concurrentMarkSweepGeneration.cpp revision 13129:da4c9eef4316
1/*
2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoaderData.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/codeCache.hpp"
31#include "gc/cms/cmsCollectorPolicy.hpp"
32#include "gc/cms/cmsOopClosures.inline.hpp"
33#include "gc/cms/compactibleFreeListSpace.hpp"
34#include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
35#include "gc/cms/concurrentMarkSweepThread.hpp"
36#include "gc/cms/parNewGeneration.hpp"
37#include "gc/cms/vmCMSOperations.hpp"
38#include "gc/serial/genMarkSweep.hpp"
39#include "gc/serial/tenuredGeneration.hpp"
40#include "gc/shared/adaptiveSizePolicy.hpp"
41#include "gc/shared/cardGeneration.inline.hpp"
42#include "gc/shared/cardTableRS.hpp"
43#include "gc/shared/collectedHeap.inline.hpp"
44#include "gc/shared/collectorCounters.hpp"
45#include "gc/shared/collectorPolicy.hpp"
46#include "gc/shared/gcLocker.inline.hpp"
47#include "gc/shared/gcPolicyCounters.hpp"
48#include "gc/shared/gcTimer.hpp"
49#include "gc/shared/gcTrace.hpp"
50#include "gc/shared/gcTraceTime.inline.hpp"
51#include "gc/shared/genCollectedHeap.hpp"
52#include "gc/shared/genOopClosures.inline.hpp"
53#include "gc/shared/isGCActiveMark.hpp"
54#include "gc/shared/referencePolicy.hpp"
55#include "gc/shared/strongRootsScope.hpp"
56#include "gc/shared/taskqueue.inline.hpp"
57#include "logging/log.hpp"
58#include "memory/allocation.hpp"
59#include "memory/iterator.inline.hpp"
60#include "memory/padded.hpp"
61#include "memory/resourceArea.hpp"
62#include "oops/oop.inline.hpp"
63#include "prims/jvmtiExport.hpp"
64#include "runtime/atomic.hpp"
65#include "runtime/globals_extension.hpp"
66#include "runtime/handles.inline.hpp"
67#include "runtime/java.hpp"
68#include "runtime/orderAccess.inline.hpp"
69#include "runtime/timer.hpp"
70#include "runtime/vmThread.hpp"
71#include "services/memoryService.hpp"
72#include "services/runtimeService.hpp"
73#include "utilities/stack.inline.hpp"
74
75// statics
76CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
77bool CMSCollector::_full_gc_requested = false;
78GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
79
80//////////////////////////////////////////////////////////////////
81// In support of CMS/VM thread synchronization
82//////////////////////////////////////////////////////////////////
83// We split use of the CGC_lock into 2 "levels".
84// The low-level locking is of the usual CGC_lock monitor. We introduce
85// a higher level "token" (hereafter "CMS token") built on top of the
86// low level monitor (hereafter "CGC lock").
87// The token-passing protocol gives priority to the VM thread. The
88// CMS-lock doesn't provide any fairness guarantees, but clients
89// should ensure that it is only held for very short, bounded
90// durations.
91//
92// When either of the CMS thread or the VM thread is involved in
93// collection operations during which it does not want the other
94// thread to interfere, it obtains the CMS token.
95//
96// If either thread tries to get the token while the other has
97// it, that thread waits. However, if the VM thread and CMS thread
98// both want the token, then the VM thread gets priority while the
99// CMS thread waits. This ensures, for instance, that the "concurrent"
100// phases of the CMS thread's work do not block out the VM thread
101// for long periods of time as the CMS thread continues to hog
102// the token. (See bug 4616232).
103//
104// The baton-passing functions are, however, controlled by the
105// flags _foregroundGCShouldWait and _foregroundGCIsActive,
106// and here the low-level CMS lock, not the high level token,
107// ensures mutual exclusion.
108//
109// Two important conditions that we have to satisfy:
110// 1. if a thread does a low-level wait on the CMS lock, then it
111//    relinquishes the CMS token if it were holding that token
112//    when it acquired the low-level CMS lock.
113// 2. any low-level notifications on the low-level lock
114//    should only be sent when a thread has relinquished the token.
115//
116// In the absence of either property, we'd have potential deadlock.
117//
118// We protect each of the CMS (concurrent and sequential) phases
119// with the CMS _token_, not the CMS _lock_.
120//
121// The only code protected by CMS lock is the token acquisition code
122// itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
123// baton-passing code.
124//
125// Unfortunately, i couldn't come up with a good abstraction to factor and
126// hide the naked CGC_lock manipulation in the baton-passing code
127// further below. That's something we should try to do. Also, the proof
128// of correctness of this 2-level locking scheme is far from obvious,
129// and potentially quite slippery. We have an uneasy suspicion, for instance,
130// that there may be a theoretical possibility of delay/starvation in the
131// low-level lock/wait/notify scheme used for the baton-passing because of
132// potential interference with the priority scheme embodied in the
133// CMS-token-passing protocol. See related comments at a CGC_lock->wait()
134// invocation further below and marked with "XXX 20011219YSR".
135// Indeed, as we note elsewhere, this may become yet more slippery
136// in the presence of multiple CMS and/or multiple VM threads. XXX
137
138class CMSTokenSync: public StackObj {
139 private:
140  bool _is_cms_thread;
141 public:
142  CMSTokenSync(bool is_cms_thread):
143    _is_cms_thread(is_cms_thread) {
144    assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
145           "Incorrect argument to constructor");
146    ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
147  }
148
149  ~CMSTokenSync() {
150    assert(_is_cms_thread ?
151             ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
152             ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
153          "Incorrect state");
154    ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
155  }
156};
157
158// Convenience class that does a CMSTokenSync, and then acquires
159// upto three locks.
160class CMSTokenSyncWithLocks: public CMSTokenSync {
161 private:
162  // Note: locks are acquired in textual declaration order
163  // and released in the opposite order
164  MutexLockerEx _locker1, _locker2, _locker3;
165 public:
166  CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
167                        Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
168    CMSTokenSync(is_cms_thread),
169    _locker1(mutex1, Mutex::_no_safepoint_check_flag),
170    _locker2(mutex2, Mutex::_no_safepoint_check_flag),
171    _locker3(mutex3, Mutex::_no_safepoint_check_flag)
172  { }
173};
174
175
176//////////////////////////////////////////////////////////////////
177//  Concurrent Mark-Sweep Generation /////////////////////////////
178//////////////////////////////////////////////////////////////////
179
180NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
181
182// This struct contains per-thread things necessary to support parallel
183// young-gen collection.
184class CMSParGCThreadState: public CHeapObj<mtGC> {
185 public:
186  CompactibleFreeListSpaceLAB lab;
187  PromotionInfo promo;
188
189  // Constructor.
190  CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
191    promo.setSpace(cfls);
192  }
193};
194
195ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
196     ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
197  CardGeneration(rs, initial_byte_size, ct),
198  _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
199  _did_compact(false)
200{
201  HeapWord* bottom = (HeapWord*) _virtual_space.low();
202  HeapWord* end    = (HeapWord*) _virtual_space.high();
203
204  _direct_allocated_words = 0;
205  NOT_PRODUCT(
206    _numObjectsPromoted = 0;
207    _numWordsPromoted = 0;
208    _numObjectsAllocated = 0;
209    _numWordsAllocated = 0;
210  )
211
212  _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
213  NOT_PRODUCT(debug_cms_space = _cmsSpace;)
214  _cmsSpace->_old_gen = this;
215
216  _gc_stats = new CMSGCStats();
217
218  // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
219  // offsets match. The ability to tell free chunks from objects
220  // depends on this property.
221  debug_only(
222    FreeChunk* junk = NULL;
223    assert(UseCompressedClassPointers ||
224           junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
225           "Offset of FreeChunk::_prev within FreeChunk must match"
226           "  that of OopDesc::_klass within OopDesc");
227  )
228
229  _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
230  for (uint i = 0; i < ParallelGCThreads; i++) {
231    _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
232  }
233
234  _incremental_collection_failed = false;
235  // The "dilatation_factor" is the expansion that can occur on
236  // account of the fact that the minimum object size in the CMS
237  // generation may be larger than that in, say, a contiguous young
238  //  generation.
239  // Ideally, in the calculation below, we'd compute the dilatation
240  // factor as: MinChunkSize/(promoting_gen's min object size)
241  // Since we do not have such a general query interface for the
242  // promoting generation, we'll instead just use the minimum
243  // object size (which today is a header's worth of space);
244  // note that all arithmetic is in units of HeapWords.
245  assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
246  assert(_dilatation_factor >= 1.0, "from previous assert");
247}
248
249
250// The field "_initiating_occupancy" represents the occupancy percentage
251// at which we trigger a new collection cycle.  Unless explicitly specified
252// via CMSInitiatingOccupancyFraction (argument "io" below), it
253// is calculated by:
254//
255//   Let "f" be MinHeapFreeRatio in
256//
257//    _initiating_occupancy = 100-f +
258//                           f * (CMSTriggerRatio/100)
259//   where CMSTriggerRatio is the argument "tr" below.
260//
261// That is, if we assume the heap is at its desired maximum occupancy at the
262// end of a collection, we let CMSTriggerRatio of the (purported) free
263// space be allocated before initiating a new collection cycle.
264//
265void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
266  assert(io <= 100 && tr <= 100, "Check the arguments");
267  if (io >= 0) {
268    _initiating_occupancy = (double)io / 100.0;
269  } else {
270    _initiating_occupancy = ((100 - MinHeapFreeRatio) +
271                             (double)(tr * MinHeapFreeRatio) / 100.0)
272                            / 100.0;
273  }
274}
275
276void ConcurrentMarkSweepGeneration::ref_processor_init() {
277  assert(collector() != NULL, "no collector");
278  collector()->ref_processor_init();
279}
280
281void CMSCollector::ref_processor_init() {
282  if (_ref_processor == NULL) {
283    // Allocate and initialize a reference processor
284    _ref_processor =
285      new ReferenceProcessor(_span,                               // span
286                             (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
287                             ParallelGCThreads,                   // mt processing degree
288                             _cmsGen->refs_discovery_is_mt(),     // mt discovery
289                             MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
290                             _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
291                             &_is_alive_closure);                 // closure for liveness info
292    // Initialize the _ref_processor field of CMSGen
293    _cmsGen->set_ref_processor(_ref_processor);
294
295  }
296}
297
298AdaptiveSizePolicy* CMSCollector::size_policy() {
299  GenCollectedHeap* gch = GenCollectedHeap::heap();
300  return gch->gen_policy()->size_policy();
301}
302
303void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
304
305  const char* gen_name = "old";
306  GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
307  // Generation Counters - generation 1, 1 subspace
308  _gen_counters = new GenerationCounters(gen_name, 1, 1,
309      gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
310
311  _space_counters = new GSpaceCounters(gen_name, 0,
312                                       _virtual_space.reserved_size(),
313                                       this, _gen_counters);
314}
315
316CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
317  _cms_gen(cms_gen)
318{
319  assert(alpha <= 100, "bad value");
320  _saved_alpha = alpha;
321
322  // Initialize the alphas to the bootstrap value of 100.
323  _gc0_alpha = _cms_alpha = 100;
324
325  _cms_begin_time.update();
326  _cms_end_time.update();
327
328  _gc0_duration = 0.0;
329  _gc0_period = 0.0;
330  _gc0_promoted = 0;
331
332  _cms_duration = 0.0;
333  _cms_period = 0.0;
334  _cms_allocated = 0;
335
336  _cms_used_at_gc0_begin = 0;
337  _cms_used_at_gc0_end = 0;
338  _allow_duty_cycle_reduction = false;
339  _valid_bits = 0;
340}
341
342double CMSStats::cms_free_adjustment_factor(size_t free) const {
343  // TBD: CR 6909490
344  return 1.0;
345}
346
347void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
348}
349
350// If promotion failure handling is on use
351// the padded average size of the promotion for each
352// young generation collection.
353double CMSStats::time_until_cms_gen_full() const {
354  size_t cms_free = _cms_gen->cmsSpace()->free();
355  GenCollectedHeap* gch = GenCollectedHeap::heap();
356  size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
357                                   (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
358  if (cms_free > expected_promotion) {
359    // Start a cms collection if there isn't enough space to promote
360    // for the next young collection.  Use the padded average as
361    // a safety factor.
362    cms_free -= expected_promotion;
363
364    // Adjust by the safety factor.
365    double cms_free_dbl = (double)cms_free;
366    double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
367    // Apply a further correction factor which tries to adjust
368    // for recent occurance of concurrent mode failures.
369    cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
370    cms_free_dbl = cms_free_dbl * cms_adjustment;
371
372    log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
373                  cms_free, expected_promotion);
374    log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
375    // Add 1 in case the consumption rate goes to zero.
376    return cms_free_dbl / (cms_consumption_rate() + 1.0);
377  }
378  return 0.0;
379}
380
381// Compare the duration of the cms collection to the
382// time remaining before the cms generation is empty.
383// Note that the time from the start of the cms collection
384// to the start of the cms sweep (less than the total
385// duration of the cms collection) can be used.  This
386// has been tried and some applications experienced
387// promotion failures early in execution.  This was
388// possibly because the averages were not accurate
389// enough at the beginning.
390double CMSStats::time_until_cms_start() const {
391  // We add "gc0_period" to the "work" calculation
392  // below because this query is done (mostly) at the
393  // end of a scavenge, so we need to conservatively
394  // account for that much possible delay
395  // in the query so as to avoid concurrent mode failures
396  // due to starting the collection just a wee bit too
397  // late.
398  double work = cms_duration() + gc0_period();
399  double deadline = time_until_cms_gen_full();
400  // If a concurrent mode failure occurred recently, we want to be
401  // more conservative and halve our expected time_until_cms_gen_full()
402  if (work > deadline) {
403    log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
404                          cms_duration(), gc0_period(), time_until_cms_gen_full());
405    return 0.0;
406  }
407  return work - deadline;
408}
409
410#ifndef PRODUCT
411void CMSStats::print_on(outputStream *st) const {
412  st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
413  st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
414               gc0_duration(), gc0_period(), gc0_promoted());
415  st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
416            cms_duration(), cms_period(), cms_allocated());
417  st->print(",cms_since_beg=%g,cms_since_end=%g",
418            cms_time_since_begin(), cms_time_since_end());
419  st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
420            _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
421
422  if (valid()) {
423    st->print(",promo_rate=%g,cms_alloc_rate=%g",
424              promotion_rate(), cms_allocation_rate());
425    st->print(",cms_consumption_rate=%g,time_until_full=%g",
426              cms_consumption_rate(), time_until_cms_gen_full());
427  }
428  st->cr();
429}
430#endif // #ifndef PRODUCT
431
432CMSCollector::CollectorState CMSCollector::_collectorState =
433                             CMSCollector::Idling;
434bool CMSCollector::_foregroundGCIsActive = false;
435bool CMSCollector::_foregroundGCShouldWait = false;
436
437CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
438                           CardTableRS*                   ct,
439                           ConcurrentMarkSweepPolicy*     cp):
440  _cmsGen(cmsGen),
441  _ct(ct),
442  _ref_processor(NULL),    // will be set later
443  _conc_workers(NULL),     // may be set later
444  _abort_preclean(false),
445  _start_sampling(false),
446  _between_prologue_and_epilogue(false),
447  _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
448  _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
449                 -1 /* lock-free */, "No_lock" /* dummy */),
450  _modUnionClosurePar(&_modUnionTable),
451  // Adjust my span to cover old (cms) gen
452  _span(cmsGen->reserved()),
453  // Construct the is_alive_closure with _span & markBitMap
454  _is_alive_closure(_span, &_markBitMap),
455  _restart_addr(NULL),
456  _overflow_list(NULL),
457  _stats(cmsGen),
458  _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
459                             //verify that this lock should be acquired with safepoint check.
460                             Monitor::_safepoint_check_sometimes)),
461  _eden_chunk_array(NULL),     // may be set in ctor body
462  _eden_chunk_capacity(0),     // -- ditto --
463  _eden_chunk_index(0),        // -- ditto --
464  _survivor_plab_array(NULL),  // -- ditto --
465  _survivor_chunk_array(NULL), // -- ditto --
466  _survivor_chunk_capacity(0), // -- ditto --
467  _survivor_chunk_index(0),    // -- ditto --
468  _ser_pmc_preclean_ovflw(0),
469  _ser_kac_preclean_ovflw(0),
470  _ser_pmc_remark_ovflw(0),
471  _par_pmc_remark_ovflw(0),
472  _ser_kac_ovflw(0),
473  _par_kac_ovflw(0),
474#ifndef PRODUCT
475  _num_par_pushes(0),
476#endif
477  _collection_count_start(0),
478  _verifying(false),
479  _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
480  _completed_initialization(false),
481  _collector_policy(cp),
482  _should_unload_classes(CMSClassUnloadingEnabled),
483  _concurrent_cycles_since_last_unload(0),
484  _roots_scanning_options(GenCollectedHeap::SO_None),
485  _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
486  _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
487  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
488  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
489  _cms_start_registered(false)
490{
491  // Now expand the span and allocate the collection support structures
492  // (MUT, marking bit map etc.) to cover both generations subject to
493  // collection.
494
495  // For use by dirty card to oop closures.
496  _cmsGen->cmsSpace()->set_collector(this);
497
498  // Allocate MUT and marking bit map
499  {
500    MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
501    if (!_markBitMap.allocate(_span)) {
502      log_warning(gc)("Failed to allocate CMS Bit Map");
503      return;
504    }
505    assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
506  }
507  {
508    _modUnionTable.allocate(_span);
509    assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
510  }
511
512  if (!_markStack.allocate(MarkStackSize)) {
513    log_warning(gc)("Failed to allocate CMS Marking Stack");
514    return;
515  }
516
517  // Support for multi-threaded concurrent phases
518  if (CMSConcurrentMTEnabled) {
519    if (FLAG_IS_DEFAULT(ConcGCThreads)) {
520      // just for now
521      FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
522    }
523    if (ConcGCThreads > 1) {
524      _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
525                                 ConcGCThreads, true);
526      if (_conc_workers == NULL) {
527        log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
528        CMSConcurrentMTEnabled = false;
529      } else {
530        _conc_workers->initialize_workers();
531      }
532    } else {
533      CMSConcurrentMTEnabled = false;
534    }
535  }
536  if (!CMSConcurrentMTEnabled) {
537    ConcGCThreads = 0;
538  } else {
539    // Turn off CMSCleanOnEnter optimization temporarily for
540    // the MT case where it's not fixed yet; see 6178663.
541    CMSCleanOnEnter = false;
542  }
543  assert((_conc_workers != NULL) == (ConcGCThreads > 1),
544         "Inconsistency");
545  log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
546  log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
547
548  // Parallel task queues; these are shared for the
549  // concurrent and stop-world phases of CMS, but
550  // are not shared with parallel scavenge (ParNew).
551  {
552    uint i;
553    uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
554
555    if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
556         || ParallelRefProcEnabled)
557        && num_queues > 0) {
558      _task_queues = new OopTaskQueueSet(num_queues);
559      if (_task_queues == NULL) {
560        log_warning(gc)("task_queues allocation failure.");
561        return;
562      }
563      _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
564      typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
565      for (i = 0; i < num_queues; i++) {
566        PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
567        if (q == NULL) {
568          log_warning(gc)("work_queue allocation failure.");
569          return;
570        }
571        _task_queues->register_queue(i, q);
572      }
573      for (i = 0; i < num_queues; i++) {
574        _task_queues->queue(i)->initialize();
575        _hash_seed[i] = 17;  // copied from ParNew
576      }
577    }
578  }
579
580  _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
581
582  // Clip CMSBootstrapOccupancy between 0 and 100.
583  _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
584
585  // Now tell CMS generations the identity of their collector
586  ConcurrentMarkSweepGeneration::set_collector(this);
587
588  // Create & start a CMS thread for this CMS collector
589  _cmsThread = ConcurrentMarkSweepThread::start(this);
590  assert(cmsThread() != NULL, "CMS Thread should have been created");
591  assert(cmsThread()->collector() == this,
592         "CMS Thread should refer to this gen");
593  assert(CGC_lock != NULL, "Where's the CGC_lock?");
594
595  // Support for parallelizing young gen rescan
596  GenCollectedHeap* gch = GenCollectedHeap::heap();
597  assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
598  _young_gen = (ParNewGeneration*)gch->young_gen();
599  if (gch->supports_inline_contig_alloc()) {
600    _top_addr = gch->top_addr();
601    _end_addr = gch->end_addr();
602    assert(_young_gen != NULL, "no _young_gen");
603    _eden_chunk_index = 0;
604    _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
605    _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
606  }
607
608  // Support for parallelizing survivor space rescan
609  if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
610    const size_t max_plab_samples =
611      _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
612
613    _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
614    _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
615    _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
616    _survivor_chunk_capacity = max_plab_samples;
617    for (uint i = 0; i < ParallelGCThreads; i++) {
618      HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
619      ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
620      assert(cur->end() == 0, "Should be 0");
621      assert(cur->array() == vec, "Should be vec");
622      assert(cur->capacity() == max_plab_samples, "Error");
623    }
624  }
625
626  NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
627  _gc_counters = new CollectorCounters("CMS", 1);
628  _completed_initialization = true;
629  _inter_sweep_timer.start();  // start of time
630}
631
632const char* ConcurrentMarkSweepGeneration::name() const {
633  return "concurrent mark-sweep generation";
634}
635void ConcurrentMarkSweepGeneration::update_counters() {
636  if (UsePerfData) {
637    _space_counters->update_all();
638    _gen_counters->update_all();
639  }
640}
641
642// this is an optimized version of update_counters(). it takes the
643// used value as a parameter rather than computing it.
644//
645void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
646  if (UsePerfData) {
647    _space_counters->update_used(used);
648    _space_counters->update_capacity();
649    _gen_counters->update_all();
650  }
651}
652
653void ConcurrentMarkSweepGeneration::print() const {
654  Generation::print();
655  cmsSpace()->print();
656}
657
658#ifndef PRODUCT
659void ConcurrentMarkSweepGeneration::print_statistics() {
660  cmsSpace()->printFLCensus(0);
661}
662#endif
663
664size_t
665ConcurrentMarkSweepGeneration::contiguous_available() const {
666  // dld proposes an improvement in precision here. If the committed
667  // part of the space ends in a free block we should add that to
668  // uncommitted size in the calculation below. Will make this
669  // change later, staying with the approximation below for the
670  // time being. -- ysr.
671  return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
672}
673
674size_t
675ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
676  return _cmsSpace->max_alloc_in_words() * HeapWordSize;
677}
678
679size_t ConcurrentMarkSweepGeneration::max_available() const {
680  return free() + _virtual_space.uncommitted_size();
681}
682
683bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
684  size_t available = max_available();
685  size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
686  bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
687  log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
688                           res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
689  return res;
690}
691
692// At a promotion failure dump information on block layout in heap
693// (cms old generation).
694void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
695  Log(gc, promotion) log;
696  if (log.is_trace()) {
697    ResourceMark rm;
698    cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
699  }
700}
701
702void ConcurrentMarkSweepGeneration::reset_after_compaction() {
703  // Clear the promotion information.  These pointers can be adjusted
704  // along with all the other pointers into the heap but
705  // compaction is expected to be a rare event with
706  // a heap using cms so don't do it without seeing the need.
707  for (uint i = 0; i < ParallelGCThreads; i++) {
708    _par_gc_thread_states[i]->promo.reset();
709  }
710}
711
712void ConcurrentMarkSweepGeneration::compute_new_size() {
713  assert_locked_or_safepoint(Heap_lock);
714
715  // If incremental collection failed, we just want to expand
716  // to the limit.
717  if (incremental_collection_failed()) {
718    clear_incremental_collection_failed();
719    grow_to_reserved();
720    return;
721  }
722
723  // The heap has been compacted but not reset yet.
724  // Any metric such as free() or used() will be incorrect.
725
726  CardGeneration::compute_new_size();
727
728  // Reset again after a possible resizing
729  if (did_compact()) {
730    cmsSpace()->reset_after_compaction();
731  }
732}
733
734void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
735  assert_locked_or_safepoint(Heap_lock);
736
737  // If incremental collection failed, we just want to expand
738  // to the limit.
739  if (incremental_collection_failed()) {
740    clear_incremental_collection_failed();
741    grow_to_reserved();
742    return;
743  }
744
745  double free_percentage = ((double) free()) / capacity();
746  double desired_free_percentage = (double) MinHeapFreeRatio / 100;
747  double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
748
749  // compute expansion delta needed for reaching desired free percentage
750  if (free_percentage < desired_free_percentage) {
751    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
752    assert(desired_capacity >= capacity(), "invalid expansion size");
753    size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
754    Log(gc) log;
755    if (log.is_trace()) {
756      size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
757      log.trace("From compute_new_size: ");
758      log.trace("  Free fraction %f", free_percentage);
759      log.trace("  Desired free fraction %f", desired_free_percentage);
760      log.trace("  Maximum free fraction %f", maximum_free_percentage);
761      log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
762      log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
763      GenCollectedHeap* gch = GenCollectedHeap::heap();
764      assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
765      size_t young_size = gch->young_gen()->capacity();
766      log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
767      log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
768      log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
769      log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
770    }
771    // safe if expansion fails
772    expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
773    log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
774  } else {
775    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
776    assert(desired_capacity <= capacity(), "invalid expansion size");
777    size_t shrink_bytes = capacity() - desired_capacity;
778    // Don't shrink unless the delta is greater than the minimum shrink we want
779    if (shrink_bytes >= MinHeapDeltaBytes) {
780      shrink_free_list_by(shrink_bytes);
781    }
782  }
783}
784
785Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
786  return cmsSpace()->freelistLock();
787}
788
789HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
790  CMSSynchronousYieldRequest yr;
791  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
792  return have_lock_and_allocate(size, tlab);
793}
794
795HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
796                                                                bool   tlab /* ignored */) {
797  assert_lock_strong(freelistLock());
798  size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
799  HeapWord* res = cmsSpace()->allocate(adjustedSize);
800  // Allocate the object live (grey) if the background collector has
801  // started marking. This is necessary because the marker may
802  // have passed this address and consequently this object will
803  // not otherwise be greyed and would be incorrectly swept up.
804  // Note that if this object contains references, the writing
805  // of those references will dirty the card containing this object
806  // allowing the object to be blackened (and its references scanned)
807  // either during a preclean phase or at the final checkpoint.
808  if (res != NULL) {
809    // We may block here with an uninitialized object with
810    // its mark-bit or P-bits not yet set. Such objects need
811    // to be safely navigable by block_start().
812    assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
813    assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
814    collector()->direct_allocated(res, adjustedSize);
815    _direct_allocated_words += adjustedSize;
816    // allocation counters
817    NOT_PRODUCT(
818      _numObjectsAllocated++;
819      _numWordsAllocated += (int)adjustedSize;
820    )
821  }
822  return res;
823}
824
825// In the case of direct allocation by mutators in a generation that
826// is being concurrently collected, the object must be allocated
827// live (grey) if the background collector has started marking.
828// This is necessary because the marker may
829// have passed this address and consequently this object will
830// not otherwise be greyed and would be incorrectly swept up.
831// Note that if this object contains references, the writing
832// of those references will dirty the card containing this object
833// allowing the object to be blackened (and its references scanned)
834// either during a preclean phase or at the final checkpoint.
835void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
836  assert(_markBitMap.covers(start, size), "Out of bounds");
837  if (_collectorState >= Marking) {
838    MutexLockerEx y(_markBitMap.lock(),
839                    Mutex::_no_safepoint_check_flag);
840    // [see comments preceding SweepClosure::do_blk() below for details]
841    //
842    // Can the P-bits be deleted now?  JJJ
843    //
844    // 1. need to mark the object as live so it isn't collected
845    // 2. need to mark the 2nd bit to indicate the object may be uninitialized
846    // 3. need to mark the end of the object so marking, precleaning or sweeping
847    //    can skip over uninitialized or unparsable objects. An allocated
848    //    object is considered uninitialized for our purposes as long as
849    //    its klass word is NULL.  All old gen objects are parsable
850    //    as soon as they are initialized.)
851    _markBitMap.mark(start);          // object is live
852    _markBitMap.mark(start + 1);      // object is potentially uninitialized?
853    _markBitMap.mark(start + size - 1);
854                                      // mark end of object
855  }
856  // check that oop looks uninitialized
857  assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
858}
859
860void CMSCollector::promoted(bool par, HeapWord* start,
861                            bool is_obj_array, size_t obj_size) {
862  assert(_markBitMap.covers(start), "Out of bounds");
863  // See comment in direct_allocated() about when objects should
864  // be allocated live.
865  if (_collectorState >= Marking) {
866    // we already hold the marking bit map lock, taken in
867    // the prologue
868    if (par) {
869      _markBitMap.par_mark(start);
870    } else {
871      _markBitMap.mark(start);
872    }
873    // We don't need to mark the object as uninitialized (as
874    // in direct_allocated above) because this is being done with the
875    // world stopped and the object will be initialized by the
876    // time the marking, precleaning or sweeping get to look at it.
877    // But see the code for copying objects into the CMS generation,
878    // where we need to ensure that concurrent readers of the
879    // block offset table are able to safely navigate a block that
880    // is in flux from being free to being allocated (and in
881    // transition while being copied into) and subsequently
882    // becoming a bona-fide object when the copy/promotion is complete.
883    assert(SafepointSynchronize::is_at_safepoint(),
884           "expect promotion only at safepoints");
885
886    if (_collectorState < Sweeping) {
887      // Mark the appropriate cards in the modUnionTable, so that
888      // this object gets scanned before the sweep. If this is
889      // not done, CMS generation references in the object might
890      // not get marked.
891      // For the case of arrays, which are otherwise precisely
892      // marked, we need to dirty the entire array, not just its head.
893      if (is_obj_array) {
894        // The [par_]mark_range() method expects mr.end() below to
895        // be aligned to the granularity of a bit's representation
896        // in the heap. In the case of the MUT below, that's a
897        // card size.
898        MemRegion mr(start,
899                     (HeapWord*)round_to((intptr_t)(start + obj_size),
900                        CardTableModRefBS::card_size /* bytes */));
901        if (par) {
902          _modUnionTable.par_mark_range(mr);
903        } else {
904          _modUnionTable.mark_range(mr);
905        }
906      } else {  // not an obj array; we can just mark the head
907        if (par) {
908          _modUnionTable.par_mark(start);
909        } else {
910          _modUnionTable.mark(start);
911        }
912      }
913    }
914  }
915}
916
917oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
918  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
919  // allocate, copy and if necessary update promoinfo --
920  // delegate to underlying space.
921  assert_lock_strong(freelistLock());
922
923#ifndef PRODUCT
924  if (GenCollectedHeap::heap()->promotion_should_fail()) {
925    return NULL;
926  }
927#endif  // #ifndef PRODUCT
928
929  oop res = _cmsSpace->promote(obj, obj_size);
930  if (res == NULL) {
931    // expand and retry
932    size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
933    expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
934    // Since this is the old generation, we don't try to promote
935    // into a more senior generation.
936    res = _cmsSpace->promote(obj, obj_size);
937  }
938  if (res != NULL) {
939    // See comment in allocate() about when objects should
940    // be allocated live.
941    assert(obj->is_oop(), "Will dereference klass pointer below");
942    collector()->promoted(false,           // Not parallel
943                          (HeapWord*)res, obj->is_objArray(), obj_size);
944    // promotion counters
945    NOT_PRODUCT(
946      _numObjectsPromoted++;
947      _numWordsPromoted +=
948        (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
949    )
950  }
951  return res;
952}
953
954
955// IMPORTANT: Notes on object size recognition in CMS.
956// ---------------------------------------------------
957// A block of storage in the CMS generation is always in
958// one of three states. A free block (FREE), an allocated
959// object (OBJECT) whose size() method reports the correct size,
960// and an intermediate state (TRANSIENT) in which its size cannot
961// be accurately determined.
962// STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
963// -----------------------------------------------------
964// FREE:      klass_word & 1 == 1; mark_word holds block size
965//
966// OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
967//            obj->size() computes correct size
968//
969// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
970//
971// STATE IDENTIFICATION: (64 bit+COOPS)
972// ------------------------------------
973// FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
974//
975// OBJECT:    klass_word installed; klass_word != 0;
976//            obj->size() computes correct size
977//
978// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
979//
980//
981// STATE TRANSITION DIAGRAM
982//
983//        mut / parnew                     mut  /  parnew
984// FREE --------------------> TRANSIENT ---------------------> OBJECT --|
985//  ^                                                                   |
986//  |------------------------ DEAD <------------------------------------|
987//         sweep                            mut
988//
989// While a block is in TRANSIENT state its size cannot be determined
990// so readers will either need to come back later or stall until
991// the size can be determined. Note that for the case of direct
992// allocation, P-bits, when available, may be used to determine the
993// size of an object that may not yet have been initialized.
994
995// Things to support parallel young-gen collection.
996oop
997ConcurrentMarkSweepGeneration::par_promote(int thread_num,
998                                           oop old, markOop m,
999                                           size_t word_sz) {
1000#ifndef PRODUCT
1001  if (GenCollectedHeap::heap()->promotion_should_fail()) {
1002    return NULL;
1003  }
1004#endif  // #ifndef PRODUCT
1005
1006  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1007  PromotionInfo* promoInfo = &ps->promo;
1008  // if we are tracking promotions, then first ensure space for
1009  // promotion (including spooling space for saving header if necessary).
1010  // then allocate and copy, then track promoted info if needed.
1011  // When tracking (see PromotionInfo::track()), the mark word may
1012  // be displaced and in this case restoration of the mark word
1013  // occurs in the (oop_since_save_marks_)iterate phase.
1014  if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1015    // Out of space for allocating spooling buffers;
1016    // try expanding and allocating spooling buffers.
1017    if (!expand_and_ensure_spooling_space(promoInfo)) {
1018      return NULL;
1019    }
1020  }
1021  assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1022  const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1023  HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1024  if (obj_ptr == NULL) {
1025     obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1026     if (obj_ptr == NULL) {
1027       return NULL;
1028     }
1029  }
1030  oop obj = oop(obj_ptr);
1031  OrderAccess::storestore();
1032  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1033  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1034  // IMPORTANT: See note on object initialization for CMS above.
1035  // Otherwise, copy the object.  Here we must be careful to insert the
1036  // klass pointer last, since this marks the block as an allocated object.
1037  // Except with compressed oops it's the mark word.
1038  HeapWord* old_ptr = (HeapWord*)old;
1039  // Restore the mark word copied above.
1040  obj->set_mark(m);
1041  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1042  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1043  OrderAccess::storestore();
1044
1045  if (UseCompressedClassPointers) {
1046    // Copy gap missed by (aligned) header size calculation below
1047    obj->set_klass_gap(old->klass_gap());
1048  }
1049  if (word_sz > (size_t)oopDesc::header_size()) {
1050    Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1051                                 obj_ptr + oopDesc::header_size(),
1052                                 word_sz - oopDesc::header_size());
1053  }
1054
1055  // Now we can track the promoted object, if necessary.  We take care
1056  // to delay the transition from uninitialized to full object
1057  // (i.e., insertion of klass pointer) until after, so that it
1058  // atomically becomes a promoted object.
1059  if (promoInfo->tracking()) {
1060    promoInfo->track((PromotedObject*)obj, old->klass());
1061  }
1062  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1063  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1064  assert(old->is_oop(), "Will use and dereference old klass ptr below");
1065
1066  // Finally, install the klass pointer (this should be volatile).
1067  OrderAccess::storestore();
1068  obj->set_klass(old->klass());
1069  // We should now be able to calculate the right size for this object
1070  assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1071
1072  collector()->promoted(true,          // parallel
1073                        obj_ptr, old->is_objArray(), word_sz);
1074
1075  NOT_PRODUCT(
1076    Atomic::inc_ptr(&_numObjectsPromoted);
1077    Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1078  )
1079
1080  return obj;
1081}
1082
1083void
1084ConcurrentMarkSweepGeneration::
1085par_promote_alloc_done(int thread_num) {
1086  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1087  ps->lab.retire(thread_num);
1088}
1089
1090void
1091ConcurrentMarkSweepGeneration::
1092par_oop_since_save_marks_iterate_done(int thread_num) {
1093  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1094  ParScanWithoutBarrierClosure* dummy_cl = NULL;
1095  ps->promo.promoted_oops_iterate_nv(dummy_cl);
1096
1097  // Because card-scanning has been completed, subsequent phases
1098  // (e.g., reference processing) will not need to recognize which
1099  // objects have been promoted during this GC. So, we can now disable
1100  // promotion tracking.
1101  ps->promo.stopTrackingPromotions();
1102}
1103
1104bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1105                                                   size_t size,
1106                                                   bool   tlab)
1107{
1108  // We allow a STW collection only if a full
1109  // collection was requested.
1110  return full || should_allocate(size, tlab); // FIX ME !!!
1111  // This and promotion failure handling are connected at the
1112  // hip and should be fixed by untying them.
1113}
1114
1115bool CMSCollector::shouldConcurrentCollect() {
1116  LogTarget(Trace, gc) log;
1117
1118  if (_full_gc_requested) {
1119    log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1120    return true;
1121  }
1122
1123  FreelistLocker x(this);
1124  // ------------------------------------------------------------------
1125  // Print out lots of information which affects the initiation of
1126  // a collection.
1127  if (log.is_enabled() && stats().valid()) {
1128    log.print("CMSCollector shouldConcurrentCollect: ");
1129
1130    LogStream out(log);
1131    stats().print_on(&out);
1132
1133    log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1134    log.print("free=" SIZE_FORMAT, _cmsGen->free());
1135    log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1136    log.print("promotion_rate=%g", stats().promotion_rate());
1137    log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1138    log.print("occupancy=%3.7f", _cmsGen->occupancy());
1139    log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1140    log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1141    log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1142    log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1143  }
1144  // ------------------------------------------------------------------
1145
1146  // If the estimated time to complete a cms collection (cms_duration())
1147  // is less than the estimated time remaining until the cms generation
1148  // is full, start a collection.
1149  if (!UseCMSInitiatingOccupancyOnly) {
1150    if (stats().valid()) {
1151      if (stats().time_until_cms_start() == 0.0) {
1152        return true;
1153      }
1154    } else {
1155      // We want to conservatively collect somewhat early in order
1156      // to try and "bootstrap" our CMS/promotion statistics;
1157      // this branch will not fire after the first successful CMS
1158      // collection because the stats should then be valid.
1159      if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1160        log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1161                  _cmsGen->occupancy(), _bootstrap_occupancy);
1162        return true;
1163      }
1164    }
1165  }
1166
1167  // Otherwise, we start a collection cycle if
1168  // old gen want a collection cycle started. Each may use
1169  // an appropriate criterion for making this decision.
1170  // XXX We need to make sure that the gen expansion
1171  // criterion dovetails well with this. XXX NEED TO FIX THIS
1172  if (_cmsGen->should_concurrent_collect()) {
1173    log.print("CMS old gen initiated");
1174    return true;
1175  }
1176
1177  // We start a collection if we believe an incremental collection may fail;
1178  // this is not likely to be productive in practice because it's probably too
1179  // late anyway.
1180  GenCollectedHeap* gch = GenCollectedHeap::heap();
1181  assert(gch->collector_policy()->is_generation_policy(),
1182         "You may want to check the correctness of the following");
1183  if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1184    log.print("CMSCollector: collect because incremental collection will fail ");
1185    return true;
1186  }
1187
1188  if (MetaspaceGC::should_concurrent_collect()) {
1189    log.print("CMSCollector: collect for metadata allocation ");
1190    return true;
1191  }
1192
1193  // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1194  if (CMSTriggerInterval >= 0) {
1195    if (CMSTriggerInterval == 0) {
1196      // Trigger always
1197      return true;
1198    }
1199
1200    // Check the CMS time since begin (we do not check the stats validity
1201    // as we want to be able to trigger the first CMS cycle as well)
1202    if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1203      if (stats().valid()) {
1204        log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1205                  stats().cms_time_since_begin());
1206      } else {
1207        log.print("CMSCollector: collect because of trigger interval (first collection)");
1208      }
1209      return true;
1210    }
1211  }
1212
1213  return false;
1214}
1215
1216void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1217
1218// Clear _expansion_cause fields of constituent generations
1219void CMSCollector::clear_expansion_cause() {
1220  _cmsGen->clear_expansion_cause();
1221}
1222
1223// We should be conservative in starting a collection cycle.  To
1224// start too eagerly runs the risk of collecting too often in the
1225// extreme.  To collect too rarely falls back on full collections,
1226// which works, even if not optimum in terms of concurrent work.
1227// As a work around for too eagerly collecting, use the flag
1228// UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1229// giving the user an easily understandable way of controlling the
1230// collections.
1231// We want to start a new collection cycle if any of the following
1232// conditions hold:
1233// . our current occupancy exceeds the configured initiating occupancy
1234//   for this generation, or
1235// . we recently needed to expand this space and have not, since that
1236//   expansion, done a collection of this generation, or
1237// . the underlying space believes that it may be a good idea to initiate
1238//   a concurrent collection (this may be based on criteria such as the
1239//   following: the space uses linear allocation and linear allocation is
1240//   going to fail, or there is believed to be excessive fragmentation in
1241//   the generation, etc... or ...
1242// [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1243//   the case of the old generation; see CR 6543076):
1244//   we may be approaching a point at which allocation requests may fail because
1245//   we will be out of sufficient free space given allocation rate estimates.]
1246bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1247
1248  assert_lock_strong(freelistLock());
1249  if (occupancy() > initiating_occupancy()) {
1250    log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1251                  short_name(), occupancy(), initiating_occupancy());
1252    return true;
1253  }
1254  if (UseCMSInitiatingOccupancyOnly) {
1255    return false;
1256  }
1257  if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1258    log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1259    return true;
1260  }
1261  return false;
1262}
1263
1264void ConcurrentMarkSweepGeneration::collect(bool   full,
1265                                            bool   clear_all_soft_refs,
1266                                            size_t size,
1267                                            bool   tlab)
1268{
1269  collector()->collect(full, clear_all_soft_refs, size, tlab);
1270}
1271
1272void CMSCollector::collect(bool   full,
1273                           bool   clear_all_soft_refs,
1274                           size_t size,
1275                           bool   tlab)
1276{
1277  // The following "if" branch is present for defensive reasons.
1278  // In the current uses of this interface, it can be replaced with:
1279  // assert(!GCLocker.is_active(), "Can't be called otherwise");
1280  // But I am not placing that assert here to allow future
1281  // generality in invoking this interface.
1282  if (GCLocker::is_active()) {
1283    // A consistency test for GCLocker
1284    assert(GCLocker::needs_gc(), "Should have been set already");
1285    // Skip this foreground collection, instead
1286    // expanding the heap if necessary.
1287    // Need the free list locks for the call to free() in compute_new_size()
1288    compute_new_size();
1289    return;
1290  }
1291  acquire_control_and_collect(full, clear_all_soft_refs);
1292}
1293
1294void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1295  GenCollectedHeap* gch = GenCollectedHeap::heap();
1296  unsigned int gc_count = gch->total_full_collections();
1297  if (gc_count == full_gc_count) {
1298    MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1299    _full_gc_requested = true;
1300    _full_gc_cause = cause;
1301    CGC_lock->notify();   // nudge CMS thread
1302  } else {
1303    assert(gc_count > full_gc_count, "Error: causal loop");
1304  }
1305}
1306
1307bool CMSCollector::is_external_interruption() {
1308  GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1309  return GCCause::is_user_requested_gc(cause) ||
1310         GCCause::is_serviceability_requested_gc(cause);
1311}
1312
1313void CMSCollector::report_concurrent_mode_interruption() {
1314  if (is_external_interruption()) {
1315    log_debug(gc)("Concurrent mode interrupted");
1316  } else {
1317    log_debug(gc)("Concurrent mode failure");
1318    _gc_tracer_cm->report_concurrent_mode_failure();
1319  }
1320}
1321
1322
1323// The foreground and background collectors need to coordinate in order
1324// to make sure that they do not mutually interfere with CMS collections.
1325// When a background collection is active,
1326// the foreground collector may need to take over (preempt) and
1327// synchronously complete an ongoing collection. Depending on the
1328// frequency of the background collections and the heap usage
1329// of the application, this preemption can be seldom or frequent.
1330// There are only certain
1331// points in the background collection that the "collection-baton"
1332// can be passed to the foreground collector.
1333//
1334// The foreground collector will wait for the baton before
1335// starting any part of the collection.  The foreground collector
1336// will only wait at one location.
1337//
1338// The background collector will yield the baton before starting a new
1339// phase of the collection (e.g., before initial marking, marking from roots,
1340// precleaning, final re-mark, sweep etc.)  This is normally done at the head
1341// of the loop which switches the phases. The background collector does some
1342// of the phases (initial mark, final re-mark) with the world stopped.
1343// Because of locking involved in stopping the world,
1344// the foreground collector should not block waiting for the background
1345// collector when it is doing a stop-the-world phase.  The background
1346// collector will yield the baton at an additional point just before
1347// it enters a stop-the-world phase.  Once the world is stopped, the
1348// background collector checks the phase of the collection.  If the
1349// phase has not changed, it proceeds with the collection.  If the
1350// phase has changed, it skips that phase of the collection.  See
1351// the comments on the use of the Heap_lock in collect_in_background().
1352//
1353// Variable used in baton passing.
1354//   _foregroundGCIsActive - Set to true by the foreground collector when
1355//      it wants the baton.  The foreground clears it when it has finished
1356//      the collection.
1357//   _foregroundGCShouldWait - Set to true by the background collector
1358//        when it is running.  The foreground collector waits while
1359//      _foregroundGCShouldWait is true.
1360//  CGC_lock - monitor used to protect access to the above variables
1361//      and to notify the foreground and background collectors.
1362//  _collectorState - current state of the CMS collection.
1363//
1364// The foreground collector
1365//   acquires the CGC_lock
1366//   sets _foregroundGCIsActive
1367//   waits on the CGC_lock for _foregroundGCShouldWait to be false
1368//     various locks acquired in preparation for the collection
1369//     are released so as not to block the background collector
1370//     that is in the midst of a collection
1371//   proceeds with the collection
1372//   clears _foregroundGCIsActive
1373//   returns
1374//
1375// The background collector in a loop iterating on the phases of the
1376//      collection
1377//   acquires the CGC_lock
1378//   sets _foregroundGCShouldWait
1379//   if _foregroundGCIsActive is set
1380//     clears _foregroundGCShouldWait, notifies _CGC_lock
1381//     waits on _CGC_lock for _foregroundGCIsActive to become false
1382//     and exits the loop.
1383//   otherwise
1384//     proceed with that phase of the collection
1385//     if the phase is a stop-the-world phase,
1386//       yield the baton once more just before enqueueing
1387//       the stop-world CMS operation (executed by the VM thread).
1388//   returns after all phases of the collection are done
1389//
1390
1391void CMSCollector::acquire_control_and_collect(bool full,
1392        bool clear_all_soft_refs) {
1393  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1394  assert(!Thread::current()->is_ConcurrentGC_thread(),
1395         "shouldn't try to acquire control from self!");
1396
1397  // Start the protocol for acquiring control of the
1398  // collection from the background collector (aka CMS thread).
1399  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1400         "VM thread should have CMS token");
1401  // Remember the possibly interrupted state of an ongoing
1402  // concurrent collection
1403  CollectorState first_state = _collectorState;
1404
1405  // Signal to a possibly ongoing concurrent collection that
1406  // we want to do a foreground collection.
1407  _foregroundGCIsActive = true;
1408
1409  // release locks and wait for a notify from the background collector
1410  // releasing the locks in only necessary for phases which
1411  // do yields to improve the granularity of the collection.
1412  assert_lock_strong(bitMapLock());
1413  // We need to lock the Free list lock for the space that we are
1414  // currently collecting.
1415  assert(haveFreelistLocks(), "Must be holding free list locks");
1416  bitMapLock()->unlock();
1417  releaseFreelistLocks();
1418  {
1419    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1420    if (_foregroundGCShouldWait) {
1421      // We are going to be waiting for action for the CMS thread;
1422      // it had better not be gone (for instance at shutdown)!
1423      assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1424             "CMS thread must be running");
1425      // Wait here until the background collector gives us the go-ahead
1426      ConcurrentMarkSweepThread::clear_CMS_flag(
1427        ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1428      // Get a possibly blocked CMS thread going:
1429      //   Note that we set _foregroundGCIsActive true above,
1430      //   without protection of the CGC_lock.
1431      CGC_lock->notify();
1432      assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1433             "Possible deadlock");
1434      while (_foregroundGCShouldWait) {
1435        // wait for notification
1436        CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1437        // Possibility of delay/starvation here, since CMS token does
1438        // not know to give priority to VM thread? Actually, i think
1439        // there wouldn't be any delay/starvation, but the proof of
1440        // that "fact" (?) appears non-trivial. XXX 20011219YSR
1441      }
1442      ConcurrentMarkSweepThread::set_CMS_flag(
1443        ConcurrentMarkSweepThread::CMS_vm_has_token);
1444    }
1445  }
1446  // The CMS_token is already held.  Get back the other locks.
1447  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1448         "VM thread should have CMS token");
1449  getFreelistLocks();
1450  bitMapLock()->lock_without_safepoint_check();
1451  log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1452                       p2i(Thread::current()), first_state);
1453  log_debug(gc, state)("    gets control with state %d", _collectorState);
1454
1455  // Inform cms gen if this was due to partial collection failing.
1456  // The CMS gen may use this fact to determine its expansion policy.
1457  GenCollectedHeap* gch = GenCollectedHeap::heap();
1458  if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1459    assert(!_cmsGen->incremental_collection_failed(),
1460           "Should have been noticed, reacted to and cleared");
1461    _cmsGen->set_incremental_collection_failed();
1462  }
1463
1464  if (first_state > Idling) {
1465    report_concurrent_mode_interruption();
1466  }
1467
1468  set_did_compact(true);
1469
1470  // If the collection is being acquired from the background
1471  // collector, there may be references on the discovered
1472  // references lists.  Abandon those references, since some
1473  // of them may have become unreachable after concurrent
1474  // discovery; the STW compacting collector will redo discovery
1475  // more precisely, without being subject to floating garbage.
1476  // Leaving otherwise unreachable references in the discovered
1477  // lists would require special handling.
1478  ref_processor()->disable_discovery();
1479  ref_processor()->abandon_partial_discovery();
1480  ref_processor()->verify_no_references_recorded();
1481
1482  if (first_state > Idling) {
1483    save_heap_summary();
1484  }
1485
1486  do_compaction_work(clear_all_soft_refs);
1487
1488  // Has the GC time limit been exceeded?
1489  size_t max_eden_size = _young_gen->max_eden_size();
1490  GCCause::Cause gc_cause = gch->gc_cause();
1491  size_policy()->check_gc_overhead_limit(_young_gen->used(),
1492                                         _young_gen->eden()->used(),
1493                                         _cmsGen->max_capacity(),
1494                                         max_eden_size,
1495                                         full,
1496                                         gc_cause,
1497                                         gch->collector_policy());
1498
1499  // Reset the expansion cause, now that we just completed
1500  // a collection cycle.
1501  clear_expansion_cause();
1502  _foregroundGCIsActive = false;
1503  return;
1504}
1505
1506// Resize the tenured generation
1507// after obtaining the free list locks for the
1508// two generations.
1509void CMSCollector::compute_new_size() {
1510  assert_locked_or_safepoint(Heap_lock);
1511  FreelistLocker z(this);
1512  MetaspaceGC::compute_new_size();
1513  _cmsGen->compute_new_size_free_list();
1514}
1515
1516// A work method used by the foreground collector to do
1517// a mark-sweep-compact.
1518void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1519  GenCollectedHeap* gch = GenCollectedHeap::heap();
1520
1521  STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1522  gc_timer->register_gc_start();
1523
1524  SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1525  gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1526
1527  gch->pre_full_gc_dump(gc_timer);
1528
1529  GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1530
1531  // Temporarily widen the span of the weak reference processing to
1532  // the entire heap.
1533  MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1534  ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1535  // Temporarily, clear the "is_alive_non_header" field of the
1536  // reference processor.
1537  ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1538  // Temporarily make reference _processing_ single threaded (non-MT).
1539  ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1540  // Temporarily make refs discovery atomic
1541  ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1542  // Temporarily make reference _discovery_ single threaded (non-MT)
1543  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1544
1545  ref_processor()->set_enqueuing_is_done(false);
1546  ref_processor()->enable_discovery();
1547  ref_processor()->setup_policy(clear_all_soft_refs);
1548  // If an asynchronous collection finishes, the _modUnionTable is
1549  // all clear.  If we are assuming the collection from an asynchronous
1550  // collection, clear the _modUnionTable.
1551  assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1552    "_modUnionTable should be clear if the baton was not passed");
1553  _modUnionTable.clear_all();
1554  assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1555    "mod union for klasses should be clear if the baton was passed");
1556  _ct->klass_rem_set()->clear_mod_union();
1557
1558  // We must adjust the allocation statistics being maintained
1559  // in the free list space. We do so by reading and clearing
1560  // the sweep timer and updating the block flux rate estimates below.
1561  assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1562  if (_inter_sweep_timer.is_active()) {
1563    _inter_sweep_timer.stop();
1564    // Note that we do not use this sample to update the _inter_sweep_estimate.
1565    _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1566                                            _inter_sweep_estimate.padded_average(),
1567                                            _intra_sweep_estimate.padded_average());
1568  }
1569
1570  GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1571  #ifdef ASSERT
1572    CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1573    size_t free_size = cms_space->free();
1574    assert(free_size ==
1575           pointer_delta(cms_space->end(), cms_space->compaction_top())
1576           * HeapWordSize,
1577      "All the free space should be compacted into one chunk at top");
1578    assert(cms_space->dictionary()->total_chunk_size(
1579                                      debug_only(cms_space->freelistLock())) == 0 ||
1580           cms_space->totalSizeInIndexedFreeLists() == 0,
1581      "All the free space should be in a single chunk");
1582    size_t num = cms_space->totalCount();
1583    assert((free_size == 0 && num == 0) ||
1584           (free_size > 0  && (num == 1 || num == 2)),
1585         "There should be at most 2 free chunks after compaction");
1586  #endif // ASSERT
1587  _collectorState = Resetting;
1588  assert(_restart_addr == NULL,
1589         "Should have been NULL'd before baton was passed");
1590  reset_stw();
1591  _cmsGen->reset_after_compaction();
1592  _concurrent_cycles_since_last_unload = 0;
1593
1594  // Clear any data recorded in the PLAB chunk arrays.
1595  if (_survivor_plab_array != NULL) {
1596    reset_survivor_plab_arrays();
1597  }
1598
1599  // Adjust the per-size allocation stats for the next epoch.
1600  _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1601  // Restart the "inter sweep timer" for the next epoch.
1602  _inter_sweep_timer.reset();
1603  _inter_sweep_timer.start();
1604
1605  // No longer a need to do a concurrent collection for Metaspace.
1606  MetaspaceGC::set_should_concurrent_collect(false);
1607
1608  gch->post_full_gc_dump(gc_timer);
1609
1610  gc_timer->register_gc_end();
1611
1612  gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1613
1614  // For a mark-sweep-compact, compute_new_size() will be called
1615  // in the heap's do_collection() method.
1616}
1617
1618void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1619  Log(gc, heap) log;
1620  if (!log.is_trace()) {
1621    return;
1622  }
1623
1624  ContiguousSpace* eden_space = _young_gen->eden();
1625  ContiguousSpace* from_space = _young_gen->from();
1626  ContiguousSpace* to_space   = _young_gen->to();
1627  // Eden
1628  if (_eden_chunk_array != NULL) {
1629    log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1630              p2i(eden_space->bottom()), p2i(eden_space->top()),
1631              p2i(eden_space->end()), eden_space->capacity());
1632    log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1633              _eden_chunk_index, _eden_chunk_capacity);
1634    for (size_t i = 0; i < _eden_chunk_index; i++) {
1635      log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1636    }
1637  }
1638  // Survivor
1639  if (_survivor_chunk_array != NULL) {
1640    log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1641              p2i(from_space->bottom()), p2i(from_space->top()),
1642              p2i(from_space->end()), from_space->capacity());
1643    log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1644              _survivor_chunk_index, _survivor_chunk_capacity);
1645    for (size_t i = 0; i < _survivor_chunk_index; i++) {
1646      log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1647    }
1648  }
1649}
1650
1651void CMSCollector::getFreelistLocks() const {
1652  // Get locks for all free lists in all generations that this
1653  // collector is responsible for
1654  _cmsGen->freelistLock()->lock_without_safepoint_check();
1655}
1656
1657void CMSCollector::releaseFreelistLocks() const {
1658  // Release locks for all free lists in all generations that this
1659  // collector is responsible for
1660  _cmsGen->freelistLock()->unlock();
1661}
1662
1663bool CMSCollector::haveFreelistLocks() const {
1664  // Check locks for all free lists in all generations that this
1665  // collector is responsible for
1666  assert_lock_strong(_cmsGen->freelistLock());
1667  PRODUCT_ONLY(ShouldNotReachHere());
1668  return true;
1669}
1670
1671// A utility class that is used by the CMS collector to
1672// temporarily "release" the foreground collector from its
1673// usual obligation to wait for the background collector to
1674// complete an ongoing phase before proceeding.
1675class ReleaseForegroundGC: public StackObj {
1676 private:
1677  CMSCollector* _c;
1678 public:
1679  ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1680    assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1681    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1682    // allow a potentially blocked foreground collector to proceed
1683    _c->_foregroundGCShouldWait = false;
1684    if (_c->_foregroundGCIsActive) {
1685      CGC_lock->notify();
1686    }
1687    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1688           "Possible deadlock");
1689  }
1690
1691  ~ReleaseForegroundGC() {
1692    assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1693    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1694    _c->_foregroundGCShouldWait = true;
1695  }
1696};
1697
1698void CMSCollector::collect_in_background(GCCause::Cause cause) {
1699  assert(Thread::current()->is_ConcurrentGC_thread(),
1700    "A CMS asynchronous collection is only allowed on a CMS thread.");
1701
1702  GenCollectedHeap* gch = GenCollectedHeap::heap();
1703  {
1704    bool safepoint_check = Mutex::_no_safepoint_check_flag;
1705    MutexLockerEx hl(Heap_lock, safepoint_check);
1706    FreelistLocker fll(this);
1707    MutexLockerEx x(CGC_lock, safepoint_check);
1708    if (_foregroundGCIsActive) {
1709      // The foreground collector is. Skip this
1710      // background collection.
1711      assert(!_foregroundGCShouldWait, "Should be clear");
1712      return;
1713    } else {
1714      assert(_collectorState == Idling, "Should be idling before start.");
1715      _collectorState = InitialMarking;
1716      register_gc_start(cause);
1717      // Reset the expansion cause, now that we are about to begin
1718      // a new cycle.
1719      clear_expansion_cause();
1720
1721      // Clear the MetaspaceGC flag since a concurrent collection
1722      // is starting but also clear it after the collection.
1723      MetaspaceGC::set_should_concurrent_collect(false);
1724    }
1725    // Decide if we want to enable class unloading as part of the
1726    // ensuing concurrent GC cycle.
1727    update_should_unload_classes();
1728    _full_gc_requested = false;           // acks all outstanding full gc requests
1729    _full_gc_cause = GCCause::_no_gc;
1730    // Signal that we are about to start a collection
1731    gch->increment_total_full_collections();  // ... starting a collection cycle
1732    _collection_count_start = gch->total_full_collections();
1733  }
1734
1735  size_t prev_used = _cmsGen->used();
1736
1737  // The change of the collection state is normally done at this level;
1738  // the exceptions are phases that are executed while the world is
1739  // stopped.  For those phases the change of state is done while the
1740  // world is stopped.  For baton passing purposes this allows the
1741  // background collector to finish the phase and change state atomically.
1742  // The foreground collector cannot wait on a phase that is done
1743  // while the world is stopped because the foreground collector already
1744  // has the world stopped and would deadlock.
1745  while (_collectorState != Idling) {
1746    log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1747                         p2i(Thread::current()), _collectorState);
1748    // The foreground collector
1749    //   holds the Heap_lock throughout its collection.
1750    //   holds the CMS token (but not the lock)
1751    //     except while it is waiting for the background collector to yield.
1752    //
1753    // The foreground collector should be blocked (not for long)
1754    //   if the background collector is about to start a phase
1755    //   executed with world stopped.  If the background
1756    //   collector has already started such a phase, the
1757    //   foreground collector is blocked waiting for the
1758    //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1759    //   are executed in the VM thread.
1760    //
1761    // The locking order is
1762    //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1763    //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1764    //   CMS token  (claimed in
1765    //                stop_world_and_do() -->
1766    //                  safepoint_synchronize() -->
1767    //                    CMSThread::synchronize())
1768
1769    {
1770      // Check if the FG collector wants us to yield.
1771      CMSTokenSync x(true); // is cms thread
1772      if (waitForForegroundGC()) {
1773        // We yielded to a foreground GC, nothing more to be
1774        // done this round.
1775        assert(_foregroundGCShouldWait == false, "We set it to false in "
1776               "waitForForegroundGC()");
1777        log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1778                             p2i(Thread::current()), _collectorState);
1779        return;
1780      } else {
1781        // The background collector can run but check to see if the
1782        // foreground collector has done a collection while the
1783        // background collector was waiting to get the CGC_lock
1784        // above.  If yes, break so that _foregroundGCShouldWait
1785        // is cleared before returning.
1786        if (_collectorState == Idling) {
1787          break;
1788        }
1789      }
1790    }
1791
1792    assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1793      "should be waiting");
1794
1795    switch (_collectorState) {
1796      case InitialMarking:
1797        {
1798          ReleaseForegroundGC x(this);
1799          stats().record_cms_begin();
1800          VM_CMS_Initial_Mark initial_mark_op(this);
1801          VMThread::execute(&initial_mark_op);
1802        }
1803        // The collector state may be any legal state at this point
1804        // since the background collector may have yielded to the
1805        // foreground collector.
1806        break;
1807      case Marking:
1808        // initial marking in checkpointRootsInitialWork has been completed
1809        if (markFromRoots()) { // we were successful
1810          assert(_collectorState == Precleaning, "Collector state should "
1811            "have changed");
1812        } else {
1813          assert(_foregroundGCIsActive, "Internal state inconsistency");
1814        }
1815        break;
1816      case Precleaning:
1817        // marking from roots in markFromRoots has been completed
1818        preclean();
1819        assert(_collectorState == AbortablePreclean ||
1820               _collectorState == FinalMarking,
1821               "Collector state should have changed");
1822        break;
1823      case AbortablePreclean:
1824        abortable_preclean();
1825        assert(_collectorState == FinalMarking, "Collector state should "
1826          "have changed");
1827        break;
1828      case FinalMarking:
1829        {
1830          ReleaseForegroundGC x(this);
1831
1832          VM_CMS_Final_Remark final_remark_op(this);
1833          VMThread::execute(&final_remark_op);
1834        }
1835        assert(_foregroundGCShouldWait, "block post-condition");
1836        break;
1837      case Sweeping:
1838        // final marking in checkpointRootsFinal has been completed
1839        sweep();
1840        assert(_collectorState == Resizing, "Collector state change "
1841          "to Resizing must be done under the free_list_lock");
1842
1843      case Resizing: {
1844        // Sweeping has been completed...
1845        // At this point the background collection has completed.
1846        // Don't move the call to compute_new_size() down
1847        // into code that might be executed if the background
1848        // collection was preempted.
1849        {
1850          ReleaseForegroundGC x(this);   // unblock FG collection
1851          MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1852          CMSTokenSync        z(true);   // not strictly needed.
1853          if (_collectorState == Resizing) {
1854            compute_new_size();
1855            save_heap_summary();
1856            _collectorState = Resetting;
1857          } else {
1858            assert(_collectorState == Idling, "The state should only change"
1859                   " because the foreground collector has finished the collection");
1860          }
1861        }
1862        break;
1863      }
1864      case Resetting:
1865        // CMS heap resizing has been completed
1866        reset_concurrent();
1867        assert(_collectorState == Idling, "Collector state should "
1868          "have changed");
1869
1870        MetaspaceGC::set_should_concurrent_collect(false);
1871
1872        stats().record_cms_end();
1873        // Don't move the concurrent_phases_end() and compute_new_size()
1874        // calls to here because a preempted background collection
1875        // has it's state set to "Resetting".
1876        break;
1877      case Idling:
1878      default:
1879        ShouldNotReachHere();
1880        break;
1881    }
1882    log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1883                         p2i(Thread::current()), _collectorState);
1884    assert(_foregroundGCShouldWait, "block post-condition");
1885  }
1886
1887  // Should this be in gc_epilogue?
1888  collector_policy()->counters()->update_counters();
1889
1890  {
1891    // Clear _foregroundGCShouldWait and, in the event that the
1892    // foreground collector is waiting, notify it, before
1893    // returning.
1894    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1895    _foregroundGCShouldWait = false;
1896    if (_foregroundGCIsActive) {
1897      CGC_lock->notify();
1898    }
1899    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1900           "Possible deadlock");
1901  }
1902  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1903                       p2i(Thread::current()), _collectorState);
1904  log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1905                     prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1906}
1907
1908void CMSCollector::register_gc_start(GCCause::Cause cause) {
1909  _cms_start_registered = true;
1910  _gc_timer_cm->register_gc_start();
1911  _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1912}
1913
1914void CMSCollector::register_gc_end() {
1915  if (_cms_start_registered) {
1916    report_heap_summary(GCWhen::AfterGC);
1917
1918    _gc_timer_cm->register_gc_end();
1919    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1920    _cms_start_registered = false;
1921  }
1922}
1923
1924void CMSCollector::save_heap_summary() {
1925  GenCollectedHeap* gch = GenCollectedHeap::heap();
1926  _last_heap_summary = gch->create_heap_summary();
1927  _last_metaspace_summary = gch->create_metaspace_summary();
1928}
1929
1930void CMSCollector::report_heap_summary(GCWhen::Type when) {
1931  _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1932  _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1933}
1934
1935bool CMSCollector::waitForForegroundGC() {
1936  bool res = false;
1937  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1938         "CMS thread should have CMS token");
1939  // Block the foreground collector until the
1940  // background collectors decides whether to
1941  // yield.
1942  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1943  _foregroundGCShouldWait = true;
1944  if (_foregroundGCIsActive) {
1945    // The background collector yields to the
1946    // foreground collector and returns a value
1947    // indicating that it has yielded.  The foreground
1948    // collector can proceed.
1949    res = true;
1950    _foregroundGCShouldWait = false;
1951    ConcurrentMarkSweepThread::clear_CMS_flag(
1952      ConcurrentMarkSweepThread::CMS_cms_has_token);
1953    ConcurrentMarkSweepThread::set_CMS_flag(
1954      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1955    // Get a possibly blocked foreground thread going
1956    CGC_lock->notify();
1957    log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1958                         p2i(Thread::current()), _collectorState);
1959    while (_foregroundGCIsActive) {
1960      CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1961    }
1962    ConcurrentMarkSweepThread::set_CMS_flag(
1963      ConcurrentMarkSweepThread::CMS_cms_has_token);
1964    ConcurrentMarkSweepThread::clear_CMS_flag(
1965      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1966  }
1967  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1968                       p2i(Thread::current()), _collectorState);
1969  return res;
1970}
1971
1972// Because of the need to lock the free lists and other structures in
1973// the collector, common to all the generations that the collector is
1974// collecting, we need the gc_prologues of individual CMS generations
1975// delegate to their collector. It may have been simpler had the
1976// current infrastructure allowed one to call a prologue on a
1977// collector. In the absence of that we have the generation's
1978// prologue delegate to the collector, which delegates back
1979// some "local" work to a worker method in the individual generations
1980// that it's responsible for collecting, while itself doing any
1981// work common to all generations it's responsible for. A similar
1982// comment applies to the  gc_epilogue()'s.
1983// The role of the variable _between_prologue_and_epilogue is to
1984// enforce the invocation protocol.
1985void CMSCollector::gc_prologue(bool full) {
1986  // Call gc_prologue_work() for the CMSGen
1987  // we are responsible for.
1988
1989  // The following locking discipline assumes that we are only called
1990  // when the world is stopped.
1991  assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1992
1993  // The CMSCollector prologue must call the gc_prologues for the
1994  // "generations" that it's responsible
1995  // for.
1996
1997  assert(   Thread::current()->is_VM_thread()
1998         || (   CMSScavengeBeforeRemark
1999             && Thread::current()->is_ConcurrentGC_thread()),
2000         "Incorrect thread type for prologue execution");
2001
2002  if (_between_prologue_and_epilogue) {
2003    // We have already been invoked; this is a gc_prologue delegation
2004    // from yet another CMS generation that we are responsible for, just
2005    // ignore it since all relevant work has already been done.
2006    return;
2007  }
2008
2009  // set a bit saying prologue has been called; cleared in epilogue
2010  _between_prologue_and_epilogue = true;
2011  // Claim locks for common data structures, then call gc_prologue_work()
2012  // for each CMSGen.
2013
2014  getFreelistLocks();   // gets free list locks on constituent spaces
2015  bitMapLock()->lock_without_safepoint_check();
2016
2017  // Should call gc_prologue_work() for all cms gens we are responsible for
2018  bool duringMarking =    _collectorState >= Marking
2019                         && _collectorState < Sweeping;
2020
2021  // The young collections clear the modified oops state, which tells if
2022  // there are any modified oops in the class. The remark phase also needs
2023  // that information. Tell the young collection to save the union of all
2024  // modified klasses.
2025  if (duringMarking) {
2026    _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2027  }
2028
2029  bool registerClosure = duringMarking;
2030
2031  _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2032
2033  if (!full) {
2034    stats().record_gc0_begin();
2035  }
2036}
2037
2038void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2039
2040  _capacity_at_prologue = capacity();
2041  _used_at_prologue = used();
2042
2043  // We enable promotion tracking so that card-scanning can recognize
2044  // which objects have been promoted during this GC and skip them.
2045  for (uint i = 0; i < ParallelGCThreads; i++) {
2046    _par_gc_thread_states[i]->promo.startTrackingPromotions();
2047  }
2048
2049  // Delegate to CMScollector which knows how to coordinate between
2050  // this and any other CMS generations that it is responsible for
2051  // collecting.
2052  collector()->gc_prologue(full);
2053}
2054
2055// This is a "private" interface for use by this generation's CMSCollector.
2056// Not to be called directly by any other entity (for instance,
2057// GenCollectedHeap, which calls the "public" gc_prologue method above).
2058void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2059  bool registerClosure, ModUnionClosure* modUnionClosure) {
2060  assert(!incremental_collection_failed(), "Shouldn't be set yet");
2061  assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2062    "Should be NULL");
2063  if (registerClosure) {
2064    cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2065  }
2066  cmsSpace()->gc_prologue();
2067  // Clear stat counters
2068  NOT_PRODUCT(
2069    assert(_numObjectsPromoted == 0, "check");
2070    assert(_numWordsPromoted   == 0, "check");
2071    log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2072                                 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2073    _numObjectsAllocated = 0;
2074    _numWordsAllocated   = 0;
2075  )
2076}
2077
2078void CMSCollector::gc_epilogue(bool full) {
2079  // The following locking discipline assumes that we are only called
2080  // when the world is stopped.
2081  assert(SafepointSynchronize::is_at_safepoint(),
2082         "world is stopped assumption");
2083
2084  // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2085  // if linear allocation blocks need to be appropriately marked to allow the
2086  // the blocks to be parsable. We also check here whether we need to nudge the
2087  // CMS collector thread to start a new cycle (if it's not already active).
2088  assert(   Thread::current()->is_VM_thread()
2089         || (   CMSScavengeBeforeRemark
2090             && Thread::current()->is_ConcurrentGC_thread()),
2091         "Incorrect thread type for epilogue execution");
2092
2093  if (!_between_prologue_and_epilogue) {
2094    // We have already been invoked; this is a gc_epilogue delegation
2095    // from yet another CMS generation that we are responsible for, just
2096    // ignore it since all relevant work has already been done.
2097    return;
2098  }
2099  assert(haveFreelistLocks(), "must have freelist locks");
2100  assert_lock_strong(bitMapLock());
2101
2102  _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2103
2104  _cmsGen->gc_epilogue_work(full);
2105
2106  if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2107    // in case sampling was not already enabled, enable it
2108    _start_sampling = true;
2109  }
2110  // reset _eden_chunk_array so sampling starts afresh
2111  _eden_chunk_index = 0;
2112
2113  size_t cms_used   = _cmsGen->cmsSpace()->used();
2114
2115  // update performance counters - this uses a special version of
2116  // update_counters() that allows the utilization to be passed as a
2117  // parameter, avoiding multiple calls to used().
2118  //
2119  _cmsGen->update_counters(cms_used);
2120
2121  bitMapLock()->unlock();
2122  releaseFreelistLocks();
2123
2124  if (!CleanChunkPoolAsync) {
2125    Chunk::clean_chunk_pool();
2126  }
2127
2128  set_did_compact(false);
2129  _between_prologue_and_epilogue = false;  // ready for next cycle
2130}
2131
2132void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2133  collector()->gc_epilogue(full);
2134
2135  // When using ParNew, promotion tracking should have already been
2136  // disabled. However, the prologue (which enables promotion
2137  // tracking) and epilogue are called irrespective of the type of
2138  // GC. So they will also be called before and after Full GCs, during
2139  // which promotion tracking will not be explicitly disabled. So,
2140  // it's safer to also disable it here too (to be symmetric with
2141  // enabling it in the prologue).
2142  for (uint i = 0; i < ParallelGCThreads; i++) {
2143    _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2144  }
2145}
2146
2147void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2148  assert(!incremental_collection_failed(), "Should have been cleared");
2149  cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2150  cmsSpace()->gc_epilogue();
2151    // Print stat counters
2152  NOT_PRODUCT(
2153    assert(_numObjectsAllocated == 0, "check");
2154    assert(_numWordsAllocated == 0, "check");
2155    log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2156                                     _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2157    _numObjectsPromoted = 0;
2158    _numWordsPromoted   = 0;
2159  )
2160
2161  // Call down the chain in contiguous_available needs the freelistLock
2162  // so print this out before releasing the freeListLock.
2163  log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2164}
2165
2166#ifndef PRODUCT
2167bool CMSCollector::have_cms_token() {
2168  Thread* thr = Thread::current();
2169  if (thr->is_VM_thread()) {
2170    return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2171  } else if (thr->is_ConcurrentGC_thread()) {
2172    return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2173  } else if (thr->is_GC_task_thread()) {
2174    return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2175           ParGCRareEvent_lock->owned_by_self();
2176  }
2177  return false;
2178}
2179
2180// Check reachability of the given heap address in CMS generation,
2181// treating all other generations as roots.
2182bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2183  // We could "guarantee" below, rather than assert, but I'll
2184  // leave these as "asserts" so that an adventurous debugger
2185  // could try this in the product build provided some subset of
2186  // the conditions were met, provided they were interested in the
2187  // results and knew that the computation below wouldn't interfere
2188  // with other concurrent computations mutating the structures
2189  // being read or written.
2190  assert(SafepointSynchronize::is_at_safepoint(),
2191         "Else mutations in object graph will make answer suspect");
2192  assert(have_cms_token(), "Should hold cms token");
2193  assert(haveFreelistLocks(), "must hold free list locks");
2194  assert_lock_strong(bitMapLock());
2195
2196  // Clear the marking bit map array before starting, but, just
2197  // for kicks, first report if the given address is already marked
2198  tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2199                _markBitMap.isMarked(addr) ? "" : " not");
2200
2201  if (verify_after_remark()) {
2202    MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2203    bool result = verification_mark_bm()->isMarked(addr);
2204    tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2205                  result ? "IS" : "is NOT");
2206    return result;
2207  } else {
2208    tty->print_cr("Could not compute result");
2209    return false;
2210  }
2211}
2212#endif
2213
2214void
2215CMSCollector::print_on_error(outputStream* st) {
2216  CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2217  if (collector != NULL) {
2218    CMSBitMap* bitmap = &collector->_markBitMap;
2219    st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2220    bitmap->print_on_error(st, " Bits: ");
2221
2222    st->cr();
2223
2224    CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2225    st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2226    mut_bitmap->print_on_error(st, " Bits: ");
2227  }
2228}
2229
2230////////////////////////////////////////////////////////
2231// CMS Verification Support
2232////////////////////////////////////////////////////////
2233// Following the remark phase, the following invariant
2234// should hold -- each object in the CMS heap which is
2235// marked in markBitMap() should be marked in the verification_mark_bm().
2236
2237class VerifyMarkedClosure: public BitMapClosure {
2238  CMSBitMap* _marks;
2239  bool       _failed;
2240
2241 public:
2242  VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2243
2244  bool do_bit(size_t offset) {
2245    HeapWord* addr = _marks->offsetToHeapWord(offset);
2246    if (!_marks->isMarked(addr)) {
2247      Log(gc, verify) log;
2248      ResourceMark rm;
2249      oop(addr)->print_on(log.error_stream());
2250      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2251      _failed = true;
2252    }
2253    return true;
2254  }
2255
2256  bool failed() { return _failed; }
2257};
2258
2259bool CMSCollector::verify_after_remark() {
2260  GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2261  MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2262  static bool init = false;
2263
2264  assert(SafepointSynchronize::is_at_safepoint(),
2265         "Else mutations in object graph will make answer suspect");
2266  assert(have_cms_token(),
2267         "Else there may be mutual interference in use of "
2268         " verification data structures");
2269  assert(_collectorState > Marking && _collectorState <= Sweeping,
2270         "Else marking info checked here may be obsolete");
2271  assert(haveFreelistLocks(), "must hold free list locks");
2272  assert_lock_strong(bitMapLock());
2273
2274
2275  // Allocate marking bit map if not already allocated
2276  if (!init) { // first time
2277    if (!verification_mark_bm()->allocate(_span)) {
2278      return false;
2279    }
2280    init = true;
2281  }
2282
2283  assert(verification_mark_stack()->isEmpty(), "Should be empty");
2284
2285  // Turn off refs discovery -- so we will be tracing through refs.
2286  // This is as intended, because by this time
2287  // GC must already have cleared any refs that need to be cleared,
2288  // and traced those that need to be marked; moreover,
2289  // the marking done here is not going to interfere in any
2290  // way with the marking information used by GC.
2291  NoRefDiscovery no_discovery(ref_processor());
2292
2293#if defined(COMPILER2) || INCLUDE_JVMCI
2294  DerivedPointerTableDeactivate dpt_deact;
2295#endif
2296
2297  // Clear any marks from a previous round
2298  verification_mark_bm()->clear_all();
2299  assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2300  verify_work_stacks_empty();
2301
2302  GenCollectedHeap* gch = GenCollectedHeap::heap();
2303  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2304  // Update the saved marks which may affect the root scans.
2305  gch->save_marks();
2306
2307  if (CMSRemarkVerifyVariant == 1) {
2308    // In this first variant of verification, we complete
2309    // all marking, then check if the new marks-vector is
2310    // a subset of the CMS marks-vector.
2311    verify_after_remark_work_1();
2312  } else {
2313    guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2314    // In this second variant of verification, we flag an error
2315    // (i.e. an object reachable in the new marks-vector not reachable
2316    // in the CMS marks-vector) immediately, also indicating the
2317    // identify of an object (A) that references the unmarked object (B) --
2318    // presumably, a mutation to A failed to be picked up by preclean/remark?
2319    verify_after_remark_work_2();
2320  }
2321
2322  return true;
2323}
2324
2325void CMSCollector::verify_after_remark_work_1() {
2326  ResourceMark rm;
2327  HandleMark  hm;
2328  GenCollectedHeap* gch = GenCollectedHeap::heap();
2329
2330  // Get a clear set of claim bits for the roots processing to work with.
2331  ClassLoaderDataGraph::clear_claimed_marks();
2332
2333  // Mark from roots one level into CMS
2334  MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2335  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2336
2337  {
2338    StrongRootsScope srs(1);
2339
2340    gch->cms_process_roots(&srs,
2341                           true,   // young gen as roots
2342                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2343                           should_unload_classes(),
2344                           &notOlder,
2345                           NULL);
2346  }
2347
2348  // Now mark from the roots
2349  MarkFromRootsClosure markFromRootsClosure(this, _span,
2350    verification_mark_bm(), verification_mark_stack(),
2351    false /* don't yield */, true /* verifying */);
2352  assert(_restart_addr == NULL, "Expected pre-condition");
2353  verification_mark_bm()->iterate(&markFromRootsClosure);
2354  while (_restart_addr != NULL) {
2355    // Deal with stack overflow: by restarting at the indicated
2356    // address.
2357    HeapWord* ra = _restart_addr;
2358    markFromRootsClosure.reset(ra);
2359    _restart_addr = NULL;
2360    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2361  }
2362  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2363  verify_work_stacks_empty();
2364
2365  // Marking completed -- now verify that each bit marked in
2366  // verification_mark_bm() is also marked in markBitMap(); flag all
2367  // errors by printing corresponding objects.
2368  VerifyMarkedClosure vcl(markBitMap());
2369  verification_mark_bm()->iterate(&vcl);
2370  if (vcl.failed()) {
2371    Log(gc, verify) log;
2372    log.error("Failed marking verification after remark");
2373    ResourceMark rm;
2374    gch->print_on(log.error_stream());
2375    fatal("CMS: failed marking verification after remark");
2376  }
2377}
2378
2379class VerifyKlassOopsKlassClosure : public KlassClosure {
2380  class VerifyKlassOopsClosure : public OopClosure {
2381    CMSBitMap* _bitmap;
2382   public:
2383    VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2384    void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2385    void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2386  } _oop_closure;
2387 public:
2388  VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2389  void do_klass(Klass* k) {
2390    k->oops_do(&_oop_closure);
2391  }
2392};
2393
2394void CMSCollector::verify_after_remark_work_2() {
2395  ResourceMark rm;
2396  HandleMark  hm;
2397  GenCollectedHeap* gch = GenCollectedHeap::heap();
2398
2399  // Get a clear set of claim bits for the roots processing to work with.
2400  ClassLoaderDataGraph::clear_claimed_marks();
2401
2402  // Mark from roots one level into CMS
2403  MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2404                                     markBitMap());
2405  CLDToOopClosure cld_closure(&notOlder, true);
2406
2407  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2408
2409  {
2410    StrongRootsScope srs(1);
2411
2412    gch->cms_process_roots(&srs,
2413                           true,   // young gen as roots
2414                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2415                           should_unload_classes(),
2416                           &notOlder,
2417                           &cld_closure);
2418  }
2419
2420  // Now mark from the roots
2421  MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2422    verification_mark_bm(), markBitMap(), verification_mark_stack());
2423  assert(_restart_addr == NULL, "Expected pre-condition");
2424  verification_mark_bm()->iterate(&markFromRootsClosure);
2425  while (_restart_addr != NULL) {
2426    // Deal with stack overflow: by restarting at the indicated
2427    // address.
2428    HeapWord* ra = _restart_addr;
2429    markFromRootsClosure.reset(ra);
2430    _restart_addr = NULL;
2431    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2432  }
2433  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2434  verify_work_stacks_empty();
2435
2436  VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2437  ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2438
2439  // Marking completed -- now verify that each bit marked in
2440  // verification_mark_bm() is also marked in markBitMap(); flag all
2441  // errors by printing corresponding objects.
2442  VerifyMarkedClosure vcl(markBitMap());
2443  verification_mark_bm()->iterate(&vcl);
2444  assert(!vcl.failed(), "Else verification above should not have succeeded");
2445}
2446
2447void ConcurrentMarkSweepGeneration::save_marks() {
2448  // delegate to CMS space
2449  cmsSpace()->save_marks();
2450}
2451
2452bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2453  return cmsSpace()->no_allocs_since_save_marks();
2454}
2455
2456#define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2457                                                                \
2458void ConcurrentMarkSweepGeneration::                            \
2459oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2460  cl->set_generation(this);                                     \
2461  cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2462  cl->reset_generation();                                       \
2463  save_marks();                                                 \
2464}
2465
2466ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2467
2468void
2469ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2470  if (freelistLock()->owned_by_self()) {
2471    Generation::oop_iterate(cl);
2472  } else {
2473    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2474    Generation::oop_iterate(cl);
2475  }
2476}
2477
2478void
2479ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2480  if (freelistLock()->owned_by_self()) {
2481    Generation::object_iterate(cl);
2482  } else {
2483    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2484    Generation::object_iterate(cl);
2485  }
2486}
2487
2488void
2489ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2490  if (freelistLock()->owned_by_self()) {
2491    Generation::safe_object_iterate(cl);
2492  } else {
2493    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2494    Generation::safe_object_iterate(cl);
2495  }
2496}
2497
2498void
2499ConcurrentMarkSweepGeneration::post_compact() {
2500}
2501
2502void
2503ConcurrentMarkSweepGeneration::prepare_for_verify() {
2504  // Fix the linear allocation blocks to look like free blocks.
2505
2506  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2507  // are not called when the heap is verified during universe initialization and
2508  // at vm shutdown.
2509  if (freelistLock()->owned_by_self()) {
2510    cmsSpace()->prepare_for_verify();
2511  } else {
2512    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2513    cmsSpace()->prepare_for_verify();
2514  }
2515}
2516
2517void
2518ConcurrentMarkSweepGeneration::verify() {
2519  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2520  // are not called when the heap is verified during universe initialization and
2521  // at vm shutdown.
2522  if (freelistLock()->owned_by_self()) {
2523    cmsSpace()->verify();
2524  } else {
2525    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2526    cmsSpace()->verify();
2527  }
2528}
2529
2530void CMSCollector::verify() {
2531  _cmsGen->verify();
2532}
2533
2534#ifndef PRODUCT
2535bool CMSCollector::overflow_list_is_empty() const {
2536  assert(_num_par_pushes >= 0, "Inconsistency");
2537  if (_overflow_list == NULL) {
2538    assert(_num_par_pushes == 0, "Inconsistency");
2539  }
2540  return _overflow_list == NULL;
2541}
2542
2543// The methods verify_work_stacks_empty() and verify_overflow_empty()
2544// merely consolidate assertion checks that appear to occur together frequently.
2545void CMSCollector::verify_work_stacks_empty() const {
2546  assert(_markStack.isEmpty(), "Marking stack should be empty");
2547  assert(overflow_list_is_empty(), "Overflow list should be empty");
2548}
2549
2550void CMSCollector::verify_overflow_empty() const {
2551  assert(overflow_list_is_empty(), "Overflow list should be empty");
2552  assert(no_preserved_marks(), "No preserved marks");
2553}
2554#endif // PRODUCT
2555
2556// Decide if we want to enable class unloading as part of the
2557// ensuing concurrent GC cycle. We will collect and
2558// unload classes if it's the case that:
2559//  (a) class unloading is enabled at the command line, and
2560//  (b) old gen is getting really full
2561// NOTE: Provided there is no change in the state of the heap between
2562// calls to this method, it should have idempotent results. Moreover,
2563// its results should be monotonically increasing (i.e. going from 0 to 1,
2564// but not 1 to 0) between successive calls between which the heap was
2565// not collected. For the implementation below, it must thus rely on
2566// the property that concurrent_cycles_since_last_unload()
2567// will not decrease unless a collection cycle happened and that
2568// _cmsGen->is_too_full() are
2569// themselves also monotonic in that sense. See check_monotonicity()
2570// below.
2571void CMSCollector::update_should_unload_classes() {
2572  _should_unload_classes = false;
2573  if (CMSClassUnloadingEnabled) {
2574    _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2575                              CMSClassUnloadingMaxInterval)
2576                           || _cmsGen->is_too_full();
2577  }
2578}
2579
2580bool ConcurrentMarkSweepGeneration::is_too_full() const {
2581  bool res = should_concurrent_collect();
2582  res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2583  return res;
2584}
2585
2586void CMSCollector::setup_cms_unloading_and_verification_state() {
2587  const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2588                             || VerifyBeforeExit;
2589  const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2590
2591  // We set the proper root for this CMS cycle here.
2592  if (should_unload_classes()) {   // Should unload classes this cycle
2593    remove_root_scanning_option(rso);  // Shrink the root set appropriately
2594    set_verifying(should_verify);    // Set verification state for this cycle
2595    return;                            // Nothing else needs to be done at this time
2596  }
2597
2598  // Not unloading classes this cycle
2599  assert(!should_unload_classes(), "Inconsistency!");
2600
2601  // If we are not unloading classes then add SO_AllCodeCache to root
2602  // scanning options.
2603  add_root_scanning_option(rso);
2604
2605  if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2606    set_verifying(true);
2607  } else if (verifying() && !should_verify) {
2608    // We were verifying, but some verification flags got disabled.
2609    set_verifying(false);
2610    // Exclude symbols, strings and code cache elements from root scanning to
2611    // reduce IM and RM pauses.
2612    remove_root_scanning_option(rso);
2613  }
2614}
2615
2616
2617#ifndef PRODUCT
2618HeapWord* CMSCollector::block_start(const void* p) const {
2619  const HeapWord* addr = (HeapWord*)p;
2620  if (_span.contains(p)) {
2621    if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2622      return _cmsGen->cmsSpace()->block_start(p);
2623    }
2624  }
2625  return NULL;
2626}
2627#endif
2628
2629HeapWord*
2630ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2631                                                   bool   tlab,
2632                                                   bool   parallel) {
2633  CMSSynchronousYieldRequest yr;
2634  assert(!tlab, "Can't deal with TLAB allocation");
2635  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2636  expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2637  if (GCExpandToAllocateDelayMillis > 0) {
2638    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2639  }
2640  return have_lock_and_allocate(word_size, tlab);
2641}
2642
2643void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2644    size_t bytes,
2645    size_t expand_bytes,
2646    CMSExpansionCause::Cause cause)
2647{
2648
2649  bool success = expand(bytes, expand_bytes);
2650
2651  // remember why we expanded; this information is used
2652  // by shouldConcurrentCollect() when making decisions on whether to start
2653  // a new CMS cycle.
2654  if (success) {
2655    set_expansion_cause(cause);
2656    log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2657  }
2658}
2659
2660HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2661  HeapWord* res = NULL;
2662  MutexLocker x(ParGCRareEvent_lock);
2663  while (true) {
2664    // Expansion by some other thread might make alloc OK now:
2665    res = ps->lab.alloc(word_sz);
2666    if (res != NULL) return res;
2667    // If there's not enough expansion space available, give up.
2668    if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2669      return NULL;
2670    }
2671    // Otherwise, we try expansion.
2672    expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2673    // Now go around the loop and try alloc again;
2674    // A competing par_promote might beat us to the expansion space,
2675    // so we may go around the loop again if promotion fails again.
2676    if (GCExpandToAllocateDelayMillis > 0) {
2677      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2678    }
2679  }
2680}
2681
2682
2683bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2684  PromotionInfo* promo) {
2685  MutexLocker x(ParGCRareEvent_lock);
2686  size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2687  while (true) {
2688    // Expansion by some other thread might make alloc OK now:
2689    if (promo->ensure_spooling_space()) {
2690      assert(promo->has_spooling_space(),
2691             "Post-condition of successful ensure_spooling_space()");
2692      return true;
2693    }
2694    // If there's not enough expansion space available, give up.
2695    if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2696      return false;
2697    }
2698    // Otherwise, we try expansion.
2699    expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2700    // Now go around the loop and try alloc again;
2701    // A competing allocation might beat us to the expansion space,
2702    // so we may go around the loop again if allocation fails again.
2703    if (GCExpandToAllocateDelayMillis > 0) {
2704      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2705    }
2706  }
2707}
2708
2709void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2710  // Only shrink if a compaction was done so that all the free space
2711  // in the generation is in a contiguous block at the end.
2712  if (did_compact()) {
2713    CardGeneration::shrink(bytes);
2714  }
2715}
2716
2717void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2718  assert_locked_or_safepoint(Heap_lock);
2719}
2720
2721void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2722  assert_locked_or_safepoint(Heap_lock);
2723  assert_lock_strong(freelistLock());
2724  log_trace(gc)("Shrinking of CMS not yet implemented");
2725  return;
2726}
2727
2728
2729// Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2730// phases.
2731class CMSPhaseAccounting: public StackObj {
2732 public:
2733  CMSPhaseAccounting(CMSCollector *collector,
2734                     const char *title);
2735  ~CMSPhaseAccounting();
2736
2737 private:
2738  CMSCollector *_collector;
2739  const char *_title;
2740  GCTraceConcTime(Info, gc) _trace_time;
2741
2742 public:
2743  // Not MT-safe; so do not pass around these StackObj's
2744  // where they may be accessed by other threads.
2745  double wallclock_millis() {
2746    return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2747  }
2748};
2749
2750CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2751                                       const char *title) :
2752  _collector(collector), _title(title), _trace_time(title) {
2753
2754  _collector->resetYields();
2755  _collector->resetTimer();
2756  _collector->startTimer();
2757  _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2758}
2759
2760CMSPhaseAccounting::~CMSPhaseAccounting() {
2761  _collector->gc_timer_cm()->register_gc_concurrent_end();
2762  _collector->stopTimer();
2763  log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2764  log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2765}
2766
2767// CMS work
2768
2769// The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2770class CMSParMarkTask : public AbstractGangTask {
2771 protected:
2772  CMSCollector*     _collector;
2773  uint              _n_workers;
2774  CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2775      AbstractGangTask(name),
2776      _collector(collector),
2777      _n_workers(n_workers) {}
2778  // Work method in support of parallel rescan ... of young gen spaces
2779  void do_young_space_rescan(OopsInGenClosure* cl,
2780                             ContiguousSpace* space,
2781                             HeapWord** chunk_array, size_t chunk_top);
2782  void work_on_young_gen_roots(OopsInGenClosure* cl);
2783};
2784
2785// Parallel initial mark task
2786class CMSParInitialMarkTask: public CMSParMarkTask {
2787  StrongRootsScope* _strong_roots_scope;
2788 public:
2789  CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2790      CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2791      _strong_roots_scope(strong_roots_scope) {}
2792  void work(uint worker_id);
2793};
2794
2795// Checkpoint the roots into this generation from outside
2796// this generation. [Note this initial checkpoint need only
2797// be approximate -- we'll do a catch up phase subsequently.]
2798void CMSCollector::checkpointRootsInitial() {
2799  assert(_collectorState == InitialMarking, "Wrong collector state");
2800  check_correct_thread_executing();
2801  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2802
2803  save_heap_summary();
2804  report_heap_summary(GCWhen::BeforeGC);
2805
2806  ReferenceProcessor* rp = ref_processor();
2807  assert(_restart_addr == NULL, "Control point invariant");
2808  {
2809    // acquire locks for subsequent manipulations
2810    MutexLockerEx x(bitMapLock(),
2811                    Mutex::_no_safepoint_check_flag);
2812    checkpointRootsInitialWork();
2813    // enable ("weak") refs discovery
2814    rp->enable_discovery();
2815    _collectorState = Marking;
2816  }
2817}
2818
2819void CMSCollector::checkpointRootsInitialWork() {
2820  assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2821  assert(_collectorState == InitialMarking, "just checking");
2822
2823  // Already have locks.
2824  assert_lock_strong(bitMapLock());
2825  assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2826
2827  // Setup the verification and class unloading state for this
2828  // CMS collection cycle.
2829  setup_cms_unloading_and_verification_state();
2830
2831  GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2832
2833  // Reset all the PLAB chunk arrays if necessary.
2834  if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2835    reset_survivor_plab_arrays();
2836  }
2837
2838  ResourceMark rm;
2839  HandleMark  hm;
2840
2841  MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2842  GenCollectedHeap* gch = GenCollectedHeap::heap();
2843
2844  verify_work_stacks_empty();
2845  verify_overflow_empty();
2846
2847  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2848  // Update the saved marks which may affect the root scans.
2849  gch->save_marks();
2850
2851  // weak reference processing has not started yet.
2852  ref_processor()->set_enqueuing_is_done(false);
2853
2854  // Need to remember all newly created CLDs,
2855  // so that we can guarantee that the remark finds them.
2856  ClassLoaderDataGraph::remember_new_clds(true);
2857
2858  // Whenever a CLD is found, it will be claimed before proceeding to mark
2859  // the klasses. The claimed marks need to be cleared before marking starts.
2860  ClassLoaderDataGraph::clear_claimed_marks();
2861
2862  print_eden_and_survivor_chunk_arrays();
2863
2864  {
2865#if defined(COMPILER2) || INCLUDE_JVMCI
2866    DerivedPointerTableDeactivate dpt_deact;
2867#endif
2868    if (CMSParallelInitialMarkEnabled) {
2869      // The parallel version.
2870      WorkGang* workers = gch->workers();
2871      assert(workers != NULL, "Need parallel worker threads.");
2872      uint n_workers = workers->active_workers();
2873
2874      StrongRootsScope srs(n_workers);
2875
2876      CMSParInitialMarkTask tsk(this, &srs, n_workers);
2877      initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2878      // If the total workers is greater than 1, then multiple workers
2879      // may be used at some time and the initialization has been set
2880      // such that the single threaded path cannot be used.
2881      if (workers->total_workers() > 1) {
2882        workers->run_task(&tsk);
2883      } else {
2884        tsk.work(0);
2885      }
2886    } else {
2887      // The serial version.
2888      CLDToOopClosure cld_closure(&notOlder, true);
2889      gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2890
2891      StrongRootsScope srs(1);
2892
2893      gch->cms_process_roots(&srs,
2894                             true,   // young gen as roots
2895                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
2896                             should_unload_classes(),
2897                             &notOlder,
2898                             &cld_closure);
2899    }
2900  }
2901
2902  // Clear mod-union table; it will be dirtied in the prologue of
2903  // CMS generation per each young generation collection.
2904
2905  assert(_modUnionTable.isAllClear(),
2906       "Was cleared in most recent final checkpoint phase"
2907       " or no bits are set in the gc_prologue before the start of the next "
2908       "subsequent marking phase.");
2909
2910  assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2911
2912  // Save the end of the used_region of the constituent generations
2913  // to be used to limit the extent of sweep in each generation.
2914  save_sweep_limits();
2915  verify_overflow_empty();
2916}
2917
2918bool CMSCollector::markFromRoots() {
2919  // we might be tempted to assert that:
2920  // assert(!SafepointSynchronize::is_at_safepoint(),
2921  //        "inconsistent argument?");
2922  // However that wouldn't be right, because it's possible that
2923  // a safepoint is indeed in progress as a young generation
2924  // stop-the-world GC happens even as we mark in this generation.
2925  assert(_collectorState == Marking, "inconsistent state?");
2926  check_correct_thread_executing();
2927  verify_overflow_empty();
2928
2929  // Weak ref discovery note: We may be discovering weak
2930  // refs in this generation concurrent (but interleaved) with
2931  // weak ref discovery by the young generation collector.
2932
2933  CMSTokenSyncWithLocks ts(true, bitMapLock());
2934  GCTraceCPUTime tcpu;
2935  CMSPhaseAccounting pa(this, "Concurrent Mark");
2936  bool res = markFromRootsWork();
2937  if (res) {
2938    _collectorState = Precleaning;
2939  } else { // We failed and a foreground collection wants to take over
2940    assert(_foregroundGCIsActive, "internal state inconsistency");
2941    assert(_restart_addr == NULL,  "foreground will restart from scratch");
2942    log_debug(gc)("bailing out to foreground collection");
2943  }
2944  verify_overflow_empty();
2945  return res;
2946}
2947
2948bool CMSCollector::markFromRootsWork() {
2949  // iterate over marked bits in bit map, doing a full scan and mark
2950  // from these roots using the following algorithm:
2951  // . if oop is to the right of the current scan pointer,
2952  //   mark corresponding bit (we'll process it later)
2953  // . else (oop is to left of current scan pointer)
2954  //   push oop on marking stack
2955  // . drain the marking stack
2956
2957  // Note that when we do a marking step we need to hold the
2958  // bit map lock -- recall that direct allocation (by mutators)
2959  // and promotion (by the young generation collector) is also
2960  // marking the bit map. [the so-called allocate live policy.]
2961  // Because the implementation of bit map marking is not
2962  // robust wrt simultaneous marking of bits in the same word,
2963  // we need to make sure that there is no such interference
2964  // between concurrent such updates.
2965
2966  // already have locks
2967  assert_lock_strong(bitMapLock());
2968
2969  verify_work_stacks_empty();
2970  verify_overflow_empty();
2971  bool result = false;
2972  if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2973    result = do_marking_mt();
2974  } else {
2975    result = do_marking_st();
2976  }
2977  return result;
2978}
2979
2980// Forward decl
2981class CMSConcMarkingTask;
2982
2983class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2984  CMSCollector*       _collector;
2985  CMSConcMarkingTask* _task;
2986 public:
2987  virtual void yield();
2988
2989  // "n_threads" is the number of threads to be terminated.
2990  // "queue_set" is a set of work queues of other threads.
2991  // "collector" is the CMS collector associated with this task terminator.
2992  // "yield" indicates whether we need the gang as a whole to yield.
2993  CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2994    ParallelTaskTerminator(n_threads, queue_set),
2995    _collector(collector) { }
2996
2997  void set_task(CMSConcMarkingTask* task) {
2998    _task = task;
2999  }
3000};
3001
3002class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3003  CMSConcMarkingTask* _task;
3004 public:
3005  bool should_exit_termination();
3006  void set_task(CMSConcMarkingTask* task) {
3007    _task = task;
3008  }
3009};
3010
3011// MT Concurrent Marking Task
3012class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3013  CMSCollector*             _collector;
3014  uint                      _n_workers;      // requested/desired # workers
3015  bool                      _result;
3016  CompactibleFreeListSpace* _cms_space;
3017  char                      _pad_front[64];   // padding to ...
3018  HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3019  char                      _pad_back[64];
3020  HeapWord*                 _restart_addr;
3021
3022  //  Exposed here for yielding support
3023  Mutex* const _bit_map_lock;
3024
3025  // The per thread work queues, available here for stealing
3026  OopTaskQueueSet*  _task_queues;
3027
3028  // Termination (and yielding) support
3029  CMSConcMarkingTerminator _term;
3030  CMSConcMarkingTerminatorTerminator _term_term;
3031
3032 public:
3033  CMSConcMarkingTask(CMSCollector* collector,
3034                 CompactibleFreeListSpace* cms_space,
3035                 YieldingFlexibleWorkGang* workers,
3036                 OopTaskQueueSet* task_queues):
3037    YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3038    _collector(collector),
3039    _cms_space(cms_space),
3040    _n_workers(0), _result(true),
3041    _task_queues(task_queues),
3042    _term(_n_workers, task_queues, _collector),
3043    _bit_map_lock(collector->bitMapLock())
3044  {
3045    _requested_size = _n_workers;
3046    _term.set_task(this);
3047    _term_term.set_task(this);
3048    _restart_addr = _global_finger = _cms_space->bottom();
3049  }
3050
3051
3052  OopTaskQueueSet* task_queues()  { return _task_queues; }
3053
3054  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3055
3056  HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3057
3058  CMSConcMarkingTerminator* terminator() { return &_term; }
3059
3060  virtual void set_for_termination(uint active_workers) {
3061    terminator()->reset_for_reuse(active_workers);
3062  }
3063
3064  void work(uint worker_id);
3065  bool should_yield() {
3066    return    ConcurrentMarkSweepThread::should_yield()
3067           && !_collector->foregroundGCIsActive();
3068  }
3069
3070  virtual void coordinator_yield();  // stuff done by coordinator
3071  bool result() { return _result; }
3072
3073  void reset(HeapWord* ra) {
3074    assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3075    _restart_addr = _global_finger = ra;
3076    _term.reset_for_reuse();
3077  }
3078
3079  static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3080                                           OopTaskQueue* work_q);
3081
3082 private:
3083  void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3084  void do_work_steal(int i);
3085  void bump_global_finger(HeapWord* f);
3086};
3087
3088bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3089  assert(_task != NULL, "Error");
3090  return _task->yielding();
3091  // Note that we do not need the disjunct || _task->should_yield() above
3092  // because we want terminating threads to yield only if the task
3093  // is already in the midst of yielding, which happens only after at least one
3094  // thread has yielded.
3095}
3096
3097void CMSConcMarkingTerminator::yield() {
3098  if (_task->should_yield()) {
3099    _task->yield();
3100  } else {
3101    ParallelTaskTerminator::yield();
3102  }
3103}
3104
3105////////////////////////////////////////////////////////////////
3106// Concurrent Marking Algorithm Sketch
3107////////////////////////////////////////////////////////////////
3108// Until all tasks exhausted (both spaces):
3109// -- claim next available chunk
3110// -- bump global finger via CAS
3111// -- find first object that starts in this chunk
3112//    and start scanning bitmap from that position
3113// -- scan marked objects for oops
3114// -- CAS-mark target, and if successful:
3115//    . if target oop is above global finger (volatile read)
3116//      nothing to do
3117//    . if target oop is in chunk and above local finger
3118//        then nothing to do
3119//    . else push on work-queue
3120// -- Deal with possible overflow issues:
3121//    . local work-queue overflow causes stuff to be pushed on
3122//      global (common) overflow queue
3123//    . always first empty local work queue
3124//    . then get a batch of oops from global work queue if any
3125//    . then do work stealing
3126// -- When all tasks claimed (both spaces)
3127//    and local work queue empty,
3128//    then in a loop do:
3129//    . check global overflow stack; steal a batch of oops and trace
3130//    . try to steal from other threads oif GOS is empty
3131//    . if neither is available, offer termination
3132// -- Terminate and return result
3133//
3134void CMSConcMarkingTask::work(uint worker_id) {
3135  elapsedTimer _timer;
3136  ResourceMark rm;
3137  HandleMark hm;
3138
3139  DEBUG_ONLY(_collector->verify_overflow_empty();)
3140
3141  // Before we begin work, our work queue should be empty
3142  assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3143  // Scan the bitmap covering _cms_space, tracing through grey objects.
3144  _timer.start();
3145  do_scan_and_mark(worker_id, _cms_space);
3146  _timer.stop();
3147  log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3148
3149  // ... do work stealing
3150  _timer.reset();
3151  _timer.start();
3152  do_work_steal(worker_id);
3153  _timer.stop();
3154  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3155  assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3156  assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3157  // Note that under the current task protocol, the
3158  // following assertion is true even of the spaces
3159  // expanded since the completion of the concurrent
3160  // marking. XXX This will likely change under a strict
3161  // ABORT semantics.
3162  // After perm removal the comparison was changed to
3163  // greater than or equal to from strictly greater than.
3164  // Before perm removal the highest address sweep would
3165  // have been at the end of perm gen but now is at the
3166  // end of the tenured gen.
3167  assert(_global_finger >=  _cms_space->end(),
3168         "All tasks have been completed");
3169  DEBUG_ONLY(_collector->verify_overflow_empty();)
3170}
3171
3172void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3173  HeapWord* read = _global_finger;
3174  HeapWord* cur  = read;
3175  while (f > read) {
3176    cur = read;
3177    read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3178    if (cur == read) {
3179      // our cas succeeded
3180      assert(_global_finger >= f, "protocol consistency");
3181      break;
3182    }
3183  }
3184}
3185
3186// This is really inefficient, and should be redone by
3187// using (not yet available) block-read and -write interfaces to the
3188// stack and the work_queue. XXX FIX ME !!!
3189bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3190                                                      OopTaskQueue* work_q) {
3191  // Fast lock-free check
3192  if (ovflw_stk->length() == 0) {
3193    return false;
3194  }
3195  assert(work_q->size() == 0, "Shouldn't steal");
3196  MutexLockerEx ml(ovflw_stk->par_lock(),
3197                   Mutex::_no_safepoint_check_flag);
3198  // Grab up to 1/4 the size of the work queue
3199  size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3200                    (size_t)ParGCDesiredObjsFromOverflowList);
3201  num = MIN2(num, ovflw_stk->length());
3202  for (int i = (int) num; i > 0; i--) {
3203    oop cur = ovflw_stk->pop();
3204    assert(cur != NULL, "Counted wrong?");
3205    work_q->push(cur);
3206  }
3207  return num > 0;
3208}
3209
3210void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3211  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3212  int n_tasks = pst->n_tasks();
3213  // We allow that there may be no tasks to do here because
3214  // we are restarting after a stack overflow.
3215  assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3216  uint nth_task = 0;
3217
3218  HeapWord* aligned_start = sp->bottom();
3219  if (sp->used_region().contains(_restart_addr)) {
3220    // Align down to a card boundary for the start of 0th task
3221    // for this space.
3222    aligned_start =
3223      (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3224                                 CardTableModRefBS::card_size);
3225  }
3226
3227  size_t chunk_size = sp->marking_task_size();
3228  while (!pst->is_task_claimed(/* reference */ nth_task)) {
3229    // Having claimed the nth task in this space,
3230    // compute the chunk that it corresponds to:
3231    MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3232                               aligned_start + (nth_task+1)*chunk_size);
3233    // Try and bump the global finger via a CAS;
3234    // note that we need to do the global finger bump
3235    // _before_ taking the intersection below, because
3236    // the task corresponding to that region will be
3237    // deemed done even if the used_region() expands
3238    // because of allocation -- as it almost certainly will
3239    // during start-up while the threads yield in the
3240    // closure below.
3241    HeapWord* finger = span.end();
3242    bump_global_finger(finger);   // atomically
3243    // There are null tasks here corresponding to chunks
3244    // beyond the "top" address of the space.
3245    span = span.intersection(sp->used_region());
3246    if (!span.is_empty()) {  // Non-null task
3247      HeapWord* prev_obj;
3248      assert(!span.contains(_restart_addr) || nth_task == 0,
3249             "Inconsistency");
3250      if (nth_task == 0) {
3251        // For the 0th task, we'll not need to compute a block_start.
3252        if (span.contains(_restart_addr)) {
3253          // In the case of a restart because of stack overflow,
3254          // we might additionally skip a chunk prefix.
3255          prev_obj = _restart_addr;
3256        } else {
3257          prev_obj = span.start();
3258        }
3259      } else {
3260        // We want to skip the first object because
3261        // the protocol is to scan any object in its entirety
3262        // that _starts_ in this span; a fortiori, any
3263        // object starting in an earlier span is scanned
3264        // as part of an earlier claimed task.
3265        // Below we use the "careful" version of block_start
3266        // so we do not try to navigate uninitialized objects.
3267        prev_obj = sp->block_start_careful(span.start());
3268        // Below we use a variant of block_size that uses the
3269        // Printezis bits to avoid waiting for allocated
3270        // objects to become initialized/parsable.
3271        while (prev_obj < span.start()) {
3272          size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3273          if (sz > 0) {
3274            prev_obj += sz;
3275          } else {
3276            // In this case we may end up doing a bit of redundant
3277            // scanning, but that appears unavoidable, short of
3278            // locking the free list locks; see bug 6324141.
3279            break;
3280          }
3281        }
3282      }
3283      if (prev_obj < span.end()) {
3284        MemRegion my_span = MemRegion(prev_obj, span.end());
3285        // Do the marking work within a non-empty span --
3286        // the last argument to the constructor indicates whether the
3287        // iteration should be incremental with periodic yields.
3288        ParMarkFromRootsClosure cl(this, _collector, my_span,
3289                                   &_collector->_markBitMap,
3290                                   work_queue(i),
3291                                   &_collector->_markStack);
3292        _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3293      } // else nothing to do for this task
3294    }   // else nothing to do for this task
3295  }
3296  // We'd be tempted to assert here that since there are no
3297  // more tasks left to claim in this space, the global_finger
3298  // must exceed space->top() and a fortiori space->end(). However,
3299  // that would not quite be correct because the bumping of
3300  // global_finger occurs strictly after the claiming of a task,
3301  // so by the time we reach here the global finger may not yet
3302  // have been bumped up by the thread that claimed the last
3303  // task.
3304  pst->all_tasks_completed();
3305}
3306
3307class ParConcMarkingClosure: public MetadataAwareOopClosure {
3308 private:
3309  CMSCollector* _collector;
3310  CMSConcMarkingTask* _task;
3311  MemRegion     _span;
3312  CMSBitMap*    _bit_map;
3313  CMSMarkStack* _overflow_stack;
3314  OopTaskQueue* _work_queue;
3315 protected:
3316  DO_OOP_WORK_DEFN
3317 public:
3318  ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3319                        CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3320    MetadataAwareOopClosure(collector->ref_processor()),
3321    _collector(collector),
3322    _task(task),
3323    _span(collector->_span),
3324    _work_queue(work_queue),
3325    _bit_map(bit_map),
3326    _overflow_stack(overflow_stack)
3327  { }
3328  virtual void do_oop(oop* p);
3329  virtual void do_oop(narrowOop* p);
3330
3331  void trim_queue(size_t max);
3332  void handle_stack_overflow(HeapWord* lost);
3333  void do_yield_check() {
3334    if (_task->should_yield()) {
3335      _task->yield();
3336    }
3337  }
3338};
3339
3340DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3341
3342// Grey object scanning during work stealing phase --
3343// the salient assumption here is that any references
3344// that are in these stolen objects being scanned must
3345// already have been initialized (else they would not have
3346// been published), so we do not need to check for
3347// uninitialized objects before pushing here.
3348void ParConcMarkingClosure::do_oop(oop obj) {
3349  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3350  HeapWord* addr = (HeapWord*)obj;
3351  // Check if oop points into the CMS generation
3352  // and is not marked
3353  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3354    // a white object ...
3355    // If we manage to "claim" the object, by being the
3356    // first thread to mark it, then we push it on our
3357    // marking stack
3358    if (_bit_map->par_mark(addr)) {     // ... now grey
3359      // push on work queue (grey set)
3360      bool simulate_overflow = false;
3361      NOT_PRODUCT(
3362        if (CMSMarkStackOverflowALot &&
3363            _collector->simulate_overflow()) {
3364          // simulate a stack overflow
3365          simulate_overflow = true;
3366        }
3367      )
3368      if (simulate_overflow ||
3369          !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3370        // stack overflow
3371        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3372        // We cannot assert that the overflow stack is full because
3373        // it may have been emptied since.
3374        assert(simulate_overflow ||
3375               _work_queue->size() == _work_queue->max_elems(),
3376              "Else push should have succeeded");
3377        handle_stack_overflow(addr);
3378      }
3379    } // Else, some other thread got there first
3380    do_yield_check();
3381  }
3382}
3383
3384void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3385void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3386
3387void ParConcMarkingClosure::trim_queue(size_t max) {
3388  while (_work_queue->size() > max) {
3389    oop new_oop;
3390    if (_work_queue->pop_local(new_oop)) {
3391      assert(new_oop->is_oop(), "Should be an oop");
3392      assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3393      assert(_span.contains((HeapWord*)new_oop), "Not in span");
3394      new_oop->oop_iterate(this);  // do_oop() above
3395      do_yield_check();
3396    }
3397  }
3398}
3399
3400// Upon stack overflow, we discard (part of) the stack,
3401// remembering the least address amongst those discarded
3402// in CMSCollector's _restart_address.
3403void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3404  // We need to do this under a mutex to prevent other
3405  // workers from interfering with the work done below.
3406  MutexLockerEx ml(_overflow_stack->par_lock(),
3407                   Mutex::_no_safepoint_check_flag);
3408  // Remember the least grey address discarded
3409  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3410  _collector->lower_restart_addr(ra);
3411  _overflow_stack->reset();  // discard stack contents
3412  _overflow_stack->expand(); // expand the stack if possible
3413}
3414
3415
3416void CMSConcMarkingTask::do_work_steal(int i) {
3417  OopTaskQueue* work_q = work_queue(i);
3418  oop obj_to_scan;
3419  CMSBitMap* bm = &(_collector->_markBitMap);
3420  CMSMarkStack* ovflw = &(_collector->_markStack);
3421  int* seed = _collector->hash_seed(i);
3422  ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3423  while (true) {
3424    cl.trim_queue(0);
3425    assert(work_q->size() == 0, "Should have been emptied above");
3426    if (get_work_from_overflow_stack(ovflw, work_q)) {
3427      // Can't assert below because the work obtained from the
3428      // overflow stack may already have been stolen from us.
3429      // assert(work_q->size() > 0, "Work from overflow stack");
3430      continue;
3431    } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3432      assert(obj_to_scan->is_oop(), "Should be an oop");
3433      assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3434      obj_to_scan->oop_iterate(&cl);
3435    } else if (terminator()->offer_termination(&_term_term)) {
3436      assert(work_q->size() == 0, "Impossible!");
3437      break;
3438    } else if (yielding() || should_yield()) {
3439      yield();
3440    }
3441  }
3442}
3443
3444// This is run by the CMS (coordinator) thread.
3445void CMSConcMarkingTask::coordinator_yield() {
3446  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3447         "CMS thread should hold CMS token");
3448  // First give up the locks, then yield, then re-lock
3449  // We should probably use a constructor/destructor idiom to
3450  // do this unlock/lock or modify the MutexUnlocker class to
3451  // serve our purpose. XXX
3452  assert_lock_strong(_bit_map_lock);
3453  _bit_map_lock->unlock();
3454  ConcurrentMarkSweepThread::desynchronize(true);
3455  _collector->stopTimer();
3456  _collector->incrementYields();
3457
3458  // It is possible for whichever thread initiated the yield request
3459  // not to get a chance to wake up and take the bitmap lock between
3460  // this thread releasing it and reacquiring it. So, while the
3461  // should_yield() flag is on, let's sleep for a bit to give the
3462  // other thread a chance to wake up. The limit imposed on the number
3463  // of iterations is defensive, to avoid any unforseen circumstances
3464  // putting us into an infinite loop. Since it's always been this
3465  // (coordinator_yield()) method that was observed to cause the
3466  // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3467  // which is by default non-zero. For the other seven methods that
3468  // also perform the yield operation, as are using a different
3469  // parameter (CMSYieldSleepCount) which is by default zero. This way we
3470  // can enable the sleeping for those methods too, if necessary.
3471  // See 6442774.
3472  //
3473  // We really need to reconsider the synchronization between the GC
3474  // thread and the yield-requesting threads in the future and we
3475  // should really use wait/notify, which is the recommended
3476  // way of doing this type of interaction. Additionally, we should
3477  // consolidate the eight methods that do the yield operation and they
3478  // are almost identical into one for better maintainability and
3479  // readability. See 6445193.
3480  //
3481  // Tony 2006.06.29
3482  for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3483                   ConcurrentMarkSweepThread::should_yield() &&
3484                   !CMSCollector::foregroundGCIsActive(); ++i) {
3485    os::sleep(Thread::current(), 1, false);
3486  }
3487
3488  ConcurrentMarkSweepThread::synchronize(true);
3489  _bit_map_lock->lock_without_safepoint_check();
3490  _collector->startTimer();
3491}
3492
3493bool CMSCollector::do_marking_mt() {
3494  assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3495  uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3496                                                                  conc_workers()->active_workers(),
3497                                                                  Threads::number_of_non_daemon_threads());
3498  num_workers = conc_workers()->update_active_workers(num_workers);
3499  log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3500
3501  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3502
3503  CMSConcMarkingTask tsk(this,
3504                         cms_space,
3505                         conc_workers(),
3506                         task_queues());
3507
3508  // Since the actual number of workers we get may be different
3509  // from the number we requested above, do we need to do anything different
3510  // below? In particular, may be we need to subclass the SequantialSubTasksDone
3511  // class?? XXX
3512  cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3513
3514  // Refs discovery is already non-atomic.
3515  assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3516  assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3517  conc_workers()->start_task(&tsk);
3518  while (tsk.yielded()) {
3519    tsk.coordinator_yield();
3520    conc_workers()->continue_task(&tsk);
3521  }
3522  // If the task was aborted, _restart_addr will be non-NULL
3523  assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3524  while (_restart_addr != NULL) {
3525    // XXX For now we do not make use of ABORTED state and have not
3526    // yet implemented the right abort semantics (even in the original
3527    // single-threaded CMS case). That needs some more investigation
3528    // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3529    assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3530    // If _restart_addr is non-NULL, a marking stack overflow
3531    // occurred; we need to do a fresh marking iteration from the
3532    // indicated restart address.
3533    if (_foregroundGCIsActive) {
3534      // We may be running into repeated stack overflows, having
3535      // reached the limit of the stack size, while making very
3536      // slow forward progress. It may be best to bail out and
3537      // let the foreground collector do its job.
3538      // Clear _restart_addr, so that foreground GC
3539      // works from scratch. This avoids the headache of
3540      // a "rescan" which would otherwise be needed because
3541      // of the dirty mod union table & card table.
3542      _restart_addr = NULL;
3543      return false;
3544    }
3545    // Adjust the task to restart from _restart_addr
3546    tsk.reset(_restart_addr);
3547    cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3548                  _restart_addr);
3549    _restart_addr = NULL;
3550    // Get the workers going again
3551    conc_workers()->start_task(&tsk);
3552    while (tsk.yielded()) {
3553      tsk.coordinator_yield();
3554      conc_workers()->continue_task(&tsk);
3555    }
3556  }
3557  assert(tsk.completed(), "Inconsistency");
3558  assert(tsk.result() == true, "Inconsistency");
3559  return true;
3560}
3561
3562bool CMSCollector::do_marking_st() {
3563  ResourceMark rm;
3564  HandleMark   hm;
3565
3566  // Temporarily make refs discovery single threaded (non-MT)
3567  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3568  MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3569    &_markStack, CMSYield);
3570  // the last argument to iterate indicates whether the iteration
3571  // should be incremental with periodic yields.
3572  _markBitMap.iterate(&markFromRootsClosure);
3573  // If _restart_addr is non-NULL, a marking stack overflow
3574  // occurred; we need to do a fresh iteration from the
3575  // indicated restart address.
3576  while (_restart_addr != NULL) {
3577    if (_foregroundGCIsActive) {
3578      // We may be running into repeated stack overflows, having
3579      // reached the limit of the stack size, while making very
3580      // slow forward progress. It may be best to bail out and
3581      // let the foreground collector do its job.
3582      // Clear _restart_addr, so that foreground GC
3583      // works from scratch. This avoids the headache of
3584      // a "rescan" which would otherwise be needed because
3585      // of the dirty mod union table & card table.
3586      _restart_addr = NULL;
3587      return false;  // indicating failure to complete marking
3588    }
3589    // Deal with stack overflow:
3590    // we restart marking from _restart_addr
3591    HeapWord* ra = _restart_addr;
3592    markFromRootsClosure.reset(ra);
3593    _restart_addr = NULL;
3594    _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3595  }
3596  return true;
3597}
3598
3599void CMSCollector::preclean() {
3600  check_correct_thread_executing();
3601  assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3602  verify_work_stacks_empty();
3603  verify_overflow_empty();
3604  _abort_preclean = false;
3605  if (CMSPrecleaningEnabled) {
3606    if (!CMSEdenChunksRecordAlways) {
3607      _eden_chunk_index = 0;
3608    }
3609    size_t used = get_eden_used();
3610    size_t capacity = get_eden_capacity();
3611    // Don't start sampling unless we will get sufficiently
3612    // many samples.
3613    if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3614                * CMSScheduleRemarkEdenPenetration)) {
3615      _start_sampling = true;
3616    } else {
3617      _start_sampling = false;
3618    }
3619    GCTraceCPUTime tcpu;
3620    CMSPhaseAccounting pa(this, "Concurrent Preclean");
3621    preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3622  }
3623  CMSTokenSync x(true); // is cms thread
3624  if (CMSPrecleaningEnabled) {
3625    sample_eden();
3626    _collectorState = AbortablePreclean;
3627  } else {
3628    _collectorState = FinalMarking;
3629  }
3630  verify_work_stacks_empty();
3631  verify_overflow_empty();
3632}
3633
3634// Try and schedule the remark such that young gen
3635// occupancy is CMSScheduleRemarkEdenPenetration %.
3636void CMSCollector::abortable_preclean() {
3637  check_correct_thread_executing();
3638  assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3639  assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3640
3641  // If Eden's current occupancy is below this threshold,
3642  // immediately schedule the remark; else preclean
3643  // past the next scavenge in an effort to
3644  // schedule the pause as described above. By choosing
3645  // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3646  // we will never do an actual abortable preclean cycle.
3647  if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3648    GCTraceCPUTime tcpu;
3649    CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3650    // We need more smarts in the abortable preclean
3651    // loop below to deal with cases where allocation
3652    // in young gen is very very slow, and our precleaning
3653    // is running a losing race against a horde of
3654    // mutators intent on flooding us with CMS updates
3655    // (dirty cards).
3656    // One, admittedly dumb, strategy is to give up
3657    // after a certain number of abortable precleaning loops
3658    // or after a certain maximum time. We want to make
3659    // this smarter in the next iteration.
3660    // XXX FIX ME!!! YSR
3661    size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3662    while (!(should_abort_preclean() ||
3663             ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3664      workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3665      cumworkdone += workdone;
3666      loops++;
3667      // Voluntarily terminate abortable preclean phase if we have
3668      // been at it for too long.
3669      if ((CMSMaxAbortablePrecleanLoops != 0) &&
3670          loops >= CMSMaxAbortablePrecleanLoops) {
3671        log_debug(gc)(" CMS: abort preclean due to loops ");
3672        break;
3673      }
3674      if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3675        log_debug(gc)(" CMS: abort preclean due to time ");
3676        break;
3677      }
3678      // If we are doing little work each iteration, we should
3679      // take a short break.
3680      if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3681        // Sleep for some time, waiting for work to accumulate
3682        stopTimer();
3683        cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3684        startTimer();
3685        waited++;
3686      }
3687    }
3688    log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3689                               loops, waited, cumworkdone);
3690  }
3691  CMSTokenSync x(true); // is cms thread
3692  if (_collectorState != Idling) {
3693    assert(_collectorState == AbortablePreclean,
3694           "Spontaneous state transition?");
3695    _collectorState = FinalMarking;
3696  } // Else, a foreground collection completed this CMS cycle.
3697  return;
3698}
3699
3700// Respond to an Eden sampling opportunity
3701void CMSCollector::sample_eden() {
3702  // Make sure a young gc cannot sneak in between our
3703  // reading and recording of a sample.
3704  assert(Thread::current()->is_ConcurrentGC_thread(),
3705         "Only the cms thread may collect Eden samples");
3706  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3707         "Should collect samples while holding CMS token");
3708  if (!_start_sampling) {
3709    return;
3710  }
3711  // When CMSEdenChunksRecordAlways is true, the eden chunk array
3712  // is populated by the young generation.
3713  if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3714    if (_eden_chunk_index < _eden_chunk_capacity) {
3715      _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3716      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3717             "Unexpected state of Eden");
3718      // We'd like to check that what we just sampled is an oop-start address;
3719      // however, we cannot do that here since the object may not yet have been
3720      // initialized. So we'll instead do the check when we _use_ this sample
3721      // later.
3722      if (_eden_chunk_index == 0 ||
3723          (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3724                         _eden_chunk_array[_eden_chunk_index-1])
3725           >= CMSSamplingGrain)) {
3726        _eden_chunk_index++;  // commit sample
3727      }
3728    }
3729  }
3730  if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3731    size_t used = get_eden_used();
3732    size_t capacity = get_eden_capacity();
3733    assert(used <= capacity, "Unexpected state of Eden");
3734    if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3735      _abort_preclean = true;
3736    }
3737  }
3738}
3739
3740
3741size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3742  assert(_collectorState == Precleaning ||
3743         _collectorState == AbortablePreclean, "incorrect state");
3744  ResourceMark rm;
3745  HandleMark   hm;
3746
3747  // Precleaning is currently not MT but the reference processor
3748  // may be set for MT.  Disable it temporarily here.
3749  ReferenceProcessor* rp = ref_processor();
3750  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3751
3752  // Do one pass of scrubbing the discovered reference lists
3753  // to remove any reference objects with strongly-reachable
3754  // referents.
3755  if (clean_refs) {
3756    CMSPrecleanRefsYieldClosure yield_cl(this);
3757    assert(rp->span().equals(_span), "Spans should be equal");
3758    CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3759                                   &_markStack, true /* preclean */);
3760    CMSDrainMarkingStackClosure complete_trace(this,
3761                                   _span, &_markBitMap, &_markStack,
3762                                   &keep_alive, true /* preclean */);
3763
3764    // We don't want this step to interfere with a young
3765    // collection because we don't want to take CPU
3766    // or memory bandwidth away from the young GC threads
3767    // (which may be as many as there are CPUs).
3768    // Note that we don't need to protect ourselves from
3769    // interference with mutators because they can't
3770    // manipulate the discovered reference lists nor affect
3771    // the computed reachability of the referents, the
3772    // only properties manipulated by the precleaning
3773    // of these reference lists.
3774    stopTimer();
3775    CMSTokenSyncWithLocks x(true /* is cms thread */,
3776                            bitMapLock());
3777    startTimer();
3778    sample_eden();
3779
3780    // The following will yield to allow foreground
3781    // collection to proceed promptly. XXX YSR:
3782    // The code in this method may need further
3783    // tweaking for better performance and some restructuring
3784    // for cleaner interfaces.
3785    GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3786    rp->preclean_discovered_references(
3787          rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3788          gc_timer);
3789  }
3790
3791  if (clean_survivor) {  // preclean the active survivor space(s)
3792    PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3793                             &_markBitMap, &_modUnionTable,
3794                             &_markStack, true /* precleaning phase */);
3795    stopTimer();
3796    CMSTokenSyncWithLocks ts(true /* is cms thread */,
3797                             bitMapLock());
3798    startTimer();
3799    unsigned int before_count =
3800      GenCollectedHeap::heap()->total_collections();
3801    SurvivorSpacePrecleanClosure
3802      sss_cl(this, _span, &_markBitMap, &_markStack,
3803             &pam_cl, before_count, CMSYield);
3804    _young_gen->from()->object_iterate_careful(&sss_cl);
3805    _young_gen->to()->object_iterate_careful(&sss_cl);
3806  }
3807  MarkRefsIntoAndScanClosure
3808    mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3809             &_markStack, this, CMSYield,
3810             true /* precleaning phase */);
3811  // CAUTION: The following closure has persistent state that may need to
3812  // be reset upon a decrease in the sequence of addresses it
3813  // processes.
3814  ScanMarkedObjectsAgainCarefullyClosure
3815    smoac_cl(this, _span,
3816      &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3817
3818  // Preclean dirty cards in ModUnionTable and CardTable using
3819  // appropriate convergence criterion;
3820  // repeat CMSPrecleanIter times unless we find that
3821  // we are losing.
3822  assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3823  assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3824         "Bad convergence multiplier");
3825  assert(CMSPrecleanThreshold >= 100,
3826         "Unreasonably low CMSPrecleanThreshold");
3827
3828  size_t numIter, cumNumCards, lastNumCards, curNumCards;
3829  for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3830       numIter < CMSPrecleanIter;
3831       numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3832    curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3833    log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3834    // Either there are very few dirty cards, so re-mark
3835    // pause will be small anyway, or our pre-cleaning isn't
3836    // that much faster than the rate at which cards are being
3837    // dirtied, so we might as well stop and re-mark since
3838    // precleaning won't improve our re-mark time by much.
3839    if (curNumCards <= CMSPrecleanThreshold ||
3840        (numIter > 0 &&
3841         (curNumCards * CMSPrecleanDenominator >
3842         lastNumCards * CMSPrecleanNumerator))) {
3843      numIter++;
3844      cumNumCards += curNumCards;
3845      break;
3846    }
3847  }
3848
3849  preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3850
3851  curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3852  cumNumCards += curNumCards;
3853  log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3854                             curNumCards, cumNumCards, numIter);
3855  return cumNumCards;   // as a measure of useful work done
3856}
3857
3858// PRECLEANING NOTES:
3859// Precleaning involves:
3860// . reading the bits of the modUnionTable and clearing the set bits.
3861// . For the cards corresponding to the set bits, we scan the
3862//   objects on those cards. This means we need the free_list_lock
3863//   so that we can safely iterate over the CMS space when scanning
3864//   for oops.
3865// . When we scan the objects, we'll be both reading and setting
3866//   marks in the marking bit map, so we'll need the marking bit map.
3867// . For protecting _collector_state transitions, we take the CGC_lock.
3868//   Note that any races in the reading of of card table entries by the
3869//   CMS thread on the one hand and the clearing of those entries by the
3870//   VM thread or the setting of those entries by the mutator threads on the
3871//   other are quite benign. However, for efficiency it makes sense to keep
3872//   the VM thread from racing with the CMS thread while the latter is
3873//   dirty card info to the modUnionTable. We therefore also use the
3874//   CGC_lock to protect the reading of the card table and the mod union
3875//   table by the CM thread.
3876// . We run concurrently with mutator updates, so scanning
3877//   needs to be done carefully  -- we should not try to scan
3878//   potentially uninitialized objects.
3879//
3880// Locking strategy: While holding the CGC_lock, we scan over and
3881// reset a maximal dirty range of the mod union / card tables, then lock
3882// the free_list_lock and bitmap lock to do a full marking, then
3883// release these locks; and repeat the cycle. This allows for a
3884// certain amount of fairness in the sharing of these locks between
3885// the CMS collector on the one hand, and the VM thread and the
3886// mutators on the other.
3887
3888// NOTE: preclean_mod_union_table() and preclean_card_table()
3889// further below are largely identical; if you need to modify
3890// one of these methods, please check the other method too.
3891
3892size_t CMSCollector::preclean_mod_union_table(
3893  ConcurrentMarkSweepGeneration* old_gen,
3894  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3895  verify_work_stacks_empty();
3896  verify_overflow_empty();
3897
3898  // strategy: starting with the first card, accumulate contiguous
3899  // ranges of dirty cards; clear these cards, then scan the region
3900  // covered by these cards.
3901
3902  // Since all of the MUT is committed ahead, we can just use
3903  // that, in case the generations expand while we are precleaning.
3904  // It might also be fine to just use the committed part of the
3905  // generation, but we might potentially miss cards when the
3906  // generation is rapidly expanding while we are in the midst
3907  // of precleaning.
3908  HeapWord* startAddr = old_gen->reserved().start();
3909  HeapWord* endAddr   = old_gen->reserved().end();
3910
3911  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3912
3913  size_t numDirtyCards, cumNumDirtyCards;
3914  HeapWord *nextAddr, *lastAddr;
3915  for (cumNumDirtyCards = numDirtyCards = 0,
3916       nextAddr = lastAddr = startAddr;
3917       nextAddr < endAddr;
3918       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3919
3920    ResourceMark rm;
3921    HandleMark   hm;
3922
3923    MemRegion dirtyRegion;
3924    {
3925      stopTimer();
3926      // Potential yield point
3927      CMSTokenSync ts(true);
3928      startTimer();
3929      sample_eden();
3930      // Get dirty region starting at nextOffset (inclusive),
3931      // simultaneously clearing it.
3932      dirtyRegion =
3933        _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3934      assert(dirtyRegion.start() >= nextAddr,
3935             "returned region inconsistent?");
3936    }
3937    // Remember where the next search should begin.
3938    // The returned region (if non-empty) is a right open interval,
3939    // so lastOffset is obtained from the right end of that
3940    // interval.
3941    lastAddr = dirtyRegion.end();
3942    // Should do something more transparent and less hacky XXX
3943    numDirtyCards =
3944      _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3945
3946    // We'll scan the cards in the dirty region (with periodic
3947    // yields for foreground GC as needed).
3948    if (!dirtyRegion.is_empty()) {
3949      assert(numDirtyCards > 0, "consistency check");
3950      HeapWord* stop_point = NULL;
3951      stopTimer();
3952      // Potential yield point
3953      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3954                               bitMapLock());
3955      startTimer();
3956      {
3957        verify_work_stacks_empty();
3958        verify_overflow_empty();
3959        sample_eden();
3960        stop_point =
3961          old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3962      }
3963      if (stop_point != NULL) {
3964        // The careful iteration stopped early either because it found an
3965        // uninitialized object, or because we were in the midst of an
3966        // "abortable preclean", which should now be aborted. Redirty
3967        // the bits corresponding to the partially-scanned or unscanned
3968        // cards. We'll either restart at the next block boundary or
3969        // abort the preclean.
3970        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3971               "Should only be AbortablePreclean.");
3972        _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3973        if (should_abort_preclean()) {
3974          break; // out of preclean loop
3975        } else {
3976          // Compute the next address at which preclean should pick up;
3977          // might need bitMapLock in order to read P-bits.
3978          lastAddr = next_card_start_after_block(stop_point);
3979        }
3980      }
3981    } else {
3982      assert(lastAddr == endAddr, "consistency check");
3983      assert(numDirtyCards == 0, "consistency check");
3984      break;
3985    }
3986  }
3987  verify_work_stacks_empty();
3988  verify_overflow_empty();
3989  return cumNumDirtyCards;
3990}
3991
3992// NOTE: preclean_mod_union_table() above and preclean_card_table()
3993// below are largely identical; if you need to modify
3994// one of these methods, please check the other method too.
3995
3996size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3997  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3998  // strategy: it's similar to precleamModUnionTable above, in that
3999  // we accumulate contiguous ranges of dirty cards, mark these cards
4000  // precleaned, then scan the region covered by these cards.
4001  HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4002  HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4003
4004  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4005
4006  size_t numDirtyCards, cumNumDirtyCards;
4007  HeapWord *lastAddr, *nextAddr;
4008
4009  for (cumNumDirtyCards = numDirtyCards = 0,
4010       nextAddr = lastAddr = startAddr;
4011       nextAddr < endAddr;
4012       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4013
4014    ResourceMark rm;
4015    HandleMark   hm;
4016
4017    MemRegion dirtyRegion;
4018    {
4019      // See comments in "Precleaning notes" above on why we
4020      // do this locking. XXX Could the locking overheads be
4021      // too high when dirty cards are sparse? [I don't think so.]
4022      stopTimer();
4023      CMSTokenSync x(true); // is cms thread
4024      startTimer();
4025      sample_eden();
4026      // Get and clear dirty region from card table
4027      dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4028                                    MemRegion(nextAddr, endAddr),
4029                                    true,
4030                                    CardTableModRefBS::precleaned_card_val());
4031
4032      assert(dirtyRegion.start() >= nextAddr,
4033             "returned region inconsistent?");
4034    }
4035    lastAddr = dirtyRegion.end();
4036    numDirtyCards =
4037      dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4038
4039    if (!dirtyRegion.is_empty()) {
4040      stopTimer();
4041      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4042      startTimer();
4043      sample_eden();
4044      verify_work_stacks_empty();
4045      verify_overflow_empty();
4046      HeapWord* stop_point =
4047        old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4048      if (stop_point != NULL) {
4049        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4050               "Should only be AbortablePreclean.");
4051        _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4052        if (should_abort_preclean()) {
4053          break; // out of preclean loop
4054        } else {
4055          // Compute the next address at which preclean should pick up.
4056          lastAddr = next_card_start_after_block(stop_point);
4057        }
4058      }
4059    } else {
4060      break;
4061    }
4062  }
4063  verify_work_stacks_empty();
4064  verify_overflow_empty();
4065  return cumNumDirtyCards;
4066}
4067
4068class PrecleanKlassClosure : public KlassClosure {
4069  KlassToOopClosure _cm_klass_closure;
4070 public:
4071  PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4072  void do_klass(Klass* k) {
4073    if (k->has_accumulated_modified_oops()) {
4074      k->clear_accumulated_modified_oops();
4075
4076      _cm_klass_closure.do_klass(k);
4077    }
4078  }
4079};
4080
4081// The freelist lock is needed to prevent asserts, is it really needed?
4082void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4083
4084  cl->set_freelistLock(freelistLock);
4085
4086  CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4087
4088  // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4089  // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4090  PrecleanKlassClosure preclean_klass_closure(cl);
4091  ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4092
4093  verify_work_stacks_empty();
4094  verify_overflow_empty();
4095}
4096
4097void CMSCollector::checkpointRootsFinal() {
4098  assert(_collectorState == FinalMarking, "incorrect state transition?");
4099  check_correct_thread_executing();
4100  // world is stopped at this checkpoint
4101  assert(SafepointSynchronize::is_at_safepoint(),
4102         "world should be stopped");
4103  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4104
4105  verify_work_stacks_empty();
4106  verify_overflow_empty();
4107
4108  log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4109                _young_gen->used() / K, _young_gen->capacity() / K);
4110  {
4111    if (CMSScavengeBeforeRemark) {
4112      GenCollectedHeap* gch = GenCollectedHeap::heap();
4113      // Temporarily set flag to false, GCH->do_collection will
4114      // expect it to be false and set to true
4115      FlagSetting fl(gch->_is_gc_active, false);
4116
4117      gch->do_collection(true,                      // full (i.e. force, see below)
4118                         false,                     // !clear_all_soft_refs
4119                         0,                         // size
4120                         false,                     // is_tlab
4121                         GenCollectedHeap::YoungGen // type
4122        );
4123    }
4124    FreelistLocker x(this);
4125    MutexLockerEx y(bitMapLock(),
4126                    Mutex::_no_safepoint_check_flag);
4127    checkpointRootsFinalWork();
4128  }
4129  verify_work_stacks_empty();
4130  verify_overflow_empty();
4131}
4132
4133void CMSCollector::checkpointRootsFinalWork() {
4134  GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4135
4136  assert(haveFreelistLocks(), "must have free list locks");
4137  assert_lock_strong(bitMapLock());
4138
4139  ResourceMark rm;
4140  HandleMark   hm;
4141
4142  GenCollectedHeap* gch = GenCollectedHeap::heap();
4143
4144  if (should_unload_classes()) {
4145    CodeCache::gc_prologue();
4146  }
4147  assert(haveFreelistLocks(), "must have free list locks");
4148  assert_lock_strong(bitMapLock());
4149
4150  // We might assume that we need not fill TLAB's when
4151  // CMSScavengeBeforeRemark is set, because we may have just done
4152  // a scavenge which would have filled all TLAB's -- and besides
4153  // Eden would be empty. This however may not always be the case --
4154  // for instance although we asked for a scavenge, it may not have
4155  // happened because of a JNI critical section. We probably need
4156  // a policy for deciding whether we can in that case wait until
4157  // the critical section releases and then do the remark following
4158  // the scavenge, and skip it here. In the absence of that policy,
4159  // or of an indication of whether the scavenge did indeed occur,
4160  // we cannot rely on TLAB's having been filled and must do
4161  // so here just in case a scavenge did not happen.
4162  gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4163  // Update the saved marks which may affect the root scans.
4164  gch->save_marks();
4165
4166  print_eden_and_survivor_chunk_arrays();
4167
4168  {
4169#if defined(COMPILER2) || INCLUDE_JVMCI
4170    DerivedPointerTableDeactivate dpt_deact;
4171#endif
4172
4173    // Note on the role of the mod union table:
4174    // Since the marker in "markFromRoots" marks concurrently with
4175    // mutators, it is possible for some reachable objects not to have been
4176    // scanned. For instance, an only reference to an object A was
4177    // placed in object B after the marker scanned B. Unless B is rescanned,
4178    // A would be collected. Such updates to references in marked objects
4179    // are detected via the mod union table which is the set of all cards
4180    // dirtied since the first checkpoint in this GC cycle and prior to
4181    // the most recent young generation GC, minus those cleaned up by the
4182    // concurrent precleaning.
4183    if (CMSParallelRemarkEnabled) {
4184      GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4185      do_remark_parallel();
4186    } else {
4187      GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4188      do_remark_non_parallel();
4189    }
4190  }
4191  verify_work_stacks_empty();
4192  verify_overflow_empty();
4193
4194  {
4195    GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4196    refProcessingWork();
4197  }
4198  verify_work_stacks_empty();
4199  verify_overflow_empty();
4200
4201  if (should_unload_classes()) {
4202    CodeCache::gc_epilogue();
4203  }
4204  JvmtiExport::gc_epilogue();
4205
4206  // If we encountered any (marking stack / work queue) overflow
4207  // events during the current CMS cycle, take appropriate
4208  // remedial measures, where possible, so as to try and avoid
4209  // recurrence of that condition.
4210  assert(_markStack.isEmpty(), "No grey objects");
4211  size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4212                     _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4213  if (ser_ovflw > 0) {
4214    log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4215                         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4216    _markStack.expand();
4217    _ser_pmc_remark_ovflw = 0;
4218    _ser_pmc_preclean_ovflw = 0;
4219    _ser_kac_preclean_ovflw = 0;
4220    _ser_kac_ovflw = 0;
4221  }
4222  if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4223     log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4224                          _par_pmc_remark_ovflw, _par_kac_ovflw);
4225     _par_pmc_remark_ovflw = 0;
4226    _par_kac_ovflw = 0;
4227  }
4228   if (_markStack._hit_limit > 0) {
4229     log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4230                          _markStack._hit_limit);
4231   }
4232   if (_markStack._failed_double > 0) {
4233     log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4234                          _markStack._failed_double, _markStack.capacity());
4235   }
4236  _markStack._hit_limit = 0;
4237  _markStack._failed_double = 0;
4238
4239  if ((VerifyAfterGC || VerifyDuringGC) &&
4240      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4241    verify_after_remark();
4242  }
4243
4244  _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4245
4246  // Change under the freelistLocks.
4247  _collectorState = Sweeping;
4248  // Call isAllClear() under bitMapLock
4249  assert(_modUnionTable.isAllClear(),
4250      "Should be clear by end of the final marking");
4251  assert(_ct->klass_rem_set()->mod_union_is_clear(),
4252      "Should be clear by end of the final marking");
4253}
4254
4255void CMSParInitialMarkTask::work(uint worker_id) {
4256  elapsedTimer _timer;
4257  ResourceMark rm;
4258  HandleMark   hm;
4259
4260  // ---------- scan from roots --------------
4261  _timer.start();
4262  GenCollectedHeap* gch = GenCollectedHeap::heap();
4263  ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4264
4265  // ---------- young gen roots --------------
4266  {
4267    work_on_young_gen_roots(&par_mri_cl);
4268    _timer.stop();
4269    log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4270  }
4271
4272  // ---------- remaining roots --------------
4273  _timer.reset();
4274  _timer.start();
4275
4276  CLDToOopClosure cld_closure(&par_mri_cl, true);
4277
4278  gch->cms_process_roots(_strong_roots_scope,
4279                         false,     // yg was scanned above
4280                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4281                         _collector->should_unload_classes(),
4282                         &par_mri_cl,
4283                         &cld_closure);
4284  assert(_collector->should_unload_classes()
4285         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4286         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4287  _timer.stop();
4288  log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4289}
4290
4291// Parallel remark task
4292class CMSParRemarkTask: public CMSParMarkTask {
4293  CompactibleFreeListSpace* _cms_space;
4294
4295  // The per-thread work queues, available here for stealing.
4296  OopTaskQueueSet*       _task_queues;
4297  ParallelTaskTerminator _term;
4298  StrongRootsScope*      _strong_roots_scope;
4299
4300 public:
4301  // A value of 0 passed to n_workers will cause the number of
4302  // workers to be taken from the active workers in the work gang.
4303  CMSParRemarkTask(CMSCollector* collector,
4304                   CompactibleFreeListSpace* cms_space,
4305                   uint n_workers, WorkGang* workers,
4306                   OopTaskQueueSet* task_queues,
4307                   StrongRootsScope* strong_roots_scope):
4308    CMSParMarkTask("Rescan roots and grey objects in parallel",
4309                   collector, n_workers),
4310    _cms_space(cms_space),
4311    _task_queues(task_queues),
4312    _term(n_workers, task_queues),
4313    _strong_roots_scope(strong_roots_scope) { }
4314
4315  OopTaskQueueSet* task_queues() { return _task_queues; }
4316
4317  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4318
4319  ParallelTaskTerminator* terminator() { return &_term; }
4320  uint n_workers() { return _n_workers; }
4321
4322  void work(uint worker_id);
4323
4324 private:
4325  // ... of  dirty cards in old space
4326  void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4327                                  ParMarkRefsIntoAndScanClosure* cl);
4328
4329  // ... work stealing for the above
4330  void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4331};
4332
4333class RemarkKlassClosure : public KlassClosure {
4334  KlassToOopClosure _cm_klass_closure;
4335 public:
4336  RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4337  void do_klass(Klass* k) {
4338    // Check if we have modified any oops in the Klass during the concurrent marking.
4339    if (k->has_accumulated_modified_oops()) {
4340      k->clear_accumulated_modified_oops();
4341
4342      // We could have transfered the current modified marks to the accumulated marks,
4343      // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4344    } else if (k->has_modified_oops()) {
4345      // Don't clear anything, this info is needed by the next young collection.
4346    } else {
4347      // No modified oops in the Klass.
4348      return;
4349    }
4350
4351    // The klass has modified fields, need to scan the klass.
4352    _cm_klass_closure.do_klass(k);
4353  }
4354};
4355
4356void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4357  ParNewGeneration* young_gen = _collector->_young_gen;
4358  ContiguousSpace* eden_space = young_gen->eden();
4359  ContiguousSpace* from_space = young_gen->from();
4360  ContiguousSpace* to_space   = young_gen->to();
4361
4362  HeapWord** eca = _collector->_eden_chunk_array;
4363  size_t     ect = _collector->_eden_chunk_index;
4364  HeapWord** sca = _collector->_survivor_chunk_array;
4365  size_t     sct = _collector->_survivor_chunk_index;
4366
4367  assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4368  assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4369
4370  do_young_space_rescan(cl, to_space, NULL, 0);
4371  do_young_space_rescan(cl, from_space, sca, sct);
4372  do_young_space_rescan(cl, eden_space, eca, ect);
4373}
4374
4375// work_queue(i) is passed to the closure
4376// ParMarkRefsIntoAndScanClosure.  The "i" parameter
4377// also is passed to do_dirty_card_rescan_tasks() and to
4378// do_work_steal() to select the i-th task_queue.
4379
4380void CMSParRemarkTask::work(uint worker_id) {
4381  elapsedTimer _timer;
4382  ResourceMark rm;
4383  HandleMark   hm;
4384
4385  // ---------- rescan from roots --------------
4386  _timer.start();
4387  GenCollectedHeap* gch = GenCollectedHeap::heap();
4388  ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4389    _collector->_span, _collector->ref_processor(),
4390    &(_collector->_markBitMap),
4391    work_queue(worker_id));
4392
4393  // Rescan young gen roots first since these are likely
4394  // coarsely partitioned and may, on that account, constitute
4395  // the critical path; thus, it's best to start off that
4396  // work first.
4397  // ---------- young gen roots --------------
4398  {
4399    work_on_young_gen_roots(&par_mrias_cl);
4400    _timer.stop();
4401    log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4402  }
4403
4404  // ---------- remaining roots --------------
4405  _timer.reset();
4406  _timer.start();
4407  gch->cms_process_roots(_strong_roots_scope,
4408                         false,     // yg was scanned above
4409                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4410                         _collector->should_unload_classes(),
4411                         &par_mrias_cl,
4412                         NULL);     // The dirty klasses will be handled below
4413
4414  assert(_collector->should_unload_classes()
4415         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4416         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4417  _timer.stop();
4418  log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4419
4420  // ---------- unhandled CLD scanning ----------
4421  if (worker_id == 0) { // Single threaded at the moment.
4422    _timer.reset();
4423    _timer.start();
4424
4425    // Scan all new class loader data objects and new dependencies that were
4426    // introduced during concurrent marking.
4427    ResourceMark rm;
4428    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4429    for (int i = 0; i < array->length(); i++) {
4430      par_mrias_cl.do_cld_nv(array->at(i));
4431    }
4432
4433    // We don't need to keep track of new CLDs anymore.
4434    ClassLoaderDataGraph::remember_new_clds(false);
4435
4436    _timer.stop();
4437    log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4438  }
4439
4440  // ---------- dirty klass scanning ----------
4441  if (worker_id == 0) { // Single threaded at the moment.
4442    _timer.reset();
4443    _timer.start();
4444
4445    // Scan all classes that was dirtied during the concurrent marking phase.
4446    RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4447    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4448
4449    _timer.stop();
4450    log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4451  }
4452
4453  // We might have added oops to ClassLoaderData::_handles during the
4454  // concurrent marking phase. These oops point to newly allocated objects
4455  // that are guaranteed to be kept alive. Either by the direct allocation
4456  // code, or when the young collector processes the roots. Hence,
4457  // we don't have to revisit the _handles block during the remark phase.
4458
4459  // ---------- rescan dirty cards ------------
4460  _timer.reset();
4461  _timer.start();
4462
4463  // Do the rescan tasks for each of the two spaces
4464  // (cms_space) in turn.
4465  // "worker_id" is passed to select the task_queue for "worker_id"
4466  do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4467  _timer.stop();
4468  log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4469
4470  // ---------- steal work from other threads ...
4471  // ---------- ... and drain overflow list.
4472  _timer.reset();
4473  _timer.start();
4474  do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4475  _timer.stop();
4476  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4477}
4478
4479void
4480CMSParMarkTask::do_young_space_rescan(
4481  OopsInGenClosure* cl, ContiguousSpace* space,
4482  HeapWord** chunk_array, size_t chunk_top) {
4483  // Until all tasks completed:
4484  // . claim an unclaimed task
4485  // . compute region boundaries corresponding to task claimed
4486  //   using chunk_array
4487  // . par_oop_iterate(cl) over that region
4488
4489  ResourceMark rm;
4490  HandleMark   hm;
4491
4492  SequentialSubTasksDone* pst = space->par_seq_tasks();
4493
4494  uint nth_task = 0;
4495  uint n_tasks  = pst->n_tasks();
4496
4497  if (n_tasks > 0) {
4498    assert(pst->valid(), "Uninitialized use?");
4499    HeapWord *start, *end;
4500    while (!pst->is_task_claimed(/* reference */ nth_task)) {
4501      // We claimed task # nth_task; compute its boundaries.
4502      if (chunk_top == 0) {  // no samples were taken
4503        assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4504        start = space->bottom();
4505        end   = space->top();
4506      } else if (nth_task == 0) {
4507        start = space->bottom();
4508        end   = chunk_array[nth_task];
4509      } else if (nth_task < (uint)chunk_top) {
4510        assert(nth_task >= 1, "Control point invariant");
4511        start = chunk_array[nth_task - 1];
4512        end   = chunk_array[nth_task];
4513      } else {
4514        assert(nth_task == (uint)chunk_top, "Control point invariant");
4515        start = chunk_array[chunk_top - 1];
4516        end   = space->top();
4517      }
4518      MemRegion mr(start, end);
4519      // Verify that mr is in space
4520      assert(mr.is_empty() || space->used_region().contains(mr),
4521             "Should be in space");
4522      // Verify that "start" is an object boundary
4523      assert(mr.is_empty() || oop(mr.start())->is_oop(),
4524             "Should be an oop");
4525      space->par_oop_iterate(mr, cl);
4526    }
4527    pst->all_tasks_completed();
4528  }
4529}
4530
4531void
4532CMSParRemarkTask::do_dirty_card_rescan_tasks(
4533  CompactibleFreeListSpace* sp, int i,
4534  ParMarkRefsIntoAndScanClosure* cl) {
4535  // Until all tasks completed:
4536  // . claim an unclaimed task
4537  // . compute region boundaries corresponding to task claimed
4538  // . transfer dirty bits ct->mut for that region
4539  // . apply rescanclosure to dirty mut bits for that region
4540
4541  ResourceMark rm;
4542  HandleMark   hm;
4543
4544  OopTaskQueue* work_q = work_queue(i);
4545  ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4546  // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4547  // CAUTION: This closure has state that persists across calls to
4548  // the work method dirty_range_iterate_clear() in that it has
4549  // embedded in it a (subtype of) UpwardsObjectClosure. The
4550  // use of that state in the embedded UpwardsObjectClosure instance
4551  // assumes that the cards are always iterated (even if in parallel
4552  // by several threads) in monotonically increasing order per each
4553  // thread. This is true of the implementation below which picks
4554  // card ranges (chunks) in monotonically increasing order globally
4555  // and, a-fortiori, in monotonically increasing order per thread
4556  // (the latter order being a subsequence of the former).
4557  // If the work code below is ever reorganized into a more chaotic
4558  // work-partitioning form than the current "sequential tasks"
4559  // paradigm, the use of that persistent state will have to be
4560  // revisited and modified appropriately. See also related
4561  // bug 4756801 work on which should examine this code to make
4562  // sure that the changes there do not run counter to the
4563  // assumptions made here and necessary for correctness and
4564  // efficiency. Note also that this code might yield inefficient
4565  // behavior in the case of very large objects that span one or
4566  // more work chunks. Such objects would potentially be scanned
4567  // several times redundantly. Work on 4756801 should try and
4568  // address that performance anomaly if at all possible. XXX
4569  MemRegion  full_span  = _collector->_span;
4570  CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4571  MarkFromDirtyCardsClosure
4572    greyRescanClosure(_collector, full_span, // entire span of interest
4573                      sp, bm, work_q, cl);
4574
4575  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4576  assert(pst->valid(), "Uninitialized use?");
4577  uint nth_task = 0;
4578  const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4579  MemRegion span = sp->used_region();
4580  HeapWord* start_addr = span.start();
4581  HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4582                                           alignment);
4583  const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4584  assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4585         start_addr, "Check alignment");
4586  assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4587         chunk_size, "Check alignment");
4588
4589  while (!pst->is_task_claimed(/* reference */ nth_task)) {
4590    // Having claimed the nth_task, compute corresponding mem-region,
4591    // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4592    // The alignment restriction ensures that we do not need any
4593    // synchronization with other gang-workers while setting or
4594    // clearing bits in thus chunk of the MUT.
4595    MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4596                                    start_addr + (nth_task+1)*chunk_size);
4597    // The last chunk's end might be way beyond end of the
4598    // used region. In that case pull back appropriately.
4599    if (this_span.end() > end_addr) {
4600      this_span.set_end(end_addr);
4601      assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4602    }
4603    // Iterate over the dirty cards covering this chunk, marking them
4604    // precleaned, and setting the corresponding bits in the mod union
4605    // table. Since we have been careful to partition at Card and MUT-word
4606    // boundaries no synchronization is needed between parallel threads.
4607    _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4608                                                 &modUnionClosure);
4609
4610    // Having transferred these marks into the modUnionTable,
4611    // rescan the marked objects on the dirty cards in the modUnionTable.
4612    // Even if this is at a synchronous collection, the initial marking
4613    // may have been done during an asynchronous collection so there
4614    // may be dirty bits in the mod-union table.
4615    _collector->_modUnionTable.dirty_range_iterate_clear(
4616                  this_span, &greyRescanClosure);
4617    _collector->_modUnionTable.verifyNoOneBitsInRange(
4618                                 this_span.start(),
4619                                 this_span.end());
4620  }
4621  pst->all_tasks_completed();  // declare that i am done
4622}
4623
4624// . see if we can share work_queues with ParNew? XXX
4625void
4626CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4627                                int* seed) {
4628  OopTaskQueue* work_q = work_queue(i);
4629  NOT_PRODUCT(int num_steals = 0;)
4630  oop obj_to_scan;
4631  CMSBitMap* bm = &(_collector->_markBitMap);
4632
4633  while (true) {
4634    // Completely finish any left over work from (an) earlier round(s)
4635    cl->trim_queue(0);
4636    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4637                                         (size_t)ParGCDesiredObjsFromOverflowList);
4638    // Now check if there's any work in the overflow list
4639    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4640    // only affects the number of attempts made to get work from the
4641    // overflow list and does not affect the number of workers.  Just
4642    // pass ParallelGCThreads so this behavior is unchanged.
4643    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4644                                                work_q,
4645                                                ParallelGCThreads)) {
4646      // found something in global overflow list;
4647      // not yet ready to go stealing work from others.
4648      // We'd like to assert(work_q->size() != 0, ...)
4649      // because we just took work from the overflow list,
4650      // but of course we can't since all of that could have
4651      // been already stolen from us.
4652      // "He giveth and He taketh away."
4653      continue;
4654    }
4655    // Verify that we have no work before we resort to stealing
4656    assert(work_q->size() == 0, "Have work, shouldn't steal");
4657    // Try to steal from other queues that have work
4658    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4659      NOT_PRODUCT(num_steals++;)
4660      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4661      assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4662      // Do scanning work
4663      obj_to_scan->oop_iterate(cl);
4664      // Loop around, finish this work, and try to steal some more
4665    } else if (terminator()->offer_termination()) {
4666        break;  // nirvana from the infinite cycle
4667    }
4668  }
4669  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4670  assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4671         "Else our work is not yet done");
4672}
4673
4674// Record object boundaries in _eden_chunk_array by sampling the eden
4675// top in the slow-path eden object allocation code path and record
4676// the boundaries, if CMSEdenChunksRecordAlways is true. If
4677// CMSEdenChunksRecordAlways is false, we use the other asynchronous
4678// sampling in sample_eden() that activates during the part of the
4679// preclean phase.
4680void CMSCollector::sample_eden_chunk() {
4681  if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4682    if (_eden_chunk_lock->try_lock()) {
4683      // Record a sample. This is the critical section. The contents
4684      // of the _eden_chunk_array have to be non-decreasing in the
4685      // address order.
4686      _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4687      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4688             "Unexpected state of Eden");
4689      if (_eden_chunk_index == 0 ||
4690          ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4691           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4692                          _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4693        _eden_chunk_index++;  // commit sample
4694      }
4695      _eden_chunk_lock->unlock();
4696    }
4697  }
4698}
4699
4700// Return a thread-local PLAB recording array, as appropriate.
4701void* CMSCollector::get_data_recorder(int thr_num) {
4702  if (_survivor_plab_array != NULL &&
4703      (CMSPLABRecordAlways ||
4704       (_collectorState > Marking && _collectorState < FinalMarking))) {
4705    assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4706    ChunkArray* ca = &_survivor_plab_array[thr_num];
4707    ca->reset();   // clear it so that fresh data is recorded
4708    return (void*) ca;
4709  } else {
4710    return NULL;
4711  }
4712}
4713
4714// Reset all the thread-local PLAB recording arrays
4715void CMSCollector::reset_survivor_plab_arrays() {
4716  for (uint i = 0; i < ParallelGCThreads; i++) {
4717    _survivor_plab_array[i].reset();
4718  }
4719}
4720
4721// Merge the per-thread plab arrays into the global survivor chunk
4722// array which will provide the partitioning of the survivor space
4723// for CMS initial scan and rescan.
4724void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4725                                              int no_of_gc_threads) {
4726  assert(_survivor_plab_array  != NULL, "Error");
4727  assert(_survivor_chunk_array != NULL, "Error");
4728  assert(_collectorState == FinalMarking ||
4729         (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4730  for (int j = 0; j < no_of_gc_threads; j++) {
4731    _cursor[j] = 0;
4732  }
4733  HeapWord* top = surv->top();
4734  size_t i;
4735  for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4736    HeapWord* min_val = top;          // Higher than any PLAB address
4737    uint      min_tid = 0;            // position of min_val this round
4738    for (int j = 0; j < no_of_gc_threads; j++) {
4739      ChunkArray* cur_sca = &_survivor_plab_array[j];
4740      if (_cursor[j] == cur_sca->end()) {
4741        continue;
4742      }
4743      assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4744      HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4745      assert(surv->used_region().contains(cur_val), "Out of bounds value");
4746      if (cur_val < min_val) {
4747        min_tid = j;
4748        min_val = cur_val;
4749      } else {
4750        assert(cur_val < top, "All recorded addresses should be less");
4751      }
4752    }
4753    // At this point min_val and min_tid are respectively
4754    // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4755    // and the thread (j) that witnesses that address.
4756    // We record this address in the _survivor_chunk_array[i]
4757    // and increment _cursor[min_tid] prior to the next round i.
4758    if (min_val == top) {
4759      break;
4760    }
4761    _survivor_chunk_array[i] = min_val;
4762    _cursor[min_tid]++;
4763  }
4764  // We are all done; record the size of the _survivor_chunk_array
4765  _survivor_chunk_index = i; // exclusive: [0, i)
4766  log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4767  // Verify that we used up all the recorded entries
4768  #ifdef ASSERT
4769    size_t total = 0;
4770    for (int j = 0; j < no_of_gc_threads; j++) {
4771      assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4772      total += _cursor[j];
4773    }
4774    assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4775    // Check that the merged array is in sorted order
4776    if (total > 0) {
4777      for (size_t i = 0; i < total - 1; i++) {
4778        log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4779                                     i, p2i(_survivor_chunk_array[i]));
4780        assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4781               "Not sorted");
4782      }
4783    }
4784  #endif // ASSERT
4785}
4786
4787// Set up the space's par_seq_tasks structure for work claiming
4788// for parallel initial scan and rescan of young gen.
4789// See ParRescanTask where this is currently used.
4790void
4791CMSCollector::
4792initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4793  assert(n_threads > 0, "Unexpected n_threads argument");
4794
4795  // Eden space
4796  if (!_young_gen->eden()->is_empty()) {
4797    SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4798    assert(!pst->valid(), "Clobbering existing data?");
4799    // Each valid entry in [0, _eden_chunk_index) represents a task.
4800    size_t n_tasks = _eden_chunk_index + 1;
4801    assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4802    // Sets the condition for completion of the subtask (how many threads
4803    // need to finish in order to be done).
4804    pst->set_n_threads(n_threads);
4805    pst->set_n_tasks((int)n_tasks);
4806  }
4807
4808  // Merge the survivor plab arrays into _survivor_chunk_array
4809  if (_survivor_plab_array != NULL) {
4810    merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4811  } else {
4812    assert(_survivor_chunk_index == 0, "Error");
4813  }
4814
4815  // To space
4816  {
4817    SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4818    assert(!pst->valid(), "Clobbering existing data?");
4819    // Sets the condition for completion of the subtask (how many threads
4820    // need to finish in order to be done).
4821    pst->set_n_threads(n_threads);
4822    pst->set_n_tasks(1);
4823    assert(pst->valid(), "Error");
4824  }
4825
4826  // From space
4827  {
4828    SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4829    assert(!pst->valid(), "Clobbering existing data?");
4830    size_t n_tasks = _survivor_chunk_index + 1;
4831    assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4832    // Sets the condition for completion of the subtask (how many threads
4833    // need to finish in order to be done).
4834    pst->set_n_threads(n_threads);
4835    pst->set_n_tasks((int)n_tasks);
4836    assert(pst->valid(), "Error");
4837  }
4838}
4839
4840// Parallel version of remark
4841void CMSCollector::do_remark_parallel() {
4842  GenCollectedHeap* gch = GenCollectedHeap::heap();
4843  WorkGang* workers = gch->workers();
4844  assert(workers != NULL, "Need parallel worker threads.");
4845  // Choose to use the number of GC workers most recently set
4846  // into "active_workers".
4847  uint n_workers = workers->active_workers();
4848
4849  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4850
4851  StrongRootsScope srs(n_workers);
4852
4853  CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4854
4855  // We won't be iterating over the cards in the card table updating
4856  // the younger_gen cards, so we shouldn't call the following else
4857  // the verification code as well as subsequent younger_refs_iterate
4858  // code would get confused. XXX
4859  // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4860
4861  // The young gen rescan work will not be done as part of
4862  // process_roots (which currently doesn't know how to
4863  // parallelize such a scan), but rather will be broken up into
4864  // a set of parallel tasks (via the sampling that the [abortable]
4865  // preclean phase did of eden, plus the [two] tasks of
4866  // scanning the [two] survivor spaces. Further fine-grain
4867  // parallelization of the scanning of the survivor spaces
4868  // themselves, and of precleaning of the young gen itself
4869  // is deferred to the future.
4870  initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4871
4872  // The dirty card rescan work is broken up into a "sequence"
4873  // of parallel tasks (per constituent space) that are dynamically
4874  // claimed by the parallel threads.
4875  cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4876
4877  // It turns out that even when we're using 1 thread, doing the work in a
4878  // separate thread causes wide variance in run times.  We can't help this
4879  // in the multi-threaded case, but we special-case n=1 here to get
4880  // repeatable measurements of the 1-thread overhead of the parallel code.
4881  if (n_workers > 1) {
4882    // Make refs discovery MT-safe, if it isn't already: it may not
4883    // necessarily be so, since it's possible that we are doing
4884    // ST marking.
4885    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4886    workers->run_task(&tsk);
4887  } else {
4888    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4889    tsk.work(0);
4890  }
4891
4892  // restore, single-threaded for now, any preserved marks
4893  // as a result of work_q overflow
4894  restore_preserved_marks_if_any();
4895}
4896
4897// Non-parallel version of remark
4898void CMSCollector::do_remark_non_parallel() {
4899  ResourceMark rm;
4900  HandleMark   hm;
4901  GenCollectedHeap* gch = GenCollectedHeap::heap();
4902  ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4903
4904  MarkRefsIntoAndScanClosure
4905    mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4906             &_markStack, this,
4907             false /* should_yield */, false /* not precleaning */);
4908  MarkFromDirtyCardsClosure
4909    markFromDirtyCardsClosure(this, _span,
4910                              NULL,  // space is set further below
4911                              &_markBitMap, &_markStack, &mrias_cl);
4912  {
4913    GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4914    // Iterate over the dirty cards, setting the corresponding bits in the
4915    // mod union table.
4916    {
4917      ModUnionClosure modUnionClosure(&_modUnionTable);
4918      _ct->ct_bs()->dirty_card_iterate(
4919                      _cmsGen->used_region(),
4920                      &modUnionClosure);
4921    }
4922    // Having transferred these marks into the modUnionTable, we just need
4923    // to rescan the marked objects on the dirty cards in the modUnionTable.
4924    // The initial marking may have been done during an asynchronous
4925    // collection so there may be dirty bits in the mod-union table.
4926    const int alignment =
4927      CardTableModRefBS::card_size * BitsPerWord;
4928    {
4929      // ... First handle dirty cards in CMS gen
4930      markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4931      MemRegion ur = _cmsGen->used_region();
4932      HeapWord* lb = ur.start();
4933      HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4934      MemRegion cms_span(lb, ub);
4935      _modUnionTable.dirty_range_iterate_clear(cms_span,
4936                                               &markFromDirtyCardsClosure);
4937      verify_work_stacks_empty();
4938      log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4939    }
4940  }
4941  if (VerifyDuringGC &&
4942      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4943    HandleMark hm;  // Discard invalid handles created during verification
4944    Universe::verify();
4945  }
4946  {
4947    GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4948
4949    verify_work_stacks_empty();
4950
4951    gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4952    StrongRootsScope srs(1);
4953
4954    gch->cms_process_roots(&srs,
4955                           true,  // young gen as roots
4956                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
4957                           should_unload_classes(),
4958                           &mrias_cl,
4959                           NULL); // The dirty klasses will be handled below
4960
4961    assert(should_unload_classes()
4962           || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4963           "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4964  }
4965
4966  {
4967    GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4968
4969    verify_work_stacks_empty();
4970
4971    // Scan all class loader data objects that might have been introduced
4972    // during concurrent marking.
4973    ResourceMark rm;
4974    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4975    for (int i = 0; i < array->length(); i++) {
4976      mrias_cl.do_cld_nv(array->at(i));
4977    }
4978
4979    // We don't need to keep track of new CLDs anymore.
4980    ClassLoaderDataGraph::remember_new_clds(false);
4981
4982    verify_work_stacks_empty();
4983  }
4984
4985  {
4986    GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
4987
4988    verify_work_stacks_empty();
4989
4990    RemarkKlassClosure remark_klass_closure(&mrias_cl);
4991    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4992
4993    verify_work_stacks_empty();
4994  }
4995
4996  // We might have added oops to ClassLoaderData::_handles during the
4997  // concurrent marking phase. These oops point to newly allocated objects
4998  // that are guaranteed to be kept alive. Either by the direct allocation
4999  // code, or when the young collector processes the roots. Hence,
5000  // we don't have to revisit the _handles block during the remark phase.
5001
5002  verify_work_stacks_empty();
5003  // Restore evacuated mark words, if any, used for overflow list links
5004  restore_preserved_marks_if_any();
5005
5006  verify_overflow_empty();
5007}
5008
5009////////////////////////////////////////////////////////
5010// Parallel Reference Processing Task Proxy Class
5011////////////////////////////////////////////////////////
5012class AbstractGangTaskWOopQueues : public AbstractGangTask {
5013  OopTaskQueueSet*       _queues;
5014  ParallelTaskTerminator _terminator;
5015 public:
5016  AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5017    AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5018  ParallelTaskTerminator* terminator() { return &_terminator; }
5019  OopTaskQueueSet* queues() { return _queues; }
5020};
5021
5022class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5023  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5024  CMSCollector*          _collector;
5025  CMSBitMap*             _mark_bit_map;
5026  const MemRegion        _span;
5027  ProcessTask&           _task;
5028
5029public:
5030  CMSRefProcTaskProxy(ProcessTask&     task,
5031                      CMSCollector*    collector,
5032                      const MemRegion& span,
5033                      CMSBitMap*       mark_bit_map,
5034                      AbstractWorkGang* workers,
5035                      OopTaskQueueSet* task_queues):
5036    AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5037      task_queues,
5038      workers->active_workers()),
5039    _task(task),
5040    _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5041  {
5042    assert(_collector->_span.equals(_span) && !_span.is_empty(),
5043           "Inconsistency in _span");
5044  }
5045
5046  OopTaskQueueSet* task_queues() { return queues(); }
5047
5048  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5049
5050  void do_work_steal(int i,
5051                     CMSParDrainMarkingStackClosure* drain,
5052                     CMSParKeepAliveClosure* keep_alive,
5053                     int* seed);
5054
5055  virtual void work(uint worker_id);
5056};
5057
5058void CMSRefProcTaskProxy::work(uint worker_id) {
5059  ResourceMark rm;
5060  HandleMark hm;
5061  assert(_collector->_span.equals(_span), "Inconsistency in _span");
5062  CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5063                                        _mark_bit_map,
5064                                        work_queue(worker_id));
5065  CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5066                                                 _mark_bit_map,
5067                                                 work_queue(worker_id));
5068  CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5069  _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5070  if (_task.marks_oops_alive()) {
5071    do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5072                  _collector->hash_seed(worker_id));
5073  }
5074  assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5075  assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5076}
5077
5078class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5079  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5080  EnqueueTask& _task;
5081
5082public:
5083  CMSRefEnqueueTaskProxy(EnqueueTask& task)
5084    : AbstractGangTask("Enqueue reference objects in parallel"),
5085      _task(task)
5086  { }
5087
5088  virtual void work(uint worker_id)
5089  {
5090    _task.work(worker_id);
5091  }
5092};
5093
5094CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5095  MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5096   _span(span),
5097   _bit_map(bit_map),
5098   _work_queue(work_queue),
5099   _mark_and_push(collector, span, bit_map, work_queue),
5100   _low_water_mark(MIN2((work_queue->max_elems()/4),
5101                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5102{ }
5103
5104// . see if we can share work_queues with ParNew? XXX
5105void CMSRefProcTaskProxy::do_work_steal(int i,
5106  CMSParDrainMarkingStackClosure* drain,
5107  CMSParKeepAliveClosure* keep_alive,
5108  int* seed) {
5109  OopTaskQueue* work_q = work_queue(i);
5110  NOT_PRODUCT(int num_steals = 0;)
5111  oop obj_to_scan;
5112
5113  while (true) {
5114    // Completely finish any left over work from (an) earlier round(s)
5115    drain->trim_queue(0);
5116    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5117                                         (size_t)ParGCDesiredObjsFromOverflowList);
5118    // Now check if there's any work in the overflow list
5119    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5120    // only affects the number of attempts made to get work from the
5121    // overflow list and does not affect the number of workers.  Just
5122    // pass ParallelGCThreads so this behavior is unchanged.
5123    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5124                                                work_q,
5125                                                ParallelGCThreads)) {
5126      // Found something in global overflow list;
5127      // not yet ready to go stealing work from others.
5128      // We'd like to assert(work_q->size() != 0, ...)
5129      // because we just took work from the overflow list,
5130      // but of course we can't, since all of that might have
5131      // been already stolen from us.
5132      continue;
5133    }
5134    // Verify that we have no work before we resort to stealing
5135    assert(work_q->size() == 0, "Have work, shouldn't steal");
5136    // Try to steal from other queues that have work
5137    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5138      NOT_PRODUCT(num_steals++;)
5139      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5140      assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5141      // Do scanning work
5142      obj_to_scan->oop_iterate(keep_alive);
5143      // Loop around, finish this work, and try to steal some more
5144    } else if (terminator()->offer_termination()) {
5145      break;  // nirvana from the infinite cycle
5146    }
5147  }
5148  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5149}
5150
5151void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5152{
5153  GenCollectedHeap* gch = GenCollectedHeap::heap();
5154  WorkGang* workers = gch->workers();
5155  assert(workers != NULL, "Need parallel worker threads.");
5156  CMSRefProcTaskProxy rp_task(task, &_collector,
5157                              _collector.ref_processor()->span(),
5158                              _collector.markBitMap(),
5159                              workers, _collector.task_queues());
5160  workers->run_task(&rp_task);
5161}
5162
5163void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5164{
5165
5166  GenCollectedHeap* gch = GenCollectedHeap::heap();
5167  WorkGang* workers = gch->workers();
5168  assert(workers != NULL, "Need parallel worker threads.");
5169  CMSRefEnqueueTaskProxy enq_task(task);
5170  workers->run_task(&enq_task);
5171}
5172
5173void CMSCollector::refProcessingWork() {
5174  ResourceMark rm;
5175  HandleMark   hm;
5176
5177  ReferenceProcessor* rp = ref_processor();
5178  assert(rp->span().equals(_span), "Spans should be equal");
5179  assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5180  // Process weak references.
5181  rp->setup_policy(false);
5182  verify_work_stacks_empty();
5183
5184  CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5185                                          &_markStack, false /* !preclean */);
5186  CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5187                                _span, &_markBitMap, &_markStack,
5188                                &cmsKeepAliveClosure, false /* !preclean */);
5189  {
5190    GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5191
5192    ReferenceProcessorStats stats;
5193    if (rp->processing_is_mt()) {
5194      // Set the degree of MT here.  If the discovery is done MT, there
5195      // may have been a different number of threads doing the discovery
5196      // and a different number of discovered lists may have Ref objects.
5197      // That is OK as long as the Reference lists are balanced (see
5198      // balance_all_queues() and balance_queues()).
5199      GenCollectedHeap* gch = GenCollectedHeap::heap();
5200      uint active_workers = ParallelGCThreads;
5201      WorkGang* workers = gch->workers();
5202      if (workers != NULL) {
5203        active_workers = workers->active_workers();
5204        // The expectation is that active_workers will have already
5205        // been set to a reasonable value.  If it has not been set,
5206        // investigate.
5207        assert(active_workers > 0, "Should have been set during scavenge");
5208      }
5209      rp->set_active_mt_degree(active_workers);
5210      CMSRefProcTaskExecutor task_executor(*this);
5211      stats = rp->process_discovered_references(&_is_alive_closure,
5212                                        &cmsKeepAliveClosure,
5213                                        &cmsDrainMarkingStackClosure,
5214                                        &task_executor,
5215                                        _gc_timer_cm);
5216    } else {
5217      stats = rp->process_discovered_references(&_is_alive_closure,
5218                                        &cmsKeepAliveClosure,
5219                                        &cmsDrainMarkingStackClosure,
5220                                        NULL,
5221                                        _gc_timer_cm);
5222    }
5223    _gc_tracer_cm->report_gc_reference_stats(stats);
5224
5225  }
5226
5227  // This is the point where the entire marking should have completed.
5228  verify_work_stacks_empty();
5229
5230  if (should_unload_classes()) {
5231    {
5232      GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5233
5234      // Unload classes and purge the SystemDictionary.
5235      bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure, _gc_timer_cm);
5236
5237      // Unload nmethods.
5238      CodeCache::do_unloading(&_is_alive_closure, purged_class);
5239
5240      // Prune dead klasses from subklass/sibling/implementor lists.
5241      Klass::clean_weak_klass_links(&_is_alive_closure);
5242    }
5243
5244    {
5245      GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5246      // Clean up unreferenced symbols in symbol table.
5247      SymbolTable::unlink();
5248    }
5249
5250    {
5251      GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5252      // Delete entries for dead interned strings.
5253      StringTable::unlink(&_is_alive_closure);
5254    }
5255  }
5256
5257  // Restore any preserved marks as a result of mark stack or
5258  // work queue overflow
5259  restore_preserved_marks_if_any();  // done single-threaded for now
5260
5261  rp->set_enqueuing_is_done(true);
5262  if (rp->processing_is_mt()) {
5263    rp->balance_all_queues();
5264    CMSRefProcTaskExecutor task_executor(*this);
5265    rp->enqueue_discovered_references(&task_executor);
5266  } else {
5267    rp->enqueue_discovered_references(NULL);
5268  }
5269  rp->verify_no_references_recorded();
5270  assert(!rp->discovery_enabled(), "should have been disabled");
5271}
5272
5273#ifndef PRODUCT
5274void CMSCollector::check_correct_thread_executing() {
5275  Thread* t = Thread::current();
5276  // Only the VM thread or the CMS thread should be here.
5277  assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5278         "Unexpected thread type");
5279  // If this is the vm thread, the foreground process
5280  // should not be waiting.  Note that _foregroundGCIsActive is
5281  // true while the foreground collector is waiting.
5282  if (_foregroundGCShouldWait) {
5283    // We cannot be the VM thread
5284    assert(t->is_ConcurrentGC_thread(),
5285           "Should be CMS thread");
5286  } else {
5287    // We can be the CMS thread only if we are in a stop-world
5288    // phase of CMS collection.
5289    if (t->is_ConcurrentGC_thread()) {
5290      assert(_collectorState == InitialMarking ||
5291             _collectorState == FinalMarking,
5292             "Should be a stop-world phase");
5293      // The CMS thread should be holding the CMS_token.
5294      assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5295             "Potential interference with concurrently "
5296             "executing VM thread");
5297    }
5298  }
5299}
5300#endif
5301
5302void CMSCollector::sweep() {
5303  assert(_collectorState == Sweeping, "just checking");
5304  check_correct_thread_executing();
5305  verify_work_stacks_empty();
5306  verify_overflow_empty();
5307  increment_sweep_count();
5308  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5309
5310  _inter_sweep_timer.stop();
5311  _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5312
5313  assert(!_intra_sweep_timer.is_active(), "Should not be active");
5314  _intra_sweep_timer.reset();
5315  _intra_sweep_timer.start();
5316  {
5317    GCTraceCPUTime tcpu;
5318    CMSPhaseAccounting pa(this, "Concurrent Sweep");
5319    // First sweep the old gen
5320    {
5321      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5322                               bitMapLock());
5323      sweepWork(_cmsGen);
5324    }
5325
5326    // Update Universe::_heap_*_at_gc figures.
5327    // We need all the free list locks to make the abstract state
5328    // transition from Sweeping to Resetting. See detailed note
5329    // further below.
5330    {
5331      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5332      // Update heap occupancy information which is used as
5333      // input to soft ref clearing policy at the next gc.
5334      Universe::update_heap_info_at_gc();
5335      _collectorState = Resizing;
5336    }
5337  }
5338  verify_work_stacks_empty();
5339  verify_overflow_empty();
5340
5341  if (should_unload_classes()) {
5342    // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5343    // requires that the virtual spaces are stable and not deleted.
5344    ClassLoaderDataGraph::set_should_purge(true);
5345  }
5346
5347  _intra_sweep_timer.stop();
5348  _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5349
5350  _inter_sweep_timer.reset();
5351  _inter_sweep_timer.start();
5352
5353  // We need to use a monotonically non-decreasing time in ms
5354  // or we will see time-warp warnings and os::javaTimeMillis()
5355  // does not guarantee monotonicity.
5356  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5357  update_time_of_last_gc(now);
5358
5359  // NOTE on abstract state transitions:
5360  // Mutators allocate-live and/or mark the mod-union table dirty
5361  // based on the state of the collection.  The former is done in
5362  // the interval [Marking, Sweeping] and the latter in the interval
5363  // [Marking, Sweeping).  Thus the transitions into the Marking state
5364  // and out of the Sweeping state must be synchronously visible
5365  // globally to the mutators.
5366  // The transition into the Marking state happens with the world
5367  // stopped so the mutators will globally see it.  Sweeping is
5368  // done asynchronously by the background collector so the transition
5369  // from the Sweeping state to the Resizing state must be done
5370  // under the freelistLock (as is the check for whether to
5371  // allocate-live and whether to dirty the mod-union table).
5372  assert(_collectorState == Resizing, "Change of collector state to"
5373    " Resizing must be done under the freelistLocks (plural)");
5374
5375  // Now that sweeping has been completed, we clear
5376  // the incremental_collection_failed flag,
5377  // thus inviting a younger gen collection to promote into
5378  // this generation. If such a promotion may still fail,
5379  // the flag will be set again when a young collection is
5380  // attempted.
5381  GenCollectedHeap* gch = GenCollectedHeap::heap();
5382  gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5383  gch->update_full_collections_completed(_collection_count_start);
5384}
5385
5386// FIX ME!!! Looks like this belongs in CFLSpace, with
5387// CMSGen merely delegating to it.
5388void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5389  double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5390  HeapWord*  minAddr        = _cmsSpace->bottom();
5391  HeapWord*  largestAddr    =
5392    (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5393  if (largestAddr == NULL) {
5394    // The dictionary appears to be empty.  In this case
5395    // try to coalesce at the end of the heap.
5396    largestAddr = _cmsSpace->end();
5397  }
5398  size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5399  size_t nearLargestOffset =
5400    (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5401  log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5402                          p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5403  _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5404}
5405
5406bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5407  return addr >= _cmsSpace->nearLargestChunk();
5408}
5409
5410FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5411  return _cmsSpace->find_chunk_at_end();
5412}
5413
5414void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5415                                                    bool full) {
5416  // If the young generation has been collected, gather any statistics
5417  // that are of interest at this point.
5418  bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5419  if (!full && current_is_young) {
5420    // Gather statistics on the young generation collection.
5421    collector()->stats().record_gc0_end(used());
5422  }
5423}
5424
5425void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5426  // We iterate over the space(s) underlying this generation,
5427  // checking the mark bit map to see if the bits corresponding
5428  // to specific blocks are marked or not. Blocks that are
5429  // marked are live and are not swept up. All remaining blocks
5430  // are swept up, with coalescing on-the-fly as we sweep up
5431  // contiguous free and/or garbage blocks:
5432  // We need to ensure that the sweeper synchronizes with allocators
5433  // and stop-the-world collectors. In particular, the following
5434  // locks are used:
5435  // . CMS token: if this is held, a stop the world collection cannot occur
5436  // . freelistLock: if this is held no allocation can occur from this
5437  //                 generation by another thread
5438  // . bitMapLock: if this is held, no other thread can access or update
5439  //
5440
5441  // Note that we need to hold the freelistLock if we use
5442  // block iterate below; else the iterator might go awry if
5443  // a mutator (or promotion) causes block contents to change
5444  // (for instance if the allocator divvies up a block).
5445  // If we hold the free list lock, for all practical purposes
5446  // young generation GC's can't occur (they'll usually need to
5447  // promote), so we might as well prevent all young generation
5448  // GC's while we do a sweeping step. For the same reason, we might
5449  // as well take the bit map lock for the entire duration
5450
5451  // check that we hold the requisite locks
5452  assert(have_cms_token(), "Should hold cms token");
5453  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5454  assert_lock_strong(old_gen->freelistLock());
5455  assert_lock_strong(bitMapLock());
5456
5457  assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5458  assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5459  old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5460                                          _inter_sweep_estimate.padded_average(),
5461                                          _intra_sweep_estimate.padded_average());
5462  old_gen->setNearLargestChunk();
5463
5464  {
5465    SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5466    old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5467    // We need to free-up/coalesce garbage/blocks from a
5468    // co-terminal free run. This is done in the SweepClosure
5469    // destructor; so, do not remove this scope, else the
5470    // end-of-sweep-census below will be off by a little bit.
5471  }
5472  old_gen->cmsSpace()->sweep_completed();
5473  old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5474  if (should_unload_classes()) {                // unloaded classes this cycle,
5475    _concurrent_cycles_since_last_unload = 0;   // ... reset count
5476  } else {                                      // did not unload classes,
5477    _concurrent_cycles_since_last_unload++;     // ... increment count
5478  }
5479}
5480
5481// Reset CMS data structures (for now just the marking bit map)
5482// preparatory for the next cycle.
5483void CMSCollector::reset_concurrent() {
5484  CMSTokenSyncWithLocks ts(true, bitMapLock());
5485
5486  // If the state is not "Resetting", the foreground  thread
5487  // has done a collection and the resetting.
5488  if (_collectorState != Resetting) {
5489    assert(_collectorState == Idling, "The state should only change"
5490      " because the foreground collector has finished the collection");
5491    return;
5492  }
5493
5494  {
5495    // Clear the mark bitmap (no grey objects to start with)
5496    // for the next cycle.
5497    GCTraceCPUTime tcpu;
5498    CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5499
5500    HeapWord* curAddr = _markBitMap.startWord();
5501    while (curAddr < _markBitMap.endWord()) {
5502      size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5503      MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5504      _markBitMap.clear_large_range(chunk);
5505      if (ConcurrentMarkSweepThread::should_yield() &&
5506          !foregroundGCIsActive() &&
5507          CMSYield) {
5508        assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5509               "CMS thread should hold CMS token");
5510        assert_lock_strong(bitMapLock());
5511        bitMapLock()->unlock();
5512        ConcurrentMarkSweepThread::desynchronize(true);
5513        stopTimer();
5514        incrementYields();
5515
5516        // See the comment in coordinator_yield()
5517        for (unsigned i = 0; i < CMSYieldSleepCount &&
5518                         ConcurrentMarkSweepThread::should_yield() &&
5519                         !CMSCollector::foregroundGCIsActive(); ++i) {
5520          os::sleep(Thread::current(), 1, false);
5521        }
5522
5523        ConcurrentMarkSweepThread::synchronize(true);
5524        bitMapLock()->lock_without_safepoint_check();
5525        startTimer();
5526      }
5527      curAddr = chunk.end();
5528    }
5529    // A successful mostly concurrent collection has been done.
5530    // Because only the full (i.e., concurrent mode failure) collections
5531    // are being measured for gc overhead limits, clean the "near" flag
5532    // and count.
5533    size_policy()->reset_gc_overhead_limit_count();
5534    _collectorState = Idling;
5535  }
5536
5537  register_gc_end();
5538}
5539
5540// Same as above but for STW paths
5541void CMSCollector::reset_stw() {
5542  // already have the lock
5543  assert(_collectorState == Resetting, "just checking");
5544  assert_lock_strong(bitMapLock());
5545  GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5546  _markBitMap.clear_all();
5547  _collectorState = Idling;
5548  register_gc_end();
5549}
5550
5551void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5552  GCTraceCPUTime tcpu;
5553  TraceCollectorStats tcs(counters());
5554
5555  switch (op) {
5556    case CMS_op_checkpointRootsInitial: {
5557      GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5558      SvcGCMarker sgcm(SvcGCMarker::OTHER);
5559      checkpointRootsInitial();
5560      break;
5561    }
5562    case CMS_op_checkpointRootsFinal: {
5563      GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5564      SvcGCMarker sgcm(SvcGCMarker::OTHER);
5565      checkpointRootsFinal();
5566      break;
5567    }
5568    default:
5569      fatal("No such CMS_op");
5570  }
5571}
5572
5573#ifndef PRODUCT
5574size_t const CMSCollector::skip_header_HeapWords() {
5575  return FreeChunk::header_size();
5576}
5577
5578// Try and collect here conditions that should hold when
5579// CMS thread is exiting. The idea is that the foreground GC
5580// thread should not be blocked if it wants to terminate
5581// the CMS thread and yet continue to run the VM for a while
5582// after that.
5583void CMSCollector::verify_ok_to_terminate() const {
5584  assert(Thread::current()->is_ConcurrentGC_thread(),
5585         "should be called by CMS thread");
5586  assert(!_foregroundGCShouldWait, "should be false");
5587  // We could check here that all the various low-level locks
5588  // are not held by the CMS thread, but that is overkill; see
5589  // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5590  // is checked.
5591}
5592#endif
5593
5594size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5595   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5596          "missing Printezis mark?");
5597  HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5598  size_t size = pointer_delta(nextOneAddr + 1, addr);
5599  assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5600         "alignment problem");
5601  assert(size >= 3, "Necessary for Printezis marks to work");
5602  return size;
5603}
5604
5605// A variant of the above (block_size_using_printezis_bits()) except
5606// that we return 0 if the P-bits are not yet set.
5607size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5608  if (_markBitMap.isMarked(addr + 1)) {
5609    assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5610    HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5611    size_t size = pointer_delta(nextOneAddr + 1, addr);
5612    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5613           "alignment problem");
5614    assert(size >= 3, "Necessary for Printezis marks to work");
5615    return size;
5616  }
5617  return 0;
5618}
5619
5620HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5621  size_t sz = 0;
5622  oop p = (oop)addr;
5623  if (p->klass_or_null_acquire() != NULL) {
5624    sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5625  } else {
5626    sz = block_size_using_printezis_bits(addr);
5627  }
5628  assert(sz > 0, "size must be nonzero");
5629  HeapWord* next_block = addr + sz;
5630  HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5631                                             CardTableModRefBS::card_size);
5632  assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5633         round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5634         "must be different cards");
5635  return next_card;
5636}
5637
5638
5639// CMS Bit Map Wrapper /////////////////////////////////////////
5640
5641// Construct a CMS bit map infrastructure, but don't create the
5642// bit vector itself. That is done by a separate call CMSBitMap::allocate()
5643// further below.
5644CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5645  _bm(),
5646  _shifter(shifter),
5647  _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5648                                    Monitor::_safepoint_check_sometimes) : NULL)
5649{
5650  _bmStartWord = 0;
5651  _bmWordSize  = 0;
5652}
5653
5654bool CMSBitMap::allocate(MemRegion mr) {
5655  _bmStartWord = mr.start();
5656  _bmWordSize  = mr.word_size();
5657  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5658                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5659  if (!brs.is_reserved()) {
5660    log_warning(gc)("CMS bit map allocation failure");
5661    return false;
5662  }
5663  // For now we'll just commit all of the bit map up front.
5664  // Later on we'll try to be more parsimonious with swap.
5665  if (!_virtual_space.initialize(brs, brs.size())) {
5666    log_warning(gc)("CMS bit map backing store failure");
5667    return false;
5668  }
5669  assert(_virtual_space.committed_size() == brs.size(),
5670         "didn't reserve backing store for all of CMS bit map?");
5671  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5672         _bmWordSize, "inconsistency in bit map sizing");
5673  _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5674
5675  // bm.clear(); // can we rely on getting zero'd memory? verify below
5676  assert(isAllClear(),
5677         "Expected zero'd memory from ReservedSpace constructor");
5678  assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5679         "consistency check");
5680  return true;
5681}
5682
5683void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5684  HeapWord *next_addr, *end_addr, *last_addr;
5685  assert_locked();
5686  assert(covers(mr), "out-of-range error");
5687  // XXX assert that start and end are appropriately aligned
5688  for (next_addr = mr.start(), end_addr = mr.end();
5689       next_addr < end_addr; next_addr = last_addr) {
5690    MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5691    last_addr = dirty_region.end();
5692    if (!dirty_region.is_empty()) {
5693      cl->do_MemRegion(dirty_region);
5694    } else {
5695      assert(last_addr == end_addr, "program logic");
5696      return;
5697    }
5698  }
5699}
5700
5701void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5702  _bm.print_on_error(st, prefix);
5703}
5704
5705#ifndef PRODUCT
5706void CMSBitMap::assert_locked() const {
5707  CMSLockVerifier::assert_locked(lock());
5708}
5709
5710bool CMSBitMap::covers(MemRegion mr) const {
5711  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5712  assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5713         "size inconsistency");
5714  return (mr.start() >= _bmStartWord) &&
5715         (mr.end()   <= endWord());
5716}
5717
5718bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5719    return (start >= _bmStartWord && (start + size) <= endWord());
5720}
5721
5722void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5723  // verify that there are no 1 bits in the interval [left, right)
5724  FalseBitMapClosure falseBitMapClosure;
5725  iterate(&falseBitMapClosure, left, right);
5726}
5727
5728void CMSBitMap::region_invariant(MemRegion mr)
5729{
5730  assert_locked();
5731  // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5732  assert(!mr.is_empty(), "unexpected empty region");
5733  assert(covers(mr), "mr should be covered by bit map");
5734  // convert address range into offset range
5735  size_t start_ofs = heapWordToOffset(mr.start());
5736  // Make sure that end() is appropriately aligned
5737  assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5738                        (1 << (_shifter+LogHeapWordSize))),
5739         "Misaligned mr.end()");
5740  size_t end_ofs   = heapWordToOffset(mr.end());
5741  assert(end_ofs > start_ofs, "Should mark at least one bit");
5742}
5743
5744#endif
5745
5746bool CMSMarkStack::allocate(size_t size) {
5747  // allocate a stack of the requisite depth
5748  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5749                   size * sizeof(oop)));
5750  if (!rs.is_reserved()) {
5751    log_warning(gc)("CMSMarkStack allocation failure");
5752    return false;
5753  }
5754  if (!_virtual_space.initialize(rs, rs.size())) {
5755    log_warning(gc)("CMSMarkStack backing store failure");
5756    return false;
5757  }
5758  assert(_virtual_space.committed_size() == rs.size(),
5759         "didn't reserve backing store for all of CMS stack?");
5760  _base = (oop*)(_virtual_space.low());
5761  _index = 0;
5762  _capacity = size;
5763  NOT_PRODUCT(_max_depth = 0);
5764  return true;
5765}
5766
5767// XXX FIX ME !!! In the MT case we come in here holding a
5768// leaf lock. For printing we need to take a further lock
5769// which has lower rank. We need to recalibrate the two
5770// lock-ranks involved in order to be able to print the
5771// messages below. (Or defer the printing to the caller.
5772// For now we take the expedient path of just disabling the
5773// messages for the problematic case.)
5774void CMSMarkStack::expand() {
5775  assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5776  if (_capacity == MarkStackSizeMax) {
5777    if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5778      // We print a warning message only once per CMS cycle.
5779      log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5780    }
5781    return;
5782  }
5783  // Double capacity if possible
5784  size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5785  // Do not give up existing stack until we have managed to
5786  // get the double capacity that we desired.
5787  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5788                   new_capacity * sizeof(oop)));
5789  if (rs.is_reserved()) {
5790    // Release the backing store associated with old stack
5791    _virtual_space.release();
5792    // Reinitialize virtual space for new stack
5793    if (!_virtual_space.initialize(rs, rs.size())) {
5794      fatal("Not enough swap for expanded marking stack");
5795    }
5796    _base = (oop*)(_virtual_space.low());
5797    _index = 0;
5798    _capacity = new_capacity;
5799  } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5800    // Failed to double capacity, continue;
5801    // we print a detail message only once per CMS cycle.
5802    log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5803                        _capacity / K, new_capacity / K);
5804  }
5805}
5806
5807
5808// Closures
5809// XXX: there seems to be a lot of code  duplication here;
5810// should refactor and consolidate common code.
5811
5812// This closure is used to mark refs into the CMS generation in
5813// the CMS bit map. Called at the first checkpoint. This closure
5814// assumes that we do not need to re-mark dirty cards; if the CMS
5815// generation on which this is used is not an oldest
5816// generation then this will lose younger_gen cards!
5817
5818MarkRefsIntoClosure::MarkRefsIntoClosure(
5819  MemRegion span, CMSBitMap* bitMap):
5820    _span(span),
5821    _bitMap(bitMap)
5822{
5823  assert(ref_processor() == NULL, "deliberately left NULL");
5824  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5825}
5826
5827void MarkRefsIntoClosure::do_oop(oop obj) {
5828  // if p points into _span, then mark corresponding bit in _markBitMap
5829  assert(obj->is_oop(), "expected an oop");
5830  HeapWord* addr = (HeapWord*)obj;
5831  if (_span.contains(addr)) {
5832    // this should be made more efficient
5833    _bitMap->mark(addr);
5834  }
5835}
5836
5837void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5838void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5839
5840ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5841  MemRegion span, CMSBitMap* bitMap):
5842    _span(span),
5843    _bitMap(bitMap)
5844{
5845  assert(ref_processor() == NULL, "deliberately left NULL");
5846  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5847}
5848
5849void ParMarkRefsIntoClosure::do_oop(oop obj) {
5850  // if p points into _span, then mark corresponding bit in _markBitMap
5851  assert(obj->is_oop(), "expected an oop");
5852  HeapWord* addr = (HeapWord*)obj;
5853  if (_span.contains(addr)) {
5854    // this should be made more efficient
5855    _bitMap->par_mark(addr);
5856  }
5857}
5858
5859void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5860void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5861
5862// A variant of the above, used for CMS marking verification.
5863MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5864  MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5865    _span(span),
5866    _verification_bm(verification_bm),
5867    _cms_bm(cms_bm)
5868{
5869  assert(ref_processor() == NULL, "deliberately left NULL");
5870  assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5871}
5872
5873void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5874  // if p points into _span, then mark corresponding bit in _markBitMap
5875  assert(obj->is_oop(), "expected an oop");
5876  HeapWord* addr = (HeapWord*)obj;
5877  if (_span.contains(addr)) {
5878    _verification_bm->mark(addr);
5879    if (!_cms_bm->isMarked(addr)) {
5880      Log(gc, verify) log;
5881      ResourceMark rm;
5882      oop(addr)->print_on(log.error_stream());
5883      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5884      fatal("... aborting");
5885    }
5886  }
5887}
5888
5889void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5890void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5891
5892//////////////////////////////////////////////////
5893// MarkRefsIntoAndScanClosure
5894//////////////////////////////////////////////////
5895
5896MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5897                                                       ReferenceProcessor* rp,
5898                                                       CMSBitMap* bit_map,
5899                                                       CMSBitMap* mod_union_table,
5900                                                       CMSMarkStack*  mark_stack,
5901                                                       CMSCollector* collector,
5902                                                       bool should_yield,
5903                                                       bool concurrent_precleaning):
5904  _collector(collector),
5905  _span(span),
5906  _bit_map(bit_map),
5907  _mark_stack(mark_stack),
5908  _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5909                      mark_stack, concurrent_precleaning),
5910  _yield(should_yield),
5911  _concurrent_precleaning(concurrent_precleaning),
5912  _freelistLock(NULL)
5913{
5914  // FIXME: Should initialize in base class constructor.
5915  assert(rp != NULL, "ref_processor shouldn't be NULL");
5916  set_ref_processor_internal(rp);
5917}
5918
5919// This closure is used to mark refs into the CMS generation at the
5920// second (final) checkpoint, and to scan and transitively follow
5921// the unmarked oops. It is also used during the concurrent precleaning
5922// phase while scanning objects on dirty cards in the CMS generation.
5923// The marks are made in the marking bit map and the marking stack is
5924// used for keeping the (newly) grey objects during the scan.
5925// The parallel version (Par_...) appears further below.
5926void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5927  if (obj != NULL) {
5928    assert(obj->is_oop(), "expected an oop");
5929    HeapWord* addr = (HeapWord*)obj;
5930    assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5931    assert(_collector->overflow_list_is_empty(),
5932           "overflow list should be empty");
5933    if (_span.contains(addr) &&
5934        !_bit_map->isMarked(addr)) {
5935      // mark bit map (object is now grey)
5936      _bit_map->mark(addr);
5937      // push on marking stack (stack should be empty), and drain the
5938      // stack by applying this closure to the oops in the oops popped
5939      // from the stack (i.e. blacken the grey objects)
5940      bool res = _mark_stack->push(obj);
5941      assert(res, "Should have space to push on empty stack");
5942      do {
5943        oop new_oop = _mark_stack->pop();
5944        assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5945        assert(_bit_map->isMarked((HeapWord*)new_oop),
5946               "only grey objects on this stack");
5947        // iterate over the oops in this oop, marking and pushing
5948        // the ones in CMS heap (i.e. in _span).
5949        new_oop->oop_iterate(&_pushAndMarkClosure);
5950        // check if it's time to yield
5951        do_yield_check();
5952      } while (!_mark_stack->isEmpty() ||
5953               (!_concurrent_precleaning && take_from_overflow_list()));
5954        // if marking stack is empty, and we are not doing this
5955        // during precleaning, then check the overflow list
5956    }
5957    assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5958    assert(_collector->overflow_list_is_empty(),
5959           "overflow list was drained above");
5960
5961    assert(_collector->no_preserved_marks(),
5962           "All preserved marks should have been restored above");
5963  }
5964}
5965
5966void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5967void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5968
5969void MarkRefsIntoAndScanClosure::do_yield_work() {
5970  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5971         "CMS thread should hold CMS token");
5972  assert_lock_strong(_freelistLock);
5973  assert_lock_strong(_bit_map->lock());
5974  // relinquish the free_list_lock and bitMaplock()
5975  _bit_map->lock()->unlock();
5976  _freelistLock->unlock();
5977  ConcurrentMarkSweepThread::desynchronize(true);
5978  _collector->stopTimer();
5979  _collector->incrementYields();
5980
5981  // See the comment in coordinator_yield()
5982  for (unsigned i = 0;
5983       i < CMSYieldSleepCount &&
5984       ConcurrentMarkSweepThread::should_yield() &&
5985       !CMSCollector::foregroundGCIsActive();
5986       ++i) {
5987    os::sleep(Thread::current(), 1, false);
5988  }
5989
5990  ConcurrentMarkSweepThread::synchronize(true);
5991  _freelistLock->lock_without_safepoint_check();
5992  _bit_map->lock()->lock_without_safepoint_check();
5993  _collector->startTimer();
5994}
5995
5996///////////////////////////////////////////////////////////
5997// ParMarkRefsIntoAndScanClosure: a parallel version of
5998//                                MarkRefsIntoAndScanClosure
5999///////////////////////////////////////////////////////////
6000ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6001  CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6002  CMSBitMap* bit_map, OopTaskQueue* work_queue):
6003  _span(span),
6004  _bit_map(bit_map),
6005  _work_queue(work_queue),
6006  _low_water_mark(MIN2((work_queue->max_elems()/4),
6007                       ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6008  _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6009{
6010  // FIXME: Should initialize in base class constructor.
6011  assert(rp != NULL, "ref_processor shouldn't be NULL");
6012  set_ref_processor_internal(rp);
6013}
6014
6015// This closure is used to mark refs into the CMS generation at the
6016// second (final) checkpoint, and to scan and transitively follow
6017// the unmarked oops. The marks are made in the marking bit map and
6018// the work_queue is used for keeping the (newly) grey objects during
6019// the scan phase whence they are also available for stealing by parallel
6020// threads. Since the marking bit map is shared, updates are
6021// synchronized (via CAS).
6022void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6023  if (obj != NULL) {
6024    // Ignore mark word because this could be an already marked oop
6025    // that may be chained at the end of the overflow list.
6026    assert(obj->is_oop(true), "expected an oop");
6027    HeapWord* addr = (HeapWord*)obj;
6028    if (_span.contains(addr) &&
6029        !_bit_map->isMarked(addr)) {
6030      // mark bit map (object will become grey):
6031      // It is possible for several threads to be
6032      // trying to "claim" this object concurrently;
6033      // the unique thread that succeeds in marking the
6034      // object first will do the subsequent push on
6035      // to the work queue (or overflow list).
6036      if (_bit_map->par_mark(addr)) {
6037        // push on work_queue (which may not be empty), and trim the
6038        // queue to an appropriate length by applying this closure to
6039        // the oops in the oops popped from the stack (i.e. blacken the
6040        // grey objects)
6041        bool res = _work_queue->push(obj);
6042        assert(res, "Low water mark should be less than capacity?");
6043        trim_queue(_low_water_mark);
6044      } // Else, another thread claimed the object
6045    }
6046  }
6047}
6048
6049void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6050void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6051
6052// This closure is used to rescan the marked objects on the dirty cards
6053// in the mod union table and the card table proper.
6054size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6055  oop p, MemRegion mr) {
6056
6057  size_t size = 0;
6058  HeapWord* addr = (HeapWord*)p;
6059  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6060  assert(_span.contains(addr), "we are scanning the CMS generation");
6061  // check if it's time to yield
6062  if (do_yield_check()) {
6063    // We yielded for some foreground stop-world work,
6064    // and we have been asked to abort this ongoing preclean cycle.
6065    return 0;
6066  }
6067  if (_bitMap->isMarked(addr)) {
6068    // it's marked; is it potentially uninitialized?
6069    if (p->klass_or_null_acquire() != NULL) {
6070        // an initialized object; ignore mark word in verification below
6071        // since we are running concurrent with mutators
6072        assert(p->is_oop(true), "should be an oop");
6073        if (p->is_objArray()) {
6074          // objArrays are precisely marked; restrict scanning
6075          // to dirty cards only.
6076          size = CompactibleFreeListSpace::adjustObjectSize(
6077                   p->oop_iterate_size(_scanningClosure, mr));
6078        } else {
6079          // A non-array may have been imprecisely marked; we need
6080          // to scan object in its entirety.
6081          size = CompactibleFreeListSpace::adjustObjectSize(
6082                   p->oop_iterate_size(_scanningClosure));
6083        }
6084      #ifdef ASSERT
6085        size_t direct_size =
6086          CompactibleFreeListSpace::adjustObjectSize(p->size());
6087        assert(size == direct_size, "Inconsistency in size");
6088        assert(size >= 3, "Necessary for Printezis marks to work");
6089        HeapWord* start_pbit = addr + 1;
6090        HeapWord* end_pbit = addr + size - 1;
6091        assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6092               "inconsistent Printezis mark");
6093        // Verify inner mark bits (between Printezis bits) are clear,
6094        // but don't repeat if there are multiple dirty regions for
6095        // the same object, to avoid potential O(N^2) performance.
6096        if (addr != _last_scanned_object) {
6097          _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6098          _last_scanned_object = addr;
6099        }
6100      #endif // ASSERT
6101    } else {
6102      // An uninitialized object.
6103      assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6104      HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6105      size = pointer_delta(nextOneAddr + 1, addr);
6106      assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6107             "alignment problem");
6108      // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6109      // will dirty the card when the klass pointer is installed in the
6110      // object (signaling the completion of initialization).
6111    }
6112  } else {
6113    // Either a not yet marked object or an uninitialized object
6114    if (p->klass_or_null_acquire() == NULL) {
6115      // An uninitialized object, skip to the next card, since
6116      // we may not be able to read its P-bits yet.
6117      assert(size == 0, "Initial value");
6118    } else {
6119      // An object not (yet) reached by marking: we merely need to
6120      // compute its size so as to go look at the next block.
6121      assert(p->is_oop(true), "should be an oop");
6122      size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6123    }
6124  }
6125  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6126  return size;
6127}
6128
6129void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6130  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6131         "CMS thread should hold CMS token");
6132  assert_lock_strong(_freelistLock);
6133  assert_lock_strong(_bitMap->lock());
6134  // relinquish the free_list_lock and bitMaplock()
6135  _bitMap->lock()->unlock();
6136  _freelistLock->unlock();
6137  ConcurrentMarkSweepThread::desynchronize(true);
6138  _collector->stopTimer();
6139  _collector->incrementYields();
6140
6141  // See the comment in coordinator_yield()
6142  for (unsigned i = 0; i < CMSYieldSleepCount &&
6143                   ConcurrentMarkSweepThread::should_yield() &&
6144                   !CMSCollector::foregroundGCIsActive(); ++i) {
6145    os::sleep(Thread::current(), 1, false);
6146  }
6147
6148  ConcurrentMarkSweepThread::synchronize(true);
6149  _freelistLock->lock_without_safepoint_check();
6150  _bitMap->lock()->lock_without_safepoint_check();
6151  _collector->startTimer();
6152}
6153
6154
6155//////////////////////////////////////////////////////////////////
6156// SurvivorSpacePrecleanClosure
6157//////////////////////////////////////////////////////////////////
6158// This (single-threaded) closure is used to preclean the oops in
6159// the survivor spaces.
6160size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6161
6162  HeapWord* addr = (HeapWord*)p;
6163  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6164  assert(!_span.contains(addr), "we are scanning the survivor spaces");
6165  assert(p->klass_or_null() != NULL, "object should be initialized");
6166  // an initialized object; ignore mark word in verification below
6167  // since we are running concurrent with mutators
6168  assert(p->is_oop(true), "should be an oop");
6169  // Note that we do not yield while we iterate over
6170  // the interior oops of p, pushing the relevant ones
6171  // on our marking stack.
6172  size_t size = p->oop_iterate_size(_scanning_closure);
6173  do_yield_check();
6174  // Observe that below, we do not abandon the preclean
6175  // phase as soon as we should; rather we empty the
6176  // marking stack before returning. This is to satisfy
6177  // some existing assertions. In general, it may be a
6178  // good idea to abort immediately and complete the marking
6179  // from the grey objects at a later time.
6180  while (!_mark_stack->isEmpty()) {
6181    oop new_oop = _mark_stack->pop();
6182    assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6183    assert(_bit_map->isMarked((HeapWord*)new_oop),
6184           "only grey objects on this stack");
6185    // iterate over the oops in this oop, marking and pushing
6186    // the ones in CMS heap (i.e. in _span).
6187    new_oop->oop_iterate(_scanning_closure);
6188    // check if it's time to yield
6189    do_yield_check();
6190  }
6191  unsigned int after_count =
6192    GenCollectedHeap::heap()->total_collections();
6193  bool abort = (_before_count != after_count) ||
6194               _collector->should_abort_preclean();
6195  return abort ? 0 : size;
6196}
6197
6198void SurvivorSpacePrecleanClosure::do_yield_work() {
6199  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6200         "CMS thread should hold CMS token");
6201  assert_lock_strong(_bit_map->lock());
6202  // Relinquish the bit map lock
6203  _bit_map->lock()->unlock();
6204  ConcurrentMarkSweepThread::desynchronize(true);
6205  _collector->stopTimer();
6206  _collector->incrementYields();
6207
6208  // See the comment in coordinator_yield()
6209  for (unsigned i = 0; i < CMSYieldSleepCount &&
6210                       ConcurrentMarkSweepThread::should_yield() &&
6211                       !CMSCollector::foregroundGCIsActive(); ++i) {
6212    os::sleep(Thread::current(), 1, false);
6213  }
6214
6215  ConcurrentMarkSweepThread::synchronize(true);
6216  _bit_map->lock()->lock_without_safepoint_check();
6217  _collector->startTimer();
6218}
6219
6220// This closure is used to rescan the marked objects on the dirty cards
6221// in the mod union table and the card table proper. In the parallel
6222// case, although the bitMap is shared, we do a single read so the
6223// isMarked() query is "safe".
6224bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6225  // Ignore mark word because we are running concurrent with mutators
6226  assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6227  HeapWord* addr = (HeapWord*)p;
6228  assert(_span.contains(addr), "we are scanning the CMS generation");
6229  bool is_obj_array = false;
6230  #ifdef ASSERT
6231    if (!_parallel) {
6232      assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6233      assert(_collector->overflow_list_is_empty(),
6234             "overflow list should be empty");
6235
6236    }
6237  #endif // ASSERT
6238  if (_bit_map->isMarked(addr)) {
6239    // Obj arrays are precisely marked, non-arrays are not;
6240    // so we scan objArrays precisely and non-arrays in their
6241    // entirety.
6242    if (p->is_objArray()) {
6243      is_obj_array = true;
6244      if (_parallel) {
6245        p->oop_iterate(_par_scan_closure, mr);
6246      } else {
6247        p->oop_iterate(_scan_closure, mr);
6248      }
6249    } else {
6250      if (_parallel) {
6251        p->oop_iterate(_par_scan_closure);
6252      } else {
6253        p->oop_iterate(_scan_closure);
6254      }
6255    }
6256  }
6257  #ifdef ASSERT
6258    if (!_parallel) {
6259      assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6260      assert(_collector->overflow_list_is_empty(),
6261             "overflow list should be empty");
6262
6263    }
6264  #endif // ASSERT
6265  return is_obj_array;
6266}
6267
6268MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6269                        MemRegion span,
6270                        CMSBitMap* bitMap, CMSMarkStack*  markStack,
6271                        bool should_yield, bool verifying):
6272  _collector(collector),
6273  _span(span),
6274  _bitMap(bitMap),
6275  _mut(&collector->_modUnionTable),
6276  _markStack(markStack),
6277  _yield(should_yield),
6278  _skipBits(0)
6279{
6280  assert(_markStack->isEmpty(), "stack should be empty");
6281  _finger = _bitMap->startWord();
6282  _threshold = _finger;
6283  assert(_collector->_restart_addr == NULL, "Sanity check");
6284  assert(_span.contains(_finger), "Out of bounds _finger?");
6285  DEBUG_ONLY(_verifying = verifying;)
6286}
6287
6288void MarkFromRootsClosure::reset(HeapWord* addr) {
6289  assert(_markStack->isEmpty(), "would cause duplicates on stack");
6290  assert(_span.contains(addr), "Out of bounds _finger?");
6291  _finger = addr;
6292  _threshold = (HeapWord*)round_to(
6293                 (intptr_t)_finger, CardTableModRefBS::card_size);
6294}
6295
6296// Should revisit to see if this should be restructured for
6297// greater efficiency.
6298bool MarkFromRootsClosure::do_bit(size_t offset) {
6299  if (_skipBits > 0) {
6300    _skipBits--;
6301    return true;
6302  }
6303  // convert offset into a HeapWord*
6304  HeapWord* addr = _bitMap->startWord() + offset;
6305  assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6306         "address out of range");
6307  assert(_bitMap->isMarked(addr), "tautology");
6308  if (_bitMap->isMarked(addr+1)) {
6309    // this is an allocated but not yet initialized object
6310    assert(_skipBits == 0, "tautology");
6311    _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6312    oop p = oop(addr);
6313    if (p->klass_or_null_acquire() == NULL) {
6314      DEBUG_ONLY(if (!_verifying) {)
6315        // We re-dirty the cards on which this object lies and increase
6316        // the _threshold so that we'll come back to scan this object
6317        // during the preclean or remark phase. (CMSCleanOnEnter)
6318        if (CMSCleanOnEnter) {
6319          size_t sz = _collector->block_size_using_printezis_bits(addr);
6320          HeapWord* end_card_addr   = (HeapWord*)round_to(
6321                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6322          MemRegion redirty_range = MemRegion(addr, end_card_addr);
6323          assert(!redirty_range.is_empty(), "Arithmetical tautology");
6324          // Bump _threshold to end_card_addr; note that
6325          // _threshold cannot possibly exceed end_card_addr, anyhow.
6326          // This prevents future clearing of the card as the scan proceeds
6327          // to the right.
6328          assert(_threshold <= end_card_addr,
6329                 "Because we are just scanning into this object");
6330          if (_threshold < end_card_addr) {
6331            _threshold = end_card_addr;
6332          }
6333          if (p->klass_or_null_acquire() != NULL) {
6334            // Redirty the range of cards...
6335            _mut->mark_range(redirty_range);
6336          } // ...else the setting of klass will dirty the card anyway.
6337        }
6338      DEBUG_ONLY(})
6339      return true;
6340    }
6341  }
6342  scanOopsInOop(addr);
6343  return true;
6344}
6345
6346// We take a break if we've been at this for a while,
6347// so as to avoid monopolizing the locks involved.
6348void MarkFromRootsClosure::do_yield_work() {
6349  // First give up the locks, then yield, then re-lock
6350  // We should probably use a constructor/destructor idiom to
6351  // do this unlock/lock or modify the MutexUnlocker class to
6352  // serve our purpose. XXX
6353  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6354         "CMS thread should hold CMS token");
6355  assert_lock_strong(_bitMap->lock());
6356  _bitMap->lock()->unlock();
6357  ConcurrentMarkSweepThread::desynchronize(true);
6358  _collector->stopTimer();
6359  _collector->incrementYields();
6360
6361  // See the comment in coordinator_yield()
6362  for (unsigned i = 0; i < CMSYieldSleepCount &&
6363                       ConcurrentMarkSweepThread::should_yield() &&
6364                       !CMSCollector::foregroundGCIsActive(); ++i) {
6365    os::sleep(Thread::current(), 1, false);
6366  }
6367
6368  ConcurrentMarkSweepThread::synchronize(true);
6369  _bitMap->lock()->lock_without_safepoint_check();
6370  _collector->startTimer();
6371}
6372
6373void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6374  assert(_bitMap->isMarked(ptr), "expected bit to be set");
6375  assert(_markStack->isEmpty(),
6376         "should drain stack to limit stack usage");
6377  // convert ptr to an oop preparatory to scanning
6378  oop obj = oop(ptr);
6379  // Ignore mark word in verification below, since we
6380  // may be running concurrent with mutators.
6381  assert(obj->is_oop(true), "should be an oop");
6382  assert(_finger <= ptr, "_finger runneth ahead");
6383  // advance the finger to right end of this object
6384  _finger = ptr + obj->size();
6385  assert(_finger > ptr, "we just incremented it above");
6386  // On large heaps, it may take us some time to get through
6387  // the marking phase. During
6388  // this time it's possible that a lot of mutations have
6389  // accumulated in the card table and the mod union table --
6390  // these mutation records are redundant until we have
6391  // actually traced into the corresponding card.
6392  // Here, we check whether advancing the finger would make
6393  // us cross into a new card, and if so clear corresponding
6394  // cards in the MUT (preclean them in the card-table in the
6395  // future).
6396
6397  DEBUG_ONLY(if (!_verifying) {)
6398    // The clean-on-enter optimization is disabled by default,
6399    // until we fix 6178663.
6400    if (CMSCleanOnEnter && (_finger > _threshold)) {
6401      // [_threshold, _finger) represents the interval
6402      // of cards to be cleared  in MUT (or precleaned in card table).
6403      // The set of cards to be cleared is all those that overlap
6404      // with the interval [_threshold, _finger); note that
6405      // _threshold is always kept card-aligned but _finger isn't
6406      // always card-aligned.
6407      HeapWord* old_threshold = _threshold;
6408      assert(old_threshold == (HeapWord*)round_to(
6409              (intptr_t)old_threshold, CardTableModRefBS::card_size),
6410             "_threshold should always be card-aligned");
6411      _threshold = (HeapWord*)round_to(
6412                     (intptr_t)_finger, CardTableModRefBS::card_size);
6413      MemRegion mr(old_threshold, _threshold);
6414      assert(!mr.is_empty(), "Control point invariant");
6415      assert(_span.contains(mr), "Should clear within span");
6416      _mut->clear_range(mr);
6417    }
6418  DEBUG_ONLY(})
6419  // Note: the finger doesn't advance while we drain
6420  // the stack below.
6421  PushOrMarkClosure pushOrMarkClosure(_collector,
6422                                      _span, _bitMap, _markStack,
6423                                      _finger, this);
6424  bool res = _markStack->push(obj);
6425  assert(res, "Empty non-zero size stack should have space for single push");
6426  while (!_markStack->isEmpty()) {
6427    oop new_oop = _markStack->pop();
6428    // Skip verifying header mark word below because we are
6429    // running concurrent with mutators.
6430    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6431    // now scan this oop's oops
6432    new_oop->oop_iterate(&pushOrMarkClosure);
6433    do_yield_check();
6434  }
6435  assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6436}
6437
6438ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6439                       CMSCollector* collector, MemRegion span,
6440                       CMSBitMap* bit_map,
6441                       OopTaskQueue* work_queue,
6442                       CMSMarkStack*  overflow_stack):
6443  _collector(collector),
6444  _whole_span(collector->_span),
6445  _span(span),
6446  _bit_map(bit_map),
6447  _mut(&collector->_modUnionTable),
6448  _work_queue(work_queue),
6449  _overflow_stack(overflow_stack),
6450  _skip_bits(0),
6451  _task(task)
6452{
6453  assert(_work_queue->size() == 0, "work_queue should be empty");
6454  _finger = span.start();
6455  _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6456  assert(_span.contains(_finger), "Out of bounds _finger?");
6457}
6458
6459// Should revisit to see if this should be restructured for
6460// greater efficiency.
6461bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6462  if (_skip_bits > 0) {
6463    _skip_bits--;
6464    return true;
6465  }
6466  // convert offset into a HeapWord*
6467  HeapWord* addr = _bit_map->startWord() + offset;
6468  assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6469         "address out of range");
6470  assert(_bit_map->isMarked(addr), "tautology");
6471  if (_bit_map->isMarked(addr+1)) {
6472    // this is an allocated object that might not yet be initialized
6473    assert(_skip_bits == 0, "tautology");
6474    _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6475    oop p = oop(addr);
6476    if (p->klass_or_null_acquire() == NULL) {
6477      // in the case of Clean-on-Enter optimization, redirty card
6478      // and avoid clearing card by increasing  the threshold.
6479      return true;
6480    }
6481  }
6482  scan_oops_in_oop(addr);
6483  return true;
6484}
6485
6486void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6487  assert(_bit_map->isMarked(ptr), "expected bit to be set");
6488  // Should we assert that our work queue is empty or
6489  // below some drain limit?
6490  assert(_work_queue->size() == 0,
6491         "should drain stack to limit stack usage");
6492  // convert ptr to an oop preparatory to scanning
6493  oop obj = oop(ptr);
6494  // Ignore mark word in verification below, since we
6495  // may be running concurrent with mutators.
6496  assert(obj->is_oop(true), "should be an oop");
6497  assert(_finger <= ptr, "_finger runneth ahead");
6498  // advance the finger to right end of this object
6499  _finger = ptr + obj->size();
6500  assert(_finger > ptr, "we just incremented it above");
6501  // On large heaps, it may take us some time to get through
6502  // the marking phase. During
6503  // this time it's possible that a lot of mutations have
6504  // accumulated in the card table and the mod union table --
6505  // these mutation records are redundant until we have
6506  // actually traced into the corresponding card.
6507  // Here, we check whether advancing the finger would make
6508  // us cross into a new card, and if so clear corresponding
6509  // cards in the MUT (preclean them in the card-table in the
6510  // future).
6511
6512  // The clean-on-enter optimization is disabled by default,
6513  // until we fix 6178663.
6514  if (CMSCleanOnEnter && (_finger > _threshold)) {
6515    // [_threshold, _finger) represents the interval
6516    // of cards to be cleared  in MUT (or precleaned in card table).
6517    // The set of cards to be cleared is all those that overlap
6518    // with the interval [_threshold, _finger); note that
6519    // _threshold is always kept card-aligned but _finger isn't
6520    // always card-aligned.
6521    HeapWord* old_threshold = _threshold;
6522    assert(old_threshold == (HeapWord*)round_to(
6523            (intptr_t)old_threshold, CardTableModRefBS::card_size),
6524           "_threshold should always be card-aligned");
6525    _threshold = (HeapWord*)round_to(
6526                   (intptr_t)_finger, CardTableModRefBS::card_size);
6527    MemRegion mr(old_threshold, _threshold);
6528    assert(!mr.is_empty(), "Control point invariant");
6529    assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6530    _mut->clear_range(mr);
6531  }
6532
6533  // Note: the local finger doesn't advance while we drain
6534  // the stack below, but the global finger sure can and will.
6535  HeapWord* volatile* gfa = _task->global_finger_addr();
6536  ParPushOrMarkClosure pushOrMarkClosure(_collector,
6537                                         _span, _bit_map,
6538                                         _work_queue,
6539                                         _overflow_stack,
6540                                         _finger,
6541                                         gfa, this);
6542  bool res = _work_queue->push(obj);   // overflow could occur here
6543  assert(res, "Will hold once we use workqueues");
6544  while (true) {
6545    oop new_oop;
6546    if (!_work_queue->pop_local(new_oop)) {
6547      // We emptied our work_queue; check if there's stuff that can
6548      // be gotten from the overflow stack.
6549      if (CMSConcMarkingTask::get_work_from_overflow_stack(
6550            _overflow_stack, _work_queue)) {
6551        do_yield_check();
6552        continue;
6553      } else {  // done
6554        break;
6555      }
6556    }
6557    // Skip verifying header mark word below because we are
6558    // running concurrent with mutators.
6559    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6560    // now scan this oop's oops
6561    new_oop->oop_iterate(&pushOrMarkClosure);
6562    do_yield_check();
6563  }
6564  assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6565}
6566
6567// Yield in response to a request from VM Thread or
6568// from mutators.
6569void ParMarkFromRootsClosure::do_yield_work() {
6570  assert(_task != NULL, "sanity");
6571  _task->yield();
6572}
6573
6574// A variant of the above used for verifying CMS marking work.
6575MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6576                        MemRegion span,
6577                        CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6578                        CMSMarkStack*  mark_stack):
6579  _collector(collector),
6580  _span(span),
6581  _verification_bm(verification_bm),
6582  _cms_bm(cms_bm),
6583  _mark_stack(mark_stack),
6584  _pam_verify_closure(collector, span, verification_bm, cms_bm,
6585                      mark_stack)
6586{
6587  assert(_mark_stack->isEmpty(), "stack should be empty");
6588  _finger = _verification_bm->startWord();
6589  assert(_collector->_restart_addr == NULL, "Sanity check");
6590  assert(_span.contains(_finger), "Out of bounds _finger?");
6591}
6592
6593void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6594  assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6595  assert(_span.contains(addr), "Out of bounds _finger?");
6596  _finger = addr;
6597}
6598
6599// Should revisit to see if this should be restructured for
6600// greater efficiency.
6601bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6602  // convert offset into a HeapWord*
6603  HeapWord* addr = _verification_bm->startWord() + offset;
6604  assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6605         "address out of range");
6606  assert(_verification_bm->isMarked(addr), "tautology");
6607  assert(_cms_bm->isMarked(addr), "tautology");
6608
6609  assert(_mark_stack->isEmpty(),
6610         "should drain stack to limit stack usage");
6611  // convert addr to an oop preparatory to scanning
6612  oop obj = oop(addr);
6613  assert(obj->is_oop(), "should be an oop");
6614  assert(_finger <= addr, "_finger runneth ahead");
6615  // advance the finger to right end of this object
6616  _finger = addr + obj->size();
6617  assert(_finger > addr, "we just incremented it above");
6618  // Note: the finger doesn't advance while we drain
6619  // the stack below.
6620  bool res = _mark_stack->push(obj);
6621  assert(res, "Empty non-zero size stack should have space for single push");
6622  while (!_mark_stack->isEmpty()) {
6623    oop new_oop = _mark_stack->pop();
6624    assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6625    // now scan this oop's oops
6626    new_oop->oop_iterate(&_pam_verify_closure);
6627  }
6628  assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6629  return true;
6630}
6631
6632PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6633  CMSCollector* collector, MemRegion span,
6634  CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6635  CMSMarkStack*  mark_stack):
6636  MetadataAwareOopClosure(collector->ref_processor()),
6637  _collector(collector),
6638  _span(span),
6639  _verification_bm(verification_bm),
6640  _cms_bm(cms_bm),
6641  _mark_stack(mark_stack)
6642{ }
6643
6644void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6645void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6646
6647// Upon stack overflow, we discard (part of) the stack,
6648// remembering the least address amongst those discarded
6649// in CMSCollector's _restart_address.
6650void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6651  // Remember the least grey address discarded
6652  HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6653  _collector->lower_restart_addr(ra);
6654  _mark_stack->reset();  // discard stack contents
6655  _mark_stack->expand(); // expand the stack if possible
6656}
6657
6658void PushAndMarkVerifyClosure::do_oop(oop obj) {
6659  assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6660  HeapWord* addr = (HeapWord*)obj;
6661  if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6662    // Oop lies in _span and isn't yet grey or black
6663    _verification_bm->mark(addr);            // now grey
6664    if (!_cms_bm->isMarked(addr)) {
6665      Log(gc, verify) log;
6666      ResourceMark rm;
6667      oop(addr)->print_on(log.error_stream());
6668      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6669      fatal("... aborting");
6670    }
6671
6672    if (!_mark_stack->push(obj)) { // stack overflow
6673      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6674      assert(_mark_stack->isFull(), "Else push should have succeeded");
6675      handle_stack_overflow(addr);
6676    }
6677    // anything including and to the right of _finger
6678    // will be scanned as we iterate over the remainder of the
6679    // bit map
6680  }
6681}
6682
6683PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6684                     MemRegion span,
6685                     CMSBitMap* bitMap, CMSMarkStack*  markStack,
6686                     HeapWord* finger, MarkFromRootsClosure* parent) :
6687  MetadataAwareOopClosure(collector->ref_processor()),
6688  _collector(collector),
6689  _span(span),
6690  _bitMap(bitMap),
6691  _markStack(markStack),
6692  _finger(finger),
6693  _parent(parent)
6694{ }
6695
6696ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6697                                           MemRegion span,
6698                                           CMSBitMap* bit_map,
6699                                           OopTaskQueue* work_queue,
6700                                           CMSMarkStack*  overflow_stack,
6701                                           HeapWord* finger,
6702                                           HeapWord* volatile* global_finger_addr,
6703                                           ParMarkFromRootsClosure* parent) :
6704  MetadataAwareOopClosure(collector->ref_processor()),
6705  _collector(collector),
6706  _whole_span(collector->_span),
6707  _span(span),
6708  _bit_map(bit_map),
6709  _work_queue(work_queue),
6710  _overflow_stack(overflow_stack),
6711  _finger(finger),
6712  _global_finger_addr(global_finger_addr),
6713  _parent(parent)
6714{ }
6715
6716// Assumes thread-safe access by callers, who are
6717// responsible for mutual exclusion.
6718void CMSCollector::lower_restart_addr(HeapWord* low) {
6719  assert(_span.contains(low), "Out of bounds addr");
6720  if (_restart_addr == NULL) {
6721    _restart_addr = low;
6722  } else {
6723    _restart_addr = MIN2(_restart_addr, low);
6724  }
6725}
6726
6727// Upon stack overflow, we discard (part of) the stack,
6728// remembering the least address amongst those discarded
6729// in CMSCollector's _restart_address.
6730void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6731  // Remember the least grey address discarded
6732  HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6733  _collector->lower_restart_addr(ra);
6734  _markStack->reset();  // discard stack contents
6735  _markStack->expand(); // expand the stack if possible
6736}
6737
6738// Upon stack overflow, we discard (part of) the stack,
6739// remembering the least address amongst those discarded
6740// in CMSCollector's _restart_address.
6741void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6742  // We need to do this under a mutex to prevent other
6743  // workers from interfering with the work done below.
6744  MutexLockerEx ml(_overflow_stack->par_lock(),
6745                   Mutex::_no_safepoint_check_flag);
6746  // Remember the least grey address discarded
6747  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6748  _collector->lower_restart_addr(ra);
6749  _overflow_stack->reset();  // discard stack contents
6750  _overflow_stack->expand(); // expand the stack if possible
6751}
6752
6753void PushOrMarkClosure::do_oop(oop obj) {
6754  // Ignore mark word because we are running concurrent with mutators.
6755  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6756  HeapWord* addr = (HeapWord*)obj;
6757  if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6758    // Oop lies in _span and isn't yet grey or black
6759    _bitMap->mark(addr);            // now grey
6760    if (addr < _finger) {
6761      // the bit map iteration has already either passed, or
6762      // sampled, this bit in the bit map; we'll need to
6763      // use the marking stack to scan this oop's oops.
6764      bool simulate_overflow = false;
6765      NOT_PRODUCT(
6766        if (CMSMarkStackOverflowALot &&
6767            _collector->simulate_overflow()) {
6768          // simulate a stack overflow
6769          simulate_overflow = true;
6770        }
6771      )
6772      if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6773        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6774        assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6775        handle_stack_overflow(addr);
6776      }
6777    }
6778    // anything including and to the right of _finger
6779    // will be scanned as we iterate over the remainder of the
6780    // bit map
6781    do_yield_check();
6782  }
6783}
6784
6785void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6786void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6787
6788void ParPushOrMarkClosure::do_oop(oop obj) {
6789  // Ignore mark word because we are running concurrent with mutators.
6790  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6791  HeapWord* addr = (HeapWord*)obj;
6792  if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6793    // Oop lies in _span and isn't yet grey or black
6794    // We read the global_finger (volatile read) strictly after marking oop
6795    bool res = _bit_map->par_mark(addr);    // now grey
6796    volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6797    // Should we push this marked oop on our stack?
6798    // -- if someone else marked it, nothing to do
6799    // -- if target oop is above global finger nothing to do
6800    // -- if target oop is in chunk and above local finger
6801    //      then nothing to do
6802    // -- else push on work queue
6803    if (   !res       // someone else marked it, they will deal with it
6804        || (addr >= *gfa)  // will be scanned in a later task
6805        || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6806      return;
6807    }
6808    // the bit map iteration has already either passed, or
6809    // sampled, this bit in the bit map; we'll need to
6810    // use the marking stack to scan this oop's oops.
6811    bool simulate_overflow = false;
6812    NOT_PRODUCT(
6813      if (CMSMarkStackOverflowALot &&
6814          _collector->simulate_overflow()) {
6815        // simulate a stack overflow
6816        simulate_overflow = true;
6817      }
6818    )
6819    if (simulate_overflow ||
6820        !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6821      // stack overflow
6822      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6823      // We cannot assert that the overflow stack is full because
6824      // it may have been emptied since.
6825      assert(simulate_overflow ||
6826             _work_queue->size() == _work_queue->max_elems(),
6827            "Else push should have succeeded");
6828      handle_stack_overflow(addr);
6829    }
6830    do_yield_check();
6831  }
6832}
6833
6834void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6835void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6836
6837PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6838                                       MemRegion span,
6839                                       ReferenceProcessor* rp,
6840                                       CMSBitMap* bit_map,
6841                                       CMSBitMap* mod_union_table,
6842                                       CMSMarkStack*  mark_stack,
6843                                       bool           concurrent_precleaning):
6844  MetadataAwareOopClosure(rp),
6845  _collector(collector),
6846  _span(span),
6847  _bit_map(bit_map),
6848  _mod_union_table(mod_union_table),
6849  _mark_stack(mark_stack),
6850  _concurrent_precleaning(concurrent_precleaning)
6851{
6852  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6853}
6854
6855// Grey object rescan during pre-cleaning and second checkpoint phases --
6856// the non-parallel version (the parallel version appears further below.)
6857void PushAndMarkClosure::do_oop(oop obj) {
6858  // Ignore mark word verification. If during concurrent precleaning,
6859  // the object monitor may be locked. If during the checkpoint
6860  // phases, the object may already have been reached by a  different
6861  // path and may be at the end of the global overflow list (so
6862  // the mark word may be NULL).
6863  assert(obj->is_oop_or_null(true /* ignore mark word */),
6864         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6865  HeapWord* addr = (HeapWord*)obj;
6866  // Check if oop points into the CMS generation
6867  // and is not marked
6868  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6869    // a white object ...
6870    _bit_map->mark(addr);         // ... now grey
6871    // push on the marking stack (grey set)
6872    bool simulate_overflow = false;
6873    NOT_PRODUCT(
6874      if (CMSMarkStackOverflowALot &&
6875          _collector->simulate_overflow()) {
6876        // simulate a stack overflow
6877        simulate_overflow = true;
6878      }
6879    )
6880    if (simulate_overflow || !_mark_stack->push(obj)) {
6881      if (_concurrent_precleaning) {
6882         // During precleaning we can just dirty the appropriate card(s)
6883         // in the mod union table, thus ensuring that the object remains
6884         // in the grey set  and continue. In the case of object arrays
6885         // we need to dirty all of the cards that the object spans,
6886         // since the rescan of object arrays will be limited to the
6887         // dirty cards.
6888         // Note that no one can be interfering with us in this action
6889         // of dirtying the mod union table, so no locking or atomics
6890         // are required.
6891         if (obj->is_objArray()) {
6892           size_t sz = obj->size();
6893           HeapWord* end_card_addr = (HeapWord*)round_to(
6894                                        (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6895           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6896           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6897           _mod_union_table->mark_range(redirty_range);
6898         } else {
6899           _mod_union_table->mark(addr);
6900         }
6901         _collector->_ser_pmc_preclean_ovflw++;
6902      } else {
6903         // During the remark phase, we need to remember this oop
6904         // in the overflow list.
6905         _collector->push_on_overflow_list(obj);
6906         _collector->_ser_pmc_remark_ovflw++;
6907      }
6908    }
6909  }
6910}
6911
6912ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6913                                             MemRegion span,
6914                                             ReferenceProcessor* rp,
6915                                             CMSBitMap* bit_map,
6916                                             OopTaskQueue* work_queue):
6917  MetadataAwareOopClosure(rp),
6918  _collector(collector),
6919  _span(span),
6920  _bit_map(bit_map),
6921  _work_queue(work_queue)
6922{
6923  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6924}
6925
6926void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6927void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6928
6929// Grey object rescan during second checkpoint phase --
6930// the parallel version.
6931void ParPushAndMarkClosure::do_oop(oop obj) {
6932  // In the assert below, we ignore the mark word because
6933  // this oop may point to an already visited object that is
6934  // on the overflow stack (in which case the mark word has
6935  // been hijacked for chaining into the overflow stack --
6936  // if this is the last object in the overflow stack then
6937  // its mark word will be NULL). Because this object may
6938  // have been subsequently popped off the global overflow
6939  // stack, and the mark word possibly restored to the prototypical
6940  // value, by the time we get to examined this failing assert in
6941  // the debugger, is_oop_or_null(false) may subsequently start
6942  // to hold.
6943  assert(obj->is_oop_or_null(true),
6944         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6945  HeapWord* addr = (HeapWord*)obj;
6946  // Check if oop points into the CMS generation
6947  // and is not marked
6948  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6949    // a white object ...
6950    // If we manage to "claim" the object, by being the
6951    // first thread to mark it, then we push it on our
6952    // marking stack
6953    if (_bit_map->par_mark(addr)) {     // ... now grey
6954      // push on work queue (grey set)
6955      bool simulate_overflow = false;
6956      NOT_PRODUCT(
6957        if (CMSMarkStackOverflowALot &&
6958            _collector->par_simulate_overflow()) {
6959          // simulate a stack overflow
6960          simulate_overflow = true;
6961        }
6962      )
6963      if (simulate_overflow || !_work_queue->push(obj)) {
6964        _collector->par_push_on_overflow_list(obj);
6965        _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6966      }
6967    } // Else, some other thread got there first
6968  }
6969}
6970
6971void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6972void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6973
6974void CMSPrecleanRefsYieldClosure::do_yield_work() {
6975  Mutex* bml = _collector->bitMapLock();
6976  assert_lock_strong(bml);
6977  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6978         "CMS thread should hold CMS token");
6979
6980  bml->unlock();
6981  ConcurrentMarkSweepThread::desynchronize(true);
6982
6983  _collector->stopTimer();
6984  _collector->incrementYields();
6985
6986  // See the comment in coordinator_yield()
6987  for (unsigned i = 0; i < CMSYieldSleepCount &&
6988                       ConcurrentMarkSweepThread::should_yield() &&
6989                       !CMSCollector::foregroundGCIsActive(); ++i) {
6990    os::sleep(Thread::current(), 1, false);
6991  }
6992
6993  ConcurrentMarkSweepThread::synchronize(true);
6994  bml->lock();
6995
6996  _collector->startTimer();
6997}
6998
6999bool CMSPrecleanRefsYieldClosure::should_return() {
7000  if (ConcurrentMarkSweepThread::should_yield()) {
7001    do_yield_work();
7002  }
7003  return _collector->foregroundGCIsActive();
7004}
7005
7006void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7007  assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7008         "mr should be aligned to start at a card boundary");
7009  // We'd like to assert:
7010  // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7011  //        "mr should be a range of cards");
7012  // However, that would be too strong in one case -- the last
7013  // partition ends at _unallocated_block which, in general, can be
7014  // an arbitrary boundary, not necessarily card aligned.
7015  _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7016  _space->object_iterate_mem(mr, &_scan_cl);
7017}
7018
7019SweepClosure::SweepClosure(CMSCollector* collector,
7020                           ConcurrentMarkSweepGeneration* g,
7021                           CMSBitMap* bitMap, bool should_yield) :
7022  _collector(collector),
7023  _g(g),
7024  _sp(g->cmsSpace()),
7025  _limit(_sp->sweep_limit()),
7026  _freelistLock(_sp->freelistLock()),
7027  _bitMap(bitMap),
7028  _yield(should_yield),
7029  _inFreeRange(false),           // No free range at beginning of sweep
7030  _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7031  _lastFreeRangeCoalesced(false),
7032  _freeFinger(g->used_region().start())
7033{
7034  NOT_PRODUCT(
7035    _numObjectsFreed = 0;
7036    _numWordsFreed   = 0;
7037    _numObjectsLive = 0;
7038    _numWordsLive = 0;
7039    _numObjectsAlreadyFree = 0;
7040    _numWordsAlreadyFree = 0;
7041    _last_fc = NULL;
7042
7043    _sp->initializeIndexedFreeListArrayReturnedBytes();
7044    _sp->dictionary()->initialize_dict_returned_bytes();
7045  )
7046  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7047         "sweep _limit out of bounds");
7048  log_develop_trace(gc, sweep)("====================");
7049  log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7050}
7051
7052void SweepClosure::print_on(outputStream* st) const {
7053  st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7054               p2i(_sp->bottom()), p2i(_sp->end()));
7055  st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7056  st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7057  NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7058  st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7059               _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7060}
7061
7062#ifndef PRODUCT
7063// Assertion checking only:  no useful work in product mode --
7064// however, if any of the flags below become product flags,
7065// you may need to review this code to see if it needs to be
7066// enabled in product mode.
7067SweepClosure::~SweepClosure() {
7068  assert_lock_strong(_freelistLock);
7069  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7070         "sweep _limit out of bounds");
7071  if (inFreeRange()) {
7072    Log(gc, sweep) log;
7073    log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7074    ResourceMark rm;
7075    print_on(log.error_stream());
7076    ShouldNotReachHere();
7077  }
7078
7079  if (log_is_enabled(Debug, gc, sweep)) {
7080    log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7081                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7082    log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7083                         _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7084    size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7085    log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7086  }
7087
7088  if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7089    size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7090    size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7091    size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7092    log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7093                         returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7094  }
7095  log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7096  log_develop_trace(gc, sweep)("================");
7097}
7098#endif  // PRODUCT
7099
7100void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7101    bool freeRangeInFreeLists) {
7102  log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7103                               p2i(freeFinger), freeRangeInFreeLists);
7104  assert(!inFreeRange(), "Trampling existing free range");
7105  set_inFreeRange(true);
7106  set_lastFreeRangeCoalesced(false);
7107
7108  set_freeFinger(freeFinger);
7109  set_freeRangeInFreeLists(freeRangeInFreeLists);
7110  if (CMSTestInFreeList) {
7111    if (freeRangeInFreeLists) {
7112      FreeChunk* fc = (FreeChunk*) freeFinger;
7113      assert(fc->is_free(), "A chunk on the free list should be free.");
7114      assert(fc->size() > 0, "Free range should have a size");
7115      assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7116    }
7117  }
7118}
7119
7120// Note that the sweeper runs concurrently with mutators. Thus,
7121// it is possible for direct allocation in this generation to happen
7122// in the middle of the sweep. Note that the sweeper also coalesces
7123// contiguous free blocks. Thus, unless the sweeper and the allocator
7124// synchronize appropriately freshly allocated blocks may get swept up.
7125// This is accomplished by the sweeper locking the free lists while
7126// it is sweeping. Thus blocks that are determined to be free are
7127// indeed free. There is however one additional complication:
7128// blocks that have been allocated since the final checkpoint and
7129// mark, will not have been marked and so would be treated as
7130// unreachable and swept up. To prevent this, the allocator marks
7131// the bit map when allocating during the sweep phase. This leads,
7132// however, to a further complication -- objects may have been allocated
7133// but not yet initialized -- in the sense that the header isn't yet
7134// installed. The sweeper can not then determine the size of the block
7135// in order to skip over it. To deal with this case, we use a technique
7136// (due to Printezis) to encode such uninitialized block sizes in the
7137// bit map. Since the bit map uses a bit per every HeapWord, but the
7138// CMS generation has a minimum object size of 3 HeapWords, it follows
7139// that "normal marks" won't be adjacent in the bit map (there will
7140// always be at least two 0 bits between successive 1 bits). We make use
7141// of these "unused" bits to represent uninitialized blocks -- the bit
7142// corresponding to the start of the uninitialized object and the next
7143// bit are both set. Finally, a 1 bit marks the end of the object that
7144// started with the two consecutive 1 bits to indicate its potentially
7145// uninitialized state.
7146
7147size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7148  FreeChunk* fc = (FreeChunk*)addr;
7149  size_t res;
7150
7151  // Check if we are done sweeping. Below we check "addr >= _limit" rather
7152  // than "addr == _limit" because although _limit was a block boundary when
7153  // we started the sweep, it may no longer be one because heap expansion
7154  // may have caused us to coalesce the block ending at the address _limit
7155  // with a newly expanded chunk (this happens when _limit was set to the
7156  // previous _end of the space), so we may have stepped past _limit:
7157  // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7158  if (addr >= _limit) { // we have swept up to or past the limit: finish up
7159    assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7160           "sweep _limit out of bounds");
7161    assert(addr < _sp->end(), "addr out of bounds");
7162    // Flush any free range we might be holding as a single
7163    // coalesced chunk to the appropriate free list.
7164    if (inFreeRange()) {
7165      assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7166             "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7167      flush_cur_free_chunk(freeFinger(),
7168                           pointer_delta(addr, freeFinger()));
7169      log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7170                                   p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7171                                   lastFreeRangeCoalesced() ? 1 : 0);
7172    }
7173
7174    // help the iterator loop finish
7175    return pointer_delta(_sp->end(), addr);
7176  }
7177
7178  assert(addr < _limit, "sweep invariant");
7179  // check if we should yield
7180  do_yield_check(addr);
7181  if (fc->is_free()) {
7182    // Chunk that is already free
7183    res = fc->size();
7184    do_already_free_chunk(fc);
7185    debug_only(_sp->verifyFreeLists());
7186    // If we flush the chunk at hand in lookahead_and_flush()
7187    // and it's coalesced with a preceding chunk, then the
7188    // process of "mangling" the payload of the coalesced block
7189    // will cause erasure of the size information from the
7190    // (erstwhile) header of all the coalesced blocks but the
7191    // first, so the first disjunct in the assert will not hold
7192    // in that specific case (in which case the second disjunct
7193    // will hold).
7194    assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7195           "Otherwise the size info doesn't change at this step");
7196    NOT_PRODUCT(
7197      _numObjectsAlreadyFree++;
7198      _numWordsAlreadyFree += res;
7199    )
7200    NOT_PRODUCT(_last_fc = fc;)
7201  } else if (!_bitMap->isMarked(addr)) {
7202    // Chunk is fresh garbage
7203    res = do_garbage_chunk(fc);
7204    debug_only(_sp->verifyFreeLists());
7205    NOT_PRODUCT(
7206      _numObjectsFreed++;
7207      _numWordsFreed += res;
7208    )
7209  } else {
7210    // Chunk that is alive.
7211    res = do_live_chunk(fc);
7212    debug_only(_sp->verifyFreeLists());
7213    NOT_PRODUCT(
7214        _numObjectsLive++;
7215        _numWordsLive += res;
7216    )
7217  }
7218  return res;
7219}
7220
7221// For the smart allocation, record following
7222//  split deaths - a free chunk is removed from its free list because
7223//      it is being split into two or more chunks.
7224//  split birth - a free chunk is being added to its free list because
7225//      a larger free chunk has been split and resulted in this free chunk.
7226//  coal death - a free chunk is being removed from its free list because
7227//      it is being coalesced into a large free chunk.
7228//  coal birth - a free chunk is being added to its free list because
7229//      it was created when two or more free chunks where coalesced into
7230//      this free chunk.
7231//
7232// These statistics are used to determine the desired number of free
7233// chunks of a given size.  The desired number is chosen to be relative
7234// to the end of a CMS sweep.  The desired number at the end of a sweep
7235// is the
7236//      count-at-end-of-previous-sweep (an amount that was enough)
7237//              - count-at-beginning-of-current-sweep  (the excess)
7238//              + split-births  (gains in this size during interval)
7239//              - split-deaths  (demands on this size during interval)
7240// where the interval is from the end of one sweep to the end of the
7241// next.
7242//
7243// When sweeping the sweeper maintains an accumulated chunk which is
7244// the chunk that is made up of chunks that have been coalesced.  That
7245// will be termed the left-hand chunk.  A new chunk of garbage that
7246// is being considered for coalescing will be referred to as the
7247// right-hand chunk.
7248//
7249// When making a decision on whether to coalesce a right-hand chunk with
7250// the current left-hand chunk, the current count vs. the desired count
7251// of the left-hand chunk is considered.  Also if the right-hand chunk
7252// is near the large chunk at the end of the heap (see
7253// ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7254// left-hand chunk is coalesced.
7255//
7256// When making a decision about whether to split a chunk, the desired count
7257// vs. the current count of the candidate to be split is also considered.
7258// If the candidate is underpopulated (currently fewer chunks than desired)
7259// a chunk of an overpopulated (currently more chunks than desired) size may
7260// be chosen.  The "hint" associated with a free list, if non-null, points
7261// to a free list which may be overpopulated.
7262//
7263
7264void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7265  const size_t size = fc->size();
7266  // Chunks that cannot be coalesced are not in the
7267  // free lists.
7268  if (CMSTestInFreeList && !fc->cantCoalesce()) {
7269    assert(_sp->verify_chunk_in_free_list(fc),
7270           "free chunk should be in free lists");
7271  }
7272  // a chunk that is already free, should not have been
7273  // marked in the bit map
7274  HeapWord* const addr = (HeapWord*) fc;
7275  assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7276  // Verify that the bit map has no bits marked between
7277  // addr and purported end of this block.
7278  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7279
7280  // Some chunks cannot be coalesced under any circumstances.
7281  // See the definition of cantCoalesce().
7282  if (!fc->cantCoalesce()) {
7283    // This chunk can potentially be coalesced.
7284    // All the work is done in
7285    do_post_free_or_garbage_chunk(fc, size);
7286    // Note that if the chunk is not coalescable (the else arm
7287    // below), we unconditionally flush, without needing to do
7288    // a "lookahead," as we do below.
7289    if (inFreeRange()) lookahead_and_flush(fc, size);
7290  } else {
7291    // Code path common to both original and adaptive free lists.
7292
7293    // cant coalesce with previous block; this should be treated
7294    // as the end of a free run if any
7295    if (inFreeRange()) {
7296      // we kicked some butt; time to pick up the garbage
7297      assert(freeFinger() < addr, "freeFinger points too high");
7298      flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7299    }
7300    // else, nothing to do, just continue
7301  }
7302}
7303
7304size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7305  // This is a chunk of garbage.  It is not in any free list.
7306  // Add it to a free list or let it possibly be coalesced into
7307  // a larger chunk.
7308  HeapWord* const addr = (HeapWord*) fc;
7309  const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7310
7311  // Verify that the bit map has no bits marked between
7312  // addr and purported end of just dead object.
7313  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7314  do_post_free_or_garbage_chunk(fc, size);
7315
7316  assert(_limit >= addr + size,
7317         "A freshly garbage chunk can't possibly straddle over _limit");
7318  if (inFreeRange()) lookahead_and_flush(fc, size);
7319  return size;
7320}
7321
7322size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7323  HeapWord* addr = (HeapWord*) fc;
7324  // The sweeper has just found a live object. Return any accumulated
7325  // left hand chunk to the free lists.
7326  if (inFreeRange()) {
7327    assert(freeFinger() < addr, "freeFinger points too high");
7328    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7329  }
7330
7331  // This object is live: we'd normally expect this to be
7332  // an oop, and like to assert the following:
7333  // assert(oop(addr)->is_oop(), "live block should be an oop");
7334  // However, as we commented above, this may be an object whose
7335  // header hasn't yet been initialized.
7336  size_t size;
7337  assert(_bitMap->isMarked(addr), "Tautology for this control point");
7338  if (_bitMap->isMarked(addr + 1)) {
7339    // Determine the size from the bit map, rather than trying to
7340    // compute it from the object header.
7341    HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7342    size = pointer_delta(nextOneAddr + 1, addr);
7343    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7344           "alignment problem");
7345
7346#ifdef ASSERT
7347      if (oop(addr)->klass_or_null_acquire() != NULL) {
7348        // Ignore mark word because we are running concurrent with mutators
7349        assert(oop(addr)->is_oop(true), "live block should be an oop");
7350        assert(size ==
7351               CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7352               "P-mark and computed size do not agree");
7353      }
7354#endif
7355
7356  } else {
7357    // This should be an initialized object that's alive.
7358    assert(oop(addr)->klass_or_null_acquire() != NULL,
7359           "Should be an initialized object");
7360    // Ignore mark word because we are running concurrent with mutators
7361    assert(oop(addr)->is_oop(true), "live block should be an oop");
7362    // Verify that the bit map has no bits marked between
7363    // addr and purported end of this block.
7364    size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7365    assert(size >= 3, "Necessary for Printezis marks to work");
7366    assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7367    DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7368  }
7369  return size;
7370}
7371
7372void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7373                                                 size_t chunkSize) {
7374  // do_post_free_or_garbage_chunk() should only be called in the case
7375  // of the adaptive free list allocator.
7376  const bool fcInFreeLists = fc->is_free();
7377  assert((HeapWord*)fc <= _limit, "sweep invariant");
7378  if (CMSTestInFreeList && fcInFreeLists) {
7379    assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7380  }
7381
7382  log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7383
7384  HeapWord* const fc_addr = (HeapWord*) fc;
7385
7386  bool coalesce = false;
7387  const size_t left  = pointer_delta(fc_addr, freeFinger());
7388  const size_t right = chunkSize;
7389  switch (FLSCoalescePolicy) {
7390    // numeric value forms a coalition aggressiveness metric
7391    case 0:  { // never coalesce
7392      coalesce = false;
7393      break;
7394    }
7395    case 1: { // coalesce if left & right chunks on overpopulated lists
7396      coalesce = _sp->coalOverPopulated(left) &&
7397                 _sp->coalOverPopulated(right);
7398      break;
7399    }
7400    case 2: { // coalesce if left chunk on overpopulated list (default)
7401      coalesce = _sp->coalOverPopulated(left);
7402      break;
7403    }
7404    case 3: { // coalesce if left OR right chunk on overpopulated list
7405      coalesce = _sp->coalOverPopulated(left) ||
7406                 _sp->coalOverPopulated(right);
7407      break;
7408    }
7409    case 4: { // always coalesce
7410      coalesce = true;
7411      break;
7412    }
7413    default:
7414     ShouldNotReachHere();
7415  }
7416
7417  // Should the current free range be coalesced?
7418  // If the chunk is in a free range and either we decided to coalesce above
7419  // or the chunk is near the large block at the end of the heap
7420  // (isNearLargestChunk() returns true), then coalesce this chunk.
7421  const bool doCoalesce = inFreeRange()
7422                          && (coalesce || _g->isNearLargestChunk(fc_addr));
7423  if (doCoalesce) {
7424    // Coalesce the current free range on the left with the new
7425    // chunk on the right.  If either is on a free list,
7426    // it must be removed from the list and stashed in the closure.
7427    if (freeRangeInFreeLists()) {
7428      FreeChunk* const ffc = (FreeChunk*)freeFinger();
7429      assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7430             "Size of free range is inconsistent with chunk size.");
7431      if (CMSTestInFreeList) {
7432        assert(_sp->verify_chunk_in_free_list(ffc),
7433               "Chunk is not in free lists");
7434      }
7435      _sp->coalDeath(ffc->size());
7436      _sp->removeFreeChunkFromFreeLists(ffc);
7437      set_freeRangeInFreeLists(false);
7438    }
7439    if (fcInFreeLists) {
7440      _sp->coalDeath(chunkSize);
7441      assert(fc->size() == chunkSize,
7442        "The chunk has the wrong size or is not in the free lists");
7443      _sp->removeFreeChunkFromFreeLists(fc);
7444    }
7445    set_lastFreeRangeCoalesced(true);
7446    print_free_block_coalesced(fc);
7447  } else {  // not in a free range and/or should not coalesce
7448    // Return the current free range and start a new one.
7449    if (inFreeRange()) {
7450      // In a free range but cannot coalesce with the right hand chunk.
7451      // Put the current free range into the free lists.
7452      flush_cur_free_chunk(freeFinger(),
7453                           pointer_delta(fc_addr, freeFinger()));
7454    }
7455    // Set up for new free range.  Pass along whether the right hand
7456    // chunk is in the free lists.
7457    initialize_free_range((HeapWord*)fc, fcInFreeLists);
7458  }
7459}
7460
7461// Lookahead flush:
7462// If we are tracking a free range, and this is the last chunk that
7463// we'll look at because its end crosses past _limit, we'll preemptively
7464// flush it along with any free range we may be holding on to. Note that
7465// this can be the case only for an already free or freshly garbage
7466// chunk. If this block is an object, it can never straddle
7467// over _limit. The "straddling" occurs when _limit is set at
7468// the previous end of the space when this cycle started, and
7469// a subsequent heap expansion caused the previously co-terminal
7470// free block to be coalesced with the newly expanded portion,
7471// thus rendering _limit a non-block-boundary making it dangerous
7472// for the sweeper to step over and examine.
7473void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7474  assert(inFreeRange(), "Should only be called if currently in a free range.");
7475  HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7476  assert(_sp->used_region().contains(eob - 1),
7477         "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7478         " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7479         " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7480         p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7481  if (eob >= _limit) {
7482    assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7483    log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7484                                 "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7485                                 "[" PTR_FORMAT "," PTR_FORMAT ")",
7486                                 p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7487    // Return the storage we are tracking back into the free lists.
7488    log_develop_trace(gc, sweep)("Flushing ... ");
7489    assert(freeFinger() < eob, "Error");
7490    flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7491  }
7492}
7493
7494void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7495  assert(inFreeRange(), "Should only be called if currently in a free range.");
7496  assert(size > 0,
7497    "A zero sized chunk cannot be added to the free lists.");
7498  if (!freeRangeInFreeLists()) {
7499    if (CMSTestInFreeList) {
7500      FreeChunk* fc = (FreeChunk*) chunk;
7501      fc->set_size(size);
7502      assert(!_sp->verify_chunk_in_free_list(fc),
7503             "chunk should not be in free lists yet");
7504    }
7505    log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7506    // A new free range is going to be starting.  The current
7507    // free range has not been added to the free lists yet or
7508    // was removed so add it back.
7509    // If the current free range was coalesced, then the death
7510    // of the free range was recorded.  Record a birth now.
7511    if (lastFreeRangeCoalesced()) {
7512      _sp->coalBirth(size);
7513    }
7514    _sp->addChunkAndRepairOffsetTable(chunk, size,
7515            lastFreeRangeCoalesced());
7516  } else {
7517    log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7518  }
7519  set_inFreeRange(false);
7520  set_freeRangeInFreeLists(false);
7521}
7522
7523// We take a break if we've been at this for a while,
7524// so as to avoid monopolizing the locks involved.
7525void SweepClosure::do_yield_work(HeapWord* addr) {
7526  // Return current free chunk being used for coalescing (if any)
7527  // to the appropriate freelist.  After yielding, the next
7528  // free block encountered will start a coalescing range of
7529  // free blocks.  If the next free block is adjacent to the
7530  // chunk just flushed, they will need to wait for the next
7531  // sweep to be coalesced.
7532  if (inFreeRange()) {
7533    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7534  }
7535
7536  // First give up the locks, then yield, then re-lock.
7537  // We should probably use a constructor/destructor idiom to
7538  // do this unlock/lock or modify the MutexUnlocker class to
7539  // serve our purpose. XXX
7540  assert_lock_strong(_bitMap->lock());
7541  assert_lock_strong(_freelistLock);
7542  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7543         "CMS thread should hold CMS token");
7544  _bitMap->lock()->unlock();
7545  _freelistLock->unlock();
7546  ConcurrentMarkSweepThread::desynchronize(true);
7547  _collector->stopTimer();
7548  _collector->incrementYields();
7549
7550  // See the comment in coordinator_yield()
7551  for (unsigned i = 0; i < CMSYieldSleepCount &&
7552                       ConcurrentMarkSweepThread::should_yield() &&
7553                       !CMSCollector::foregroundGCIsActive(); ++i) {
7554    os::sleep(Thread::current(), 1, false);
7555  }
7556
7557  ConcurrentMarkSweepThread::synchronize(true);
7558  _freelistLock->lock();
7559  _bitMap->lock()->lock_without_safepoint_check();
7560  _collector->startTimer();
7561}
7562
7563#ifndef PRODUCT
7564// This is actually very useful in a product build if it can
7565// be called from the debugger.  Compile it into the product
7566// as needed.
7567bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7568  return debug_cms_space->verify_chunk_in_free_list(fc);
7569}
7570#endif
7571
7572void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7573  log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7574                               p2i(fc), fc->size());
7575}
7576
7577// CMSIsAliveClosure
7578bool CMSIsAliveClosure::do_object_b(oop obj) {
7579  HeapWord* addr = (HeapWord*)obj;
7580  return addr != NULL &&
7581         (!_span.contains(addr) || _bit_map->isMarked(addr));
7582}
7583
7584
7585CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7586                      MemRegion span,
7587                      CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7588                      bool cpc):
7589  _collector(collector),
7590  _span(span),
7591  _bit_map(bit_map),
7592  _mark_stack(mark_stack),
7593  _concurrent_precleaning(cpc) {
7594  assert(!_span.is_empty(), "Empty span could spell trouble");
7595}
7596
7597
7598// CMSKeepAliveClosure: the serial version
7599void CMSKeepAliveClosure::do_oop(oop obj) {
7600  HeapWord* addr = (HeapWord*)obj;
7601  if (_span.contains(addr) &&
7602      !_bit_map->isMarked(addr)) {
7603    _bit_map->mark(addr);
7604    bool simulate_overflow = false;
7605    NOT_PRODUCT(
7606      if (CMSMarkStackOverflowALot &&
7607          _collector->simulate_overflow()) {
7608        // simulate a stack overflow
7609        simulate_overflow = true;
7610      }
7611    )
7612    if (simulate_overflow || !_mark_stack->push(obj)) {
7613      if (_concurrent_precleaning) {
7614        // We dirty the overflown object and let the remark
7615        // phase deal with it.
7616        assert(_collector->overflow_list_is_empty(), "Error");
7617        // In the case of object arrays, we need to dirty all of
7618        // the cards that the object spans. No locking or atomics
7619        // are needed since no one else can be mutating the mod union
7620        // table.
7621        if (obj->is_objArray()) {
7622          size_t sz = obj->size();
7623          HeapWord* end_card_addr =
7624            (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7625          MemRegion redirty_range = MemRegion(addr, end_card_addr);
7626          assert(!redirty_range.is_empty(), "Arithmetical tautology");
7627          _collector->_modUnionTable.mark_range(redirty_range);
7628        } else {
7629          _collector->_modUnionTable.mark(addr);
7630        }
7631        _collector->_ser_kac_preclean_ovflw++;
7632      } else {
7633        _collector->push_on_overflow_list(obj);
7634        _collector->_ser_kac_ovflw++;
7635      }
7636    }
7637  }
7638}
7639
7640void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7641void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7642
7643// CMSParKeepAliveClosure: a parallel version of the above.
7644// The work queues are private to each closure (thread),
7645// but (may be) available for stealing by other threads.
7646void CMSParKeepAliveClosure::do_oop(oop obj) {
7647  HeapWord* addr = (HeapWord*)obj;
7648  if (_span.contains(addr) &&
7649      !_bit_map->isMarked(addr)) {
7650    // In general, during recursive tracing, several threads
7651    // may be concurrently getting here; the first one to
7652    // "tag" it, claims it.
7653    if (_bit_map->par_mark(addr)) {
7654      bool res = _work_queue->push(obj);
7655      assert(res, "Low water mark should be much less than capacity");
7656      // Do a recursive trim in the hope that this will keep
7657      // stack usage lower, but leave some oops for potential stealers
7658      trim_queue(_low_water_mark);
7659    } // Else, another thread got there first
7660  }
7661}
7662
7663void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7664void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7665
7666void CMSParKeepAliveClosure::trim_queue(uint max) {
7667  while (_work_queue->size() > max) {
7668    oop new_oop;
7669    if (_work_queue->pop_local(new_oop)) {
7670      assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7671      assert(_bit_map->isMarked((HeapWord*)new_oop),
7672             "no white objects on this stack!");
7673      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7674      // iterate over the oops in this oop, marking and pushing
7675      // the ones in CMS heap (i.e. in _span).
7676      new_oop->oop_iterate(&_mark_and_push);
7677    }
7678  }
7679}
7680
7681CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7682                                CMSCollector* collector,
7683                                MemRegion span, CMSBitMap* bit_map,
7684                                OopTaskQueue* work_queue):
7685  _collector(collector),
7686  _span(span),
7687  _bit_map(bit_map),
7688  _work_queue(work_queue) { }
7689
7690void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7691  HeapWord* addr = (HeapWord*)obj;
7692  if (_span.contains(addr) &&
7693      !_bit_map->isMarked(addr)) {
7694    if (_bit_map->par_mark(addr)) {
7695      bool simulate_overflow = false;
7696      NOT_PRODUCT(
7697        if (CMSMarkStackOverflowALot &&
7698            _collector->par_simulate_overflow()) {
7699          // simulate a stack overflow
7700          simulate_overflow = true;
7701        }
7702      )
7703      if (simulate_overflow || !_work_queue->push(obj)) {
7704        _collector->par_push_on_overflow_list(obj);
7705        _collector->_par_kac_ovflw++;
7706      }
7707    } // Else another thread got there already
7708  }
7709}
7710
7711void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7712void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7713
7714//////////////////////////////////////////////////////////////////
7715//  CMSExpansionCause                /////////////////////////////
7716//////////////////////////////////////////////////////////////////
7717const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7718  switch (cause) {
7719    case _no_expansion:
7720      return "No expansion";
7721    case _satisfy_free_ratio:
7722      return "Free ratio";
7723    case _satisfy_promotion:
7724      return "Satisfy promotion";
7725    case _satisfy_allocation:
7726      return "allocation";
7727    case _allocate_par_lab:
7728      return "Par LAB";
7729    case _allocate_par_spooling_space:
7730      return "Par Spooling Space";
7731    case _adaptive_size_policy:
7732      return "Ergonomics";
7733    default:
7734      return "unknown";
7735  }
7736}
7737
7738void CMSDrainMarkingStackClosure::do_void() {
7739  // the max number to take from overflow list at a time
7740  const size_t num = _mark_stack->capacity()/4;
7741  assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7742         "Overflow list should be NULL during concurrent phases");
7743  while (!_mark_stack->isEmpty() ||
7744         // if stack is empty, check the overflow list
7745         _collector->take_from_overflow_list(num, _mark_stack)) {
7746    oop obj = _mark_stack->pop();
7747    HeapWord* addr = (HeapWord*)obj;
7748    assert(_span.contains(addr), "Should be within span");
7749    assert(_bit_map->isMarked(addr), "Should be marked");
7750    assert(obj->is_oop(), "Should be an oop");
7751    obj->oop_iterate(_keep_alive);
7752  }
7753}
7754
7755void CMSParDrainMarkingStackClosure::do_void() {
7756  // drain queue
7757  trim_queue(0);
7758}
7759
7760// Trim our work_queue so its length is below max at return
7761void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7762  while (_work_queue->size() > max) {
7763    oop new_oop;
7764    if (_work_queue->pop_local(new_oop)) {
7765      assert(new_oop->is_oop(), "Expected an oop");
7766      assert(_bit_map->isMarked((HeapWord*)new_oop),
7767             "no white objects on this stack!");
7768      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7769      // iterate over the oops in this oop, marking and pushing
7770      // the ones in CMS heap (i.e. in _span).
7771      new_oop->oop_iterate(&_mark_and_push);
7772    }
7773  }
7774}
7775
7776////////////////////////////////////////////////////////////////////
7777// Support for Marking Stack Overflow list handling and related code
7778////////////////////////////////////////////////////////////////////
7779// Much of the following code is similar in shape and spirit to the
7780// code used in ParNewGC. We should try and share that code
7781// as much as possible in the future.
7782
7783#ifndef PRODUCT
7784// Debugging support for CMSStackOverflowALot
7785
7786// It's OK to call this multi-threaded;  the worst thing
7787// that can happen is that we'll get a bunch of closely
7788// spaced simulated overflows, but that's OK, in fact
7789// probably good as it would exercise the overflow code
7790// under contention.
7791bool CMSCollector::simulate_overflow() {
7792  if (_overflow_counter-- <= 0) { // just being defensive
7793    _overflow_counter = CMSMarkStackOverflowInterval;
7794    return true;
7795  } else {
7796    return false;
7797  }
7798}
7799
7800bool CMSCollector::par_simulate_overflow() {
7801  return simulate_overflow();
7802}
7803#endif
7804
7805// Single-threaded
7806bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7807  assert(stack->isEmpty(), "Expected precondition");
7808  assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7809  size_t i = num;
7810  oop  cur = _overflow_list;
7811  const markOop proto = markOopDesc::prototype();
7812  NOT_PRODUCT(ssize_t n = 0;)
7813  for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7814    next = oop(cur->mark());
7815    cur->set_mark(proto);   // until proven otherwise
7816    assert(cur->is_oop(), "Should be an oop");
7817    bool res = stack->push(cur);
7818    assert(res, "Bit off more than can chew?");
7819    NOT_PRODUCT(n++;)
7820  }
7821  _overflow_list = cur;
7822#ifndef PRODUCT
7823  assert(_num_par_pushes >= n, "Too many pops?");
7824  _num_par_pushes -=n;
7825#endif
7826  return !stack->isEmpty();
7827}
7828
7829#define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7830// (MT-safe) Get a prefix of at most "num" from the list.
7831// The overflow list is chained through the mark word of
7832// each object in the list. We fetch the entire list,
7833// break off a prefix of the right size and return the
7834// remainder. If other threads try to take objects from
7835// the overflow list at that time, they will wait for
7836// some time to see if data becomes available. If (and
7837// only if) another thread places one or more object(s)
7838// on the global list before we have returned the suffix
7839// to the global list, we will walk down our local list
7840// to find its end and append the global list to
7841// our suffix before returning it. This suffix walk can
7842// prove to be expensive (quadratic in the amount of traffic)
7843// when there are many objects in the overflow list and
7844// there is much producer-consumer contention on the list.
7845// *NOTE*: The overflow list manipulation code here and
7846// in ParNewGeneration:: are very similar in shape,
7847// except that in the ParNew case we use the old (from/eden)
7848// copy of the object to thread the list via its klass word.
7849// Because of the common code, if you make any changes in
7850// the code below, please check the ParNew version to see if
7851// similar changes might be needed.
7852// CR 6797058 has been filed to consolidate the common code.
7853bool CMSCollector::par_take_from_overflow_list(size_t num,
7854                                               OopTaskQueue* work_q,
7855                                               int no_of_gc_threads) {
7856  assert(work_q->size() == 0, "First empty local work queue");
7857  assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7858  if (_overflow_list == NULL) {
7859    return false;
7860  }
7861  // Grab the entire list; we'll put back a suffix
7862  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7863  Thread* tid = Thread::current();
7864  // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7865  // set to ParallelGCThreads.
7866  size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7867  size_t sleep_time_millis = MAX2((size_t)1, num/100);
7868  // If the list is busy, we spin for a short while,
7869  // sleeping between attempts to get the list.
7870  for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7871    os::sleep(tid, sleep_time_millis, false);
7872    if (_overflow_list == NULL) {
7873      // Nothing left to take
7874      return false;
7875    } else if (_overflow_list != BUSY) {
7876      // Try and grab the prefix
7877      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7878    }
7879  }
7880  // If the list was found to be empty, or we spun long
7881  // enough, we give up and return empty-handed. If we leave
7882  // the list in the BUSY state below, it must be the case that
7883  // some other thread holds the overflow list and will set it
7884  // to a non-BUSY state in the future.
7885  if (prefix == NULL || prefix == BUSY) {
7886     // Nothing to take or waited long enough
7887     if (prefix == NULL) {
7888       // Write back the NULL in case we overwrote it with BUSY above
7889       // and it is still the same value.
7890       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7891     }
7892     return false;
7893  }
7894  assert(prefix != NULL && prefix != BUSY, "Error");
7895  size_t i = num;
7896  oop cur = prefix;
7897  // Walk down the first "num" objects, unless we reach the end.
7898  for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7899  if (cur->mark() == NULL) {
7900    // We have "num" or fewer elements in the list, so there
7901    // is nothing to return to the global list.
7902    // Write back the NULL in lieu of the BUSY we wrote
7903    // above, if it is still the same value.
7904    if (_overflow_list == BUSY) {
7905      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7906    }
7907  } else {
7908    // Chop off the suffix and return it to the global list.
7909    assert(cur->mark() != BUSY, "Error");
7910    oop suffix_head = cur->mark(); // suffix will be put back on global list
7911    cur->set_mark(NULL);           // break off suffix
7912    // It's possible that the list is still in the empty(busy) state
7913    // we left it in a short while ago; in that case we may be
7914    // able to place back the suffix without incurring the cost
7915    // of a walk down the list.
7916    oop observed_overflow_list = _overflow_list;
7917    oop cur_overflow_list = observed_overflow_list;
7918    bool attached = false;
7919    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7920      observed_overflow_list =
7921        (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7922      if (cur_overflow_list == observed_overflow_list) {
7923        attached = true;
7924        break;
7925      } else cur_overflow_list = observed_overflow_list;
7926    }
7927    if (!attached) {
7928      // Too bad, someone else sneaked in (at least) an element; we'll need
7929      // to do a splice. Find tail of suffix so we can prepend suffix to global
7930      // list.
7931      for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7932      oop suffix_tail = cur;
7933      assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7934             "Tautology");
7935      observed_overflow_list = _overflow_list;
7936      do {
7937        cur_overflow_list = observed_overflow_list;
7938        if (cur_overflow_list != BUSY) {
7939          // Do the splice ...
7940          suffix_tail->set_mark(markOop(cur_overflow_list));
7941        } else { // cur_overflow_list == BUSY
7942          suffix_tail->set_mark(NULL);
7943        }
7944        // ... and try to place spliced list back on overflow_list ...
7945        observed_overflow_list =
7946          (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7947      } while (cur_overflow_list != observed_overflow_list);
7948      // ... until we have succeeded in doing so.
7949    }
7950  }
7951
7952  // Push the prefix elements on work_q
7953  assert(prefix != NULL, "control point invariant");
7954  const markOop proto = markOopDesc::prototype();
7955  oop next;
7956  NOT_PRODUCT(ssize_t n = 0;)
7957  for (cur = prefix; cur != NULL; cur = next) {
7958    next = oop(cur->mark());
7959    cur->set_mark(proto);   // until proven otherwise
7960    assert(cur->is_oop(), "Should be an oop");
7961    bool res = work_q->push(cur);
7962    assert(res, "Bit off more than we can chew?");
7963    NOT_PRODUCT(n++;)
7964  }
7965#ifndef PRODUCT
7966  assert(_num_par_pushes >= n, "Too many pops?");
7967  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7968#endif
7969  return true;
7970}
7971
7972// Single-threaded
7973void CMSCollector::push_on_overflow_list(oop p) {
7974  NOT_PRODUCT(_num_par_pushes++;)
7975  assert(p->is_oop(), "Not an oop");
7976  preserve_mark_if_necessary(p);
7977  p->set_mark((markOop)_overflow_list);
7978  _overflow_list = p;
7979}
7980
7981// Multi-threaded; use CAS to prepend to overflow list
7982void CMSCollector::par_push_on_overflow_list(oop p) {
7983  NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7984  assert(p->is_oop(), "Not an oop");
7985  par_preserve_mark_if_necessary(p);
7986  oop observed_overflow_list = _overflow_list;
7987  oop cur_overflow_list;
7988  do {
7989    cur_overflow_list = observed_overflow_list;
7990    if (cur_overflow_list != BUSY) {
7991      p->set_mark(markOop(cur_overflow_list));
7992    } else {
7993      p->set_mark(NULL);
7994    }
7995    observed_overflow_list =
7996      (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7997  } while (cur_overflow_list != observed_overflow_list);
7998}
7999#undef BUSY
8000
8001// Single threaded
8002// General Note on GrowableArray: pushes may silently fail
8003// because we are (temporarily) out of C-heap for expanding
8004// the stack. The problem is quite ubiquitous and affects
8005// a lot of code in the JVM. The prudent thing for GrowableArray
8006// to do (for now) is to exit with an error. However, that may
8007// be too draconian in some cases because the caller may be
8008// able to recover without much harm. For such cases, we
8009// should probably introduce a "soft_push" method which returns
8010// an indication of success or failure with the assumption that
8011// the caller may be able to recover from a failure; code in
8012// the VM can then be changed, incrementally, to deal with such
8013// failures where possible, thus, incrementally hardening the VM
8014// in such low resource situations.
8015void CMSCollector::preserve_mark_work(oop p, markOop m) {
8016  _preserved_oop_stack.push(p);
8017  _preserved_mark_stack.push(m);
8018  assert(m == p->mark(), "Mark word changed");
8019  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8020         "bijection");
8021}
8022
8023// Single threaded
8024void CMSCollector::preserve_mark_if_necessary(oop p) {
8025  markOop m = p->mark();
8026  if (m->must_be_preserved(p)) {
8027    preserve_mark_work(p, m);
8028  }
8029}
8030
8031void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8032  markOop m = p->mark();
8033  if (m->must_be_preserved(p)) {
8034    MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8035    // Even though we read the mark word without holding
8036    // the lock, we are assured that it will not change
8037    // because we "own" this oop, so no other thread can
8038    // be trying to push it on the overflow list; see
8039    // the assertion in preserve_mark_work() that checks
8040    // that m == p->mark().
8041    preserve_mark_work(p, m);
8042  }
8043}
8044
8045// We should be able to do this multi-threaded,
8046// a chunk of stack being a task (this is
8047// correct because each oop only ever appears
8048// once in the overflow list. However, it's
8049// not very easy to completely overlap this with
8050// other operations, so will generally not be done
8051// until all work's been completed. Because we
8052// expect the preserved oop stack (set) to be small,
8053// it's probably fine to do this single-threaded.
8054// We can explore cleverer concurrent/overlapped/parallel
8055// processing of preserved marks if we feel the
8056// need for this in the future. Stack overflow should
8057// be so rare in practice and, when it happens, its
8058// effect on performance so great that this will
8059// likely just be in the noise anyway.
8060void CMSCollector::restore_preserved_marks_if_any() {
8061  assert(SafepointSynchronize::is_at_safepoint(),
8062         "world should be stopped");
8063  assert(Thread::current()->is_ConcurrentGC_thread() ||
8064         Thread::current()->is_VM_thread(),
8065         "should be single-threaded");
8066  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8067         "bijection");
8068
8069  while (!_preserved_oop_stack.is_empty()) {
8070    oop p = _preserved_oop_stack.pop();
8071    assert(p->is_oop(), "Should be an oop");
8072    assert(_span.contains(p), "oop should be in _span");
8073    assert(p->mark() == markOopDesc::prototype(),
8074           "Set when taken from overflow list");
8075    markOop m = _preserved_mark_stack.pop();
8076    p->set_mark(m);
8077  }
8078  assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8079         "stacks were cleared above");
8080}
8081
8082#ifndef PRODUCT
8083bool CMSCollector::no_preserved_marks() const {
8084  return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8085}
8086#endif
8087
8088// Transfer some number of overflown objects to usual marking
8089// stack. Return true if some objects were transferred.
8090bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8091  size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8092                    (size_t)ParGCDesiredObjsFromOverflowList);
8093
8094  bool res = _collector->take_from_overflow_list(num, _mark_stack);
8095  assert(_collector->overflow_list_is_empty() || res,
8096         "If list is not empty, we should have taken something");
8097  assert(!res || !_mark_stack->isEmpty(),
8098         "If we took something, it should now be on our stack");
8099  return res;
8100}
8101
8102size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8103  size_t res = _sp->block_size_no_stall(addr, _collector);
8104  if (_sp->block_is_obj(addr)) {
8105    if (_live_bit_map->isMarked(addr)) {
8106      // It can't have been dead in a previous cycle
8107      guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8108    } else {
8109      _dead_bit_map->mark(addr);      // mark the dead object
8110    }
8111  }
8112  // Could be 0, if the block size could not be computed without stalling.
8113  return res;
8114}
8115
8116TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8117
8118  switch (phase) {
8119    case CMSCollector::InitialMarking:
8120      initialize(true  /* fullGC */ ,
8121                 cause /* cause of the GC */,
8122                 true  /* recordGCBeginTime */,
8123                 true  /* recordPreGCUsage */,
8124                 false /* recordPeakUsage */,
8125                 false /* recordPostGCusage */,
8126                 true  /* recordAccumulatedGCTime */,
8127                 false /* recordGCEndTime */,
8128                 false /* countCollection */  );
8129      break;
8130
8131    case CMSCollector::FinalMarking:
8132      initialize(true  /* fullGC */ ,
8133                 cause /* cause of the GC */,
8134                 false /* recordGCBeginTime */,
8135                 false /* recordPreGCUsage */,
8136                 false /* recordPeakUsage */,
8137                 false /* recordPostGCusage */,
8138                 true  /* recordAccumulatedGCTime */,
8139                 false /* recordGCEndTime */,
8140                 false /* countCollection */  );
8141      break;
8142
8143    case CMSCollector::Sweeping:
8144      initialize(true  /* fullGC */ ,
8145                 cause /* cause of the GC */,
8146                 false /* recordGCBeginTime */,
8147                 false /* recordPreGCUsage */,
8148                 true  /* recordPeakUsage */,
8149                 true  /* recordPostGCusage */,
8150                 false /* recordAccumulatedGCTime */,
8151                 true  /* recordGCEndTime */,
8152                 true  /* countCollection */  );
8153      break;
8154
8155    default:
8156      ShouldNotReachHere();
8157  }
8158}
8159