewGeneration::KeepAliveClosure(cl) {}
694
695template <class T>
696void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
697#ifdef ASSERT
698  {
699    assert(!oopDesc::is_null(*p), "expected non-null ref");
700    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
701    // We never expect to see a null reference being processed
702    // as a weak reference.
703    assert(obj->is_oop(), "expected an oop while scanning weak refs");
704  }
705#endif // ASSERT
706
707  _cl->do_oop_nv(p);
708
709  if (GenCollectedHeap::heap()->is_in_reserved(p)) {
710    oop obj = oopDesc::load_decode_heap_oop_not_null(p);
711    _rs->write_ref_field_gc_par(p, obj);
712  }
713}
714
715void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
716void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
717
718template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
719  T heap_oop = oopDesc::load_heap_oop(p);
720  if (!oopDesc::is_null(heap_oop)) {
721    oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
722    if ((HeapWord*)obj < _boundary) {
723      assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
724      oop new_obj = obj->is_forwarded()
725                      ? obj->forwardee()
726                      : _g->DefNewGeneration::copy_to_survivor_space(obj);
727      oopDesc::encode_store_heap_oop_not_null(p, new_obj);
728    }
729    if (_gc_barrier) {
730      // If p points to a younger generation, mark the card.
731      if ((HeapWord*)obj < _gen_boundary) {
732        _rs->write_ref_field_gc_par(p, obj);
733      }
734    }
735  }
736}
737
738void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
739void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
740
741class ParNewRefProcTaskProxy: public AbstractGangTask {
742  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
743public:
744  ParNewRefProcTaskProxy(ProcessTask& task,
745                         ParNewGeneration& young_gen,
746                         Generation& old_gen,
747                         HeapWord* young_old_boundary,
748                         ParScanThreadStateSet& state_set);
749
750private:
751  virtual void work(uint worker_id);
752private:
753  ParNewGeneration&      _young_gen;
754  ProcessTask&           _task;
755  Generation&            _old_gen;
756  HeapWord*              _young_old_boundary;
757  ParScanThreadStateSet& _state_set;
758};
759
760ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
761                                               ParNewGeneration& young_gen,
762                                               Generation& old_gen,
763                                               HeapWord* young_old_boundary,
764                                               ParScanThreadStateSet& state_set)
765  : AbstractGangTask("ParNewGeneration parallel reference processing"),
766    _young_gen(young_gen),
767    _task(task),
768    _old_gen(old_gen),
769    _young_old_boundary(young_old_boundary),
770    _state_set(state_set)
771{ }
772
773void ParNewRefProcTaskProxy::work(uint worker_id) {
774  ResourceMark rm;
775  HandleMark hm;
776  ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
777  par_scan_state.set_young_old_boundary(_young_old_boundary);
778  _task.work(worker_id, par_scan_state.is_alive_closure(),
779             par_scan_state.keep_alive_closure(),
780             par_scan_state.evacuate_followers_closure());
781}
782
783class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
784  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
785  EnqueueTask& _task;
786
787public:
788  ParNewRefEnqueueTaskProxy(EnqueueTask& task)
789    : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
790      _task(task)
791  { }
792
793  virtual void work(uint worker_id) {
794    _task.work(worker_id);
795  }
796};
797
798void ParNewRefProcTaskExecutor::execute(ProcessTask& task) {
799  GenCollectedHeap* gch = GenCollectedHeap::heap();
800  WorkGang* workers = gch->workers();
801  assert(workers != NULL, "Need parallel worker threads.");
802  _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
803  ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
804                                 _young_gen.reserved().end(), _state_set);
805  workers->run_task(&rp_task);
806  _state_set.reset(0 /* bad value in debug if not reset */,
807                   _young_gen.promotion_failed());
808}
809
810void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) {
811  GenCollectedHeap* gch = GenCollectedHeap::heap();
812  WorkGang* workers = gch->workers();
813  assert(workers != NULL, "Need parallel worker threads.");
814  ParNewRefEnqueueTaskProxy enq_task(task);
815  workers->run_task(&enq_task);
816}
817
818void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
819  _state_set.flush();
820  GenCollectedHeap* gch = GenCollectedHeap::heap();
821  gch->save_marks();
822}
823
824ScanClosureWithParBarrier::
825ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
826  ScanClosure(g, gc_barrier)
827{ }
828
829EvacuateFollowersClosureGeneral::
830EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
831                                OopsInGenClosure* cur,
832                                OopsInGenClosure* older) :
833  _gch(gch),
834  _scan_cur_or_nonheap(cur), _scan_older(older)
835{ }
836
837void EvacuateFollowersClosureGeneral::do_void() {
838  do {
839    // Beware: this call will lead to closure applications via virtual
840    // calls.
841    _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen,
842                                       _scan_cur_or_nonheap,
843                                       _scan_older);
844  } while (!_gch->no_allocs_since_save_marks());
845}
846
847// A Generation that does parallel young-gen collection.
848
849void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
850  assert(_promo_failure_scan_stack.is_empty(), "post condition");
851  _promo_failure_scan_stack.clear(true); // Clear cached segments.
852
853  remove_forwarding_pointers();
854  log_info(gc, promotion)("Promotion failed");
855  // All the spaces are in play for mark-sweep.
856  swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
857  from()->set_next_compaction_space(to());
858  gch->set_incremental_collection_failed();
859  // Inform the next generation that a promotion failure occurred.
860  _old_gen->promotion_failure_occurred();
861
862  // Trace promotion failure in the parallel GC threads
863  thread_state_set.trace_promotion_failed(gc_tracer());
864  // Single threaded code may have reported promotion failure to the global state
865  if (_promotion_failed_info.has_failed()) {
866    _gc_tracer.report_promotion_failed(_promotion_failed_info);
867  }
868  // Reset the PromotionFailureALot counters.
869  NOT_PRODUCT(gch->reset_promotion_should_fail();)
870}
871
872void ParNewGeneration::collect(bool   full,
873                               bool   clear_all_soft_refs,
874                               size_t size,
875                               bool   is_tlab) {
876  assert(full || size > 0, "otherwise we don't want to collect");
877
878  GenCollectedHeap* gch = GenCollectedHeap::heap();
879
880  _gc_timer->register_gc_start();
881
882  AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
883  WorkGang* workers = gch->workers();
884  assert(workers != NULL, "Need workgang for parallel work");
885  uint active_workers =
886       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
887                                               workers->active_workers(),
888                                               Threads::number_of_non_daemon_threads());
889  workers->set_active_workers(active_workers);
890  _old_gen = gch->old_gen();
891
892  // If the next generation is too full to accommodate worst-case promotion
893  // from this generation, pass on collection; let the next generation
894  // do it.
895  if (!collection_attempt_is_safe()) {
896    gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
897    return;
898  }
899  assert(to()->is_empty(), "Else not collection_attempt_is_safe");
900
901  _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
902  gch->trace_heap_before_gc(gc_tracer());
903
904  init_assuming_no_promotion_failure();
905
906  if (UseAdaptiveSizePolicy) {
907    set_survivor_overflow(false);
908    size_policy->minor_collection_begin();
909  }
910
911  GCTraceTime(Trace, gc, phases) t1("ParNew", NULL, gch->gc_cause());
912
913  age_table()->clear();
914  to()->clear(SpaceDecorator::Mangle);
915
916  gch->save_marks();
917
918  // Set the correct parallelism (number of queues) in the reference processor
919  ref_processor()->set_active_mt_degree(active_workers);
920
921  // Need to initialize the preserved marks before the ThreadStateSet c'tor.
922  _preserved_marks_set.init(active_workers);
923
924  // Always set the terminator for the active number of workers
925  // because only those workers go through the termination protocol.
926  ParallelTaskTerminator _term(active_workers, task_queues());
927  ParScanThreadStateSet thread_state_set(active_workers,
928                                         *to(), *this, *_old_gen, *task_queues(),
929                                         _overflow_stacks, _preserved_marks_set,
930                                         desired_plab_sz(), _term);
931
932  thread_state_set.reset(active_workers, promotion_failed());
933
934  {
935    StrongRootsScope srs(active_workers);
936
937    ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
938    gch->rem_set()->prepare_for_younger_refs_iterate(true);
939    // It turns out that even when we're using 1 thread, doing the work in a
940    // separate thread causes wide variance in run times.  We can't help this
941    // in the multi-threaded case, but we special-case n=1 here to get
942    // repeatable measurements of the 1-thread overhead of the parallel code.
943    if (active_workers > 1) {
944      workers->run_task(&tsk);
945    } else {
946      tsk.work(0);
947    }
948  }
949
950  thread_state_set.reset(0 /* Bad value in debug if not reset */,
951                         promotion_failed());
952
953  // Trace and reset failed promotion info.
954  if (promotion_failed()) {
955    thread_state_set.trace_promotion_failed(gc_tracer());
956  }
957
958  // Process (weak) reference objects found during scavenge.
959  ReferenceProcessor* rp = ref_processor();
960  IsAliveClosure is_alive(this);
961  ScanWeakRefClosure scan_weak_ref(this);
962  KeepAliveClosure keep_alive(&scan_weak_ref);
963  ScanClosure               scan_without_gc_barrier(this, false);
964  ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
965  set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
966  EvacuateFollowersClosureGeneral evacuate_followers(gch,
967    &scan_without_gc_barrier, &scan_with_gc_barrier);
968  rp->setup_policy(clear_all_soft_refs);
969  // Can  the mt_degree be set later (at run_task() time would be best)?
970  rp->set_active_mt_degree(active_workers);
971  ReferenceProcessorStats stats;
972  if (rp->processing_is_mt()) {
973    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
974    stats = rp->process_discovered_references(&is_alive, &keep_alive,
975                                              &evacuate_followers, &task_executor,
976                                              _gc_timer);
977  } else {
978    thread_state_set.flush();
979    gch->save_marks();
980    stats = rp->process_discovered_references(&is_alive, &keep_alive,
981                                              &evacuate_followers, NULL,
982                                              _gc_timer);
983  }
984  _gc_tracer.report_gc_reference_stats(stats);
985  _gc_tracer.report_tenuring_threshold(tenuring_threshold());
986
987  if (!promotion_failed()) {
988    // Swap the survivor spaces.
989    eden()->clear(SpaceDecorator::Mangle);
990    from()->clear(SpaceDecorator::Mangle);
991    if (ZapUnusedHeapArea) {
992      // This is now done here because of the piece-meal mangling which
993      // can check for valid mangling at intermediate points in the
994      // collection(s).  When a young collection fails to collect
995      // sufficient space resizing of the young generation can occur
996      // and redistribute the spaces in the young generation.  Mangle
997      // here so that unzapped regions don't get distributed to
998      // other spaces.
999      to()->mangle_unused_area();
1000    }
1001    swap_spaces();
1002
1003    // A successful scavenge should restart the GC time limit count which is
1004    // for full GC's.
1005    size_policy->reset_gc_overhead_limit_count();
1006
1007    assert(to()->is_empty(), "to space should be empty now");
1008
1009    adjust_desired_tenuring_threshold();
1010  } else {
1011    handle_promotion_failed(gch, thread_state_set);
1012  }
1013  _preserved_marks_set.reclaim();
1014  // set new iteration safe limit for the survivor spaces
1015  from()->set_concurrent_iteration_safe_limit(from()->top());
1016  to()->set_concurrent_iteration_safe_limit(to()->top());
1017
1018  plab_stats()->adjust_desired_plab_sz();
1019
1020  TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1021  TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1022
1023  if (UseAdaptiveSizePolicy) {
1024    size_policy->minor_collection_end(gch->gc_cause());
1025    size_policy->avg_survived()->sample(from()->used());
1026  }
1027
1028  // We need to use a monotonically non-decreasing time in ms
1029  // or we will see time-warp warnings and os::javaTimeMillis()
1030  // does not guarantee monotonicity.
1031  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1032  update_time_of_last_gc(now);
1033
1034  rp->set_enqueuing_is_done(true);
1035  if (rp->processing_is_mt()) {
1036    ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
1037    rp->enqueue_discovered_references(&task_executor);
1038  } else {
1039    rp->enqueue_discovered_references(NULL);
1040  }
1041  rp->verify_no_references_recorded();
1042
1043  gch->trace_heap_after_gc(gc_tracer());
1044
1045  _gc_timer->register_gc_end();
1046
1047  _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1048}
1049
1050size_t ParNewGeneration::desired_plab_sz() {
1051  return _plab_stats.desired_plab_sz(GenCollectedHeap::heap()->workers()->active_workers());
1052}
1053
1054static int sum;
1055void ParNewGeneration::waste_some_time() {
1056  for (int i = 0; i < 100; i++) {
1057    sum += i;
1058  }
1059}
1060
1061static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1062
1063// Because of concurrency, there are times where an object for which
1064// "is_forwarded()" is true contains an "interim" forwarding pointer
1065// value.  Such a value will soon be overwritten with a real value.
1066// This method requires "obj" to have a forwarding pointer, and waits, if
1067// necessary for a real one to be inserted, and returns it.
1068
1069oop ParNewGeneration::real_forwardee(oop obj) {
1070  oop forward_ptr = obj->forwardee();
1071  if (forward_ptr != ClaimedForwardPtr) {
1072    return forward_ptr;
1073  } else {
1074    return real_forwardee_slow(obj);
1075  }
1076}
1077
1078oop ParNewGeneration::real_forwardee_slow(oop obj) {
1079  // Spin-read if it is claimed but not yet written by another thread.
1080  oop forward_ptr = obj->forwardee();
1081  while (forward_ptr == ClaimedForwardPtr) {
1082    waste_some_time();
1083    assert(obj->is_forwarded(), "precondition");
1084    forward_ptr = obj->forwardee();
1085  }
1086  return forward_ptr;
1087}
1088
1089// Multiple GC threads may try to promote an object.  If the object
1090// is successfully promoted, a forwarding pointer will be installed in
1091// the object in the young generation.  This method claims the right
1092// to install the forwarding pointer before it copies the object,
1093// thus avoiding the need to undo the copy as in
1094// copy_to_survivor_space_avoiding_with_undo.
1095
1096oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
1097                                             oop old,
1098                                             size_t sz,
1099                                             markOop m) {
1100  // In the sequential version, this assert also says that the object is
1101  // not forwarded.  That might not be the case here.  It is the case that
1102  // the caller observed it to be not forwarded at some time in the past.
1103  assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1104
1105  // The sequential code read "old->age()" below.  That doesn't work here,
1106  // since the age is in the mark word, and that might be overwritten with
1107  // a forwarding pointer by a parallel thread.  So we must save the mark
1108  // word in a local and then analyze it.
1109  oopDesc dummyOld;
1110  dummyOld.set_mark(m);
1111  assert(!dummyOld.is_forwarded(),
1112         "should not be called with forwarding pointer mark word.");
1113
1114  oop new_obj = NULL;
1115  oop forward_ptr;
1116
1117  // Try allocating obj in to-space (unless too old)
1118  if (dummyOld.age() < tenuring_threshold()) {
1119    new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1120    if (new_obj == NULL) {
1121      set_survivor_overflow(true);
1122    }
1123  }
1124
1125  if (new_obj == NULL) {
1126    // Either to-space is full or we decided to promote try allocating obj tenured
1127
1128    // Attempt to install a null forwarding pointer (atomically),
1129    // to claim the right to install the real forwarding pointer.
1130    forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1131    if (forward_ptr != NULL) {
1132      // someone else beat us to it.
1133        return real_forwardee(old);
1134    }
1135
1136    if (!_promotion_failed) {
1137      new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1138                                      old, m, sz);
1139    }
1140
1141    if (new_obj == NULL) {
1142      // promotion failed, forward to self
1143      _promotion_failed = true;
1144      new_obj = old;
1145
1146      par_scan_state->preserved_marks()->push_if_necessary(old, m);
1147      par_scan_state->register_promotion_failure(sz);
1148    }
1149
1150    old->forward_to(new_obj);
1151    forward_ptr = NULL;
1152  } else {
1153    // Is in to-space; do copying ourselves.
1154    Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1155    assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1156    forward_ptr = old->forward_to_atomic(new_obj);
1157    // Restore the mark word copied above.
1158    new_obj->set_mark(m);
1159    // Increment age if obj still in new generation
1160    new_obj->incr_age();
1161    par_scan_state->age_table()->add(new_obj, sz);
1162  }
1163  assert(new_obj != NULL, "just checking");
1164
1165  // This code must come after the CAS test, or it will print incorrect
1166  // information.
1167  log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1168                                  is_in_reserved(new_obj) ? "copying" : "tenuring",
1169                                  new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1170
1171  if (forward_ptr == NULL) {
1172    oop obj_to_push = new_obj;
1173    if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1174      // Length field used as index of next element to be scanned.
1175      // Real length can be obtained from real_forwardee()
1176      arrayOop(old)->set_length(0);
1177      obj_to_push = old;
1178      assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1179             "push forwarded object");
1180    }
1181    // Push it on one of the queues of to-be-scanned objects.
1182    bool simulate_overflow = false;
1183    NOT_PRODUCT(
1184      if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1185        // simulate a stack overflow
1186        simulate_overflow = true;
1187      }
1188    )
1189    if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1190      // Add stats for overflow pushes.
1191      log_develop_trace(gc)("Queue Overflow");
1192      push_on_overflow_list(old, par_scan_state);
1193      TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1194    }
1195
1196    return new_obj;
1197  }
1198
1199  // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1200  // allocate it?
1201  if (is_in_reserved(new_obj)) {
1202    // Must be in to_space.
1203    assert(to()->is_in_reserved(new_obj), "Checking");
1204    if (forward_ptr == ClaimedForwardPtr) {
1205      // Wait to get the real forwarding pointer value.
1206      forward_ptr = real_forwardee(old);
1207    }
1208    par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1209  }
1210
1211  return forward_ptr;
1212}
1213
1214#ifndef PRODUCT
1215// It's OK to call this multi-threaded;  the worst thing
1216// that can happen is that we'll get a bunch of closely
1217// spaced simulated overflows, but that's OK, in fact
1218// probably good as it would exercise the overflow code
1219// under contention.
1220bool ParNewGeneration::should_simulate_overflow() {
1221  if (_overflow_counter-- <= 0) { // just being defensive
1222    _overflow_counter = ParGCWorkQueueOverflowInterval;
1223    return true;
1224  } else {
1225    return false;
1226  }
1227}
1228#endif
1229
1230// In case we are using compressed oops, we need to be careful.
1231// If the object being pushed is an object array, then its length
1232// field keeps track of the "grey boundary" at which the next
1233// incremental scan will be done (see ParGCArrayScanChunk).
1234// When using compressed oops, this length field is kept in the
1235// lower 32 bits of the erstwhile klass word and cannot be used
1236// for the overflow chaining pointer (OCP below). As such the OCP
1237// would itself need to be compressed into the top 32-bits in this
1238// case. Unfortunately, see below, in the event that we have a
1239// promotion failure, the node to be pushed on the list can be
1240// outside of the Java heap, so the heap-based pointer compression
1241// would not work (we would have potential aliasing between C-heap
1242// and Java-heap pointers). For this reason, when using compressed
1243// oops, we simply use a worker-thread-local, non-shared overflow
1244// list in the form of a growable array, with a slightly different
1245// overflow stack draining strategy. If/when we start using fat
1246// stacks here, we can go back to using (fat) pointer chains
1247// (although some performance comparisons would be useful since
1248// single global lists have their own performance disadvantages
1249// as we were made painfully aware not long ago, see 6786503).
1250#define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1251void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1252  assert(is_in_reserved(from_space_obj), "Should be from this generation");
1253  if (ParGCUseLocalOverflow) {
1254    // In the case of compressed oops, we use a private, not-shared
1255    // overflow stack.
1256    par_scan_state->push_on_overflow_stack(from_space_obj);
1257  } else {
1258    assert(!UseCompressedOops, "Error");
1259    // if the object has been forwarded to itself, then we cannot
1260    // use the klass pointer for the linked list.  Instead we have
1261    // to allocate an oopDesc in the C-Heap and use that for the linked list.
1262    // XXX This is horribly inefficient when a promotion failure occurs
1263    // and should be fixed. XXX FIX ME !!!
1264#ifndef PRODUCT
1265    Atomic::inc_ptr(&_num_par_pushes);
1266    assert(_num_par_pushes > 0, "Tautology");
1267#endif
1268    if (from_space_obj->forwardee() == from_space_obj) {
1269      oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1270      listhead->forward_to(from_space_obj);
1271      from_space_obj = listhead;
1272    }
1273    oop observed_overflow_list = _overflow_list;
1274    oop cur_overflow_list;
1275    do {
1276      cur_overflow_list = observed_overflow_list;
1277      if (cur_overflow_list != BUSY) {
1278        from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1279      } else {
1280        from_space_obj->set_klass_to_list_ptr(NULL);
1281      }
1282      observed_overflow_list =
1283        (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1284    } while (cur_overflow_list != observed_overflow_list);
1285  }
1286}
1287
1288bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1289  bool res;
1290
1291  if (ParGCUseLocalOverflow) {
1292    res = par_scan_state->take_from_overflow_stack();
1293  } else {
1294    assert(!UseCompressedOops, "Error");
1295    res = take_from_overflow_list_work(par_scan_state);
1296  }
1297  return res;
1298}
1299
1300
1301// *NOTE*: The overflow list manipulation code here and
1302// in CMSCollector:: are very similar in shape,
1303// except that in the CMS case we thread the objects
1304// directly into the list via their mark word, and do
1305// not need to deal with special cases below related
1306// to chunking of object arrays and promotion failure
1307// handling.
1308// CR 6797058 has been filed to attempt consolidation of
1309// the common code.
1310// Because of the common code, if you make any changes in
1311// the code below, please check the CMS version to see if
1312// similar changes might be needed.
1313// See CMSCollector::par_take_from_overflow_list() for
1314// more extensive documentation comments.
1315bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1316  ObjToScanQueue* work_q = par_scan_state->work_queue();
1317  // How many to take?
1318  size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1319                                 (size_t)ParGCDesiredObjsFromOverflowList);
1320
1321  assert(!UseCompressedOops, "Error");
1322  assert(par_scan_state->overflow_stack() == NULL, "Error");
1323  if (_overflow_list == NULL) return false;
1324
1325  // Otherwise, there was something there; try claiming the list.
1326  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1327  // Trim off a prefix of at most objsFromOverflow items
1328  Thread* tid = Thread::current();
1329  size_t spin_count = ParallelGCThreads;
1330  size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1331  for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1332    // someone grabbed it before we did ...
1333    // ... we spin for a short while...
1334    os::sleep(tid, sleep_time_millis, false);
1335    if (_overflow_list == NULL) {
1336      // nothing left to take
1337      return false;
1338    } else if (_overflow_list != BUSY) {
1339     // try and grab the prefix
1340     prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1341    }
1342  }
1343  if (prefix == NULL || prefix == BUSY) {
1344     // Nothing to take or waited long enough
1345     if (prefix == NULL) {
1346       // Write back the NULL in case we overwrote it with BUSY above
1347       // and it is still the same value.
1348       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1349     }
1350     return false;
1351  }
1352  assert(prefix != NULL && prefix != BUSY, "Error");
1353  size_t i = 1;
1354  oop cur = prefix;
1355  while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1356    i++; cur = cur->list_ptr_from_klass();
1357  }
1358
1359  // Reattach remaining (suffix) to overflow list
1360  if (cur->klass_or_null() == NULL) {
1361    // Write back the NULL in lieu of the BUSY we wrote
1362    // above and it is still the same value.
1363    if (_overflow_list == BUSY) {
1364      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1365    }
1366  } else {
1367    assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1368    oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1369    cur->set_klass_to_list_ptr(NULL);     // break off suffix
1370    // It's possible that the list is still in the empty(busy) state
1371    // we left it in a short while ago; in that case we may be
1372    // able to place back the suffix.
1373    oop observed_overflow_list = _overflow_list;
1374    oop cur_overflow_list = observed_overflow_list;
1375    bool attached = false;
1376    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1377      observed_overflow_list =
1378        (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1379      if (cur_overflow_list == observed_overflow_list) {
1380        attached = true;
1381        break;
1382      } else cur_overflow_list = observed_overflow_list;
1383    }
1384    if (!attached) {
1385      // Too bad, someone else got in in between; we'll need to do a splice.
1386      // Find the last item of suffix list
1387      oop last = suffix;
1388      while (last->klass_or_null() != NULL) {
1389        last = last->list_ptr_from_klass();
1390      }
1391      // Atomically prepend suffix to current overflow list
1392      observed_overflow_list = _overflow_list;
1393      do {
1394        cur_overflow_list = observed_overflow_list;
1395        if (cur_overflow_list != BUSY) {
1396          // Do the splice ...
1397          last->set_klass_to_list_ptr(cur_overflow_list);
1398        } else { // cur_overflow_list == BUSY
1399          last->set_klass_to_list_ptr(NULL);
1400        }
1401        observed_overflow_list =
1402          (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1403      } while (cur_overflow_list != observed_overflow_list);
1404    }
1405  }
1406
1407  // Push objects on prefix list onto this thread's work queue
1408  assert(prefix != NULL && prefix != BUSY, "program logic");
1409  cur = prefix;
1410  ssize_t n = 0;
1411  while (cur != NULL) {
1412    oop obj_to_push = cur->forwardee();
1413    oop next        = cur->list_ptr_from_klass();
1414    cur->set_klass(obj_to_push->klass());
1415    // This may be an array object that is self-forwarded. In that case, the list pointer
1416    // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1417    if (!is_in_reserved(cur)) {
1418      // This can become a scaling bottleneck when there is work queue overflow coincident
1419      // with promotion failure.
1420      oopDesc* f = cur;
1421      FREE_C_HEAP_ARRAY(oopDesc, f);
1422    } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1423      assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1424      obj_to_push = cur;
1425    }
1426    bool ok = work_q->push(obj_to_push);
1427    assert(ok, "Should have succeeded");
1428    cur = next;
1429    n++;
1430  }
1431  TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1432#ifndef PRODUCT
1433  assert(_num_par_pushes >= n, "Too many pops?");
1434  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1435#endif
1436  return true;
1437}
1438#undef BUSY
1439
1440void ParNewGeneration::ref_processor_init() {
1441  if (_ref_processor == NULL) {
1442    // Allocate and initialize a reference processor
1443    _ref_processor =
1444      new ReferenceProcessor(_reserved,                  // span
1445                             ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1446                             ParallelGCThreads,          // mt processing degree
1447                             refs_discovery_is_mt(),     // mt discovery
1448                             ParallelGCThreads,          // mt discovery degree
1449                             refs_discovery_is_atomic(), // atomic_discovery
1450                             NULL);                      // is_alive_non_header
1451  }
1452}
1453
1454const char* ParNewGeneration::name() const {
1455  return "par new generation";
1456}
1457