concurrentMarkSweepGeneration.cpp revision 11744:21acfabce864
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoaderData.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/codeCache.hpp"
31#include "gc/cms/cmsCollectorPolicy.hpp"
32#include "gc/cms/cmsOopClosures.inline.hpp"
33#include "gc/cms/compactibleFreeListSpace.hpp"
34#include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
35#include "gc/cms/concurrentMarkSweepThread.hpp"
36#include "gc/cms/parNewGeneration.hpp"
37#include "gc/cms/vmCMSOperations.hpp"
38#include "gc/serial/genMarkSweep.hpp"
39#include "gc/serial/tenuredGeneration.hpp"
40#include "gc/shared/adaptiveSizePolicy.hpp"
41#include "gc/shared/cardGeneration.inline.hpp"
42#include "gc/shared/cardTableRS.hpp"
43#include "gc/shared/collectedHeap.inline.hpp"
44#include "gc/shared/collectorCounters.hpp"
45#include "gc/shared/collectorPolicy.hpp"
46#include "gc/shared/gcLocker.inline.hpp"
47#include "gc/shared/gcPolicyCounters.hpp"
48#include "gc/shared/gcTimer.hpp"
49#include "gc/shared/gcTrace.hpp"
50#include "gc/shared/gcTraceTime.inline.hpp"
51#include "gc/shared/genCollectedHeap.hpp"
52#include "gc/shared/genOopClosures.inline.hpp"
53#include "gc/shared/isGCActiveMark.hpp"
54#include "gc/shared/referencePolicy.hpp"
55#include "gc/shared/strongRootsScope.hpp"
56#include "gc/shared/taskqueue.inline.hpp"
57#include "logging/log.hpp"
58#include "memory/allocation.hpp"
59#include "memory/iterator.inline.hpp"
60#include "memory/padded.hpp"
61#include "memory/resourceArea.hpp"
62#include "oops/oop.inline.hpp"
63#include "prims/jvmtiExport.hpp"
64#include "runtime/atomic.inline.hpp"
65#include "runtime/globals_extension.hpp"
66#include "runtime/handles.inline.hpp"
67#include "runtime/java.hpp"
68#include "runtime/orderAccess.inline.hpp"
69#include "runtime/timer.hpp"
70#include "runtime/vmThread.hpp"
71#include "services/memoryService.hpp"
72#include "services/runtimeService.hpp"
73#include "utilities/stack.inline.hpp"
74
75// statics
76CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
77bool CMSCollector::_full_gc_requested = false;
78GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
79
80//////////////////////////////////////////////////////////////////
81// In support of CMS/VM thread synchronization
82//////////////////////////////////////////////////////////////////
83// We split use of the CGC_lock into 2 "levels".
84// The low-level locking is of the usual CGC_lock monitor. We introduce
85// a higher level "token" (hereafter "CMS token") built on top of the
86// low level monitor (hereafter "CGC lock").
87// The token-passing protocol gives priority to the VM thread. The
88// CMS-lock doesn't provide any fairness guarantees, but clients
89// should ensure that it is only held for very short, bounded
90// durations.
91//
92// When either of the CMS thread or the VM thread is involved in
93// collection operations during which it does not want the other
94// thread to interfere, it obtains the CMS token.
95//
96// If either thread tries to get the token while the other has
97// it, that thread waits. However, if the VM thread and CMS thread
98// both want the token, then the VM thread gets priority while the
99// CMS thread waits. This ensures, for instance, that the "concurrent"
100// phases of the CMS thread's work do not block out the VM thread
101// for long periods of time as the CMS thread continues to hog
102// the token. (See bug 4616232).
103//
104// The baton-passing functions are, however, controlled by the
105// flags _foregroundGCShouldWait and _foregroundGCIsActive,
106// and here the low-level CMS lock, not the high level token,
107// ensures mutual exclusion.
108//
109// Two important conditions that we have to satisfy:
110// 1. if a thread does a low-level wait on the CMS lock, then it
111//    relinquishes the CMS token if it were holding that token
112//    when it acquired the low-level CMS lock.
113// 2. any low-level notifications on the low-level lock
114//    should only be sent when a thread has relinquished the token.
115//
116// In the absence of either property, we'd have potential deadlock.
117//
118// We protect each of the CMS (concurrent and sequential) phases
119// with the CMS _token_, not the CMS _lock_.
120//
121// The only code protected by CMS lock is the token acquisition code
122// itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
123// baton-passing code.
124//
125// Unfortunately, i couldn't come up with a good abstraction to factor and
126// hide the naked CGC_lock manipulation in the baton-passing code
127// further below. That's something we should try to do. Also, the proof
128// of correctness of this 2-level locking scheme is far from obvious,
129// and potentially quite slippery. We have an uneasy suspicion, for instance,
130// that there may be a theoretical possibility of delay/starvation in the
131// low-level lock/wait/notify scheme used for the baton-passing because of
132// potential interference with the priority scheme embodied in the
133// CMS-token-passing protocol. See related comments at a CGC_lock->wait()
134// invocation further below and marked with "XXX 20011219YSR".
135// Indeed, as we note elsewhere, this may become yet more slippery
136// in the presence of multiple CMS and/or multiple VM threads. XXX
137
138class CMSTokenSync: public StackObj {
139 private:
140  bool _is_cms_thread;
141 public:
142  CMSTokenSync(bool is_cms_thread):
143    _is_cms_thread(is_cms_thread) {
144    assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
145           "Incorrect argument to constructor");
146    ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
147  }
148
149  ~CMSTokenSync() {
150    assert(_is_cms_thread ?
151             ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
152             ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
153          "Incorrect state");
154    ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
155  }
156};
157
158// Convenience class that does a CMSTokenSync, and then acquires
159// upto three locks.
160class CMSTokenSyncWithLocks: public CMSTokenSync {
161 private:
162  // Note: locks are acquired in textual declaration order
163  // and released in the opposite order
164  MutexLockerEx _locker1, _locker2, _locker3;
165 public:
166  CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
167                        Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
168    CMSTokenSync(is_cms_thread),
169    _locker1(mutex1, Mutex::_no_safepoint_check_flag),
170    _locker2(mutex2, Mutex::_no_safepoint_check_flag),
171    _locker3(mutex3, Mutex::_no_safepoint_check_flag)
172  { }
173};
174
175
176//////////////////////////////////////////////////////////////////
177//  Concurrent Mark-Sweep Generation /////////////////////////////
178//////////////////////////////////////////////////////////////////
179
180NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
181
182// This struct contains per-thread things necessary to support parallel
183// young-gen collection.
184class CMSParGCThreadState: public CHeapObj<mtGC> {
185 public:
186  CompactibleFreeListSpaceLAB lab;
187  PromotionInfo promo;
188
189  // Constructor.
190  CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
191    promo.setSpace(cfls);
192  }
193};
194
195ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
196     ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
197  CardGeneration(rs, initial_byte_size, ct),
198  _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
199  _did_compact(false)
200{
201  HeapWord* bottom = (HeapWord*) _virtual_space.low();
202  HeapWord* end    = (HeapWord*) _virtual_space.high();
203
204  _direct_allocated_words = 0;
205  NOT_PRODUCT(
206    _numObjectsPromoted = 0;
207    _numWordsPromoted = 0;
208    _numObjectsAllocated = 0;
209    _numWordsAllocated = 0;
210  )
211
212  _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
213  NOT_PRODUCT(debug_cms_space = _cmsSpace;)
214  _cmsSpace->_old_gen = this;
215
216  _gc_stats = new CMSGCStats();
217
218  // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
219  // offsets match. The ability to tell free chunks from objects
220  // depends on this property.
221  debug_only(
222    FreeChunk* junk = NULL;
223    assert(UseCompressedClassPointers ||
224           junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
225           "Offset of FreeChunk::_prev within FreeChunk must match"
226           "  that of OopDesc::_klass within OopDesc");
227  )
228
229  _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
230  for (uint i = 0; i < ParallelGCThreads; i++) {
231    _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
232  }
233
234  _incremental_collection_failed = false;
235  // The "dilatation_factor" is the expansion that can occur on
236  // account of the fact that the minimum object size in the CMS
237  // generation may be larger than that in, say, a contiguous young
238  //  generation.
239  // Ideally, in the calculation below, we'd compute the dilatation
240  // factor as: MinChunkSize/(promoting_gen's min object size)
241  // Since we do not have such a general query interface for the
242  // promoting generation, we'll instead just use the minimum
243  // object size (which today is a header's worth of space);
244  // note that all arithmetic is in units of HeapWords.
245  assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
246  assert(_dilatation_factor >= 1.0, "from previous assert");
247}
248
249
250// The field "_initiating_occupancy" represents the occupancy percentage
251// at which we trigger a new collection cycle.  Unless explicitly specified
252// via CMSInitiatingOccupancyFraction (argument "io" below), it
253// is calculated by:
254//
255//   Let "f" be MinHeapFreeRatio in
256//
257//    _initiating_occupancy = 100-f +
258//                           f * (CMSTriggerRatio/100)
259//   where CMSTriggerRatio is the argument "tr" below.
260//
261// That is, if we assume the heap is at its desired maximum occupancy at the
262// end of a collection, we let CMSTriggerRatio of the (purported) free
263// space be allocated before initiating a new collection cycle.
264//
265void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
266  assert(io <= 100 && tr <= 100, "Check the arguments");
267  if (io >= 0) {
268    _initiating_occupancy = (double)io / 100.0;
269  } else {
270    _initiating_occupancy = ((100 - MinHeapFreeRatio) +
271                             (double)(tr * MinHeapFreeRatio) / 100.0)
272                            / 100.0;
273  }
274}
275
276void ConcurrentMarkSweepGeneration::ref_processor_init() {
277  assert(collector() != NULL, "no collector");
278  collector()->ref_processor_init();
279}
280
281void CMSCollector::ref_processor_init() {
282  if (_ref_processor == NULL) {
283    // Allocate and initialize a reference processor
284    _ref_processor =
285      new ReferenceProcessor(_span,                               // span
286                             (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
287                             ParallelGCThreads,                   // mt processing degree
288                             _cmsGen->refs_discovery_is_mt(),     // mt discovery
289                             MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
290                             _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
291                             &_is_alive_closure);                 // closure for liveness info
292    // Initialize the _ref_processor field of CMSGen
293    _cmsGen->set_ref_processor(_ref_processor);
294
295  }
296}
297
298AdaptiveSizePolicy* CMSCollector::size_policy() {
299  GenCollectedHeap* gch = GenCollectedHeap::heap();
300  return gch->gen_policy()->size_policy();
301}
302
303void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
304
305  const char* gen_name = "old";
306  GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
307  // Generation Counters - generation 1, 1 subspace
308  _gen_counters = new GenerationCounters(gen_name, 1, 1,
309      gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
310
311  _space_counters = new GSpaceCounters(gen_name, 0,
312                                       _virtual_space.reserved_size(),
313                                       this, _gen_counters);
314}
315
316CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
317  _cms_gen(cms_gen)
318{
319  assert(alpha <= 100, "bad value");
320  _saved_alpha = alpha;
321
322  // Initialize the alphas to the bootstrap value of 100.
323  _gc0_alpha = _cms_alpha = 100;
324
325  _cms_begin_time.update();
326  _cms_end_time.update();
327
328  _gc0_duration = 0.0;
329  _gc0_period = 0.0;
330  _gc0_promoted = 0;
331
332  _cms_duration = 0.0;
333  _cms_period = 0.0;
334  _cms_allocated = 0;
335
336  _cms_used_at_gc0_begin = 0;
337  _cms_used_at_gc0_end = 0;
338  _allow_duty_cycle_reduction = false;
339  _valid_bits = 0;
340}
341
342double CMSStats::cms_free_adjustment_factor(size_t free) const {
343  // TBD: CR 6909490
344  return 1.0;
345}
346
347void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
348}
349
350// If promotion failure handling is on use
351// the padded average size of the promotion for each
352// young generation collection.
353double CMSStats::time_until_cms_gen_full() const {
354  size_t cms_free = _cms_gen->cmsSpace()->free();
355  GenCollectedHeap* gch = GenCollectedHeap::heap();
356  size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
357                                   (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
358  if (cms_free > expected_promotion) {
359    // Start a cms collection if there isn't enough space to promote
360    // for the next young collection.  Use the padded average as
361    // a safety factor.
362    cms_free -= expected_promotion;
363
364    // Adjust by the safety factor.
365    double cms_free_dbl = (double)cms_free;
366    double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
367    // Apply a further correction factor which tries to adjust
368    // for recent occurance of concurrent mode failures.
369    cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
370    cms_free_dbl = cms_free_dbl * cms_adjustment;
371
372    log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
373                  cms_free, expected_promotion);
374    log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
375    // Add 1 in case the consumption rate goes to zero.
376    return cms_free_dbl / (cms_consumption_rate() + 1.0);
377  }
378  return 0.0;
379}
380
381// Compare the duration of the cms collection to the
382// time remaining before the cms generation is empty.
383// Note that the time from the start of the cms collection
384// to the start of the cms sweep (less than the total
385// duration of the cms collection) can be used.  This
386// has been tried and some applications experienced
387// promotion failures early in execution.  This was
388// possibly because the averages were not accurate
389// enough at the beginning.
390double CMSStats::time_until_cms_start() const {
391  // We add "gc0_period" to the "work" calculation
392  // below because this query is done (mostly) at the
393  // end of a scavenge, so we need to conservatively
394  // account for that much possible delay
395  // in the query so as to avoid concurrent mode failures
396  // due to starting the collection just a wee bit too
397  // late.
398  double work = cms_duration() + gc0_period();
399  double deadline = time_until_cms_gen_full();
400  // If a concurrent mode failure occurred recently, we want to be
401  // more conservative and halve our expected time_until_cms_gen_full()
402  if (work > deadline) {
403    log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
404                          cms_duration(), gc0_period(), time_until_cms_gen_full());
405    return 0.0;
406  }
407  return work - deadline;
408}
409
410#ifndef PRODUCT
411void CMSStats::print_on(outputStream *st) const {
412  st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
413  st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
414               gc0_duration(), gc0_period(), gc0_promoted());
415  st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
416            cms_duration(), cms_period(), cms_allocated());
417  st->print(",cms_since_beg=%g,cms_since_end=%g",
418            cms_time_since_begin(), cms_time_since_end());
419  st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
420            _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
421
422  if (valid()) {
423    st->print(",promo_rate=%g,cms_alloc_rate=%g",
424              promotion_rate(), cms_allocation_rate());
425    st->print(",cms_consumption_rate=%g,time_until_full=%g",
426              cms_consumption_rate(), time_until_cms_gen_full());
427  }
428  st->cr();
429}
430#endif // #ifndef PRODUCT
431
432CMSCollector::CollectorState CMSCollector::_collectorState =
433                             CMSCollector::Idling;
434bool CMSCollector::_foregroundGCIsActive = false;
435bool CMSCollector::_foregroundGCShouldWait = false;
436
437CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
438                           CardTableRS*                   ct,
439                           ConcurrentMarkSweepPolicy*     cp):
440  _cmsGen(cmsGen),
441  _ct(ct),
442  _ref_processor(NULL),    // will be set later
443  _conc_workers(NULL),     // may be set later
444  _abort_preclean(false),
445  _start_sampling(false),
446  _between_prologue_and_epilogue(false),
447  _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
448  _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
449                 -1 /* lock-free */, "No_lock" /* dummy */),
450  _modUnionClosurePar(&_modUnionTable),
451  // Adjust my span to cover old (cms) gen
452  _span(cmsGen->reserved()),
453  // Construct the is_alive_closure with _span & markBitMap
454  _is_alive_closure(_span, &_markBitMap),
455  _restart_addr(NULL),
456  _overflow_list(NULL),
457  _stats(cmsGen),
458  _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
459                             //verify that this lock should be acquired with safepoint check.
460                             Monitor::_safepoint_check_sometimes)),
461  _eden_chunk_array(NULL),     // may be set in ctor body
462  _eden_chunk_capacity(0),     // -- ditto --
463  _eden_chunk_index(0),        // -- ditto --
464  _survivor_plab_array(NULL),  // -- ditto --
465  _survivor_chunk_array(NULL), // -- ditto --
466  _survivor_chunk_capacity(0), // -- ditto --
467  _survivor_chunk_index(0),    // -- ditto --
468  _ser_pmc_preclean_ovflw(0),
469  _ser_kac_preclean_ovflw(0),
470  _ser_pmc_remark_ovflw(0),
471  _par_pmc_remark_ovflw(0),
472  _ser_kac_ovflw(0),
473  _par_kac_ovflw(0),
474#ifndef PRODUCT
475  _num_par_pushes(0),
476#endif
477  _collection_count_start(0),
478  _verifying(false),
479  _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
480  _completed_initialization(false),
481  _collector_policy(cp),
482  _should_unload_classes(CMSClassUnloadingEnabled),
483  _concurrent_cycles_since_last_unload(0),
484  _roots_scanning_options(GenCollectedHeap::SO_None),
485  _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
486  _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
487  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
488  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
489  _cms_start_registered(false)
490{
491  if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
492    ExplicitGCInvokesConcurrent = true;
493  }
494  // Now expand the span and allocate the collection support structures
495  // (MUT, marking bit map etc.) to cover both generations subject to
496  // collection.
497
498  // For use by dirty card to oop closures.
499  _cmsGen->cmsSpace()->set_collector(this);
500
501  // Allocate MUT and marking bit map
502  {
503    MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
504    if (!_markBitMap.allocate(_span)) {
505      log_warning(gc)("Failed to allocate CMS Bit Map");
506      return;
507    }
508    assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
509  }
510  {
511    _modUnionTable.allocate(_span);
512    assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
513  }
514
515  if (!_markStack.allocate(MarkStackSize)) {
516    log_warning(gc)("Failed to allocate CMS Marking Stack");
517    return;
518  }
519
520  // Support for multi-threaded concurrent phases
521  if (CMSConcurrentMTEnabled) {
522    if (FLAG_IS_DEFAULT(ConcGCThreads)) {
523      // just for now
524      FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
525    }
526    if (ConcGCThreads > 1) {
527      _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
528                                 ConcGCThreads, true);
529      if (_conc_workers == NULL) {
530        log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
531        CMSConcurrentMTEnabled = false;
532      } else {
533        _conc_workers->initialize_workers();
534      }
535    } else {
536      CMSConcurrentMTEnabled = false;
537    }
538  }
539  if (!CMSConcurrentMTEnabled) {
540    ConcGCThreads = 0;
541  } else {
542    // Turn off CMSCleanOnEnter optimization temporarily for
543    // the MT case where it's not fixed yet; see 6178663.
544    CMSCleanOnEnter = false;
545  }
546  assert((_conc_workers != NULL) == (ConcGCThreads > 1),
547         "Inconsistency");
548  log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
549  log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
550
551  // Parallel task queues; these are shared for the
552  // concurrent and stop-world phases of CMS, but
553  // are not shared with parallel scavenge (ParNew).
554  {
555    uint i;
556    uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
557
558    if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
559         || ParallelRefProcEnabled)
560        && num_queues > 0) {
561      _task_queues = new OopTaskQueueSet(num_queues);
562      if (_task_queues == NULL) {
563        log_warning(gc)("task_queues allocation failure.");
564        return;
565      }
566      _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
567      typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
568      for (i = 0; i < num_queues; i++) {
569        PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
570        if (q == NULL) {
571          log_warning(gc)("work_queue allocation failure.");
572          return;
573        }
574        _task_queues->register_queue(i, q);
575      }
576      for (i = 0; i < num_queues; i++) {
577        _task_queues->queue(i)->initialize();
578        _hash_seed[i] = 17;  // copied from ParNew
579      }
580    }
581  }
582
583  _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
584
585  // Clip CMSBootstrapOccupancy between 0 and 100.
586  _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
587
588  // Now tell CMS generations the identity of their collector
589  ConcurrentMarkSweepGeneration::set_collector(this);
590
591  // Create & start a CMS thread for this CMS collector
592  _cmsThread = ConcurrentMarkSweepThread::start(this);
593  assert(cmsThread() != NULL, "CMS Thread should have been created");
594  assert(cmsThread()->collector() == this,
595         "CMS Thread should refer to this gen");
596  assert(CGC_lock != NULL, "Where's the CGC_lock?");
597
598  // Support for parallelizing young gen rescan
599  GenCollectedHeap* gch = GenCollectedHeap::heap();
600  assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
601  _young_gen = (ParNewGeneration*)gch->young_gen();
602  if (gch->supports_inline_contig_alloc()) {
603    _top_addr = gch->top_addr();
604    _end_addr = gch->end_addr();
605    assert(_young_gen != NULL, "no _young_gen");
606    _eden_chunk_index = 0;
607    _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
608    _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
609  }
610
611  // Support for parallelizing survivor space rescan
612  if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
613    const size_t max_plab_samples =
614      _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
615
616    _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
617    _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
618    _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
619    _survivor_chunk_capacity = max_plab_samples;
620    for (uint i = 0; i < ParallelGCThreads; i++) {
621      HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
622      ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
623      assert(cur->end() == 0, "Should be 0");
624      assert(cur->array() == vec, "Should be vec");
625      assert(cur->capacity() == max_plab_samples, "Error");
626    }
627  }
628
629  NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
630  _gc_counters = new CollectorCounters("CMS", 1);
631  _completed_initialization = true;
632  _inter_sweep_timer.start();  // start of time
633}
634
635const char* ConcurrentMarkSweepGeneration::name() const {
636  return "concurrent mark-sweep generation";
637}
638void ConcurrentMarkSweepGeneration::update_counters() {
639  if (UsePerfData) {
640    _space_counters->update_all();
641    _gen_counters->update_all();
642  }
643}
644
645// this is an optimized version of update_counters(). it takes the
646// used value as a parameter rather than computing it.
647//
648void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
649  if (UsePerfData) {
650    _space_counters->update_used(used);
651    _space_counters->update_capacity();
652    _gen_counters->update_all();
653  }
654}
655
656void ConcurrentMarkSweepGeneration::print() const {
657  Generation::print();
658  cmsSpace()->print();
659}
660
661#ifndef PRODUCT
662void ConcurrentMarkSweepGeneration::print_statistics() {
663  cmsSpace()->printFLCensus(0);
664}
665#endif
666
667size_t
668ConcurrentMarkSweepGeneration::contiguous_available() const {
669  // dld proposes an improvement in precision here. If the committed
670  // part of the space ends in a free block we should add that to
671  // uncommitted size in the calculation below. Will make this
672  // change later, staying with the approximation below for the
673  // time being. -- ysr.
674  return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
675}
676
677size_t
678ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
679  return _cmsSpace->max_alloc_in_words() * HeapWordSize;
680}
681
682size_t ConcurrentMarkSweepGeneration::max_available() const {
683  return free() + _virtual_space.uncommitted_size();
684}
685
686bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
687  size_t available = max_available();
688  size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
689  bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
690  log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
691                           res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
692  return res;
693}
694
695// At a promotion failure dump information on block layout in heap
696// (cms old generation).
697void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
698  Log(gc, promotion) log;
699  if (log.is_trace()) {
700    ResourceMark rm;
701    cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
702  }
703}
704
705void ConcurrentMarkSweepGeneration::reset_after_compaction() {
706  // Clear the promotion information.  These pointers can be adjusted
707  // along with all the other pointers into the heap but
708  // compaction is expected to be a rare event with
709  // a heap using cms so don't do it without seeing the need.
710  for (uint i = 0; i < ParallelGCThreads; i++) {
711    _par_gc_thread_states[i]->promo.reset();
712  }
713}
714
715void ConcurrentMarkSweepGeneration::compute_new_size() {
716  assert_locked_or_safepoint(Heap_lock);
717
718  // If incremental collection failed, we just want to expand
719  // to the limit.
720  if (incremental_collection_failed()) {
721    clear_incremental_collection_failed();
722    grow_to_reserved();
723    return;
724  }
725
726  // The heap has been compacted but not reset yet.
727  // Any metric such as free() or used() will be incorrect.
728
729  CardGeneration::compute_new_size();
730
731  // Reset again after a possible resizing
732  if (did_compact()) {
733    cmsSpace()->reset_after_compaction();
734  }
735}
736
737void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
738  assert_locked_or_safepoint(Heap_lock);
739
740  // If incremental collection failed, we just want to expand
741  // to the limit.
742  if (incremental_collection_failed()) {
743    clear_incremental_collection_failed();
744    grow_to_reserved();
745    return;
746  }
747
748  double free_percentage = ((double) free()) / capacity();
749  double desired_free_percentage = (double) MinHeapFreeRatio / 100;
750  double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
751
752  // compute expansion delta needed for reaching desired free percentage
753  if (free_percentage < desired_free_percentage) {
754    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
755    assert(desired_capacity >= capacity(), "invalid expansion size");
756    size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
757    Log(gc) log;
758    if (log.is_trace()) {
759      size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
760      log.trace("From compute_new_size: ");
761      log.trace("  Free fraction %f", free_percentage);
762      log.trace("  Desired free fraction %f", desired_free_percentage);
763      log.trace("  Maximum free fraction %f", maximum_free_percentage);
764      log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
765      log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
766      GenCollectedHeap* gch = GenCollectedHeap::heap();
767      assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
768      size_t young_size = gch->young_gen()->capacity();
769      log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
770      log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
771      log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
772      log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
773    }
774    // safe if expansion fails
775    expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
776    log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
777  } else {
778    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
779    assert(desired_capacity <= capacity(), "invalid expansion size");
780    size_t shrink_bytes = capacity() - desired_capacity;
781    // Don't shrink unless the delta is greater than the minimum shrink we want
782    if (shrink_bytes >= MinHeapDeltaBytes) {
783      shrink_free_list_by(shrink_bytes);
784    }
785  }
786}
787
788Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
789  return cmsSpace()->freelistLock();
790}
791
792HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
793  CMSSynchronousYieldRequest yr;
794  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
795  return have_lock_and_allocate(size, tlab);
796}
797
798HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
799                                                                bool   tlab /* ignored */) {
800  assert_lock_strong(freelistLock());
801  size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
802  HeapWord* res = cmsSpace()->allocate(adjustedSize);
803  // Allocate the object live (grey) if the background collector has
804  // started marking. This is necessary because the marker may
805  // have passed this address and consequently this object will
806  // not otherwise be greyed and would be incorrectly swept up.
807  // Note that if this object contains references, the writing
808  // of those references will dirty the card containing this object
809  // allowing the object to be blackened (and its references scanned)
810  // either during a preclean phase or at the final checkpoint.
811  if (res != NULL) {
812    // We may block here with an uninitialized object with
813    // its mark-bit or P-bits not yet set. Such objects need
814    // to be safely navigable by block_start().
815    assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
816    assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
817    collector()->direct_allocated(res, adjustedSize);
818    _direct_allocated_words += adjustedSize;
819    // allocation counters
820    NOT_PRODUCT(
821      _numObjectsAllocated++;
822      _numWordsAllocated += (int)adjustedSize;
823    )
824  }
825  return res;
826}
827
828// In the case of direct allocation by mutators in a generation that
829// is being concurrently collected, the object must be allocated
830// live (grey) if the background collector has started marking.
831// This is necessary because the marker may
832// have passed this address and consequently this object will
833// not otherwise be greyed and would be incorrectly swept up.
834// Note that if this object contains references, the writing
835// of those references will dirty the card containing this object
836// allowing the object to be blackened (and its references scanned)
837// either during a preclean phase or at the final checkpoint.
838void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
839  assert(_markBitMap.covers(start, size), "Out of bounds");
840  if (_collectorState >= Marking) {
841    MutexLockerEx y(_markBitMap.lock(),
842                    Mutex::_no_safepoint_check_flag);
843    // [see comments preceding SweepClosure::do_blk() below for details]
844    //
845    // Can the P-bits be deleted now?  JJJ
846    //
847    // 1. need to mark the object as live so it isn't collected
848    // 2. need to mark the 2nd bit to indicate the object may be uninitialized
849    // 3. need to mark the end of the object so marking, precleaning or sweeping
850    //    can skip over uninitialized or unparsable objects. An allocated
851    //    object is considered uninitialized for our purposes as long as
852    //    its klass word is NULL.  All old gen objects are parsable
853    //    as soon as they are initialized.)
854    _markBitMap.mark(start);          // object is live
855    _markBitMap.mark(start + 1);      // object is potentially uninitialized?
856    _markBitMap.mark(start + size - 1);
857                                      // mark end of object
858  }
859  // check that oop looks uninitialized
860  assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
861}
862
863void CMSCollector::promoted(bool par, HeapWord* start,
864                            bool is_obj_array, size_t obj_size) {
865  assert(_markBitMap.covers(start), "Out of bounds");
866  // See comment in direct_allocated() about when objects should
867  // be allocated live.
868  if (_collectorState >= Marking) {
869    // we already hold the marking bit map lock, taken in
870    // the prologue
871    if (par) {
872      _markBitMap.par_mark(start);
873    } else {
874      _markBitMap.mark(start);
875    }
876    // We don't need to mark the object as uninitialized (as
877    // in direct_allocated above) because this is being done with the
878    // world stopped and the object will be initialized by the
879    // time the marking, precleaning or sweeping get to look at it.
880    // But see the code for copying objects into the CMS generation,
881    // where we need to ensure that concurrent readers of the
882    // block offset table are able to safely navigate a block that
883    // is in flux from being free to being allocated (and in
884    // transition while being copied into) and subsequently
885    // becoming a bona-fide object when the copy/promotion is complete.
886    assert(SafepointSynchronize::is_at_safepoint(),
887           "expect promotion only at safepoints");
888
889    if (_collectorState < Sweeping) {
890      // Mark the appropriate cards in the modUnionTable, so that
891      // this object gets scanned before the sweep. If this is
892      // not done, CMS generation references in the object might
893      // not get marked.
894      // For the case of arrays, which are otherwise precisely
895      // marked, we need to dirty the entire array, not just its head.
896      if (is_obj_array) {
897        // The [par_]mark_range() method expects mr.end() below to
898        // be aligned to the granularity of a bit's representation
899        // in the heap. In the case of the MUT below, that's a
900        // card size.
901        MemRegion mr(start,
902                     (HeapWord*)round_to((intptr_t)(start + obj_size),
903                        CardTableModRefBS::card_size /* bytes */));
904        if (par) {
905          _modUnionTable.par_mark_range(mr);
906        } else {
907          _modUnionTable.mark_range(mr);
908        }
909      } else {  // not an obj array; we can just mark the head
910        if (par) {
911          _modUnionTable.par_mark(start);
912        } else {
913          _modUnionTable.mark(start);
914        }
915      }
916    }
917  }
918}
919
920oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
921  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
922  // allocate, copy and if necessary update promoinfo --
923  // delegate to underlying space.
924  assert_lock_strong(freelistLock());
925
926#ifndef PRODUCT
927  if (GenCollectedHeap::heap()->promotion_should_fail()) {
928    return NULL;
929  }
930#endif  // #ifndef PRODUCT
931
932  oop res = _cmsSpace->promote(obj, obj_size);
933  if (res == NULL) {
934    // expand and retry
935    size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
936    expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
937    // Since this is the old generation, we don't try to promote
938    // into a more senior generation.
939    res = _cmsSpace->promote(obj, obj_size);
940  }
941  if (res != NULL) {
942    // See comment in allocate() about when objects should
943    // be allocated live.
944    assert(obj->is_oop(), "Will dereference klass pointer below");
945    collector()->promoted(false,           // Not parallel
946                          (HeapWord*)res, obj->is_objArray(), obj_size);
947    // promotion counters
948    NOT_PRODUCT(
949      _numObjectsPromoted++;
950      _numWordsPromoted +=
951        (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
952    )
953  }
954  return res;
955}
956
957
958// IMPORTANT: Notes on object size recognition in CMS.
959// ---------------------------------------------------
960// A block of storage in the CMS generation is always in
961// one of three states. A free block (FREE), an allocated
962// object (OBJECT) whose size() method reports the correct size,
963// and an intermediate state (TRANSIENT) in which its size cannot
964// be accurately determined.
965// STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
966// -----------------------------------------------------
967// FREE:      klass_word & 1 == 1; mark_word holds block size
968//
969// OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
970//            obj->size() computes correct size
971//
972// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
973//
974// STATE IDENTIFICATION: (64 bit+COOPS)
975// ------------------------------------
976// FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
977//
978// OBJECT:    klass_word installed; klass_word != 0;
979//            obj->size() computes correct size
980//
981// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
982//
983//
984// STATE TRANSITION DIAGRAM
985//
986//        mut / parnew                     mut  /  parnew
987// FREE --------------------> TRANSIENT ---------------------> OBJECT --|
988//  ^                                                                   |
989//  |------------------------ DEAD <------------------------------------|
990//         sweep                            mut
991//
992// While a block is in TRANSIENT state its size cannot be determined
993// so readers will either need to come back later or stall until
994// the size can be determined. Note that for the case of direct
995// allocation, P-bits, when available, may be used to determine the
996// size of an object that may not yet have been initialized.
997
998// Things to support parallel young-gen collection.
999oop
1000ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1001                                           oop old, markOop m,
1002                                           size_t word_sz) {
1003#ifndef PRODUCT
1004  if (GenCollectedHeap::heap()->promotion_should_fail()) {
1005    return NULL;
1006  }
1007#endif  // #ifndef PRODUCT
1008
1009  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1010  PromotionInfo* promoInfo = &ps->promo;
1011  // if we are tracking promotions, then first ensure space for
1012  // promotion (including spooling space for saving header if necessary).
1013  // then allocate and copy, then track promoted info if needed.
1014  // When tracking (see PromotionInfo::track()), the mark word may
1015  // be displaced and in this case restoration of the mark word
1016  // occurs in the (oop_since_save_marks_)iterate phase.
1017  if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1018    // Out of space for allocating spooling buffers;
1019    // try expanding and allocating spooling buffers.
1020    if (!expand_and_ensure_spooling_space(promoInfo)) {
1021      return NULL;
1022    }
1023  }
1024  assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1025  const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1026  HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1027  if (obj_ptr == NULL) {
1028     obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1029     if (obj_ptr == NULL) {
1030       return NULL;
1031     }
1032  }
1033  oop obj = oop(obj_ptr);
1034  OrderAccess::storestore();
1035  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1036  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1037  // IMPORTANT: See note on object initialization for CMS above.
1038  // Otherwise, copy the object.  Here we must be careful to insert the
1039  // klass pointer last, since this marks the block as an allocated object.
1040  // Except with compressed oops it's the mark word.
1041  HeapWord* old_ptr = (HeapWord*)old;
1042  // Restore the mark word copied above.
1043  obj->set_mark(m);
1044  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1045  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1046  OrderAccess::storestore();
1047
1048  if (UseCompressedClassPointers) {
1049    // Copy gap missed by (aligned) header size calculation below
1050    obj->set_klass_gap(old->klass_gap());
1051  }
1052  if (word_sz > (size_t)oopDesc::header_size()) {
1053    Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1054                                 obj_ptr + oopDesc::header_size(),
1055                                 word_sz - oopDesc::header_size());
1056  }
1057
1058  // Now we can track the promoted object, if necessary.  We take care
1059  // to delay the transition from uninitialized to full object
1060  // (i.e., insertion of klass pointer) until after, so that it
1061  // atomically becomes a promoted object.
1062  if (promoInfo->tracking()) {
1063    promoInfo->track((PromotedObject*)obj, old->klass());
1064  }
1065  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1066  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1067  assert(old->is_oop(), "Will use and dereference old klass ptr below");
1068
1069  // Finally, install the klass pointer (this should be volatile).
1070  OrderAccess::storestore();
1071  obj->set_klass(old->klass());
1072  // We should now be able to calculate the right size for this object
1073  assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1074
1075  collector()->promoted(true,          // parallel
1076                        obj_ptr, old->is_objArray(), word_sz);
1077
1078  NOT_PRODUCT(
1079    Atomic::inc_ptr(&_numObjectsPromoted);
1080    Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1081  )
1082
1083  return obj;
1084}
1085
1086void
1087ConcurrentMarkSweepGeneration::
1088par_promote_alloc_done(int thread_num) {
1089  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1090  ps->lab.retire(thread_num);
1091}
1092
1093void
1094ConcurrentMarkSweepGeneration::
1095par_oop_since_save_marks_iterate_done(int thread_num) {
1096  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1097  ParScanWithoutBarrierClosure* dummy_cl = NULL;
1098  ps->promo.promoted_oops_iterate_nv(dummy_cl);
1099
1100  // Because card-scanning has been completed, subsequent phases
1101  // (e.g., reference processing) will not need to recognize which
1102  // objects have been promoted during this GC. So, we can now disable
1103  // promotion tracking.
1104  ps->promo.stopTrackingPromotions();
1105}
1106
1107bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1108                                                   size_t size,
1109                                                   bool   tlab)
1110{
1111  // We allow a STW collection only if a full
1112  // collection was requested.
1113  return full || should_allocate(size, tlab); // FIX ME !!!
1114  // This and promotion failure handling are connected at the
1115  // hip and should be fixed by untying them.
1116}
1117
1118bool CMSCollector::shouldConcurrentCollect() {
1119  LogTarget(Trace, gc) log;
1120
1121  if (_full_gc_requested) {
1122    log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1123    return true;
1124  }
1125
1126  FreelistLocker x(this);
1127  // ------------------------------------------------------------------
1128  // Print out lots of information which affects the initiation of
1129  // a collection.
1130  if (log.is_enabled() && stats().valid()) {
1131    log.print("CMSCollector shouldConcurrentCollect: ");
1132
1133    LogStream out(log);
1134    stats().print_on(&out);
1135
1136    log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1137    log.print("free=" SIZE_FORMAT, _cmsGen->free());
1138    log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1139    log.print("promotion_rate=%g", stats().promotion_rate());
1140    log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1141    log.print("occupancy=%3.7f", _cmsGen->occupancy());
1142    log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1143    log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1144    log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1145    log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1146  }
1147  // ------------------------------------------------------------------
1148
1149  // If the estimated time to complete a cms collection (cms_duration())
1150  // is less than the estimated time remaining until the cms generation
1151  // is full, start a collection.
1152  if (!UseCMSInitiatingOccupancyOnly) {
1153    if (stats().valid()) {
1154      if (stats().time_until_cms_start() == 0.0) {
1155        return true;
1156      }
1157    } else {
1158      // We want to conservatively collect somewhat early in order
1159      // to try and "bootstrap" our CMS/promotion statistics;
1160      // this branch will not fire after the first successful CMS
1161      // collection because the stats should then be valid.
1162      if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1163        log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1164                  _cmsGen->occupancy(), _bootstrap_occupancy);
1165        return true;
1166      }
1167    }
1168  }
1169
1170  // Otherwise, we start a collection cycle if
1171  // old gen want a collection cycle started. Each may use
1172  // an appropriate criterion for making this decision.
1173  // XXX We need to make sure that the gen expansion
1174  // criterion dovetails well with this. XXX NEED TO FIX THIS
1175  if (_cmsGen->should_concurrent_collect()) {
1176    log.print("CMS old gen initiated");
1177    return true;
1178  }
1179
1180  // We start a collection if we believe an incremental collection may fail;
1181  // this is not likely to be productive in practice because it's probably too
1182  // late anyway.
1183  GenCollectedHeap* gch = GenCollectedHeap::heap();
1184  assert(gch->collector_policy()->is_generation_policy(),
1185         "You may want to check the correctness of the following");
1186  if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1187    log.print("CMSCollector: collect because incremental collection will fail ");
1188    return true;
1189  }
1190
1191  if (MetaspaceGC::should_concurrent_collect()) {
1192    log.print("CMSCollector: collect for metadata allocation ");
1193    return true;
1194  }
1195
1196  // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1197  if (CMSTriggerInterval >= 0) {
1198    if (CMSTriggerInterval == 0) {
1199      // Trigger always
1200      return true;
1201    }
1202
1203    // Check the CMS time since begin (we do not check the stats validity
1204    // as we want to be able to trigger the first CMS cycle as well)
1205    if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1206      if (stats().valid()) {
1207        log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1208                  stats().cms_time_since_begin());
1209      } else {
1210        log.print("CMSCollector: collect because of trigger interval (first collection)");
1211      }
1212      return true;
1213    }
1214  }
1215
1216  return false;
1217}
1218
1219void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1220
1221// Clear _expansion_cause fields of constituent generations
1222void CMSCollector::clear_expansion_cause() {
1223  _cmsGen->clear_expansion_cause();
1224}
1225
1226// We should be conservative in starting a collection cycle.  To
1227// start too eagerly runs the risk of collecting too often in the
1228// extreme.  To collect too rarely falls back on full collections,
1229// which works, even if not optimum in terms of concurrent work.
1230// As a work around for too eagerly collecting, use the flag
1231// UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1232// giving the user an easily understandable way of controlling the
1233// collections.
1234// We want to start a new collection cycle if any of the following
1235// conditions hold:
1236// . our current occupancy exceeds the configured initiating occupancy
1237//   for this generation, or
1238// . we recently needed to expand this space and have not, since that
1239//   expansion, done a collection of this generation, or
1240// . the underlying space believes that it may be a good idea to initiate
1241//   a concurrent collection (this may be based on criteria such as the
1242//   following: the space uses linear allocation and linear allocation is
1243//   going to fail, or there is believed to be excessive fragmentation in
1244//   the generation, etc... or ...
1245// [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1246//   the case of the old generation; see CR 6543076):
1247//   we may be approaching a point at which allocation requests may fail because
1248//   we will be out of sufficient free space given allocation rate estimates.]
1249bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1250
1251  assert_lock_strong(freelistLock());
1252  if (occupancy() > initiating_occupancy()) {
1253    log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1254                  short_name(), occupancy(), initiating_occupancy());
1255    return true;
1256  }
1257  if (UseCMSInitiatingOccupancyOnly) {
1258    return false;
1259  }
1260  if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1261    log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1262    return true;
1263  }
1264  return false;
1265}
1266
1267void ConcurrentMarkSweepGeneration::collect(bool   full,
1268                                            bool   clear_all_soft_refs,
1269                                            size_t size,
1270                                            bool   tlab)
1271{
1272  collector()->collect(full, clear_all_soft_refs, size, tlab);
1273}
1274
1275void CMSCollector::collect(bool   full,
1276                           bool   clear_all_soft_refs,
1277                           size_t size,
1278                           bool   tlab)
1279{
1280  // The following "if" branch is present for defensive reasons.
1281  // In the current uses of this interface, it can be replaced with:
1282  // assert(!GCLocker.is_active(), "Can't be called otherwise");
1283  // But I am not placing that assert here to allow future
1284  // generality in invoking this interface.
1285  if (GCLocker::is_active()) {
1286    // A consistency test for GCLocker
1287    assert(GCLocker::needs_gc(), "Should have been set already");
1288    // Skip this foreground collection, instead
1289    // expanding the heap if necessary.
1290    // Need the free list locks for the call to free() in compute_new_size()
1291    compute_new_size();
1292    return;
1293  }
1294  acquire_control_and_collect(full, clear_all_soft_refs);
1295}
1296
1297void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1298  GenCollectedHeap* gch = GenCollectedHeap::heap();
1299  unsigned int gc_count = gch->total_full_collections();
1300  if (gc_count == full_gc_count) {
1301    MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1302    _full_gc_requested = true;
1303    _full_gc_cause = cause;
1304    CGC_lock->notify();   // nudge CMS thread
1305  } else {
1306    assert(gc_count > full_gc_count, "Error: causal loop");
1307  }
1308}
1309
1310bool CMSCollector::is_external_interruption() {
1311  GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1312  return GCCause::is_user_requested_gc(cause) ||
1313         GCCause::is_serviceability_requested_gc(cause);
1314}
1315
1316void CMSCollector::report_concurrent_mode_interruption() {
1317  if (is_external_interruption()) {
1318    log_debug(gc)("Concurrent mode interrupted");
1319  } else {
1320    log_debug(gc)("Concurrent mode failure");
1321    _gc_tracer_cm->report_concurrent_mode_failure();
1322  }
1323}
1324
1325
1326// The foreground and background collectors need to coordinate in order
1327// to make sure that they do not mutually interfere with CMS collections.
1328// When a background collection is active,
1329// the foreground collector may need to take over (preempt) and
1330// synchronously complete an ongoing collection. Depending on the
1331// frequency of the background collections and the heap usage
1332// of the application, this preemption can be seldom or frequent.
1333// There are only certain
1334// points in the background collection that the "collection-baton"
1335// can be passed to the foreground collector.
1336//
1337// The foreground collector will wait for the baton before
1338// starting any part of the collection.  The foreground collector
1339// will only wait at one location.
1340//
1341// The background collector will yield the baton before starting a new
1342// phase of the collection (e.g., before initial marking, marking from roots,
1343// precleaning, final re-mark, sweep etc.)  This is normally done at the head
1344// of the loop which switches the phases. The background collector does some
1345// of the phases (initial mark, final re-mark) with the world stopped.
1346// Because of locking involved in stopping the world,
1347// the foreground collector should not block waiting for the background
1348// collector when it is doing a stop-the-world phase.  The background
1349// collector will yield the baton at an additional point just before
1350// it enters a stop-the-world phase.  Once the world is stopped, the
1351// background collector checks the phase of the collection.  If the
1352// phase has not changed, it proceeds with the collection.  If the
1353// phase has changed, it skips that phase of the collection.  See
1354// the comments on the use of the Heap_lock in collect_in_background().
1355//
1356// Variable used in baton passing.
1357//   _foregroundGCIsActive - Set to true by the foreground collector when
1358//      it wants the baton.  The foreground clears it when it has finished
1359//      the collection.
1360//   _foregroundGCShouldWait - Set to true by the background collector
1361//        when it is running.  The foreground collector waits while
1362//      _foregroundGCShouldWait is true.
1363//  CGC_lock - monitor used to protect access to the above variables
1364//      and to notify the foreground and background collectors.
1365//  _collectorState - current state of the CMS collection.
1366//
1367// The foreground collector
1368//   acquires the CGC_lock
1369//   sets _foregroundGCIsActive
1370//   waits on the CGC_lock for _foregroundGCShouldWait to be false
1371//     various locks acquired in preparation for the collection
1372//     are released so as not to block the background collector
1373//     that is in the midst of a collection
1374//   proceeds with the collection
1375//   clears _foregroundGCIsActive
1376//   returns
1377//
1378// The background collector in a loop iterating on the phases of the
1379//      collection
1380//   acquires the CGC_lock
1381//   sets _foregroundGCShouldWait
1382//   if _foregroundGCIsActive is set
1383//     clears _foregroundGCShouldWait, notifies _CGC_lock
1384//     waits on _CGC_lock for _foregroundGCIsActive to become false
1385//     and exits the loop.
1386//   otherwise
1387//     proceed with that phase of the collection
1388//     if the phase is a stop-the-world phase,
1389//       yield the baton once more just before enqueueing
1390//       the stop-world CMS operation (executed by the VM thread).
1391//   returns after all phases of the collection are done
1392//
1393
1394void CMSCollector::acquire_control_and_collect(bool full,
1395        bool clear_all_soft_refs) {
1396  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1397  assert(!Thread::current()->is_ConcurrentGC_thread(),
1398         "shouldn't try to acquire control from self!");
1399
1400  // Start the protocol for acquiring control of the
1401  // collection from the background collector (aka CMS thread).
1402  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1403         "VM thread should have CMS token");
1404  // Remember the possibly interrupted state of an ongoing
1405  // concurrent collection
1406  CollectorState first_state = _collectorState;
1407
1408  // Signal to a possibly ongoing concurrent collection that
1409  // we want to do a foreground collection.
1410  _foregroundGCIsActive = true;
1411
1412  // release locks and wait for a notify from the background collector
1413  // releasing the locks in only necessary for phases which
1414  // do yields to improve the granularity of the collection.
1415  assert_lock_strong(bitMapLock());
1416  // We need to lock the Free list lock for the space that we are
1417  // currently collecting.
1418  assert(haveFreelistLocks(), "Must be holding free list locks");
1419  bitMapLock()->unlock();
1420  releaseFreelistLocks();
1421  {
1422    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1423    if (_foregroundGCShouldWait) {
1424      // We are going to be waiting for action for the CMS thread;
1425      // it had better not be gone (for instance at shutdown)!
1426      assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1427             "CMS thread must be running");
1428      // Wait here until the background collector gives us the go-ahead
1429      ConcurrentMarkSweepThread::clear_CMS_flag(
1430        ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1431      // Get a possibly blocked CMS thread going:
1432      //   Note that we set _foregroundGCIsActive true above,
1433      //   without protection of the CGC_lock.
1434      CGC_lock->notify();
1435      assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1436             "Possible deadlock");
1437      while (_foregroundGCShouldWait) {
1438        // wait for notification
1439        CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1440        // Possibility of delay/starvation here, since CMS token does
1441        // not know to give priority to VM thread? Actually, i think
1442        // there wouldn't be any delay/starvation, but the proof of
1443        // that "fact" (?) appears non-trivial. XXX 20011219YSR
1444      }
1445      ConcurrentMarkSweepThread::set_CMS_flag(
1446        ConcurrentMarkSweepThread::CMS_vm_has_token);
1447    }
1448  }
1449  // The CMS_token is already held.  Get back the other locks.
1450  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1451         "VM thread should have CMS token");
1452  getFreelistLocks();
1453  bitMapLock()->lock_without_safepoint_check();
1454  log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1455                       p2i(Thread::current()), first_state);
1456  log_debug(gc, state)("    gets control with state %d", _collectorState);
1457
1458  // Inform cms gen if this was due to partial collection failing.
1459  // The CMS gen may use this fact to determine its expansion policy.
1460  GenCollectedHeap* gch = GenCollectedHeap::heap();
1461  if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1462    assert(!_cmsGen->incremental_collection_failed(),
1463           "Should have been noticed, reacted to and cleared");
1464    _cmsGen->set_incremental_collection_failed();
1465  }
1466
1467  if (first_state > Idling) {
1468    report_concurrent_mode_interruption();
1469  }
1470
1471  set_did_compact(true);
1472
1473  // If the collection is being acquired from the background
1474  // collector, there may be references on the discovered
1475  // references lists.  Abandon those references, since some
1476  // of them may have become unreachable after concurrent
1477  // discovery; the STW compacting collector will redo discovery
1478  // more precisely, without being subject to floating garbage.
1479  // Leaving otherwise unreachable references in the discovered
1480  // lists would require special handling.
1481  ref_processor()->disable_discovery();
1482  ref_processor()->abandon_partial_discovery();
1483  ref_processor()->verify_no_references_recorded();
1484
1485  if (first_state > Idling) {
1486    save_heap_summary();
1487  }
1488
1489  do_compaction_work(clear_all_soft_refs);
1490
1491  // Has the GC time limit been exceeded?
1492  size_t max_eden_size = _young_gen->max_eden_size();
1493  GCCause::Cause gc_cause = gch->gc_cause();
1494  size_policy()->check_gc_overhead_limit(_young_gen->used(),
1495                                         _young_gen->eden()->used(),
1496                                         _cmsGen->max_capacity(),
1497                                         max_eden_size,
1498                                         full,
1499                                         gc_cause,
1500                                         gch->collector_policy());
1501
1502  // Reset the expansion cause, now that we just completed
1503  // a collection cycle.
1504  clear_expansion_cause();
1505  _foregroundGCIsActive = false;
1506  return;
1507}
1508
1509// Resize the tenured generation
1510// after obtaining the free list locks for the
1511// two generations.
1512void CMSCollector::compute_new_size() {
1513  assert_locked_or_safepoint(Heap_lock);
1514  FreelistLocker z(this);
1515  MetaspaceGC::compute_new_size();
1516  _cmsGen->compute_new_size_free_list();
1517}
1518
1519// A work method used by the foreground collector to do
1520// a mark-sweep-compact.
1521void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1522  GenCollectedHeap* gch = GenCollectedHeap::heap();
1523
1524  STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1525  gc_timer->register_gc_start();
1526
1527  SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1528  gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1529
1530  gch->pre_full_gc_dump(gc_timer);
1531
1532  GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1533
1534  // Temporarily widen the span of the weak reference processing to
1535  // the entire heap.
1536  MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1537  ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1538  // Temporarily, clear the "is_alive_non_header" field of the
1539  // reference processor.
1540  ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1541  // Temporarily make reference _processing_ single threaded (non-MT).
1542  ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1543  // Temporarily make refs discovery atomic
1544  ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1545  // Temporarily make reference _discovery_ single threaded (non-MT)
1546  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1547
1548  ref_processor()->set_enqueuing_is_done(false);
1549  ref_processor()->enable_discovery();
1550  ref_processor()->setup_policy(clear_all_soft_refs);
1551  // If an asynchronous collection finishes, the _modUnionTable is
1552  // all clear.  If we are assuming the collection from an asynchronous
1553  // collection, clear the _modUnionTable.
1554  assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1555    "_modUnionTable should be clear if the baton was not passed");
1556  _modUnionTable.clear_all();
1557  assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1558    "mod union for klasses should be clear if the baton was passed");
1559  _ct->klass_rem_set()->clear_mod_union();
1560
1561  // We must adjust the allocation statistics being maintained
1562  // in the free list space. We do so by reading and clearing
1563  // the sweep timer and updating the block flux rate estimates below.
1564  assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1565  if (_inter_sweep_timer.is_active()) {
1566    _inter_sweep_timer.stop();
1567    // Note that we do not use this sample to update the _inter_sweep_estimate.
1568    _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1569                                            _inter_sweep_estimate.padded_average(),
1570                                            _intra_sweep_estimate.padded_average());
1571  }
1572
1573  GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1574  #ifdef ASSERT
1575    CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1576    size_t free_size = cms_space->free();
1577    assert(free_size ==
1578           pointer_delta(cms_space->end(), cms_space->compaction_top())
1579           * HeapWordSize,
1580      "All the free space should be compacted into one chunk at top");
1581    assert(cms_space->dictionary()->total_chunk_size(
1582                                      debug_only(cms_space->freelistLock())) == 0 ||
1583           cms_space->totalSizeInIndexedFreeLists() == 0,
1584      "All the free space should be in a single chunk");
1585    size_t num = cms_space->totalCount();
1586    assert((free_size == 0 && num == 0) ||
1587           (free_size > 0  && (num == 1 || num == 2)),
1588         "There should be at most 2 free chunks after compaction");
1589  #endif // ASSERT
1590  _collectorState = Resetting;
1591  assert(_restart_addr == NULL,
1592         "Should have been NULL'd before baton was passed");
1593  reset_stw();
1594  _cmsGen->reset_after_compaction();
1595  _concurrent_cycles_since_last_unload = 0;
1596
1597  // Clear any data recorded in the PLAB chunk arrays.
1598  if (_survivor_plab_array != NULL) {
1599    reset_survivor_plab_arrays();
1600  }
1601
1602  // Adjust the per-size allocation stats for the next epoch.
1603  _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1604  // Restart the "inter sweep timer" for the next epoch.
1605  _inter_sweep_timer.reset();
1606  _inter_sweep_timer.start();
1607
1608  // No longer a need to do a concurrent collection for Metaspace.
1609  MetaspaceGC::set_should_concurrent_collect(false);
1610
1611  gch->post_full_gc_dump(gc_timer);
1612
1613  gc_timer->register_gc_end();
1614
1615  gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1616
1617  // For a mark-sweep-compact, compute_new_size() will be called
1618  // in the heap's do_collection() method.
1619}
1620
1621void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1622  Log(gc, heap) log;
1623  if (!log.is_trace()) {
1624    return;
1625  }
1626
1627  ContiguousSpace* eden_space = _young_gen->eden();
1628  ContiguousSpace* from_space = _young_gen->from();
1629  ContiguousSpace* to_space   = _young_gen->to();
1630  // Eden
1631  if (_eden_chunk_array != NULL) {
1632    log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1633              p2i(eden_space->bottom()), p2i(eden_space->top()),
1634              p2i(eden_space->end()), eden_space->capacity());
1635    log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1636              _eden_chunk_index, _eden_chunk_capacity);
1637    for (size_t i = 0; i < _eden_chunk_index; i++) {
1638      log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1639    }
1640  }
1641  // Survivor
1642  if (_survivor_chunk_array != NULL) {
1643    log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1644              p2i(from_space->bottom()), p2i(from_space->top()),
1645              p2i(from_space->end()), from_space->capacity());
1646    log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1647              _survivor_chunk_index, _survivor_chunk_capacity);
1648    for (size_t i = 0; i < _survivor_chunk_index; i++) {
1649      log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1650    }
1651  }
1652}
1653
1654void CMSCollector::getFreelistLocks() const {
1655  // Get locks for all free lists in all generations that this
1656  // collector is responsible for
1657  _cmsGen->freelistLock()->lock_without_safepoint_check();
1658}
1659
1660void CMSCollector::releaseFreelistLocks() const {
1661  // Release locks for all free lists in all generations that this
1662  // collector is responsible for
1663  _cmsGen->freelistLock()->unlock();
1664}
1665
1666bool CMSCollector::haveFreelistLocks() const {
1667  // Check locks for all free lists in all generations that this
1668  // collector is responsible for
1669  assert_lock_strong(_cmsGen->freelistLock());
1670  PRODUCT_ONLY(ShouldNotReachHere());
1671  return true;
1672}
1673
1674// A utility class that is used by the CMS collector to
1675// temporarily "release" the foreground collector from its
1676// usual obligation to wait for the background collector to
1677// complete an ongoing phase before proceeding.
1678class ReleaseForegroundGC: public StackObj {
1679 private:
1680  CMSCollector* _c;
1681 public:
1682  ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1683    assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1684    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1685    // allow a potentially blocked foreground collector to proceed
1686    _c->_foregroundGCShouldWait = false;
1687    if (_c->_foregroundGCIsActive) {
1688      CGC_lock->notify();
1689    }
1690    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1691           "Possible deadlock");
1692  }
1693
1694  ~ReleaseForegroundGC() {
1695    assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1696    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1697    _c->_foregroundGCShouldWait = true;
1698  }
1699};
1700
1701void CMSCollector::collect_in_background(GCCause::Cause cause) {
1702  assert(Thread::current()->is_ConcurrentGC_thread(),
1703    "A CMS asynchronous collection is only allowed on a CMS thread.");
1704
1705  GenCollectedHeap* gch = GenCollectedHeap::heap();
1706  {
1707    bool safepoint_check = Mutex::_no_safepoint_check_flag;
1708    MutexLockerEx hl(Heap_lock, safepoint_check);
1709    FreelistLocker fll(this);
1710    MutexLockerEx x(CGC_lock, safepoint_check);
1711    if (_foregroundGCIsActive) {
1712      // The foreground collector is. Skip this
1713      // background collection.
1714      assert(!_foregroundGCShouldWait, "Should be clear");
1715      return;
1716    } else {
1717      assert(_collectorState == Idling, "Should be idling before start.");
1718      _collectorState = InitialMarking;
1719      register_gc_start(cause);
1720      // Reset the expansion cause, now that we are about to begin
1721      // a new cycle.
1722      clear_expansion_cause();
1723
1724      // Clear the MetaspaceGC flag since a concurrent collection
1725      // is starting but also clear it after the collection.
1726      MetaspaceGC::set_should_concurrent_collect(false);
1727    }
1728    // Decide if we want to enable class unloading as part of the
1729    // ensuing concurrent GC cycle.
1730    update_should_unload_classes();
1731    _full_gc_requested = false;           // acks all outstanding full gc requests
1732    _full_gc_cause = GCCause::_no_gc;
1733    // Signal that we are about to start a collection
1734    gch->increment_total_full_collections();  // ... starting a collection cycle
1735    _collection_count_start = gch->total_full_collections();
1736  }
1737
1738  size_t prev_used = _cmsGen->used();
1739
1740  // The change of the collection state is normally done at this level;
1741  // the exceptions are phases that are executed while the world is
1742  // stopped.  For those phases the change of state is done while the
1743  // world is stopped.  For baton passing purposes this allows the
1744  // background collector to finish the phase and change state atomically.
1745  // The foreground collector cannot wait on a phase that is done
1746  // while the world is stopped because the foreground collector already
1747  // has the world stopped and would deadlock.
1748  while (_collectorState != Idling) {
1749    log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1750                         p2i(Thread::current()), _collectorState);
1751    // The foreground collector
1752    //   holds the Heap_lock throughout its collection.
1753    //   holds the CMS token (but not the lock)
1754    //     except while it is waiting for the background collector to yield.
1755    //
1756    // The foreground collector should be blocked (not for long)
1757    //   if the background collector is about to start a phase
1758    //   executed with world stopped.  If the background
1759    //   collector has already started such a phase, the
1760    //   foreground collector is blocked waiting for the
1761    //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1762    //   are executed in the VM thread.
1763    //
1764    // The locking order is
1765    //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1766    //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1767    //   CMS token  (claimed in
1768    //                stop_world_and_do() -->
1769    //                  safepoint_synchronize() -->
1770    //                    CMSThread::synchronize())
1771
1772    {
1773      // Check if the FG collector wants us to yield.
1774      CMSTokenSync x(true); // is cms thread
1775      if (waitForForegroundGC()) {
1776        // We yielded to a foreground GC, nothing more to be
1777        // done this round.
1778        assert(_foregroundGCShouldWait == false, "We set it to false in "
1779               "waitForForegroundGC()");
1780        log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1781                             p2i(Thread::current()), _collectorState);
1782        return;
1783      } else {
1784        // The background collector can run but check to see if the
1785        // foreground collector has done a collection while the
1786        // background collector was waiting to get the CGC_lock
1787        // above.  If yes, break so that _foregroundGCShouldWait
1788        // is cleared before returning.
1789        if (_collectorState == Idling) {
1790          break;
1791        }
1792      }
1793    }
1794
1795    assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1796      "should be waiting");
1797
1798    switch (_collectorState) {
1799      case InitialMarking:
1800        {
1801          ReleaseForegroundGC x(this);
1802          stats().record_cms_begin();
1803          VM_CMS_Initial_Mark initial_mark_op(this);
1804          VMThread::execute(&initial_mark_op);
1805        }
1806        // The collector state may be any legal state at this point
1807        // since the background collector may have yielded to the
1808        // foreground collector.
1809        break;
1810      case Marking:
1811        // initial marking in checkpointRootsInitialWork has been completed
1812        if (markFromRoots()) { // we were successful
1813          assert(_collectorState == Precleaning, "Collector state should "
1814            "have changed");
1815        } else {
1816          assert(_foregroundGCIsActive, "Internal state inconsistency");
1817        }
1818        break;
1819      case Precleaning:
1820        // marking from roots in markFromRoots has been completed
1821        preclean();
1822        assert(_collectorState == AbortablePreclean ||
1823               _collectorState == FinalMarking,
1824               "Collector state should have changed");
1825        break;
1826      case AbortablePreclean:
1827        abortable_preclean();
1828        assert(_collectorState == FinalMarking, "Collector state should "
1829          "have changed");
1830        break;
1831      case FinalMarking:
1832        {
1833          ReleaseForegroundGC x(this);
1834
1835          VM_CMS_Final_Remark final_remark_op(this);
1836          VMThread::execute(&final_remark_op);
1837        }
1838        assert(_foregroundGCShouldWait, "block post-condition");
1839        break;
1840      case Sweeping:
1841        // final marking in checkpointRootsFinal has been completed
1842        sweep();
1843        assert(_collectorState == Resizing, "Collector state change "
1844          "to Resizing must be done under the free_list_lock");
1845
1846      case Resizing: {
1847        // Sweeping has been completed...
1848        // At this point the background collection has completed.
1849        // Don't move the call to compute_new_size() down
1850        // into code that might be executed if the background
1851        // collection was preempted.
1852        {
1853          ReleaseForegroundGC x(this);   // unblock FG collection
1854          MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1855          CMSTokenSync        z(true);   // not strictly needed.
1856          if (_collectorState == Resizing) {
1857            compute_new_size();
1858            save_heap_summary();
1859            _collectorState = Resetting;
1860          } else {
1861            assert(_collectorState == Idling, "The state should only change"
1862                   " because the foreground collector has finished the collection");
1863          }
1864        }
1865        break;
1866      }
1867      case Resetting:
1868        // CMS heap resizing has been completed
1869        reset_concurrent();
1870        assert(_collectorState == Idling, "Collector state should "
1871          "have changed");
1872
1873        MetaspaceGC::set_should_concurrent_collect(false);
1874
1875        stats().record_cms_end();
1876        // Don't move the concurrent_phases_end() and compute_new_size()
1877        // calls to here because a preempted background collection
1878        // has it's state set to "Resetting".
1879        break;
1880      case Idling:
1881      default:
1882        ShouldNotReachHere();
1883        break;
1884    }
1885    log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1886                         p2i(Thread::current()), _collectorState);
1887    assert(_foregroundGCShouldWait, "block post-condition");
1888  }
1889
1890  // Should this be in gc_epilogue?
1891  collector_policy()->counters()->update_counters();
1892
1893  {
1894    // Clear _foregroundGCShouldWait and, in the event that the
1895    // foreground collector is waiting, notify it, before
1896    // returning.
1897    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1898    _foregroundGCShouldWait = false;
1899    if (_foregroundGCIsActive) {
1900      CGC_lock->notify();
1901    }
1902    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1903           "Possible deadlock");
1904  }
1905  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1906                       p2i(Thread::current()), _collectorState);
1907  log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1908                     prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1909}
1910
1911void CMSCollector::register_gc_start(GCCause::Cause cause) {
1912  _cms_start_registered = true;
1913  _gc_timer_cm->register_gc_start();
1914  _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1915}
1916
1917void CMSCollector::register_gc_end() {
1918  if (_cms_start_registered) {
1919    report_heap_summary(GCWhen::AfterGC);
1920
1921    _gc_timer_cm->register_gc_end();
1922    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1923    _cms_start_registered = false;
1924  }
1925}
1926
1927void CMSCollector::save_heap_summary() {
1928  GenCollectedHeap* gch = GenCollectedHeap::heap();
1929  _last_heap_summary = gch->create_heap_summary();
1930  _last_metaspace_summary = gch->create_metaspace_summary();
1931}
1932
1933void CMSCollector::report_heap_summary(GCWhen::Type when) {
1934  _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1935  _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1936}
1937
1938bool CMSCollector::waitForForegroundGC() {
1939  bool res = false;
1940  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1941         "CMS thread should have CMS token");
1942  // Block the foreground collector until the
1943  // background collectors decides whether to
1944  // yield.
1945  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1946  _foregroundGCShouldWait = true;
1947  if (_foregroundGCIsActive) {
1948    // The background collector yields to the
1949    // foreground collector and returns a value
1950    // indicating that it has yielded.  The foreground
1951    // collector can proceed.
1952    res = true;
1953    _foregroundGCShouldWait = false;
1954    ConcurrentMarkSweepThread::clear_CMS_flag(
1955      ConcurrentMarkSweepThread::CMS_cms_has_token);
1956    ConcurrentMarkSweepThread::set_CMS_flag(
1957      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1958    // Get a possibly blocked foreground thread going
1959    CGC_lock->notify();
1960    log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1961                         p2i(Thread::current()), _collectorState);
1962    while (_foregroundGCIsActive) {
1963      CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1964    }
1965    ConcurrentMarkSweepThread::set_CMS_flag(
1966      ConcurrentMarkSweepThread::CMS_cms_has_token);
1967    ConcurrentMarkSweepThread::clear_CMS_flag(
1968      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1969  }
1970  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1971                       p2i(Thread::current()), _collectorState);
1972  return res;
1973}
1974
1975// Because of the need to lock the free lists and other structures in
1976// the collector, common to all the generations that the collector is
1977// collecting, we need the gc_prologues of individual CMS generations
1978// delegate to their collector. It may have been simpler had the
1979// current infrastructure allowed one to call a prologue on a
1980// collector. In the absence of that we have the generation's
1981// prologue delegate to the collector, which delegates back
1982// some "local" work to a worker method in the individual generations
1983// that it's responsible for collecting, while itself doing any
1984// work common to all generations it's responsible for. A similar
1985// comment applies to the  gc_epilogue()'s.
1986// The role of the variable _between_prologue_and_epilogue is to
1987// enforce the invocation protocol.
1988void CMSCollector::gc_prologue(bool full) {
1989  // Call gc_prologue_work() for the CMSGen
1990  // we are responsible for.
1991
1992  // The following locking discipline assumes that we are only called
1993  // when the world is stopped.
1994  assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1995
1996  // The CMSCollector prologue must call the gc_prologues for the
1997  // "generations" that it's responsible
1998  // for.
1999
2000  assert(   Thread::current()->is_VM_thread()
2001         || (   CMSScavengeBeforeRemark
2002             && Thread::current()->is_ConcurrentGC_thread()),
2003         "Incorrect thread type for prologue execution");
2004
2005  if (_between_prologue_and_epilogue) {
2006    // We have already been invoked; this is a gc_prologue delegation
2007    // from yet another CMS generation that we are responsible for, just
2008    // ignore it since all relevant work has already been done.
2009    return;
2010  }
2011
2012  // set a bit saying prologue has been called; cleared in epilogue
2013  _between_prologue_and_epilogue = true;
2014  // Claim locks for common data structures, then call gc_prologue_work()
2015  // for each CMSGen.
2016
2017  getFreelistLocks();   // gets free list locks on constituent spaces
2018  bitMapLock()->lock_without_safepoint_check();
2019
2020  // Should call gc_prologue_work() for all cms gens we are responsible for
2021  bool duringMarking =    _collectorState >= Marking
2022                         && _collectorState < Sweeping;
2023
2024  // The young collections clear the modified oops state, which tells if
2025  // there are any modified oops in the class. The remark phase also needs
2026  // that information. Tell the young collection to save the union of all
2027  // modified klasses.
2028  if (duringMarking) {
2029    _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2030  }
2031
2032  bool registerClosure = duringMarking;
2033
2034  _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2035
2036  if (!full) {
2037    stats().record_gc0_begin();
2038  }
2039}
2040
2041void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2042
2043  _capacity_at_prologue = capacity();
2044  _used_at_prologue = used();
2045
2046  // We enable promotion tracking so that card-scanning can recognize
2047  // which objects have been promoted during this GC and skip them.
2048  for (uint i = 0; i < ParallelGCThreads; i++) {
2049    _par_gc_thread_states[i]->promo.startTrackingPromotions();
2050  }
2051
2052  // Delegate to CMScollector which knows how to coordinate between
2053  // this and any other CMS generations that it is responsible for
2054  // collecting.
2055  collector()->gc_prologue(full);
2056}
2057
2058// This is a "private" interface for use by this generation's CMSCollector.
2059// Not to be called directly by any other entity (for instance,
2060// GenCollectedHeap, which calls the "public" gc_prologue method above).
2061void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2062  bool registerClosure, ModUnionClosure* modUnionClosure) {
2063  assert(!incremental_collection_failed(), "Shouldn't be set yet");
2064  assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2065    "Should be NULL");
2066  if (registerClosure) {
2067    cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2068  }
2069  cmsSpace()->gc_prologue();
2070  // Clear stat counters
2071  NOT_PRODUCT(
2072    assert(_numObjectsPromoted == 0, "check");
2073    assert(_numWordsPromoted   == 0, "check");
2074    log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2075                                 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2076    _numObjectsAllocated = 0;
2077    _numWordsAllocated   = 0;
2078  )
2079}
2080
2081void CMSCollector::gc_epilogue(bool full) {
2082  // The following locking discipline assumes that we are only called
2083  // when the world is stopped.
2084  assert(SafepointSynchronize::is_at_safepoint(),
2085         "world is stopped assumption");
2086
2087  // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2088  // if linear allocation blocks need to be appropriately marked to allow the
2089  // the blocks to be parsable. We also check here whether we need to nudge the
2090  // CMS collector thread to start a new cycle (if it's not already active).
2091  assert(   Thread::current()->is_VM_thread()
2092         || (   CMSScavengeBeforeRemark
2093             && Thread::current()->is_ConcurrentGC_thread()),
2094         "Incorrect thread type for epilogue execution");
2095
2096  if (!_between_prologue_and_epilogue) {
2097    // We have already been invoked; this is a gc_epilogue delegation
2098    // from yet another CMS generation that we are responsible for, just
2099    // ignore it since all relevant work has already been done.
2100    return;
2101  }
2102  assert(haveFreelistLocks(), "must have freelist locks");
2103  assert_lock_strong(bitMapLock());
2104
2105  _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2106
2107  _cmsGen->gc_epilogue_work(full);
2108
2109  if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2110    // in case sampling was not already enabled, enable it
2111    _start_sampling = true;
2112  }
2113  // reset _eden_chunk_array so sampling starts afresh
2114  _eden_chunk_index = 0;
2115
2116  size_t cms_used   = _cmsGen->cmsSpace()->used();
2117
2118  // update performance counters - this uses a special version of
2119  // update_counters() that allows the utilization to be passed as a
2120  // parameter, avoiding multiple calls to used().
2121  //
2122  _cmsGen->update_counters(cms_used);
2123
2124  bitMapLock()->unlock();
2125  releaseFreelistLocks();
2126
2127  if (!CleanChunkPoolAsync) {
2128    Chunk::clean_chunk_pool();
2129  }
2130
2131  set_did_compact(false);
2132  _between_prologue_and_epilogue = false;  // ready for next cycle
2133}
2134
2135void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2136  collector()->gc_epilogue(full);
2137
2138  // When using ParNew, promotion tracking should have already been
2139  // disabled. However, the prologue (which enables promotion
2140  // tracking) and epilogue are called irrespective of the type of
2141  // GC. So they will also be called before and after Full GCs, during
2142  // which promotion tracking will not be explicitly disabled. So,
2143  // it's safer to also disable it here too (to be symmetric with
2144  // enabling it in the prologue).
2145  for (uint i = 0; i < ParallelGCThreads; i++) {
2146    _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2147  }
2148}
2149
2150void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2151  assert(!incremental_collection_failed(), "Should have been cleared");
2152  cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2153  cmsSpace()->gc_epilogue();
2154    // Print stat counters
2155  NOT_PRODUCT(
2156    assert(_numObjectsAllocated == 0, "check");
2157    assert(_numWordsAllocated == 0, "check");
2158    log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2159                                     _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2160    _numObjectsPromoted = 0;
2161    _numWordsPromoted   = 0;
2162  )
2163
2164  // Call down the chain in contiguous_available needs the freelistLock
2165  // so print this out before releasing the freeListLock.
2166  log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2167}
2168
2169#ifndef PRODUCT
2170bool CMSCollector::have_cms_token() {
2171  Thread* thr = Thread::current();
2172  if (thr->is_VM_thread()) {
2173    return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2174  } else if (thr->is_ConcurrentGC_thread()) {
2175    return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2176  } else if (thr->is_GC_task_thread()) {
2177    return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2178           ParGCRareEvent_lock->owned_by_self();
2179  }
2180  return false;
2181}
2182
2183// Check reachability of the given heap address in CMS generation,
2184// treating all other generations as roots.
2185bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2186  // We could "guarantee" below, rather than assert, but I'll
2187  // leave these as "asserts" so that an adventurous debugger
2188  // could try this in the product build provided some subset of
2189  // the conditions were met, provided they were interested in the
2190  // results and knew that the computation below wouldn't interfere
2191  // with other concurrent computations mutating the structures
2192  // being read or written.
2193  assert(SafepointSynchronize::is_at_safepoint(),
2194         "Else mutations in object graph will make answer suspect");
2195  assert(have_cms_token(), "Should hold cms token");
2196  assert(haveFreelistLocks(), "must hold free list locks");
2197  assert_lock_strong(bitMapLock());
2198
2199  // Clear the marking bit map array before starting, but, just
2200  // for kicks, first report if the given address is already marked
2201  tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2202                _markBitMap.isMarked(addr) ? "" : " not");
2203
2204  if (verify_after_remark()) {
2205    MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2206    bool result = verification_mark_bm()->isMarked(addr);
2207    tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2208                  result ? "IS" : "is NOT");
2209    return result;
2210  } else {
2211    tty->print_cr("Could not compute result");
2212    return false;
2213  }
2214}
2215#endif
2216
2217void
2218CMSCollector::print_on_error(outputStream* st) {
2219  CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2220  if (collector != NULL) {
2221    CMSBitMap* bitmap = &collector->_markBitMap;
2222    st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2223    bitmap->print_on_error(st, " Bits: ");
2224
2225    st->cr();
2226
2227    CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2228    st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2229    mut_bitmap->print_on_error(st, " Bits: ");
2230  }
2231}
2232
2233////////////////////////////////////////////////////////
2234// CMS Verification Support
2235////////////////////////////////////////////////////////
2236// Following the remark phase, the following invariant
2237// should hold -- each object in the CMS heap which is
2238// marked in markBitMap() should be marked in the verification_mark_bm().
2239
2240class VerifyMarkedClosure: public BitMapClosure {
2241  CMSBitMap* _marks;
2242  bool       _failed;
2243
2244 public:
2245  VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2246
2247  bool do_bit(size_t offset) {
2248    HeapWord* addr = _marks->offsetToHeapWord(offset);
2249    if (!_marks->isMarked(addr)) {
2250      Log(gc, verify) log;
2251      ResourceMark rm;
2252      oop(addr)->print_on(log.error_stream());
2253      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2254      _failed = true;
2255    }
2256    return true;
2257  }
2258
2259  bool failed() { return _failed; }
2260};
2261
2262bool CMSCollector::verify_after_remark() {
2263  GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2264  MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2265  static bool init = false;
2266
2267  assert(SafepointSynchronize::is_at_safepoint(),
2268         "Else mutations in object graph will make answer suspect");
2269  assert(have_cms_token(),
2270         "Else there may be mutual interference in use of "
2271         " verification data structures");
2272  assert(_collectorState > Marking && _collectorState <= Sweeping,
2273         "Else marking info checked here may be obsolete");
2274  assert(haveFreelistLocks(), "must hold free list locks");
2275  assert_lock_strong(bitMapLock());
2276
2277
2278  // Allocate marking bit map if not already allocated
2279  if (!init) { // first time
2280    if (!verification_mark_bm()->allocate(_span)) {
2281      return false;
2282    }
2283    init = true;
2284  }
2285
2286  assert(verification_mark_stack()->isEmpty(), "Should be empty");
2287
2288  // Turn off refs discovery -- so we will be tracing through refs.
2289  // This is as intended, because by this time
2290  // GC must already have cleared any refs that need to be cleared,
2291  // and traced those that need to be marked; moreover,
2292  // the marking done here is not going to interfere in any
2293  // way with the marking information used by GC.
2294  NoRefDiscovery no_discovery(ref_processor());
2295
2296#if defined(COMPILER2) || INCLUDE_JVMCI
2297  DerivedPointerTableDeactivate dpt_deact;
2298#endif
2299
2300  // Clear any marks from a previous round
2301  verification_mark_bm()->clear_all();
2302  assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2303  verify_work_stacks_empty();
2304
2305  GenCollectedHeap* gch = GenCollectedHeap::heap();
2306  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2307  // Update the saved marks which may affect the root scans.
2308  gch->save_marks();
2309
2310  if (CMSRemarkVerifyVariant == 1) {
2311    // In this first variant of verification, we complete
2312    // all marking, then check if the new marks-vector is
2313    // a subset of the CMS marks-vector.
2314    verify_after_remark_work_1();
2315  } else {
2316    guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2317    // In this second variant of verification, we flag an error
2318    // (i.e. an object reachable in the new marks-vector not reachable
2319    // in the CMS marks-vector) immediately, also indicating the
2320    // identify of an object (A) that references the unmarked object (B) --
2321    // presumably, a mutation to A failed to be picked up by preclean/remark?
2322    verify_after_remark_work_2();
2323  }
2324
2325  return true;
2326}
2327
2328void CMSCollector::verify_after_remark_work_1() {
2329  ResourceMark rm;
2330  HandleMark  hm;
2331  GenCollectedHeap* gch = GenCollectedHeap::heap();
2332
2333  // Get a clear set of claim bits for the roots processing to work with.
2334  ClassLoaderDataGraph::clear_claimed_marks();
2335
2336  // Mark from roots one level into CMS
2337  MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2338  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2339
2340  {
2341    StrongRootsScope srs(1);
2342
2343    gch->gen_process_roots(&srs,
2344                           GenCollectedHeap::OldGen,
2345                           true,   // young gen as roots
2346                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2347                           should_unload_classes(),
2348                           &notOlder,
2349                           NULL,
2350                           NULL);
2351  }
2352
2353  // Now mark from the roots
2354  MarkFromRootsClosure markFromRootsClosure(this, _span,
2355    verification_mark_bm(), verification_mark_stack(),
2356    false /* don't yield */, true /* verifying */);
2357  assert(_restart_addr == NULL, "Expected pre-condition");
2358  verification_mark_bm()->iterate(&markFromRootsClosure);
2359  while (_restart_addr != NULL) {
2360    // Deal with stack overflow: by restarting at the indicated
2361    // address.
2362    HeapWord* ra = _restart_addr;
2363    markFromRootsClosure.reset(ra);
2364    _restart_addr = NULL;
2365    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2366  }
2367  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2368  verify_work_stacks_empty();
2369
2370  // Marking completed -- now verify that each bit marked in
2371  // verification_mark_bm() is also marked in markBitMap(); flag all
2372  // errors by printing corresponding objects.
2373  VerifyMarkedClosure vcl(markBitMap());
2374  verification_mark_bm()->iterate(&vcl);
2375  if (vcl.failed()) {
2376    Log(gc, verify) log;
2377    log.error("Failed marking verification after remark");
2378    ResourceMark rm;
2379    gch->print_on(log.error_stream());
2380    fatal("CMS: failed marking verification after remark");
2381  }
2382}
2383
2384class VerifyKlassOopsKlassClosure : public KlassClosure {
2385  class VerifyKlassOopsClosure : public OopClosure {
2386    CMSBitMap* _bitmap;
2387   public:
2388    VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2389    void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2390    void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2391  } _oop_closure;
2392 public:
2393  VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2394  void do_klass(Klass* k) {
2395    k->oops_do(&_oop_closure);
2396  }
2397};
2398
2399void CMSCollector::verify_after_remark_work_2() {
2400  ResourceMark rm;
2401  HandleMark  hm;
2402  GenCollectedHeap* gch = GenCollectedHeap::heap();
2403
2404  // Get a clear set of claim bits for the roots processing to work with.
2405  ClassLoaderDataGraph::clear_claimed_marks();
2406
2407  // Mark from roots one level into CMS
2408  MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2409                                     markBitMap());
2410  CLDToOopClosure cld_closure(&notOlder, true);
2411
2412  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2413
2414  {
2415    StrongRootsScope srs(1);
2416
2417    gch->gen_process_roots(&srs,
2418                           GenCollectedHeap::OldGen,
2419                           true,   // young gen as roots
2420                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2421                           should_unload_classes(),
2422                           &notOlder,
2423                           NULL,
2424                           &cld_closure);
2425  }
2426
2427  // Now mark from the roots
2428  MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2429    verification_mark_bm(), markBitMap(), verification_mark_stack());
2430  assert(_restart_addr == NULL, "Expected pre-condition");
2431  verification_mark_bm()->iterate(&markFromRootsClosure);
2432  while (_restart_addr != NULL) {
2433    // Deal with stack overflow: by restarting at the indicated
2434    // address.
2435    HeapWord* ra = _restart_addr;
2436    markFromRootsClosure.reset(ra);
2437    _restart_addr = NULL;
2438    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2439  }
2440  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2441  verify_work_stacks_empty();
2442
2443  VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2444  ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2445
2446  // Marking completed -- now verify that each bit marked in
2447  // verification_mark_bm() is also marked in markBitMap(); flag all
2448  // errors by printing corresponding objects.
2449  VerifyMarkedClosure vcl(markBitMap());
2450  verification_mark_bm()->iterate(&vcl);
2451  assert(!vcl.failed(), "Else verification above should not have succeeded");
2452}
2453
2454void ConcurrentMarkSweepGeneration::save_marks() {
2455  // delegate to CMS space
2456  cmsSpace()->save_marks();
2457}
2458
2459bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2460  return cmsSpace()->no_allocs_since_save_marks();
2461}
2462
2463#define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2464                                                                \
2465void ConcurrentMarkSweepGeneration::                            \
2466oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2467  cl->set_generation(this);                                     \
2468  cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2469  cl->reset_generation();                                       \
2470  save_marks();                                                 \
2471}
2472
2473ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2474
2475void
2476ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2477  if (freelistLock()->owned_by_self()) {
2478    Generation::oop_iterate(cl);
2479  } else {
2480    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2481    Generation::oop_iterate(cl);
2482  }
2483}
2484
2485void
2486ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2487  if (freelistLock()->owned_by_self()) {
2488    Generation::object_iterate(cl);
2489  } else {
2490    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2491    Generation::object_iterate(cl);
2492  }
2493}
2494
2495void
2496ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2497  if (freelistLock()->owned_by_self()) {
2498    Generation::safe_object_iterate(cl);
2499  } else {
2500    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2501    Generation::safe_object_iterate(cl);
2502  }
2503}
2504
2505void
2506ConcurrentMarkSweepGeneration::post_compact() {
2507}
2508
2509void
2510ConcurrentMarkSweepGeneration::prepare_for_verify() {
2511  // Fix the linear allocation blocks to look like free blocks.
2512
2513  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2514  // are not called when the heap is verified during universe initialization and
2515  // at vm shutdown.
2516  if (freelistLock()->owned_by_self()) {
2517    cmsSpace()->prepare_for_verify();
2518  } else {
2519    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2520    cmsSpace()->prepare_for_verify();
2521  }
2522}
2523
2524void
2525ConcurrentMarkSweepGeneration::verify() {
2526  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2527  // are not called when the heap is verified during universe initialization and
2528  // at vm shutdown.
2529  if (freelistLock()->owned_by_self()) {
2530    cmsSpace()->verify();
2531  } else {
2532    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2533    cmsSpace()->verify();
2534  }
2535}
2536
2537void CMSCollector::verify() {
2538  _cmsGen->verify();
2539}
2540
2541#ifndef PRODUCT
2542bool CMSCollector::overflow_list_is_empty() const {
2543  assert(_num_par_pushes >= 0, "Inconsistency");
2544  if (_overflow_list == NULL) {
2545    assert(_num_par_pushes == 0, "Inconsistency");
2546  }
2547  return _overflow_list == NULL;
2548}
2549
2550// The methods verify_work_stacks_empty() and verify_overflow_empty()
2551// merely consolidate assertion checks that appear to occur together frequently.
2552void CMSCollector::verify_work_stacks_empty() const {
2553  assert(_markStack.isEmpty(), "Marking stack should be empty");
2554  assert(overflow_list_is_empty(), "Overflow list should be empty");
2555}
2556
2557void CMSCollector::verify_overflow_empty() const {
2558  assert(overflow_list_is_empty(), "Overflow list should be empty");
2559  assert(no_preserved_marks(), "No preserved marks");
2560}
2561#endif // PRODUCT
2562
2563// Decide if we want to enable class unloading as part of the
2564// ensuing concurrent GC cycle. We will collect and
2565// unload classes if it's the case that:
2566// (1) an explicit gc request has been made and the flag
2567//     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2568// (2) (a) class unloading is enabled at the command line, and
2569//     (b) old gen is getting really full
2570// NOTE: Provided there is no change in the state of the heap between
2571// calls to this method, it should have idempotent results. Moreover,
2572// its results should be monotonically increasing (i.e. going from 0 to 1,
2573// but not 1 to 0) between successive calls between which the heap was
2574// not collected. For the implementation below, it must thus rely on
2575// the property that concurrent_cycles_since_last_unload()
2576// will not decrease unless a collection cycle happened and that
2577// _cmsGen->is_too_full() are
2578// themselves also monotonic in that sense. See check_monotonicity()
2579// below.
2580void CMSCollector::update_should_unload_classes() {
2581  _should_unload_classes = false;
2582  // Condition 1 above
2583  if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2584    _should_unload_classes = true;
2585  } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2586    // Disjuncts 2.b.(i,ii,iii) above
2587    _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2588                              CMSClassUnloadingMaxInterval)
2589                           || _cmsGen->is_too_full();
2590  }
2591}
2592
2593bool ConcurrentMarkSweepGeneration::is_too_full() const {
2594  bool res = should_concurrent_collect();
2595  res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2596  return res;
2597}
2598
2599void CMSCollector::setup_cms_unloading_and_verification_state() {
2600  const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2601                             || VerifyBeforeExit;
2602  const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2603
2604  // We set the proper root for this CMS cycle here.
2605  if (should_unload_classes()) {   // Should unload classes this cycle
2606    remove_root_scanning_option(rso);  // Shrink the root set appropriately
2607    set_verifying(should_verify);    // Set verification state for this cycle
2608    return;                            // Nothing else needs to be done at this time
2609  }
2610
2611  // Not unloading classes this cycle
2612  assert(!should_unload_classes(), "Inconsistency!");
2613
2614  // If we are not unloading classes then add SO_AllCodeCache to root
2615  // scanning options.
2616  add_root_scanning_option(rso);
2617
2618  if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2619    set_verifying(true);
2620  } else if (verifying() && !should_verify) {
2621    // We were verifying, but some verification flags got disabled.
2622    set_verifying(false);
2623    // Exclude symbols, strings and code cache elements from root scanning to
2624    // reduce IM and RM pauses.
2625    remove_root_scanning_option(rso);
2626  }
2627}
2628
2629
2630#ifndef PRODUCT
2631HeapWord* CMSCollector::block_start(const void* p) const {
2632  const HeapWord* addr = (HeapWord*)p;
2633  if (_span.contains(p)) {
2634    if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2635      return _cmsGen->cmsSpace()->block_start(p);
2636    }
2637  }
2638  return NULL;
2639}
2640#endif
2641
2642HeapWord*
2643ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2644                                                   bool   tlab,
2645                                                   bool   parallel) {
2646  CMSSynchronousYieldRequest yr;
2647  assert(!tlab, "Can't deal with TLAB allocation");
2648  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2649  expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2650  if (GCExpandToAllocateDelayMillis > 0) {
2651    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2652  }
2653  return have_lock_and_allocate(word_size, tlab);
2654}
2655
2656void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2657    size_t bytes,
2658    size_t expand_bytes,
2659    CMSExpansionCause::Cause cause)
2660{
2661
2662  bool success = expand(bytes, expand_bytes);
2663
2664  // remember why we expanded; this information is used
2665  // by shouldConcurrentCollect() when making decisions on whether to start
2666  // a new CMS cycle.
2667  if (success) {
2668    set_expansion_cause(cause);
2669    log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2670  }
2671}
2672
2673HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2674  HeapWord* res = NULL;
2675  MutexLocker x(ParGCRareEvent_lock);
2676  while (true) {
2677    // Expansion by some other thread might make alloc OK now:
2678    res = ps->lab.alloc(word_sz);
2679    if (res != NULL) return res;
2680    // If there's not enough expansion space available, give up.
2681    if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2682      return NULL;
2683    }
2684    // Otherwise, we try expansion.
2685    expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2686    // Now go around the loop and try alloc again;
2687    // A competing par_promote might beat us to the expansion space,
2688    // so we may go around the loop again if promotion fails again.
2689    if (GCExpandToAllocateDelayMillis > 0) {
2690      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2691    }
2692  }
2693}
2694
2695
2696bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2697  PromotionInfo* promo) {
2698  MutexLocker x(ParGCRareEvent_lock);
2699  size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2700  while (true) {
2701    // Expansion by some other thread might make alloc OK now:
2702    if (promo->ensure_spooling_space()) {
2703      assert(promo->has_spooling_space(),
2704             "Post-condition of successful ensure_spooling_space()");
2705      return true;
2706    }
2707    // If there's not enough expansion space available, give up.
2708    if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2709      return false;
2710    }
2711    // Otherwise, we try expansion.
2712    expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2713    // Now go around the loop and try alloc again;
2714    // A competing allocation might beat us to the expansion space,
2715    // so we may go around the loop again if allocation fails again.
2716    if (GCExpandToAllocateDelayMillis > 0) {
2717      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2718    }
2719  }
2720}
2721
2722void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2723  // Only shrink if a compaction was done so that all the free space
2724  // in the generation is in a contiguous block at the end.
2725  if (did_compact()) {
2726    CardGeneration::shrink(bytes);
2727  }
2728}
2729
2730void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2731  assert_locked_or_safepoint(Heap_lock);
2732}
2733
2734void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2735  assert_locked_or_safepoint(Heap_lock);
2736  assert_lock_strong(freelistLock());
2737  log_trace(gc)("Shrinking of CMS not yet implemented");
2738  return;
2739}
2740
2741
2742// Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2743// phases.
2744class CMSPhaseAccounting: public StackObj {
2745 public:
2746  CMSPhaseAccounting(CMSCollector *collector,
2747                     const char *title);
2748  ~CMSPhaseAccounting();
2749
2750 private:
2751  CMSCollector *_collector;
2752  const char *_title;
2753  GCTraceConcTime(Info, gc) _trace_time;
2754
2755 public:
2756  // Not MT-safe; so do not pass around these StackObj's
2757  // where they may be accessed by other threads.
2758  double wallclock_millis() {
2759    return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2760  }
2761};
2762
2763CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2764                                       const char *title) :
2765  _collector(collector), _title(title), _trace_time(title) {
2766
2767  _collector->resetYields();
2768  _collector->resetTimer();
2769  _collector->startTimer();
2770  _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2771}
2772
2773CMSPhaseAccounting::~CMSPhaseAccounting() {
2774  _collector->gc_timer_cm()->register_gc_concurrent_end();
2775  _collector->stopTimer();
2776  log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2777  log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2778}
2779
2780// CMS work
2781
2782// The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2783class CMSParMarkTask : public AbstractGangTask {
2784 protected:
2785  CMSCollector*     _collector;
2786  uint              _n_workers;
2787  CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2788      AbstractGangTask(name),
2789      _collector(collector),
2790      _n_workers(n_workers) {}
2791  // Work method in support of parallel rescan ... of young gen spaces
2792  void do_young_space_rescan(OopsInGenClosure* cl,
2793                             ContiguousSpace* space,
2794                             HeapWord** chunk_array, size_t chunk_top);
2795  void work_on_young_gen_roots(OopsInGenClosure* cl);
2796};
2797
2798// Parallel initial mark task
2799class CMSParInitialMarkTask: public CMSParMarkTask {
2800  StrongRootsScope* _strong_roots_scope;
2801 public:
2802  CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2803      CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2804      _strong_roots_scope(strong_roots_scope) {}
2805  void work(uint worker_id);
2806};
2807
2808// Checkpoint the roots into this generation from outside
2809// this generation. [Note this initial checkpoint need only
2810// be approximate -- we'll do a catch up phase subsequently.]
2811void CMSCollector::checkpointRootsInitial() {
2812  assert(_collectorState == InitialMarking, "Wrong collector state");
2813  check_correct_thread_executing();
2814  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2815
2816  save_heap_summary();
2817  report_heap_summary(GCWhen::BeforeGC);
2818
2819  ReferenceProcessor* rp = ref_processor();
2820  assert(_restart_addr == NULL, "Control point invariant");
2821  {
2822    // acquire locks for subsequent manipulations
2823    MutexLockerEx x(bitMapLock(),
2824                    Mutex::_no_safepoint_check_flag);
2825    checkpointRootsInitialWork();
2826    // enable ("weak") refs discovery
2827    rp->enable_discovery();
2828    _collectorState = Marking;
2829  }
2830}
2831
2832void CMSCollector::checkpointRootsInitialWork() {
2833  assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2834  assert(_collectorState == InitialMarking, "just checking");
2835
2836  // Already have locks.
2837  assert_lock_strong(bitMapLock());
2838  assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2839
2840  // Setup the verification and class unloading state for this
2841  // CMS collection cycle.
2842  setup_cms_unloading_and_verification_state();
2843
2844  GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2845
2846  // Reset all the PLAB chunk arrays if necessary.
2847  if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2848    reset_survivor_plab_arrays();
2849  }
2850
2851  ResourceMark rm;
2852  HandleMark  hm;
2853
2854  MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2855  GenCollectedHeap* gch = GenCollectedHeap::heap();
2856
2857  verify_work_stacks_empty();
2858  verify_overflow_empty();
2859
2860  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2861  // Update the saved marks which may affect the root scans.
2862  gch->save_marks();
2863
2864  // weak reference processing has not started yet.
2865  ref_processor()->set_enqueuing_is_done(false);
2866
2867  // Need to remember all newly created CLDs,
2868  // so that we can guarantee that the remark finds them.
2869  ClassLoaderDataGraph::remember_new_clds(true);
2870
2871  // Whenever a CLD is found, it will be claimed before proceeding to mark
2872  // the klasses. The claimed marks need to be cleared before marking starts.
2873  ClassLoaderDataGraph::clear_claimed_marks();
2874
2875  print_eden_and_survivor_chunk_arrays();
2876
2877  {
2878#if defined(COMPILER2) || INCLUDE_JVMCI
2879    DerivedPointerTableDeactivate dpt_deact;
2880#endif
2881    if (CMSParallelInitialMarkEnabled) {
2882      // The parallel version.
2883      WorkGang* workers = gch->workers();
2884      assert(workers != NULL, "Need parallel worker threads.");
2885      uint n_workers = workers->active_workers();
2886
2887      StrongRootsScope srs(n_workers);
2888
2889      CMSParInitialMarkTask tsk(this, &srs, n_workers);
2890      initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2891      // If the total workers is greater than 1, then multiple workers
2892      // may be used at some time and the initialization has been set
2893      // such that the single threaded path cannot be used.
2894      if (workers->total_workers() > 1) {
2895        workers->run_task(&tsk);
2896      } else {
2897        tsk.work(0);
2898      }
2899    } else {
2900      // The serial version.
2901      CLDToOopClosure cld_closure(&notOlder, true);
2902      gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2903
2904      StrongRootsScope srs(1);
2905
2906      gch->gen_process_roots(&srs,
2907                             GenCollectedHeap::OldGen,
2908                             true,   // young gen as roots
2909                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
2910                             should_unload_classes(),
2911                             &notOlder,
2912                             NULL,
2913                             &cld_closure);
2914    }
2915  }
2916
2917  // Clear mod-union table; it will be dirtied in the prologue of
2918  // CMS generation per each young generation collection.
2919
2920  assert(_modUnionTable.isAllClear(),
2921       "Was cleared in most recent final checkpoint phase"
2922       " or no bits are set in the gc_prologue before the start of the next "
2923       "subsequent marking phase.");
2924
2925  assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2926
2927  // Save the end of the used_region of the constituent generations
2928  // to be used to limit the extent of sweep in each generation.
2929  save_sweep_limits();
2930  verify_overflow_empty();
2931}
2932
2933bool CMSCollector::markFromRoots() {
2934  // we might be tempted to assert that:
2935  // assert(!SafepointSynchronize::is_at_safepoint(),
2936  //        "inconsistent argument?");
2937  // However that wouldn't be right, because it's possible that
2938  // a safepoint is indeed in progress as a young generation
2939  // stop-the-world GC happens even as we mark in this generation.
2940  assert(_collectorState == Marking, "inconsistent state?");
2941  check_correct_thread_executing();
2942  verify_overflow_empty();
2943
2944  // Weak ref discovery note: We may be discovering weak
2945  // refs in this generation concurrent (but interleaved) with
2946  // weak ref discovery by the young generation collector.
2947
2948  CMSTokenSyncWithLocks ts(true, bitMapLock());
2949  GCTraceCPUTime tcpu;
2950  CMSPhaseAccounting pa(this, "Concurrent Mark");
2951  bool res = markFromRootsWork();
2952  if (res) {
2953    _collectorState = Precleaning;
2954  } else { // We failed and a foreground collection wants to take over
2955    assert(_foregroundGCIsActive, "internal state inconsistency");
2956    assert(_restart_addr == NULL,  "foreground will restart from scratch");
2957    log_debug(gc)("bailing out to foreground collection");
2958  }
2959  verify_overflow_empty();
2960  return res;
2961}
2962
2963bool CMSCollector::markFromRootsWork() {
2964  // iterate over marked bits in bit map, doing a full scan and mark
2965  // from these roots using the following algorithm:
2966  // . if oop is to the right of the current scan pointer,
2967  //   mark corresponding bit (we'll process it later)
2968  // . else (oop is to left of current scan pointer)
2969  //   push oop on marking stack
2970  // . drain the marking stack
2971
2972  // Note that when we do a marking step we need to hold the
2973  // bit map lock -- recall that direct allocation (by mutators)
2974  // and promotion (by the young generation collector) is also
2975  // marking the bit map. [the so-called allocate live policy.]
2976  // Because the implementation of bit map marking is not
2977  // robust wrt simultaneous marking of bits in the same word,
2978  // we need to make sure that there is no such interference
2979  // between concurrent such updates.
2980
2981  // already have locks
2982  assert_lock_strong(bitMapLock());
2983
2984  verify_work_stacks_empty();
2985  verify_overflow_empty();
2986  bool result = false;
2987  if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2988    result = do_marking_mt();
2989  } else {
2990    result = do_marking_st();
2991  }
2992  return result;
2993}
2994
2995// Forward decl
2996class CMSConcMarkingTask;
2997
2998class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2999  CMSCollector*       _collector;
3000  CMSConcMarkingTask* _task;
3001 public:
3002  virtual void yield();
3003
3004  // "n_threads" is the number of threads to be terminated.
3005  // "queue_set" is a set of work queues of other threads.
3006  // "collector" is the CMS collector associated with this task terminator.
3007  // "yield" indicates whether we need the gang as a whole to yield.
3008  CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3009    ParallelTaskTerminator(n_threads, queue_set),
3010    _collector(collector) { }
3011
3012  void set_task(CMSConcMarkingTask* task) {
3013    _task = task;
3014  }
3015};
3016
3017class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3018  CMSConcMarkingTask* _task;
3019 public:
3020  bool should_exit_termination();
3021  void set_task(CMSConcMarkingTask* task) {
3022    _task = task;
3023  }
3024};
3025
3026// MT Concurrent Marking Task
3027class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3028  CMSCollector* _collector;
3029  uint          _n_workers;       // requested/desired # workers
3030  bool          _result;
3031  CompactibleFreeListSpace*  _cms_space;
3032  char          _pad_front[64];   // padding to ...
3033  HeapWord*     _global_finger;   // ... avoid sharing cache line
3034  char          _pad_back[64];
3035  HeapWord*     _restart_addr;
3036
3037  //  Exposed here for yielding support
3038  Mutex* const _bit_map_lock;
3039
3040  // The per thread work queues, available here for stealing
3041  OopTaskQueueSet*  _task_queues;
3042
3043  // Termination (and yielding) support
3044  CMSConcMarkingTerminator _term;
3045  CMSConcMarkingTerminatorTerminator _term_term;
3046
3047 public:
3048  CMSConcMarkingTask(CMSCollector* collector,
3049                 CompactibleFreeListSpace* cms_space,
3050                 YieldingFlexibleWorkGang* workers,
3051                 OopTaskQueueSet* task_queues):
3052    YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3053    _collector(collector),
3054    _cms_space(cms_space),
3055    _n_workers(0), _result(true),
3056    _task_queues(task_queues),
3057    _term(_n_workers, task_queues, _collector),
3058    _bit_map_lock(collector->bitMapLock())
3059  {
3060    _requested_size = _n_workers;
3061    _term.set_task(this);
3062    _term_term.set_task(this);
3063    _restart_addr = _global_finger = _cms_space->bottom();
3064  }
3065
3066
3067  OopTaskQueueSet* task_queues()  { return _task_queues; }
3068
3069  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3070
3071  HeapWord** global_finger_addr() { return &_global_finger; }
3072
3073  CMSConcMarkingTerminator* terminator() { return &_term; }
3074
3075  virtual void set_for_termination(uint active_workers) {
3076    terminator()->reset_for_reuse(active_workers);
3077  }
3078
3079  void work(uint worker_id);
3080  bool should_yield() {
3081    return    ConcurrentMarkSweepThread::should_yield()
3082           && !_collector->foregroundGCIsActive();
3083  }
3084
3085  virtual void coordinator_yield();  // stuff done by coordinator
3086  bool result() { return _result; }
3087
3088  void reset(HeapWord* ra) {
3089    assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3090    _restart_addr = _global_finger = ra;
3091    _term.reset_for_reuse();
3092  }
3093
3094  static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3095                                           OopTaskQueue* work_q);
3096
3097 private:
3098  void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3099  void do_work_steal(int i);
3100  void bump_global_finger(HeapWord* f);
3101};
3102
3103bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3104  assert(_task != NULL, "Error");
3105  return _task->yielding();
3106  // Note that we do not need the disjunct || _task->should_yield() above
3107  // because we want terminating threads to yield only if the task
3108  // is already in the midst of yielding, which happens only after at least one
3109  // thread has yielded.
3110}
3111
3112void CMSConcMarkingTerminator::yield() {
3113  if (_task->should_yield()) {
3114    _task->yield();
3115  } else {
3116    ParallelTaskTerminator::yield();
3117  }
3118}
3119
3120////////////////////////////////////////////////////////////////
3121// Concurrent Marking Algorithm Sketch
3122////////////////////////////////////////////////////////////////
3123// Until all tasks exhausted (both spaces):
3124// -- claim next available chunk
3125// -- bump global finger via CAS
3126// -- find first object that starts in this chunk
3127//    and start scanning bitmap from that position
3128// -- scan marked objects for oops
3129// -- CAS-mark target, and if successful:
3130//    . if target oop is above global finger (volatile read)
3131//      nothing to do
3132//    . if target oop is in chunk and above local finger
3133//        then nothing to do
3134//    . else push on work-queue
3135// -- Deal with possible overflow issues:
3136//    . local work-queue overflow causes stuff to be pushed on
3137//      global (common) overflow queue
3138//    . always first empty local work queue
3139//    . then get a batch of oops from global work queue if any
3140//    . then do work stealing
3141// -- When all tasks claimed (both spaces)
3142//    and local work queue empty,
3143//    then in a loop do:
3144//    . check global overflow stack; steal a batch of oops and trace
3145//    . try to steal from other threads oif GOS is empty
3146//    . if neither is available, offer termination
3147// -- Terminate and return result
3148//
3149void CMSConcMarkingTask::work(uint worker_id) {
3150  elapsedTimer _timer;
3151  ResourceMark rm;
3152  HandleMark hm;
3153
3154  DEBUG_ONLY(_collector->verify_overflow_empty();)
3155
3156  // Before we begin work, our work queue should be empty
3157  assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3158  // Scan the bitmap covering _cms_space, tracing through grey objects.
3159  _timer.start();
3160  do_scan_and_mark(worker_id, _cms_space);
3161  _timer.stop();
3162  log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3163
3164  // ... do work stealing
3165  _timer.reset();
3166  _timer.start();
3167  do_work_steal(worker_id);
3168  _timer.stop();
3169  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3170  assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3171  assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3172  // Note that under the current task protocol, the
3173  // following assertion is true even of the spaces
3174  // expanded since the completion of the concurrent
3175  // marking. XXX This will likely change under a strict
3176  // ABORT semantics.
3177  // After perm removal the comparison was changed to
3178  // greater than or equal to from strictly greater than.
3179  // Before perm removal the highest address sweep would
3180  // have been at the end of perm gen but now is at the
3181  // end of the tenured gen.
3182  assert(_global_finger >=  _cms_space->end(),
3183         "All tasks have been completed");
3184  DEBUG_ONLY(_collector->verify_overflow_empty();)
3185}
3186
3187void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3188  HeapWord* read = _global_finger;
3189  HeapWord* cur  = read;
3190  while (f > read) {
3191    cur = read;
3192    read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3193    if (cur == read) {
3194      // our cas succeeded
3195      assert(_global_finger >= f, "protocol consistency");
3196      break;
3197    }
3198  }
3199}
3200
3201// This is really inefficient, and should be redone by
3202// using (not yet available) block-read and -write interfaces to the
3203// stack and the work_queue. XXX FIX ME !!!
3204bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3205                                                      OopTaskQueue* work_q) {
3206  // Fast lock-free check
3207  if (ovflw_stk->length() == 0) {
3208    return false;
3209  }
3210  assert(work_q->size() == 0, "Shouldn't steal");
3211  MutexLockerEx ml(ovflw_stk->par_lock(),
3212                   Mutex::_no_safepoint_check_flag);
3213  // Grab up to 1/4 the size of the work queue
3214  size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3215                    (size_t)ParGCDesiredObjsFromOverflowList);
3216  num = MIN2(num, ovflw_stk->length());
3217  for (int i = (int) num; i > 0; i--) {
3218    oop cur = ovflw_stk->pop();
3219    assert(cur != NULL, "Counted wrong?");
3220    work_q->push(cur);
3221  }
3222  return num > 0;
3223}
3224
3225void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3226  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3227  int n_tasks = pst->n_tasks();
3228  // We allow that there may be no tasks to do here because
3229  // we are restarting after a stack overflow.
3230  assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3231  uint nth_task = 0;
3232
3233  HeapWord* aligned_start = sp->bottom();
3234  if (sp->used_region().contains(_restart_addr)) {
3235    // Align down to a card boundary for the start of 0th task
3236    // for this space.
3237    aligned_start =
3238      (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3239                                 CardTableModRefBS::card_size);
3240  }
3241
3242  size_t chunk_size = sp->marking_task_size();
3243  while (!pst->is_task_claimed(/* reference */ nth_task)) {
3244    // Having claimed the nth task in this space,
3245    // compute the chunk that it corresponds to:
3246    MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3247                               aligned_start + (nth_task+1)*chunk_size);
3248    // Try and bump the global finger via a CAS;
3249    // note that we need to do the global finger bump
3250    // _before_ taking the intersection below, because
3251    // the task corresponding to that region will be
3252    // deemed done even if the used_region() expands
3253    // because of allocation -- as it almost certainly will
3254    // during start-up while the threads yield in the
3255    // closure below.
3256    HeapWord* finger = span.end();
3257    bump_global_finger(finger);   // atomically
3258    // There are null tasks here corresponding to chunks
3259    // beyond the "top" address of the space.
3260    span = span.intersection(sp->used_region());
3261    if (!span.is_empty()) {  // Non-null task
3262      HeapWord* prev_obj;
3263      assert(!span.contains(_restart_addr) || nth_task == 0,
3264             "Inconsistency");
3265      if (nth_task == 0) {
3266        // For the 0th task, we'll not need to compute a block_start.
3267        if (span.contains(_restart_addr)) {
3268          // In the case of a restart because of stack overflow,
3269          // we might additionally skip a chunk prefix.
3270          prev_obj = _restart_addr;
3271        } else {
3272          prev_obj = span.start();
3273        }
3274      } else {
3275        // We want to skip the first object because
3276        // the protocol is to scan any object in its entirety
3277        // that _starts_ in this span; a fortiori, any
3278        // object starting in an earlier span is scanned
3279        // as part of an earlier claimed task.
3280        // Below we use the "careful" version of block_start
3281        // so we do not try to navigate uninitialized objects.
3282        prev_obj = sp->block_start_careful(span.start());
3283        // Below we use a variant of block_size that uses the
3284        // Printezis bits to avoid waiting for allocated
3285        // objects to become initialized/parsable.
3286        while (prev_obj < span.start()) {
3287          size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3288          if (sz > 0) {
3289            prev_obj += sz;
3290          } else {
3291            // In this case we may end up doing a bit of redundant
3292            // scanning, but that appears unavoidable, short of
3293            // locking the free list locks; see bug 6324141.
3294            break;
3295          }
3296        }
3297      }
3298      if (prev_obj < span.end()) {
3299        MemRegion my_span = MemRegion(prev_obj, span.end());
3300        // Do the marking work within a non-empty span --
3301        // the last argument to the constructor indicates whether the
3302        // iteration should be incremental with periodic yields.
3303        ParMarkFromRootsClosure cl(this, _collector, my_span,
3304                                   &_collector->_markBitMap,
3305                                   work_queue(i),
3306                                   &_collector->_markStack);
3307        _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3308      } // else nothing to do for this task
3309    }   // else nothing to do for this task
3310  }
3311  // We'd be tempted to assert here that since there are no
3312  // more tasks left to claim in this space, the global_finger
3313  // must exceed space->top() and a fortiori space->end(). However,
3314  // that would not quite be correct because the bumping of
3315  // global_finger occurs strictly after the claiming of a task,
3316  // so by the time we reach here the global finger may not yet
3317  // have been bumped up by the thread that claimed the last
3318  // task.
3319  pst->all_tasks_completed();
3320}
3321
3322class ParConcMarkingClosure: public MetadataAwareOopClosure {
3323 private:
3324  CMSCollector* _collector;
3325  CMSConcMarkingTask* _task;
3326  MemRegion     _span;
3327  CMSBitMap*    _bit_map;
3328  CMSMarkStack* _overflow_stack;
3329  OopTaskQueue* _work_queue;
3330 protected:
3331  DO_OOP_WORK_DEFN
3332 public:
3333  ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3334                        CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3335    MetadataAwareOopClosure(collector->ref_processor()),
3336    _collector(collector),
3337    _task(task),
3338    _span(collector->_span),
3339    _work_queue(work_queue),
3340    _bit_map(bit_map),
3341    _overflow_stack(overflow_stack)
3342  { }
3343  virtual void do_oop(oop* p);
3344  virtual void do_oop(narrowOop* p);
3345
3346  void trim_queue(size_t max);
3347  void handle_stack_overflow(HeapWord* lost);
3348  void do_yield_check() {
3349    if (_task->should_yield()) {
3350      _task->yield();
3351    }
3352  }
3353};
3354
3355DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3356
3357// Grey object scanning during work stealing phase --
3358// the salient assumption here is that any references
3359// that are in these stolen objects being scanned must
3360// already have been initialized (else they would not have
3361// been published), so we do not need to check for
3362// uninitialized objects before pushing here.
3363void ParConcMarkingClosure::do_oop(oop obj) {
3364  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3365  HeapWord* addr = (HeapWord*)obj;
3366  // Check if oop points into the CMS generation
3367  // and is not marked
3368  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3369    // a white object ...
3370    // If we manage to "claim" the object, by being the
3371    // first thread to mark it, then we push it on our
3372    // marking stack
3373    if (_bit_map->par_mark(addr)) {     // ... now grey
3374      // push on work queue (grey set)
3375      bool simulate_overflow = false;
3376      NOT_PRODUCT(
3377        if (CMSMarkStackOverflowALot &&
3378            _collector->simulate_overflow()) {
3379          // simulate a stack overflow
3380          simulate_overflow = true;
3381        }
3382      )
3383      if (simulate_overflow ||
3384          !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3385        // stack overflow
3386        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3387        // We cannot assert that the overflow stack is full because
3388        // it may have been emptied since.
3389        assert(simulate_overflow ||
3390               _work_queue->size() == _work_queue->max_elems(),
3391              "Else push should have succeeded");
3392        handle_stack_overflow(addr);
3393      }
3394    } // Else, some other thread got there first
3395    do_yield_check();
3396  }
3397}
3398
3399void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3400void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3401
3402void ParConcMarkingClosure::trim_queue(size_t max) {
3403  while (_work_queue->size() > max) {
3404    oop new_oop;
3405    if (_work_queue->pop_local(new_oop)) {
3406      assert(new_oop->is_oop(), "Should be an oop");
3407      assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3408      assert(_span.contains((HeapWord*)new_oop), "Not in span");
3409      new_oop->oop_iterate(this);  // do_oop() above
3410      do_yield_check();
3411    }
3412  }
3413}
3414
3415// Upon stack overflow, we discard (part of) the stack,
3416// remembering the least address amongst those discarded
3417// in CMSCollector's _restart_address.
3418void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3419  // We need to do this under a mutex to prevent other
3420  // workers from interfering with the work done below.
3421  MutexLockerEx ml(_overflow_stack->par_lock(),
3422                   Mutex::_no_safepoint_check_flag);
3423  // Remember the least grey address discarded
3424  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3425  _collector->lower_restart_addr(ra);
3426  _overflow_stack->reset();  // discard stack contents
3427  _overflow_stack->expand(); // expand the stack if possible
3428}
3429
3430
3431void CMSConcMarkingTask::do_work_steal(int i) {
3432  OopTaskQueue* work_q = work_queue(i);
3433  oop obj_to_scan;
3434  CMSBitMap* bm = &(_collector->_markBitMap);
3435  CMSMarkStack* ovflw = &(_collector->_markStack);
3436  int* seed = _collector->hash_seed(i);
3437  ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3438  while (true) {
3439    cl.trim_queue(0);
3440    assert(work_q->size() == 0, "Should have been emptied above");
3441    if (get_work_from_overflow_stack(ovflw, work_q)) {
3442      // Can't assert below because the work obtained from the
3443      // overflow stack may already have been stolen from us.
3444      // assert(work_q->size() > 0, "Work from overflow stack");
3445      continue;
3446    } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3447      assert(obj_to_scan->is_oop(), "Should be an oop");
3448      assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3449      obj_to_scan->oop_iterate(&cl);
3450    } else if (terminator()->offer_termination(&_term_term)) {
3451      assert(work_q->size() == 0, "Impossible!");
3452      break;
3453    } else if (yielding() || should_yield()) {
3454      yield();
3455    }
3456  }
3457}
3458
3459// This is run by the CMS (coordinator) thread.
3460void CMSConcMarkingTask::coordinator_yield() {
3461  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3462         "CMS thread should hold CMS token");
3463  // First give up the locks, then yield, then re-lock
3464  // We should probably use a constructor/destructor idiom to
3465  // do this unlock/lock or modify the MutexUnlocker class to
3466  // serve our purpose. XXX
3467  assert_lock_strong(_bit_map_lock);
3468  _bit_map_lock->unlock();
3469  ConcurrentMarkSweepThread::desynchronize(true);
3470  _collector->stopTimer();
3471  _collector->incrementYields();
3472
3473  // It is possible for whichever thread initiated the yield request
3474  // not to get a chance to wake up and take the bitmap lock between
3475  // this thread releasing it and reacquiring it. So, while the
3476  // should_yield() flag is on, let's sleep for a bit to give the
3477  // other thread a chance to wake up. The limit imposed on the number
3478  // of iterations is defensive, to avoid any unforseen circumstances
3479  // putting us into an infinite loop. Since it's always been this
3480  // (coordinator_yield()) method that was observed to cause the
3481  // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3482  // which is by default non-zero. For the other seven methods that
3483  // also perform the yield operation, as are using a different
3484  // parameter (CMSYieldSleepCount) which is by default zero. This way we
3485  // can enable the sleeping for those methods too, if necessary.
3486  // See 6442774.
3487  //
3488  // We really need to reconsider the synchronization between the GC
3489  // thread and the yield-requesting threads in the future and we
3490  // should really use wait/notify, which is the recommended
3491  // way of doing this type of interaction. Additionally, we should
3492  // consolidate the eight methods that do the yield operation and they
3493  // are almost identical into one for better maintainability and
3494  // readability. See 6445193.
3495  //
3496  // Tony 2006.06.29
3497  for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3498                   ConcurrentMarkSweepThread::should_yield() &&
3499                   !CMSCollector::foregroundGCIsActive(); ++i) {
3500    os::sleep(Thread::current(), 1, false);
3501  }
3502
3503  ConcurrentMarkSweepThread::synchronize(true);
3504  _bit_map_lock->lock_without_safepoint_check();
3505  _collector->startTimer();
3506}
3507
3508bool CMSCollector::do_marking_mt() {
3509  assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3510  uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3511                                                                  conc_workers()->active_workers(),
3512                                                                  Threads::number_of_non_daemon_threads());
3513  num_workers = conc_workers()->update_active_workers(num_workers);
3514
3515  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3516
3517  CMSConcMarkingTask tsk(this,
3518                         cms_space,
3519                         conc_workers(),
3520                         task_queues());
3521
3522  // Since the actual number of workers we get may be different
3523  // from the number we requested above, do we need to do anything different
3524  // below? In particular, may be we need to subclass the SequantialSubTasksDone
3525  // class?? XXX
3526  cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3527
3528  // Refs discovery is already non-atomic.
3529  assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3530  assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3531  conc_workers()->start_task(&tsk);
3532  while (tsk.yielded()) {
3533    tsk.coordinator_yield();
3534    conc_workers()->continue_task(&tsk);
3535  }
3536  // If the task was aborted, _restart_addr will be non-NULL
3537  assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3538  while (_restart_addr != NULL) {
3539    // XXX For now we do not make use of ABORTED state and have not
3540    // yet implemented the right abort semantics (even in the original
3541    // single-threaded CMS case). That needs some more investigation
3542    // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3543    assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3544    // If _restart_addr is non-NULL, a marking stack overflow
3545    // occurred; we need to do a fresh marking iteration from the
3546    // indicated restart address.
3547    if (_foregroundGCIsActive) {
3548      // We may be running into repeated stack overflows, having
3549      // reached the limit of the stack size, while making very
3550      // slow forward progress. It may be best to bail out and
3551      // let the foreground collector do its job.
3552      // Clear _restart_addr, so that foreground GC
3553      // works from scratch. This avoids the headache of
3554      // a "rescan" which would otherwise be needed because
3555      // of the dirty mod union table & card table.
3556      _restart_addr = NULL;
3557      return false;
3558    }
3559    // Adjust the task to restart from _restart_addr
3560    tsk.reset(_restart_addr);
3561    cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3562                  _restart_addr);
3563    _restart_addr = NULL;
3564    // Get the workers going again
3565    conc_workers()->start_task(&tsk);
3566    while (tsk.yielded()) {
3567      tsk.coordinator_yield();
3568      conc_workers()->continue_task(&tsk);
3569    }
3570  }
3571  assert(tsk.completed(), "Inconsistency");
3572  assert(tsk.result() == true, "Inconsistency");
3573  return true;
3574}
3575
3576bool CMSCollector::do_marking_st() {
3577  ResourceMark rm;
3578  HandleMark   hm;
3579
3580  // Temporarily make refs discovery single threaded (non-MT)
3581  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3582  MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3583    &_markStack, CMSYield);
3584  // the last argument to iterate indicates whether the iteration
3585  // should be incremental with periodic yields.
3586  _markBitMap.iterate(&markFromRootsClosure);
3587  // If _restart_addr is non-NULL, a marking stack overflow
3588  // occurred; we need to do a fresh iteration from the
3589  // indicated restart address.
3590  while (_restart_addr != NULL) {
3591    if (_foregroundGCIsActive) {
3592      // We may be running into repeated stack overflows, having
3593      // reached the limit of the stack size, while making very
3594      // slow forward progress. It may be best to bail out and
3595      // let the foreground collector do its job.
3596      // Clear _restart_addr, so that foreground GC
3597      // works from scratch. This avoids the headache of
3598      // a "rescan" which would otherwise be needed because
3599      // of the dirty mod union table & card table.
3600      _restart_addr = NULL;
3601      return false;  // indicating failure to complete marking
3602    }
3603    // Deal with stack overflow:
3604    // we restart marking from _restart_addr
3605    HeapWord* ra = _restart_addr;
3606    markFromRootsClosure.reset(ra);
3607    _restart_addr = NULL;
3608    _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3609  }
3610  return true;
3611}
3612
3613void CMSCollector::preclean() {
3614  check_correct_thread_executing();
3615  assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3616  verify_work_stacks_empty();
3617  verify_overflow_empty();
3618  _abort_preclean = false;
3619  if (CMSPrecleaningEnabled) {
3620    if (!CMSEdenChunksRecordAlways) {
3621      _eden_chunk_index = 0;
3622    }
3623    size_t used = get_eden_used();
3624    size_t capacity = get_eden_capacity();
3625    // Don't start sampling unless we will get sufficiently
3626    // many samples.
3627    if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3628                * CMSScheduleRemarkEdenPenetration)) {
3629      _start_sampling = true;
3630    } else {
3631      _start_sampling = false;
3632    }
3633    GCTraceCPUTime tcpu;
3634    CMSPhaseAccounting pa(this, "Concurrent Preclean");
3635    preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3636  }
3637  CMSTokenSync x(true); // is cms thread
3638  if (CMSPrecleaningEnabled) {
3639    sample_eden();
3640    _collectorState = AbortablePreclean;
3641  } else {
3642    _collectorState = FinalMarking;
3643  }
3644  verify_work_stacks_empty();
3645  verify_overflow_empty();
3646}
3647
3648// Try and schedule the remark such that young gen
3649// occupancy is CMSScheduleRemarkEdenPenetration %.
3650void CMSCollector::abortable_preclean() {
3651  check_correct_thread_executing();
3652  assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3653  assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3654
3655  // If Eden's current occupancy is below this threshold,
3656  // immediately schedule the remark; else preclean
3657  // past the next scavenge in an effort to
3658  // schedule the pause as described above. By choosing
3659  // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3660  // we will never do an actual abortable preclean cycle.
3661  if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3662    GCTraceCPUTime tcpu;
3663    CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3664    // We need more smarts in the abortable preclean
3665    // loop below to deal with cases where allocation
3666    // in young gen is very very slow, and our precleaning
3667    // is running a losing race against a horde of
3668    // mutators intent on flooding us with CMS updates
3669    // (dirty cards).
3670    // One, admittedly dumb, strategy is to give up
3671    // after a certain number of abortable precleaning loops
3672    // or after a certain maximum time. We want to make
3673    // this smarter in the next iteration.
3674    // XXX FIX ME!!! YSR
3675    size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3676    while (!(should_abort_preclean() ||
3677             ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3678      workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3679      cumworkdone += workdone;
3680      loops++;
3681      // Voluntarily terminate abortable preclean phase if we have
3682      // been at it for too long.
3683      if ((CMSMaxAbortablePrecleanLoops != 0) &&
3684          loops >= CMSMaxAbortablePrecleanLoops) {
3685        log_debug(gc)(" CMS: abort preclean due to loops ");
3686        break;
3687      }
3688      if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3689        log_debug(gc)(" CMS: abort preclean due to time ");
3690        break;
3691      }
3692      // If we are doing little work each iteration, we should
3693      // take a short break.
3694      if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3695        // Sleep for some time, waiting for work to accumulate
3696        stopTimer();
3697        cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3698        startTimer();
3699        waited++;
3700      }
3701    }
3702    log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3703                               loops, waited, cumworkdone);
3704  }
3705  CMSTokenSync x(true); // is cms thread
3706  if (_collectorState != Idling) {
3707    assert(_collectorState == AbortablePreclean,
3708           "Spontaneous state transition?");
3709    _collectorState = FinalMarking;
3710  } // Else, a foreground collection completed this CMS cycle.
3711  return;
3712}
3713
3714// Respond to an Eden sampling opportunity
3715void CMSCollector::sample_eden() {
3716  // Make sure a young gc cannot sneak in between our
3717  // reading and recording of a sample.
3718  assert(Thread::current()->is_ConcurrentGC_thread(),
3719         "Only the cms thread may collect Eden samples");
3720  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3721         "Should collect samples while holding CMS token");
3722  if (!_start_sampling) {
3723    return;
3724  }
3725  // When CMSEdenChunksRecordAlways is true, the eden chunk array
3726  // is populated by the young generation.
3727  if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3728    if (_eden_chunk_index < _eden_chunk_capacity) {
3729      _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3730      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3731             "Unexpected state of Eden");
3732      // We'd like to check that what we just sampled is an oop-start address;
3733      // however, we cannot do that here since the object may not yet have been
3734      // initialized. So we'll instead do the check when we _use_ this sample
3735      // later.
3736      if (_eden_chunk_index == 0 ||
3737          (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3738                         _eden_chunk_array[_eden_chunk_index-1])
3739           >= CMSSamplingGrain)) {
3740        _eden_chunk_index++;  // commit sample
3741      }
3742    }
3743  }
3744  if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3745    size_t used = get_eden_used();
3746    size_t capacity = get_eden_capacity();
3747    assert(used <= capacity, "Unexpected state of Eden");
3748    if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3749      _abort_preclean = true;
3750    }
3751  }
3752}
3753
3754
3755size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3756  assert(_collectorState == Precleaning ||
3757         _collectorState == AbortablePreclean, "incorrect state");
3758  ResourceMark rm;
3759  HandleMark   hm;
3760
3761  // Precleaning is currently not MT but the reference processor
3762  // may be set for MT.  Disable it temporarily here.
3763  ReferenceProcessor* rp = ref_processor();
3764  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3765
3766  // Do one pass of scrubbing the discovered reference lists
3767  // to remove any reference objects with strongly-reachable
3768  // referents.
3769  if (clean_refs) {
3770    CMSPrecleanRefsYieldClosure yield_cl(this);
3771    assert(rp->span().equals(_span), "Spans should be equal");
3772    CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3773                                   &_markStack, true /* preclean */);
3774    CMSDrainMarkingStackClosure complete_trace(this,
3775                                   _span, &_markBitMap, &_markStack,
3776                                   &keep_alive, true /* preclean */);
3777
3778    // We don't want this step to interfere with a young
3779    // collection because we don't want to take CPU
3780    // or memory bandwidth away from the young GC threads
3781    // (which may be as many as there are CPUs).
3782    // Note that we don't need to protect ourselves from
3783    // interference with mutators because they can't
3784    // manipulate the discovered reference lists nor affect
3785    // the computed reachability of the referents, the
3786    // only properties manipulated by the precleaning
3787    // of these reference lists.
3788    stopTimer();
3789    CMSTokenSyncWithLocks x(true /* is cms thread */,
3790                            bitMapLock());
3791    startTimer();
3792    sample_eden();
3793
3794    // The following will yield to allow foreground
3795    // collection to proceed promptly. XXX YSR:
3796    // The code in this method may need further
3797    // tweaking for better performance and some restructuring
3798    // for cleaner interfaces.
3799    GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3800    rp->preclean_discovered_references(
3801          rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3802          gc_timer);
3803  }
3804
3805  if (clean_survivor) {  // preclean the active survivor space(s)
3806    PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3807                             &_markBitMap, &_modUnionTable,
3808                             &_markStack, true /* precleaning phase */);
3809    stopTimer();
3810    CMSTokenSyncWithLocks ts(true /* is cms thread */,
3811                             bitMapLock());
3812    startTimer();
3813    unsigned int before_count =
3814      GenCollectedHeap::heap()->total_collections();
3815    SurvivorSpacePrecleanClosure
3816      sss_cl(this, _span, &_markBitMap, &_markStack,
3817             &pam_cl, before_count, CMSYield);
3818    _young_gen->from()->object_iterate_careful(&sss_cl);
3819    _young_gen->to()->object_iterate_careful(&sss_cl);
3820  }
3821  MarkRefsIntoAndScanClosure
3822    mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3823             &_markStack, this, CMSYield,
3824             true /* precleaning phase */);
3825  // CAUTION: The following closure has persistent state that may need to
3826  // be reset upon a decrease in the sequence of addresses it
3827  // processes.
3828  ScanMarkedObjectsAgainCarefullyClosure
3829    smoac_cl(this, _span,
3830      &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3831
3832  // Preclean dirty cards in ModUnionTable and CardTable using
3833  // appropriate convergence criterion;
3834  // repeat CMSPrecleanIter times unless we find that
3835  // we are losing.
3836  assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3837  assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3838         "Bad convergence multiplier");
3839  assert(CMSPrecleanThreshold >= 100,
3840         "Unreasonably low CMSPrecleanThreshold");
3841
3842  size_t numIter, cumNumCards, lastNumCards, curNumCards;
3843  for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3844       numIter < CMSPrecleanIter;
3845       numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3846    curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3847    log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3848    // Either there are very few dirty cards, so re-mark
3849    // pause will be small anyway, or our pre-cleaning isn't
3850    // that much faster than the rate at which cards are being
3851    // dirtied, so we might as well stop and re-mark since
3852    // precleaning won't improve our re-mark time by much.
3853    if (curNumCards <= CMSPrecleanThreshold ||
3854        (numIter > 0 &&
3855         (curNumCards * CMSPrecleanDenominator >
3856         lastNumCards * CMSPrecleanNumerator))) {
3857      numIter++;
3858      cumNumCards += curNumCards;
3859      break;
3860    }
3861  }
3862
3863  preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3864
3865  curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3866  cumNumCards += curNumCards;
3867  log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3868                             curNumCards, cumNumCards, numIter);
3869  return cumNumCards;   // as a measure of useful work done
3870}
3871
3872// PRECLEANING NOTES:
3873// Precleaning involves:
3874// . reading the bits of the modUnionTable and clearing the set bits.
3875// . For the cards corresponding to the set bits, we scan the
3876//   objects on those cards. This means we need the free_list_lock
3877//   so that we can safely iterate over the CMS space when scanning
3878//   for oops.
3879// . When we scan the objects, we'll be both reading and setting
3880//   marks in the marking bit map, so we'll need the marking bit map.
3881// . For protecting _collector_state transitions, we take the CGC_lock.
3882//   Note that any races in the reading of of card table entries by the
3883//   CMS thread on the one hand and the clearing of those entries by the
3884//   VM thread or the setting of those entries by the mutator threads on the
3885//   other are quite benign. However, for efficiency it makes sense to keep
3886//   the VM thread from racing with the CMS thread while the latter is
3887//   dirty card info to the modUnionTable. We therefore also use the
3888//   CGC_lock to protect the reading of the card table and the mod union
3889//   table by the CM thread.
3890// . We run concurrently with mutator updates, so scanning
3891//   needs to be done carefully  -- we should not try to scan
3892//   potentially uninitialized objects.
3893//
3894// Locking strategy: While holding the CGC_lock, we scan over and
3895// reset a maximal dirty range of the mod union / card tables, then lock
3896// the free_list_lock and bitmap lock to do a full marking, then
3897// release these locks; and repeat the cycle. This allows for a
3898// certain amount of fairness in the sharing of these locks between
3899// the CMS collector on the one hand, and the VM thread and the
3900// mutators on the other.
3901
3902// NOTE: preclean_mod_union_table() and preclean_card_table()
3903// further below are largely identical; if you need to modify
3904// one of these methods, please check the other method too.
3905
3906size_t CMSCollector::preclean_mod_union_table(
3907  ConcurrentMarkSweepGeneration* old_gen,
3908  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3909  verify_work_stacks_empty();
3910  verify_overflow_empty();
3911
3912  // strategy: starting with the first card, accumulate contiguous
3913  // ranges of dirty cards; clear these cards, then scan the region
3914  // covered by these cards.
3915
3916  // Since all of the MUT is committed ahead, we can just use
3917  // that, in case the generations expand while we are precleaning.
3918  // It might also be fine to just use the committed part of the
3919  // generation, but we might potentially miss cards when the
3920  // generation is rapidly expanding while we are in the midst
3921  // of precleaning.
3922  HeapWord* startAddr = old_gen->reserved().start();
3923  HeapWord* endAddr   = old_gen->reserved().end();
3924
3925  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3926
3927  size_t numDirtyCards, cumNumDirtyCards;
3928  HeapWord *nextAddr, *lastAddr;
3929  for (cumNumDirtyCards = numDirtyCards = 0,
3930       nextAddr = lastAddr = startAddr;
3931       nextAddr < endAddr;
3932       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3933
3934    ResourceMark rm;
3935    HandleMark   hm;
3936
3937    MemRegion dirtyRegion;
3938    {
3939      stopTimer();
3940      // Potential yield point
3941      CMSTokenSync ts(true);
3942      startTimer();
3943      sample_eden();
3944      // Get dirty region starting at nextOffset (inclusive),
3945      // simultaneously clearing it.
3946      dirtyRegion =
3947        _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3948      assert(dirtyRegion.start() >= nextAddr,
3949             "returned region inconsistent?");
3950    }
3951    // Remember where the next search should begin.
3952    // The returned region (if non-empty) is a right open interval,
3953    // so lastOffset is obtained from the right end of that
3954    // interval.
3955    lastAddr = dirtyRegion.end();
3956    // Should do something more transparent and less hacky XXX
3957    numDirtyCards =
3958      _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3959
3960    // We'll scan the cards in the dirty region (with periodic
3961    // yields for foreground GC as needed).
3962    if (!dirtyRegion.is_empty()) {
3963      assert(numDirtyCards > 0, "consistency check");
3964      HeapWord* stop_point = NULL;
3965      stopTimer();
3966      // Potential yield point
3967      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3968                               bitMapLock());
3969      startTimer();
3970      {
3971        verify_work_stacks_empty();
3972        verify_overflow_empty();
3973        sample_eden();
3974        stop_point =
3975          old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3976      }
3977      if (stop_point != NULL) {
3978        // The careful iteration stopped early either because it found an
3979        // uninitialized object, or because we were in the midst of an
3980        // "abortable preclean", which should now be aborted. Redirty
3981        // the bits corresponding to the partially-scanned or unscanned
3982        // cards. We'll either restart at the next block boundary or
3983        // abort the preclean.
3984        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3985               "Should only be AbortablePreclean.");
3986        _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3987        if (should_abort_preclean()) {
3988          break; // out of preclean loop
3989        } else {
3990          // Compute the next address at which preclean should pick up;
3991          // might need bitMapLock in order to read P-bits.
3992          lastAddr = next_card_start_after_block(stop_point);
3993        }
3994      }
3995    } else {
3996      assert(lastAddr == endAddr, "consistency check");
3997      assert(numDirtyCards == 0, "consistency check");
3998      break;
3999    }
4000  }
4001  verify_work_stacks_empty();
4002  verify_overflow_empty();
4003  return cumNumDirtyCards;
4004}
4005
4006// NOTE: preclean_mod_union_table() above and preclean_card_table()
4007// below are largely identical; if you need to modify
4008// one of these methods, please check the other method too.
4009
4010size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4011  ScanMarkedObjectsAgainCarefullyClosure* cl) {
4012  // strategy: it's similar to precleamModUnionTable above, in that
4013  // we accumulate contiguous ranges of dirty cards, mark these cards
4014  // precleaned, then scan the region covered by these cards.
4015  HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4016  HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4017
4018  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4019
4020  size_t numDirtyCards, cumNumDirtyCards;
4021  HeapWord *lastAddr, *nextAddr;
4022
4023  for (cumNumDirtyCards = numDirtyCards = 0,
4024       nextAddr = lastAddr = startAddr;
4025       nextAddr < endAddr;
4026       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4027
4028    ResourceMark rm;
4029    HandleMark   hm;
4030
4031    MemRegion dirtyRegion;
4032    {
4033      // See comments in "Precleaning notes" above on why we
4034      // do this locking. XXX Could the locking overheads be
4035      // too high when dirty cards are sparse? [I don't think so.]
4036      stopTimer();
4037      CMSTokenSync x(true); // is cms thread
4038      startTimer();
4039      sample_eden();
4040      // Get and clear dirty region from card table
4041      dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4042                                    MemRegion(nextAddr, endAddr),
4043                                    true,
4044                                    CardTableModRefBS::precleaned_card_val());
4045
4046      assert(dirtyRegion.start() >= nextAddr,
4047             "returned region inconsistent?");
4048    }
4049    lastAddr = dirtyRegion.end();
4050    numDirtyCards =
4051      dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4052
4053    if (!dirtyRegion.is_empty()) {
4054      stopTimer();
4055      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4056      startTimer();
4057      sample_eden();
4058      verify_work_stacks_empty();
4059      verify_overflow_empty();
4060      HeapWord* stop_point =
4061        old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4062      if (stop_point != NULL) {
4063        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4064               "Should only be AbortablePreclean.");
4065        _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4066        if (should_abort_preclean()) {
4067          break; // out of preclean loop
4068        } else {
4069          // Compute the next address at which preclean should pick up.
4070          lastAddr = next_card_start_after_block(stop_point);
4071        }
4072      }
4073    } else {
4074      break;
4075    }
4076  }
4077  verify_work_stacks_empty();
4078  verify_overflow_empty();
4079  return cumNumDirtyCards;
4080}
4081
4082class PrecleanKlassClosure : public KlassClosure {
4083  KlassToOopClosure _cm_klass_closure;
4084 public:
4085  PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4086  void do_klass(Klass* k) {
4087    if (k->has_accumulated_modified_oops()) {
4088      k->clear_accumulated_modified_oops();
4089
4090      _cm_klass_closure.do_klass(k);
4091    }
4092  }
4093};
4094
4095// The freelist lock is needed to prevent asserts, is it really needed?
4096void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4097
4098  cl->set_freelistLock(freelistLock);
4099
4100  CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4101
4102  // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4103  // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4104  PrecleanKlassClosure preclean_klass_closure(cl);
4105  ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4106
4107  verify_work_stacks_empty();
4108  verify_overflow_empty();
4109}
4110
4111void CMSCollector::checkpointRootsFinal() {
4112  assert(_collectorState == FinalMarking, "incorrect state transition?");
4113  check_correct_thread_executing();
4114  // world is stopped at this checkpoint
4115  assert(SafepointSynchronize::is_at_safepoint(),
4116         "world should be stopped");
4117  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4118
4119  verify_work_stacks_empty();
4120  verify_overflow_empty();
4121
4122  log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4123                _young_gen->used() / K, _young_gen->capacity() / K);
4124  {
4125    if (CMSScavengeBeforeRemark) {
4126      GenCollectedHeap* gch = GenCollectedHeap::heap();
4127      // Temporarily set flag to false, GCH->do_collection will
4128      // expect it to be false and set to true
4129      FlagSetting fl(gch->_is_gc_active, false);
4130
4131      gch->do_collection(true,                      // full (i.e. force, see below)
4132                         false,                     // !clear_all_soft_refs
4133                         0,                         // size
4134                         false,                     // is_tlab
4135                         GenCollectedHeap::YoungGen // type
4136        );
4137    }
4138    FreelistLocker x(this);
4139    MutexLockerEx y(bitMapLock(),
4140                    Mutex::_no_safepoint_check_flag);
4141    checkpointRootsFinalWork();
4142  }
4143  verify_work_stacks_empty();
4144  verify_overflow_empty();
4145}
4146
4147void CMSCollector::checkpointRootsFinalWork() {
4148  GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4149
4150  assert(haveFreelistLocks(), "must have free list locks");
4151  assert_lock_strong(bitMapLock());
4152
4153  ResourceMark rm;
4154  HandleMark   hm;
4155
4156  GenCollectedHeap* gch = GenCollectedHeap::heap();
4157
4158  if (should_unload_classes()) {
4159    CodeCache::gc_prologue();
4160  }
4161  assert(haveFreelistLocks(), "must have free list locks");
4162  assert_lock_strong(bitMapLock());
4163
4164  // We might assume that we need not fill TLAB's when
4165  // CMSScavengeBeforeRemark is set, because we may have just done
4166  // a scavenge which would have filled all TLAB's -- and besides
4167  // Eden would be empty. This however may not always be the case --
4168  // for instance although we asked for a scavenge, it may not have
4169  // happened because of a JNI critical section. We probably need
4170  // a policy for deciding whether we can in that case wait until
4171  // the critical section releases and then do the remark following
4172  // the scavenge, and skip it here. In the absence of that policy,
4173  // or of an indication of whether the scavenge did indeed occur,
4174  // we cannot rely on TLAB's having been filled and must do
4175  // so here just in case a scavenge did not happen.
4176  gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4177  // Update the saved marks which may affect the root scans.
4178  gch->save_marks();
4179
4180  print_eden_and_survivor_chunk_arrays();
4181
4182  {
4183#if defined(COMPILER2) || INCLUDE_JVMCI
4184    DerivedPointerTableDeactivate dpt_deact;
4185#endif
4186
4187    // Note on the role of the mod union table:
4188    // Since the marker in "markFromRoots" marks concurrently with
4189    // mutators, it is possible for some reachable objects not to have been
4190    // scanned. For instance, an only reference to an object A was
4191    // placed in object B after the marker scanned B. Unless B is rescanned,
4192    // A would be collected. Such updates to references in marked objects
4193    // are detected via the mod union table which is the set of all cards
4194    // dirtied since the first checkpoint in this GC cycle and prior to
4195    // the most recent young generation GC, minus those cleaned up by the
4196    // concurrent precleaning.
4197    if (CMSParallelRemarkEnabled) {
4198      GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4199      do_remark_parallel();
4200    } else {
4201      GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4202      do_remark_non_parallel();
4203    }
4204  }
4205  verify_work_stacks_empty();
4206  verify_overflow_empty();
4207
4208  {
4209    GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4210    refProcessingWork();
4211  }
4212  verify_work_stacks_empty();
4213  verify_overflow_empty();
4214
4215  if (should_unload_classes()) {
4216    CodeCache::gc_epilogue();
4217  }
4218  JvmtiExport::gc_epilogue();
4219
4220  // If we encountered any (marking stack / work queue) overflow
4221  // events during the current CMS cycle, take appropriate
4222  // remedial measures, where possible, so as to try and avoid
4223  // recurrence of that condition.
4224  assert(_markStack.isEmpty(), "No grey objects");
4225  size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4226                     _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4227  if (ser_ovflw > 0) {
4228    log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4229                         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4230    _markStack.expand();
4231    _ser_pmc_remark_ovflw = 0;
4232    _ser_pmc_preclean_ovflw = 0;
4233    _ser_kac_preclean_ovflw = 0;
4234    _ser_kac_ovflw = 0;
4235  }
4236  if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4237     log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4238                          _par_pmc_remark_ovflw, _par_kac_ovflw);
4239     _par_pmc_remark_ovflw = 0;
4240    _par_kac_ovflw = 0;
4241  }
4242   if (_markStack._hit_limit > 0) {
4243     log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4244                          _markStack._hit_limit);
4245   }
4246   if (_markStack._failed_double > 0) {
4247     log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4248                          _markStack._failed_double, _markStack.capacity());
4249   }
4250  _markStack._hit_limit = 0;
4251  _markStack._failed_double = 0;
4252
4253  if ((VerifyAfterGC || VerifyDuringGC) &&
4254      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4255    verify_after_remark();
4256  }
4257
4258  _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4259
4260  // Change under the freelistLocks.
4261  _collectorState = Sweeping;
4262  // Call isAllClear() under bitMapLock
4263  assert(_modUnionTable.isAllClear(),
4264      "Should be clear by end of the final marking");
4265  assert(_ct->klass_rem_set()->mod_union_is_clear(),
4266      "Should be clear by end of the final marking");
4267}
4268
4269void CMSParInitialMarkTask::work(uint worker_id) {
4270  elapsedTimer _timer;
4271  ResourceMark rm;
4272  HandleMark   hm;
4273
4274  // ---------- scan from roots --------------
4275  _timer.start();
4276  GenCollectedHeap* gch = GenCollectedHeap::heap();
4277  ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4278
4279  // ---------- young gen roots --------------
4280  {
4281    work_on_young_gen_roots(&par_mri_cl);
4282    _timer.stop();
4283    log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4284  }
4285
4286  // ---------- remaining roots --------------
4287  _timer.reset();
4288  _timer.start();
4289
4290  CLDToOopClosure cld_closure(&par_mri_cl, true);
4291
4292  gch->gen_process_roots(_strong_roots_scope,
4293                         GenCollectedHeap::OldGen,
4294                         false,     // yg was scanned above
4295                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4296                         _collector->should_unload_classes(),
4297                         &par_mri_cl,
4298                         NULL,
4299                         &cld_closure);
4300  assert(_collector->should_unload_classes()
4301         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4302         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4303  _timer.stop();
4304  log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4305}
4306
4307// Parallel remark task
4308class CMSParRemarkTask: public CMSParMarkTask {
4309  CompactibleFreeListSpace* _cms_space;
4310
4311  // The per-thread work queues, available here for stealing.
4312  OopTaskQueueSet*       _task_queues;
4313  ParallelTaskTerminator _term;
4314  StrongRootsScope*      _strong_roots_scope;
4315
4316 public:
4317  // A value of 0 passed to n_workers will cause the number of
4318  // workers to be taken from the active workers in the work gang.
4319  CMSParRemarkTask(CMSCollector* collector,
4320                   CompactibleFreeListSpace* cms_space,
4321                   uint n_workers, WorkGang* workers,
4322                   OopTaskQueueSet* task_queues,
4323                   StrongRootsScope* strong_roots_scope):
4324    CMSParMarkTask("Rescan roots and grey objects in parallel",
4325                   collector, n_workers),
4326    _cms_space(cms_space),
4327    _task_queues(task_queues),
4328    _term(n_workers, task_queues),
4329    _strong_roots_scope(strong_roots_scope) { }
4330
4331  OopTaskQueueSet* task_queues() { return _task_queues; }
4332
4333  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4334
4335  ParallelTaskTerminator* terminator() { return &_term; }
4336  uint n_workers() { return _n_workers; }
4337
4338  void work(uint worker_id);
4339
4340 private:
4341  // ... of  dirty cards in old space
4342  void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4343                                  ParMarkRefsIntoAndScanClosure* cl);
4344
4345  // ... work stealing for the above
4346  void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4347};
4348
4349class RemarkKlassClosure : public KlassClosure {
4350  KlassToOopClosure _cm_klass_closure;
4351 public:
4352  RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4353  void do_klass(Klass* k) {
4354    // Check if we have modified any oops in the Klass during the concurrent marking.
4355    if (k->has_accumulated_modified_oops()) {
4356      k->clear_accumulated_modified_oops();
4357
4358      // We could have transfered the current modified marks to the accumulated marks,
4359      // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4360    } else if (k->has_modified_oops()) {
4361      // Don't clear anything, this info is needed by the next young collection.
4362    } else {
4363      // No modified oops in the Klass.
4364      return;
4365    }
4366
4367    // The klass has modified fields, need to scan the klass.
4368    _cm_klass_closure.do_klass(k);
4369  }
4370};
4371
4372void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4373  ParNewGeneration* young_gen = _collector->_young_gen;
4374  ContiguousSpace* eden_space = young_gen->eden();
4375  ContiguousSpace* from_space = young_gen->from();
4376  ContiguousSpace* to_space   = young_gen->to();
4377
4378  HeapWord** eca = _collector->_eden_chunk_array;
4379  size_t     ect = _collector->_eden_chunk_index;
4380  HeapWord** sca = _collector->_survivor_chunk_array;
4381  size_t     sct = _collector->_survivor_chunk_index;
4382
4383  assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4384  assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4385
4386  do_young_space_rescan(cl, to_space, NULL, 0);
4387  do_young_space_rescan(cl, from_space, sca, sct);
4388  do_young_space_rescan(cl, eden_space, eca, ect);
4389}
4390
4391// work_queue(i) is passed to the closure
4392// ParMarkRefsIntoAndScanClosure.  The "i" parameter
4393// also is passed to do_dirty_card_rescan_tasks() and to
4394// do_work_steal() to select the i-th task_queue.
4395
4396void CMSParRemarkTask::work(uint worker_id) {
4397  elapsedTimer _timer;
4398  ResourceMark rm;
4399  HandleMark   hm;
4400
4401  // ---------- rescan from roots --------------
4402  _timer.start();
4403  GenCollectedHeap* gch = GenCollectedHeap::heap();
4404  ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4405    _collector->_span, _collector->ref_processor(),
4406    &(_collector->_markBitMap),
4407    work_queue(worker_id));
4408
4409  // Rescan young gen roots first since these are likely
4410  // coarsely partitioned and may, on that account, constitute
4411  // the critical path; thus, it's best to start off that
4412  // work first.
4413  // ---------- young gen roots --------------
4414  {
4415    work_on_young_gen_roots(&par_mrias_cl);
4416    _timer.stop();
4417    log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4418  }
4419
4420  // ---------- remaining roots --------------
4421  _timer.reset();
4422  _timer.start();
4423  gch->gen_process_roots(_strong_roots_scope,
4424                         GenCollectedHeap::OldGen,
4425                         false,     // yg was scanned above
4426                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4427                         _collector->should_unload_classes(),
4428                         &par_mrias_cl,
4429                         NULL,
4430                         NULL);     // The dirty klasses will be handled below
4431
4432  assert(_collector->should_unload_classes()
4433         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4434         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4435  _timer.stop();
4436  log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4437
4438  // ---------- unhandled CLD scanning ----------
4439  if (worker_id == 0) { // Single threaded at the moment.
4440    _timer.reset();
4441    _timer.start();
4442
4443    // Scan all new class loader data objects and new dependencies that were
4444    // introduced during concurrent marking.
4445    ResourceMark rm;
4446    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4447    for (int i = 0; i < array->length(); i++) {
4448      par_mrias_cl.do_cld_nv(array->at(i));
4449    }
4450
4451    // We don't need to keep track of new CLDs anymore.
4452    ClassLoaderDataGraph::remember_new_clds(false);
4453
4454    _timer.stop();
4455    log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4456  }
4457
4458  // ---------- dirty klass scanning ----------
4459  if (worker_id == 0) { // Single threaded at the moment.
4460    _timer.reset();
4461    _timer.start();
4462
4463    // Scan all classes that was dirtied during the concurrent marking phase.
4464    RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4465    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4466
4467    _timer.stop();
4468    log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4469  }
4470
4471  // We might have added oops to ClassLoaderData::_handles during the
4472  // concurrent marking phase. These oops point to newly allocated objects
4473  // that are guaranteed to be kept alive. Either by the direct allocation
4474  // code, or when the young collector processes the roots. Hence,
4475  // we don't have to revisit the _handles block during the remark phase.
4476
4477  // ---------- rescan dirty cards ------------
4478  _timer.reset();
4479  _timer.start();
4480
4481  // Do the rescan tasks for each of the two spaces
4482  // (cms_space) in turn.
4483  // "worker_id" is passed to select the task_queue for "worker_id"
4484  do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4485  _timer.stop();
4486  log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4487
4488  // ---------- steal work from other threads ...
4489  // ---------- ... and drain overflow list.
4490  _timer.reset();
4491  _timer.start();
4492  do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4493  _timer.stop();
4494  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4495}
4496
4497void
4498CMSParMarkTask::do_young_space_rescan(
4499  OopsInGenClosure* cl, ContiguousSpace* space,
4500  HeapWord** chunk_array, size_t chunk_top) {
4501  // Until all tasks completed:
4502  // . claim an unclaimed task
4503  // . compute region boundaries corresponding to task claimed
4504  //   using chunk_array
4505  // . par_oop_iterate(cl) over that region
4506
4507  ResourceMark rm;
4508  HandleMark   hm;
4509
4510  SequentialSubTasksDone* pst = space->par_seq_tasks();
4511
4512  uint nth_task = 0;
4513  uint n_tasks  = pst->n_tasks();
4514
4515  if (n_tasks > 0) {
4516    assert(pst->valid(), "Uninitialized use?");
4517    HeapWord *start, *end;
4518    while (!pst->is_task_claimed(/* reference */ nth_task)) {
4519      // We claimed task # nth_task; compute its boundaries.
4520      if (chunk_top == 0) {  // no samples were taken
4521        assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4522        start = space->bottom();
4523        end   = space->top();
4524      } else if (nth_task == 0) {
4525        start = space->bottom();
4526        end   = chunk_array[nth_task];
4527      } else if (nth_task < (uint)chunk_top) {
4528        assert(nth_task >= 1, "Control point invariant");
4529        start = chunk_array[nth_task - 1];
4530        end   = chunk_array[nth_task];
4531      } else {
4532        assert(nth_task == (uint)chunk_top, "Control point invariant");
4533        start = chunk_array[chunk_top - 1];
4534        end   = space->top();
4535      }
4536      MemRegion mr(start, end);
4537      // Verify that mr is in space
4538      assert(mr.is_empty() || space->used_region().contains(mr),
4539             "Should be in space");
4540      // Verify that "start" is an object boundary
4541      assert(mr.is_empty() || oop(mr.start())->is_oop(),
4542             "Should be an oop");
4543      space->par_oop_iterate(mr, cl);
4544    }
4545    pst->all_tasks_completed();
4546  }
4547}
4548
4549void
4550CMSParRemarkTask::do_dirty_card_rescan_tasks(
4551  CompactibleFreeListSpace* sp, int i,
4552  ParMarkRefsIntoAndScanClosure* cl) {
4553  // Until all tasks completed:
4554  // . claim an unclaimed task
4555  // . compute region boundaries corresponding to task claimed
4556  // . transfer dirty bits ct->mut for that region
4557  // . apply rescanclosure to dirty mut bits for that region
4558
4559  ResourceMark rm;
4560  HandleMark   hm;
4561
4562  OopTaskQueue* work_q = work_queue(i);
4563  ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4564  // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4565  // CAUTION: This closure has state that persists across calls to
4566  // the work method dirty_range_iterate_clear() in that it has
4567  // embedded in it a (subtype of) UpwardsObjectClosure. The
4568  // use of that state in the embedded UpwardsObjectClosure instance
4569  // assumes that the cards are always iterated (even if in parallel
4570  // by several threads) in monotonically increasing order per each
4571  // thread. This is true of the implementation below which picks
4572  // card ranges (chunks) in monotonically increasing order globally
4573  // and, a-fortiori, in monotonically increasing order per thread
4574  // (the latter order being a subsequence of the former).
4575  // If the work code below is ever reorganized into a more chaotic
4576  // work-partitioning form than the current "sequential tasks"
4577  // paradigm, the use of that persistent state will have to be
4578  // revisited and modified appropriately. See also related
4579  // bug 4756801 work on which should examine this code to make
4580  // sure that the changes there do not run counter to the
4581  // assumptions made here and necessary for correctness and
4582  // efficiency. Note also that this code might yield inefficient
4583  // behavior in the case of very large objects that span one or
4584  // more work chunks. Such objects would potentially be scanned
4585  // several times redundantly. Work on 4756801 should try and
4586  // address that performance anomaly if at all possible. XXX
4587  MemRegion  full_span  = _collector->_span;
4588  CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4589  MarkFromDirtyCardsClosure
4590    greyRescanClosure(_collector, full_span, // entire span of interest
4591                      sp, bm, work_q, cl);
4592
4593  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4594  assert(pst->valid(), "Uninitialized use?");
4595  uint nth_task = 0;
4596  const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4597  MemRegion span = sp->used_region();
4598  HeapWord* start_addr = span.start();
4599  HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4600                                           alignment);
4601  const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4602  assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4603         start_addr, "Check alignment");
4604  assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4605         chunk_size, "Check alignment");
4606
4607  while (!pst->is_task_claimed(/* reference */ nth_task)) {
4608    // Having claimed the nth_task, compute corresponding mem-region,
4609    // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4610    // The alignment restriction ensures that we do not need any
4611    // synchronization with other gang-workers while setting or
4612    // clearing bits in thus chunk of the MUT.
4613    MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4614                                    start_addr + (nth_task+1)*chunk_size);
4615    // The last chunk's end might be way beyond end of the
4616    // used region. In that case pull back appropriately.
4617    if (this_span.end() > end_addr) {
4618      this_span.set_end(end_addr);
4619      assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4620    }
4621    // Iterate over the dirty cards covering this chunk, marking them
4622    // precleaned, and setting the corresponding bits in the mod union
4623    // table. Since we have been careful to partition at Card and MUT-word
4624    // boundaries no synchronization is needed between parallel threads.
4625    _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4626                                                 &modUnionClosure);
4627
4628    // Having transferred these marks into the modUnionTable,
4629    // rescan the marked objects on the dirty cards in the modUnionTable.
4630    // Even if this is at a synchronous collection, the initial marking
4631    // may have been done during an asynchronous collection so there
4632    // may be dirty bits in the mod-union table.
4633    _collector->_modUnionTable.dirty_range_iterate_clear(
4634                  this_span, &greyRescanClosure);
4635    _collector->_modUnionTable.verifyNoOneBitsInRange(
4636                                 this_span.start(),
4637                                 this_span.end());
4638  }
4639  pst->all_tasks_completed();  // declare that i am done
4640}
4641
4642// . see if we can share work_queues with ParNew? XXX
4643void
4644CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4645                                int* seed) {
4646  OopTaskQueue* work_q = work_queue(i);
4647  NOT_PRODUCT(int num_steals = 0;)
4648  oop obj_to_scan;
4649  CMSBitMap* bm = &(_collector->_markBitMap);
4650
4651  while (true) {
4652    // Completely finish any left over work from (an) earlier round(s)
4653    cl->trim_queue(0);
4654    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4655                                         (size_t)ParGCDesiredObjsFromOverflowList);
4656    // Now check if there's any work in the overflow list
4657    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4658    // only affects the number of attempts made to get work from the
4659    // overflow list and does not affect the number of workers.  Just
4660    // pass ParallelGCThreads so this behavior is unchanged.
4661    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4662                                                work_q,
4663                                                ParallelGCThreads)) {
4664      // found something in global overflow list;
4665      // not yet ready to go stealing work from others.
4666      // We'd like to assert(work_q->size() != 0, ...)
4667      // because we just took work from the overflow list,
4668      // but of course we can't since all of that could have
4669      // been already stolen from us.
4670      // "He giveth and He taketh away."
4671      continue;
4672    }
4673    // Verify that we have no work before we resort to stealing
4674    assert(work_q->size() == 0, "Have work, shouldn't steal");
4675    // Try to steal from other queues that have work
4676    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4677      NOT_PRODUCT(num_steals++;)
4678      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4679      assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4680      // Do scanning work
4681      obj_to_scan->oop_iterate(cl);
4682      // Loop around, finish this work, and try to steal some more
4683    } else if (terminator()->offer_termination()) {
4684        break;  // nirvana from the infinite cycle
4685    }
4686  }
4687  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4688  assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4689         "Else our work is not yet done");
4690}
4691
4692// Record object boundaries in _eden_chunk_array by sampling the eden
4693// top in the slow-path eden object allocation code path and record
4694// the boundaries, if CMSEdenChunksRecordAlways is true. If
4695// CMSEdenChunksRecordAlways is false, we use the other asynchronous
4696// sampling in sample_eden() that activates during the part of the
4697// preclean phase.
4698void CMSCollector::sample_eden_chunk() {
4699  if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4700    if (_eden_chunk_lock->try_lock()) {
4701      // Record a sample. This is the critical section. The contents
4702      // of the _eden_chunk_array have to be non-decreasing in the
4703      // address order.
4704      _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4705      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4706             "Unexpected state of Eden");
4707      if (_eden_chunk_index == 0 ||
4708          ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4709           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4710                          _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4711        _eden_chunk_index++;  // commit sample
4712      }
4713      _eden_chunk_lock->unlock();
4714    }
4715  }
4716}
4717
4718// Return a thread-local PLAB recording array, as appropriate.
4719void* CMSCollector::get_data_recorder(int thr_num) {
4720  if (_survivor_plab_array != NULL &&
4721      (CMSPLABRecordAlways ||
4722       (_collectorState > Marking && _collectorState < FinalMarking))) {
4723    assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4724    ChunkArray* ca = &_survivor_plab_array[thr_num];
4725    ca->reset();   // clear it so that fresh data is recorded
4726    return (void*) ca;
4727  } else {
4728    return NULL;
4729  }
4730}
4731
4732// Reset all the thread-local PLAB recording arrays
4733void CMSCollector::reset_survivor_plab_arrays() {
4734  for (uint i = 0; i < ParallelGCThreads; i++) {
4735    _survivor_plab_array[i].reset();
4736  }
4737}
4738
4739// Merge the per-thread plab arrays into the global survivor chunk
4740// array which will provide the partitioning of the survivor space
4741// for CMS initial scan and rescan.
4742void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4743                                              int no_of_gc_threads) {
4744  assert(_survivor_plab_array  != NULL, "Error");
4745  assert(_survivor_chunk_array != NULL, "Error");
4746  assert(_collectorState == FinalMarking ||
4747         (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4748  for (int j = 0; j < no_of_gc_threads; j++) {
4749    _cursor[j] = 0;
4750  }
4751  HeapWord* top = surv->top();
4752  size_t i;
4753  for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4754    HeapWord* min_val = top;          // Higher than any PLAB address
4755    uint      min_tid = 0;            // position of min_val this round
4756    for (int j = 0; j < no_of_gc_threads; j++) {
4757      ChunkArray* cur_sca = &_survivor_plab_array[j];
4758      if (_cursor[j] == cur_sca->end()) {
4759        continue;
4760      }
4761      assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4762      HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4763      assert(surv->used_region().contains(cur_val), "Out of bounds value");
4764      if (cur_val < min_val) {
4765        min_tid = j;
4766        min_val = cur_val;
4767      } else {
4768        assert(cur_val < top, "All recorded addresses should be less");
4769      }
4770    }
4771    // At this point min_val and min_tid are respectively
4772    // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4773    // and the thread (j) that witnesses that address.
4774    // We record this address in the _survivor_chunk_array[i]
4775    // and increment _cursor[min_tid] prior to the next round i.
4776    if (min_val == top) {
4777      break;
4778    }
4779    _survivor_chunk_array[i] = min_val;
4780    _cursor[min_tid]++;
4781  }
4782  // We are all done; record the size of the _survivor_chunk_array
4783  _survivor_chunk_index = i; // exclusive: [0, i)
4784  log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4785  // Verify that we used up all the recorded entries
4786  #ifdef ASSERT
4787    size_t total = 0;
4788    for (int j = 0; j < no_of_gc_threads; j++) {
4789      assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4790      total += _cursor[j];
4791    }
4792    assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4793    // Check that the merged array is in sorted order
4794    if (total > 0) {
4795      for (size_t i = 0; i < total - 1; i++) {
4796        log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4797                                     i, p2i(_survivor_chunk_array[i]));
4798        assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4799               "Not sorted");
4800      }
4801    }
4802  #endif // ASSERT
4803}
4804
4805// Set up the space's par_seq_tasks structure for work claiming
4806// for parallel initial scan and rescan of young gen.
4807// See ParRescanTask where this is currently used.
4808void
4809CMSCollector::
4810initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4811  assert(n_threads > 0, "Unexpected n_threads argument");
4812
4813  // Eden space
4814  if (!_young_gen->eden()->is_empty()) {
4815    SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4816    assert(!pst->valid(), "Clobbering existing data?");
4817    // Each valid entry in [0, _eden_chunk_index) represents a task.
4818    size_t n_tasks = _eden_chunk_index + 1;
4819    assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4820    // Sets the condition for completion of the subtask (how many threads
4821    // need to finish in order to be done).
4822    pst->set_n_threads(n_threads);
4823    pst->set_n_tasks((int)n_tasks);
4824  }
4825
4826  // Merge the survivor plab arrays into _survivor_chunk_array
4827  if (_survivor_plab_array != NULL) {
4828    merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4829  } else {
4830    assert(_survivor_chunk_index == 0, "Error");
4831  }
4832
4833  // To space
4834  {
4835    SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4836    assert(!pst->valid(), "Clobbering existing data?");
4837    // Sets the condition for completion of the subtask (how many threads
4838    // need to finish in order to be done).
4839    pst->set_n_threads(n_threads);
4840    pst->set_n_tasks(1);
4841    assert(pst->valid(), "Error");
4842  }
4843
4844  // From space
4845  {
4846    SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4847    assert(!pst->valid(), "Clobbering existing data?");
4848    size_t n_tasks = _survivor_chunk_index + 1;
4849    assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4850    // Sets the condition for completion of the subtask (how many threads
4851    // need to finish in order to be done).
4852    pst->set_n_threads(n_threads);
4853    pst->set_n_tasks((int)n_tasks);
4854    assert(pst->valid(), "Error");
4855  }
4856}
4857
4858// Parallel version of remark
4859void CMSCollector::do_remark_parallel() {
4860  GenCollectedHeap* gch = GenCollectedHeap::heap();
4861  WorkGang* workers = gch->workers();
4862  assert(workers != NULL, "Need parallel worker threads.");
4863  // Choose to use the number of GC workers most recently set
4864  // into "active_workers".
4865  uint n_workers = workers->active_workers();
4866
4867  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4868
4869  StrongRootsScope srs(n_workers);
4870
4871  CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4872
4873  // We won't be iterating over the cards in the card table updating
4874  // the younger_gen cards, so we shouldn't call the following else
4875  // the verification code as well as subsequent younger_refs_iterate
4876  // code would get confused. XXX
4877  // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4878
4879  // The young gen rescan work will not be done as part of
4880  // process_roots (which currently doesn't know how to
4881  // parallelize such a scan), but rather will be broken up into
4882  // a set of parallel tasks (via the sampling that the [abortable]
4883  // preclean phase did of eden, plus the [two] tasks of
4884  // scanning the [two] survivor spaces. Further fine-grain
4885  // parallelization of the scanning of the survivor spaces
4886  // themselves, and of precleaning of the young gen itself
4887  // is deferred to the future.
4888  initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4889
4890  // The dirty card rescan work is broken up into a "sequence"
4891  // of parallel tasks (per constituent space) that are dynamically
4892  // claimed by the parallel threads.
4893  cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4894
4895  // It turns out that even when we're using 1 thread, doing the work in a
4896  // separate thread causes wide variance in run times.  We can't help this
4897  // in the multi-threaded case, but we special-case n=1 here to get
4898  // repeatable measurements of the 1-thread overhead of the parallel code.
4899  if (n_workers > 1) {
4900    // Make refs discovery MT-safe, if it isn't already: it may not
4901    // necessarily be so, since it's possible that we are doing
4902    // ST marking.
4903    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4904    workers->run_task(&tsk);
4905  } else {
4906    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4907    tsk.work(0);
4908  }
4909
4910  // restore, single-threaded for now, any preserved marks
4911  // as a result of work_q overflow
4912  restore_preserved_marks_if_any();
4913}
4914
4915// Non-parallel version of remark
4916void CMSCollector::do_remark_non_parallel() {
4917  ResourceMark rm;
4918  HandleMark   hm;
4919  GenCollectedHeap* gch = GenCollectedHeap::heap();
4920  ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4921
4922  MarkRefsIntoAndScanClosure
4923    mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4924             &_markStack, this,
4925             false /* should_yield */, false /* not precleaning */);
4926  MarkFromDirtyCardsClosure
4927    markFromDirtyCardsClosure(this, _span,
4928                              NULL,  // space is set further below
4929                              &_markBitMap, &_markStack, &mrias_cl);
4930  {
4931    GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4932    // Iterate over the dirty cards, setting the corresponding bits in the
4933    // mod union table.
4934    {
4935      ModUnionClosure modUnionClosure(&_modUnionTable);
4936      _ct->ct_bs()->dirty_card_iterate(
4937                      _cmsGen->used_region(),
4938                      &modUnionClosure);
4939    }
4940    // Having transferred these marks into the modUnionTable, we just need
4941    // to rescan the marked objects on the dirty cards in the modUnionTable.
4942    // The initial marking may have been done during an asynchronous
4943    // collection so there may be dirty bits in the mod-union table.
4944    const int alignment =
4945      CardTableModRefBS::card_size * BitsPerWord;
4946    {
4947      // ... First handle dirty cards in CMS gen
4948      markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4949      MemRegion ur = _cmsGen->used_region();
4950      HeapWord* lb = ur.start();
4951      HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4952      MemRegion cms_span(lb, ub);
4953      _modUnionTable.dirty_range_iterate_clear(cms_span,
4954                                               &markFromDirtyCardsClosure);
4955      verify_work_stacks_empty();
4956      log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4957    }
4958  }
4959  if (VerifyDuringGC &&
4960      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4961    HandleMark hm;  // Discard invalid handles created during verification
4962    Universe::verify();
4963  }
4964  {
4965    GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4966
4967    verify_work_stacks_empty();
4968
4969    gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4970    StrongRootsScope srs(1);
4971
4972    gch->gen_process_roots(&srs,
4973                           GenCollectedHeap::OldGen,
4974                           true,  // young gen as roots
4975                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
4976                           should_unload_classes(),
4977                           &mrias_cl,
4978                           NULL,
4979                           NULL); // The dirty klasses will be handled below
4980
4981    assert(should_unload_classes()
4982           || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4983           "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4984  }
4985
4986  {
4987    GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4988
4989    verify_work_stacks_empty();
4990
4991    // Scan all class loader data objects that might have been introduced
4992    // during concurrent marking.
4993    ResourceMark rm;
4994    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4995    for (int i = 0; i < array->length(); i++) {
4996      mrias_cl.do_cld_nv(array->at(i));
4997    }
4998
4999    // We don't need to keep track of new CLDs anymore.
5000    ClassLoaderDataGraph::remember_new_clds(false);
5001
5002    verify_work_stacks_empty();
5003  }
5004
5005  {
5006    GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
5007
5008    verify_work_stacks_empty();
5009
5010    RemarkKlassClosure remark_klass_closure(&mrias_cl);
5011    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5012
5013    verify_work_stacks_empty();
5014  }
5015
5016  // We might have added oops to ClassLoaderData::_handles during the
5017  // concurrent marking phase. These oops point to newly allocated objects
5018  // that are guaranteed to be kept alive. Either by the direct allocation
5019  // code, or when the young collector processes the roots. Hence,
5020  // we don't have to revisit the _handles block during the remark phase.
5021
5022  verify_work_stacks_empty();
5023  // Restore evacuated mark words, if any, used for overflow list links
5024  restore_preserved_marks_if_any();
5025
5026  verify_overflow_empty();
5027}
5028
5029////////////////////////////////////////////////////////
5030// Parallel Reference Processing Task Proxy Class
5031////////////////////////////////////////////////////////
5032class AbstractGangTaskWOopQueues : public AbstractGangTask {
5033  OopTaskQueueSet*       _queues;
5034  ParallelTaskTerminator _terminator;
5035 public:
5036  AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5037    AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5038  ParallelTaskTerminator* terminator() { return &_terminator; }
5039  OopTaskQueueSet* queues() { return _queues; }
5040};
5041
5042class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5043  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5044  CMSCollector*          _collector;
5045  CMSBitMap*             _mark_bit_map;
5046  const MemRegion        _span;
5047  ProcessTask&           _task;
5048
5049public:
5050  CMSRefProcTaskProxy(ProcessTask&     task,
5051                      CMSCollector*    collector,
5052                      const MemRegion& span,
5053                      CMSBitMap*       mark_bit_map,
5054                      AbstractWorkGang* workers,
5055                      OopTaskQueueSet* task_queues):
5056    AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5057      task_queues,
5058      workers->active_workers()),
5059    _task(task),
5060    _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5061  {
5062    assert(_collector->_span.equals(_span) && !_span.is_empty(),
5063           "Inconsistency in _span");
5064  }
5065
5066  OopTaskQueueSet* task_queues() { return queues(); }
5067
5068  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5069
5070  void do_work_steal(int i,
5071                     CMSParDrainMarkingStackClosure* drain,
5072                     CMSParKeepAliveClosure* keep_alive,
5073                     int* seed);
5074
5075  virtual void work(uint worker_id);
5076};
5077
5078void CMSRefProcTaskProxy::work(uint worker_id) {
5079  ResourceMark rm;
5080  HandleMark hm;
5081  assert(_collector->_span.equals(_span), "Inconsistency in _span");
5082  CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5083                                        _mark_bit_map,
5084                                        work_queue(worker_id));
5085  CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5086                                                 _mark_bit_map,
5087                                                 work_queue(worker_id));
5088  CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5089  _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5090  if (_task.marks_oops_alive()) {
5091    do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5092                  _collector->hash_seed(worker_id));
5093  }
5094  assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5095  assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5096}
5097
5098class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5099  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5100  EnqueueTask& _task;
5101
5102public:
5103  CMSRefEnqueueTaskProxy(EnqueueTask& task)
5104    : AbstractGangTask("Enqueue reference objects in parallel"),
5105      _task(task)
5106  { }
5107
5108  virtual void work(uint worker_id)
5109  {
5110    _task.work(worker_id);
5111  }
5112};
5113
5114CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5115  MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5116   _span(span),
5117   _bit_map(bit_map),
5118   _work_queue(work_queue),
5119   _mark_and_push(collector, span, bit_map, work_queue),
5120   _low_water_mark(MIN2((work_queue->max_elems()/4),
5121                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5122{ }
5123
5124// . see if we can share work_queues with ParNew? XXX
5125void CMSRefProcTaskProxy::do_work_steal(int i,
5126  CMSParDrainMarkingStackClosure* drain,
5127  CMSParKeepAliveClosure* keep_alive,
5128  int* seed) {
5129  OopTaskQueue* work_q = work_queue(i);
5130  NOT_PRODUCT(int num_steals = 0;)
5131  oop obj_to_scan;
5132
5133  while (true) {
5134    // Completely finish any left over work from (an) earlier round(s)
5135    drain->trim_queue(0);
5136    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5137                                         (size_t)ParGCDesiredObjsFromOverflowList);
5138    // Now check if there's any work in the overflow list
5139    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5140    // only affects the number of attempts made to get work from the
5141    // overflow list and does not affect the number of workers.  Just
5142    // pass ParallelGCThreads so this behavior is unchanged.
5143    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5144                                                work_q,
5145                                                ParallelGCThreads)) {
5146      // Found something in global overflow list;
5147      // not yet ready to go stealing work from others.
5148      // We'd like to assert(work_q->size() != 0, ...)
5149      // because we just took work from the overflow list,
5150      // but of course we can't, since all of that might have
5151      // been already stolen from us.
5152      continue;
5153    }
5154    // Verify that we have no work before we resort to stealing
5155    assert(work_q->size() == 0, "Have work, shouldn't steal");
5156    // Try to steal from other queues that have work
5157    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5158      NOT_PRODUCT(num_steals++;)
5159      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5160      assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5161      // Do scanning work
5162      obj_to_scan->oop_iterate(keep_alive);
5163      // Loop around, finish this work, and try to steal some more
5164    } else if (terminator()->offer_termination()) {
5165      break;  // nirvana from the infinite cycle
5166    }
5167  }
5168  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5169}
5170
5171void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5172{
5173  GenCollectedHeap* gch = GenCollectedHeap::heap();
5174  WorkGang* workers = gch->workers();
5175  assert(workers != NULL, "Need parallel worker threads.");
5176  CMSRefProcTaskProxy rp_task(task, &_collector,
5177                              _collector.ref_processor()->span(),
5178                              _collector.markBitMap(),
5179                              workers, _collector.task_queues());
5180  workers->run_task(&rp_task);
5181}
5182
5183void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5184{
5185
5186  GenCollectedHeap* gch = GenCollectedHeap::heap();
5187  WorkGang* workers = gch->workers();
5188  assert(workers != NULL, "Need parallel worker threads.");
5189  CMSRefEnqueueTaskProxy enq_task(task);
5190  workers->run_task(&enq_task);
5191}
5192
5193void CMSCollector::refProcessingWork() {
5194  ResourceMark rm;
5195  HandleMark   hm;
5196
5197  ReferenceProcessor* rp = ref_processor();
5198  assert(rp->span().equals(_span), "Spans should be equal");
5199  assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5200  // Process weak references.
5201  rp->setup_policy(false);
5202  verify_work_stacks_empty();
5203
5204  CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5205                                          &_markStack, false /* !preclean */);
5206  CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5207                                _span, &_markBitMap, &_markStack,
5208                                &cmsKeepAliveClosure, false /* !preclean */);
5209  {
5210    GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5211
5212    ReferenceProcessorStats stats;
5213    if (rp->processing_is_mt()) {
5214      // Set the degree of MT here.  If the discovery is done MT, there
5215      // may have been a different number of threads doing the discovery
5216      // and a different number of discovered lists may have Ref objects.
5217      // That is OK as long as the Reference lists are balanced (see
5218      // balance_all_queues() and balance_queues()).
5219      GenCollectedHeap* gch = GenCollectedHeap::heap();
5220      uint active_workers = ParallelGCThreads;
5221      WorkGang* workers = gch->workers();
5222      if (workers != NULL) {
5223        active_workers = workers->active_workers();
5224        // The expectation is that active_workers will have already
5225        // been set to a reasonable value.  If it has not been set,
5226        // investigate.
5227        assert(active_workers > 0, "Should have been set during scavenge");
5228      }
5229      rp->set_active_mt_degree(active_workers);
5230      CMSRefProcTaskExecutor task_executor(*this);
5231      stats = rp->process_discovered_references(&_is_alive_closure,
5232                                        &cmsKeepAliveClosure,
5233                                        &cmsDrainMarkingStackClosure,
5234                                        &task_executor,
5235                                        _gc_timer_cm);
5236    } else {
5237      stats = rp->process_discovered_references(&_is_alive_closure,
5238                                        &cmsKeepAliveClosure,
5239                                        &cmsDrainMarkingStackClosure,
5240                                        NULL,
5241                                        _gc_timer_cm);
5242    }
5243    _gc_tracer_cm->report_gc_reference_stats(stats);
5244
5245  }
5246
5247  // This is the point where the entire marking should have completed.
5248  verify_work_stacks_empty();
5249
5250  if (should_unload_classes()) {
5251    {
5252      GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5253
5254      // Unload classes and purge the SystemDictionary.
5255      bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5256
5257      // Unload nmethods.
5258      CodeCache::do_unloading(&_is_alive_closure, purged_class);
5259
5260      // Prune dead klasses from subklass/sibling/implementor lists.
5261      Klass::clean_weak_klass_links(&_is_alive_closure);
5262    }
5263
5264    {
5265      GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5266      // Clean up unreferenced symbols in symbol table.
5267      SymbolTable::unlink();
5268    }
5269
5270    {
5271      GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5272      // Delete entries for dead interned strings.
5273      StringTable::unlink(&_is_alive_closure);
5274    }
5275  }
5276
5277
5278  // Restore any preserved marks as a result of mark stack or
5279  // work queue overflow
5280  restore_preserved_marks_if_any();  // done single-threaded for now
5281
5282  rp->set_enqueuing_is_done(true);
5283  if (rp->processing_is_mt()) {
5284    rp->balance_all_queues();
5285    CMSRefProcTaskExecutor task_executor(*this);
5286    rp->enqueue_discovered_references(&task_executor);
5287  } else {
5288    rp->enqueue_discovered_references(NULL);
5289  }
5290  rp->verify_no_references_recorded();
5291  assert(!rp->discovery_enabled(), "should have been disabled");
5292}
5293
5294#ifndef PRODUCT
5295void CMSCollector::check_correct_thread_executing() {
5296  Thread* t = Thread::current();
5297  // Only the VM thread or the CMS thread should be here.
5298  assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5299         "Unexpected thread type");
5300  // If this is the vm thread, the foreground process
5301  // should not be waiting.  Note that _foregroundGCIsActive is
5302  // true while the foreground collector is waiting.
5303  if (_foregroundGCShouldWait) {
5304    // We cannot be the VM thread
5305    assert(t->is_ConcurrentGC_thread(),
5306           "Should be CMS thread");
5307  } else {
5308    // We can be the CMS thread only if we are in a stop-world
5309    // phase of CMS collection.
5310    if (t->is_ConcurrentGC_thread()) {
5311      assert(_collectorState == InitialMarking ||
5312             _collectorState == FinalMarking,
5313             "Should be a stop-world phase");
5314      // The CMS thread should be holding the CMS_token.
5315      assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5316             "Potential interference with concurrently "
5317             "executing VM thread");
5318    }
5319  }
5320}
5321#endif
5322
5323void CMSCollector::sweep() {
5324  assert(_collectorState == Sweeping, "just checking");
5325  check_correct_thread_executing();
5326  verify_work_stacks_empty();
5327  verify_overflow_empty();
5328  increment_sweep_count();
5329  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5330
5331  _inter_sweep_timer.stop();
5332  _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5333
5334  assert(!_intra_sweep_timer.is_active(), "Should not be active");
5335  _intra_sweep_timer.reset();
5336  _intra_sweep_timer.start();
5337  {
5338    GCTraceCPUTime tcpu;
5339    CMSPhaseAccounting pa(this, "Concurrent Sweep");
5340    // First sweep the old gen
5341    {
5342      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5343                               bitMapLock());
5344      sweepWork(_cmsGen);
5345    }
5346
5347    // Update Universe::_heap_*_at_gc figures.
5348    // We need all the free list locks to make the abstract state
5349    // transition from Sweeping to Resetting. See detailed note
5350    // further below.
5351    {
5352      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5353      // Update heap occupancy information which is used as
5354      // input to soft ref clearing policy at the next gc.
5355      Universe::update_heap_info_at_gc();
5356      _collectorState = Resizing;
5357    }
5358  }
5359  verify_work_stacks_empty();
5360  verify_overflow_empty();
5361
5362  if (should_unload_classes()) {
5363    // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5364    // requires that the virtual spaces are stable and not deleted.
5365    ClassLoaderDataGraph::set_should_purge(true);
5366  }
5367
5368  _intra_sweep_timer.stop();
5369  _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5370
5371  _inter_sweep_timer.reset();
5372  _inter_sweep_timer.start();
5373
5374  // We need to use a monotonically non-decreasing time in ms
5375  // or we will see time-warp warnings and os::javaTimeMillis()
5376  // does not guarantee monotonicity.
5377  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5378  update_time_of_last_gc(now);
5379
5380  // NOTE on abstract state transitions:
5381  // Mutators allocate-live and/or mark the mod-union table dirty
5382  // based on the state of the collection.  The former is done in
5383  // the interval [Marking, Sweeping] and the latter in the interval
5384  // [Marking, Sweeping).  Thus the transitions into the Marking state
5385  // and out of the Sweeping state must be synchronously visible
5386  // globally to the mutators.
5387  // The transition into the Marking state happens with the world
5388  // stopped so the mutators will globally see it.  Sweeping is
5389  // done asynchronously by the background collector so the transition
5390  // from the Sweeping state to the Resizing state must be done
5391  // under the freelistLock (as is the check for whether to
5392  // allocate-live and whether to dirty the mod-union table).
5393  assert(_collectorState == Resizing, "Change of collector state to"
5394    " Resizing must be done under the freelistLocks (plural)");
5395
5396  // Now that sweeping has been completed, we clear
5397  // the incremental_collection_failed flag,
5398  // thus inviting a younger gen collection to promote into
5399  // this generation. If such a promotion may still fail,
5400  // the flag will be set again when a young collection is
5401  // attempted.
5402  GenCollectedHeap* gch = GenCollectedHeap::heap();
5403  gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5404  gch->update_full_collections_completed(_collection_count_start);
5405}
5406
5407// FIX ME!!! Looks like this belongs in CFLSpace, with
5408// CMSGen merely delegating to it.
5409void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5410  double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5411  HeapWord*  minAddr        = _cmsSpace->bottom();
5412  HeapWord*  largestAddr    =
5413    (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5414  if (largestAddr == NULL) {
5415    // The dictionary appears to be empty.  In this case
5416    // try to coalesce at the end of the heap.
5417    largestAddr = _cmsSpace->end();
5418  }
5419  size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5420  size_t nearLargestOffset =
5421    (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5422  log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5423                          p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5424  _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5425}
5426
5427bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5428  return addr >= _cmsSpace->nearLargestChunk();
5429}
5430
5431FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5432  return _cmsSpace->find_chunk_at_end();
5433}
5434
5435void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5436                                                    bool full) {
5437  // If the young generation has been collected, gather any statistics
5438  // that are of interest at this point.
5439  bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5440  if (!full && current_is_young) {
5441    // Gather statistics on the young generation collection.
5442    collector()->stats().record_gc0_end(used());
5443  }
5444}
5445
5446void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5447  // We iterate over the space(s) underlying this generation,
5448  // checking the mark bit map to see if the bits corresponding
5449  // to specific blocks are marked or not. Blocks that are
5450  // marked are live and are not swept up. All remaining blocks
5451  // are swept up, with coalescing on-the-fly as we sweep up
5452  // contiguous free and/or garbage blocks:
5453  // We need to ensure that the sweeper synchronizes with allocators
5454  // and stop-the-world collectors. In particular, the following
5455  // locks are used:
5456  // . CMS token: if this is held, a stop the world collection cannot occur
5457  // . freelistLock: if this is held no allocation can occur from this
5458  //                 generation by another thread
5459  // . bitMapLock: if this is held, no other thread can access or update
5460  //
5461
5462  // Note that we need to hold the freelistLock if we use
5463  // block iterate below; else the iterator might go awry if
5464  // a mutator (or promotion) causes block contents to change
5465  // (for instance if the allocator divvies up a block).
5466  // If we hold the free list lock, for all practical purposes
5467  // young generation GC's can't occur (they'll usually need to
5468  // promote), so we might as well prevent all young generation
5469  // GC's while we do a sweeping step. For the same reason, we might
5470  // as well take the bit map lock for the entire duration
5471
5472  // check that we hold the requisite locks
5473  assert(have_cms_token(), "Should hold cms token");
5474  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5475  assert_lock_strong(old_gen->freelistLock());
5476  assert_lock_strong(bitMapLock());
5477
5478  assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5479  assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5480  old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5481                                          _inter_sweep_estimate.padded_average(),
5482                                          _intra_sweep_estimate.padded_average());
5483  old_gen->setNearLargestChunk();
5484
5485  {
5486    SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5487    old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5488    // We need to free-up/coalesce garbage/blocks from a
5489    // co-terminal free run. This is done in the SweepClosure
5490    // destructor; so, do not remove this scope, else the
5491    // end-of-sweep-census below will be off by a little bit.
5492  }
5493  old_gen->cmsSpace()->sweep_completed();
5494  old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5495  if (should_unload_classes()) {                // unloaded classes this cycle,
5496    _concurrent_cycles_since_last_unload = 0;   // ... reset count
5497  } else {                                      // did not unload classes,
5498    _concurrent_cycles_since_last_unload++;     // ... increment count
5499  }
5500}
5501
5502// Reset CMS data structures (for now just the marking bit map)
5503// preparatory for the next cycle.
5504void CMSCollector::reset_concurrent() {
5505  CMSTokenSyncWithLocks ts(true, bitMapLock());
5506
5507  // If the state is not "Resetting", the foreground  thread
5508  // has done a collection and the resetting.
5509  if (_collectorState != Resetting) {
5510    assert(_collectorState == Idling, "The state should only change"
5511      " because the foreground collector has finished the collection");
5512    return;
5513  }
5514
5515  {
5516    // Clear the mark bitmap (no grey objects to start with)
5517    // for the next cycle.
5518    GCTraceCPUTime tcpu;
5519    CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5520
5521    HeapWord* curAddr = _markBitMap.startWord();
5522    while (curAddr < _markBitMap.endWord()) {
5523      size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5524      MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5525      _markBitMap.clear_large_range(chunk);
5526      if (ConcurrentMarkSweepThread::should_yield() &&
5527          !foregroundGCIsActive() &&
5528          CMSYield) {
5529        assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5530               "CMS thread should hold CMS token");
5531        assert_lock_strong(bitMapLock());
5532        bitMapLock()->unlock();
5533        ConcurrentMarkSweepThread::desynchronize(true);
5534        stopTimer();
5535        incrementYields();
5536
5537        // See the comment in coordinator_yield()
5538        for (unsigned i = 0; i < CMSYieldSleepCount &&
5539                         ConcurrentMarkSweepThread::should_yield() &&
5540                         !CMSCollector::foregroundGCIsActive(); ++i) {
5541          os::sleep(Thread::current(), 1, false);
5542        }
5543
5544        ConcurrentMarkSweepThread::synchronize(true);
5545        bitMapLock()->lock_without_safepoint_check();
5546        startTimer();
5547      }
5548      curAddr = chunk.end();
5549    }
5550    // A successful mostly concurrent collection has been done.
5551    // Because only the full (i.e., concurrent mode failure) collections
5552    // are being measured for gc overhead limits, clean the "near" flag
5553    // and count.
5554    size_policy()->reset_gc_overhead_limit_count();
5555    _collectorState = Idling;
5556  }
5557
5558  register_gc_end();
5559}
5560
5561// Same as above but for STW paths
5562void CMSCollector::reset_stw() {
5563  // already have the lock
5564  assert(_collectorState == Resetting, "just checking");
5565  assert_lock_strong(bitMapLock());
5566  GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5567  _markBitMap.clear_all();
5568  _collectorState = Idling;
5569  register_gc_end();
5570}
5571
5572void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5573  GCTraceCPUTime tcpu;
5574  TraceCollectorStats tcs(counters());
5575
5576  switch (op) {
5577    case CMS_op_checkpointRootsInitial: {
5578      GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5579      SvcGCMarker sgcm(SvcGCMarker::OTHER);
5580      checkpointRootsInitial();
5581      break;
5582    }
5583    case CMS_op_checkpointRootsFinal: {
5584      GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5585      SvcGCMarker sgcm(SvcGCMarker::OTHER);
5586      checkpointRootsFinal();
5587      break;
5588    }
5589    default:
5590      fatal("No such CMS_op");
5591  }
5592}
5593
5594#ifndef PRODUCT
5595size_t const CMSCollector::skip_header_HeapWords() {
5596  return FreeChunk::header_size();
5597}
5598
5599// Try and collect here conditions that should hold when
5600// CMS thread is exiting. The idea is that the foreground GC
5601// thread should not be blocked if it wants to terminate
5602// the CMS thread and yet continue to run the VM for a while
5603// after that.
5604void CMSCollector::verify_ok_to_terminate() const {
5605  assert(Thread::current()->is_ConcurrentGC_thread(),
5606         "should be called by CMS thread");
5607  assert(!_foregroundGCShouldWait, "should be false");
5608  // We could check here that all the various low-level locks
5609  // are not held by the CMS thread, but that is overkill; see
5610  // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5611  // is checked.
5612}
5613#endif
5614
5615size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5616   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5617          "missing Printezis mark?");
5618  HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5619  size_t size = pointer_delta(nextOneAddr + 1, addr);
5620  assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5621         "alignment problem");
5622  assert(size >= 3, "Necessary for Printezis marks to work");
5623  return size;
5624}
5625
5626// A variant of the above (block_size_using_printezis_bits()) except
5627// that we return 0 if the P-bits are not yet set.
5628size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5629  if (_markBitMap.isMarked(addr + 1)) {
5630    assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5631    HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5632    size_t size = pointer_delta(nextOneAddr + 1, addr);
5633    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5634           "alignment problem");
5635    assert(size >= 3, "Necessary for Printezis marks to work");
5636    return size;
5637  }
5638  return 0;
5639}
5640
5641HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5642  size_t sz = 0;
5643  oop p = (oop)addr;
5644  if (p->klass_or_null() != NULL) {
5645    sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5646  } else {
5647    sz = block_size_using_printezis_bits(addr);
5648  }
5649  assert(sz > 0, "size must be nonzero");
5650  HeapWord* next_block = addr + sz;
5651  HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5652                                             CardTableModRefBS::card_size);
5653  assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5654         round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5655         "must be different cards");
5656  return next_card;
5657}
5658
5659
5660// CMS Bit Map Wrapper /////////////////////////////////////////
5661
5662// Construct a CMS bit map infrastructure, but don't create the
5663// bit vector itself. That is done by a separate call CMSBitMap::allocate()
5664// further below.
5665CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5666  _bm(),
5667  _shifter(shifter),
5668  _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5669                                    Monitor::_safepoint_check_sometimes) : NULL)
5670{
5671  _bmStartWord = 0;
5672  _bmWordSize  = 0;
5673}
5674
5675bool CMSBitMap::allocate(MemRegion mr) {
5676  _bmStartWord = mr.start();
5677  _bmWordSize  = mr.word_size();
5678  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5679                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5680  if (!brs.is_reserved()) {
5681    log_warning(gc)("CMS bit map allocation failure");
5682    return false;
5683  }
5684  // For now we'll just commit all of the bit map up front.
5685  // Later on we'll try to be more parsimonious with swap.
5686  if (!_virtual_space.initialize(brs, brs.size())) {
5687    log_warning(gc)("CMS bit map backing store failure");
5688    return false;
5689  }
5690  assert(_virtual_space.committed_size() == brs.size(),
5691         "didn't reserve backing store for all of CMS bit map?");
5692  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5693         _bmWordSize, "inconsistency in bit map sizing");
5694  _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5695
5696  // bm.clear(); // can we rely on getting zero'd memory? verify below
5697  assert(isAllClear(),
5698         "Expected zero'd memory from ReservedSpace constructor");
5699  assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5700         "consistency check");
5701  return true;
5702}
5703
5704void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5705  HeapWord *next_addr, *end_addr, *last_addr;
5706  assert_locked();
5707  assert(covers(mr), "out-of-range error");
5708  // XXX assert that start and end are appropriately aligned
5709  for (next_addr = mr.start(), end_addr = mr.end();
5710       next_addr < end_addr; next_addr = last_addr) {
5711    MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5712    last_addr = dirty_region.end();
5713    if (!dirty_region.is_empty()) {
5714      cl->do_MemRegion(dirty_region);
5715    } else {
5716      assert(last_addr == end_addr, "program logic");
5717      return;
5718    }
5719  }
5720}
5721
5722void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5723  _bm.print_on_error(st, prefix);
5724}
5725
5726#ifndef PRODUCT
5727void CMSBitMap::assert_locked() const {
5728  CMSLockVerifier::assert_locked(lock());
5729}
5730
5731bool CMSBitMap::covers(MemRegion mr) const {
5732  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5733  assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5734         "size inconsistency");
5735  return (mr.start() >= _bmStartWord) &&
5736         (mr.end()   <= endWord());
5737}
5738
5739bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5740    return (start >= _bmStartWord && (start + size) <= endWord());
5741}
5742
5743void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5744  // verify that there are no 1 bits in the interval [left, right)
5745  FalseBitMapClosure falseBitMapClosure;
5746  iterate(&falseBitMapClosure, left, right);
5747}
5748
5749void CMSBitMap::region_invariant(MemRegion mr)
5750{
5751  assert_locked();
5752  // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5753  assert(!mr.is_empty(), "unexpected empty region");
5754  assert(covers(mr), "mr should be covered by bit map");
5755  // convert address range into offset range
5756  size_t start_ofs = heapWordToOffset(mr.start());
5757  // Make sure that end() is appropriately aligned
5758  assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5759                        (1 << (_shifter+LogHeapWordSize))),
5760         "Misaligned mr.end()");
5761  size_t end_ofs   = heapWordToOffset(mr.end());
5762  assert(end_ofs > start_ofs, "Should mark at least one bit");
5763}
5764
5765#endif
5766
5767bool CMSMarkStack::allocate(size_t size) {
5768  // allocate a stack of the requisite depth
5769  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5770                   size * sizeof(oop)));
5771  if (!rs.is_reserved()) {
5772    log_warning(gc)("CMSMarkStack allocation failure");
5773    return false;
5774  }
5775  if (!_virtual_space.initialize(rs, rs.size())) {
5776    log_warning(gc)("CMSMarkStack backing store failure");
5777    return false;
5778  }
5779  assert(_virtual_space.committed_size() == rs.size(),
5780         "didn't reserve backing store for all of CMS stack?");
5781  _base = (oop*)(_virtual_space.low());
5782  _index = 0;
5783  _capacity = size;
5784  NOT_PRODUCT(_max_depth = 0);
5785  return true;
5786}
5787
5788// XXX FIX ME !!! In the MT case we come in here holding a
5789// leaf lock. For printing we need to take a further lock
5790// which has lower rank. We need to recalibrate the two
5791// lock-ranks involved in order to be able to print the
5792// messages below. (Or defer the printing to the caller.
5793// For now we take the expedient path of just disabling the
5794// messages for the problematic case.)
5795void CMSMarkStack::expand() {
5796  assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5797  if (_capacity == MarkStackSizeMax) {
5798    if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5799      // We print a warning message only once per CMS cycle.
5800      log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5801    }
5802    return;
5803  }
5804  // Double capacity if possible
5805  size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5806  // Do not give up existing stack until we have managed to
5807  // get the double capacity that we desired.
5808  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5809                   new_capacity * sizeof(oop)));
5810  if (rs.is_reserved()) {
5811    // Release the backing store associated with old stack
5812    _virtual_space.release();
5813    // Reinitialize virtual space for new stack
5814    if (!_virtual_space.initialize(rs, rs.size())) {
5815      fatal("Not enough swap for expanded marking stack");
5816    }
5817    _base = (oop*)(_virtual_space.low());
5818    _index = 0;
5819    _capacity = new_capacity;
5820  } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5821    // Failed to double capacity, continue;
5822    // we print a detail message only once per CMS cycle.
5823    log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5824                        _capacity / K, new_capacity / K);
5825  }
5826}
5827
5828
5829// Closures
5830// XXX: there seems to be a lot of code  duplication here;
5831// should refactor and consolidate common code.
5832
5833// This closure is used to mark refs into the CMS generation in
5834// the CMS bit map. Called at the first checkpoint. This closure
5835// assumes that we do not need to re-mark dirty cards; if the CMS
5836// generation on which this is used is not an oldest
5837// generation then this will lose younger_gen cards!
5838
5839MarkRefsIntoClosure::MarkRefsIntoClosure(
5840  MemRegion span, CMSBitMap* bitMap):
5841    _span(span),
5842    _bitMap(bitMap)
5843{
5844  assert(ref_processor() == NULL, "deliberately left NULL");
5845  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5846}
5847
5848void MarkRefsIntoClosure::do_oop(oop obj) {
5849  // if p points into _span, then mark corresponding bit in _markBitMap
5850  assert(obj->is_oop(), "expected an oop");
5851  HeapWord* addr = (HeapWord*)obj;
5852  if (_span.contains(addr)) {
5853    // this should be made more efficient
5854    _bitMap->mark(addr);
5855  }
5856}
5857
5858void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5859void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5860
5861ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5862  MemRegion span, CMSBitMap* bitMap):
5863    _span(span),
5864    _bitMap(bitMap)
5865{
5866  assert(ref_processor() == NULL, "deliberately left NULL");
5867  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5868}
5869
5870void ParMarkRefsIntoClosure::do_oop(oop obj) {
5871  // if p points into _span, then mark corresponding bit in _markBitMap
5872  assert(obj->is_oop(), "expected an oop");
5873  HeapWord* addr = (HeapWord*)obj;
5874  if (_span.contains(addr)) {
5875    // this should be made more efficient
5876    _bitMap->par_mark(addr);
5877  }
5878}
5879
5880void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5881void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5882
5883// A variant of the above, used for CMS marking verification.
5884MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5885  MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5886    _span(span),
5887    _verification_bm(verification_bm),
5888    _cms_bm(cms_bm)
5889{
5890  assert(ref_processor() == NULL, "deliberately left NULL");
5891  assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5892}
5893
5894void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5895  // if p points into _span, then mark corresponding bit in _markBitMap
5896  assert(obj->is_oop(), "expected an oop");
5897  HeapWord* addr = (HeapWord*)obj;
5898  if (_span.contains(addr)) {
5899    _verification_bm->mark(addr);
5900    if (!_cms_bm->isMarked(addr)) {
5901      Log(gc, verify) log;
5902      ResourceMark rm;
5903      oop(addr)->print_on(log.error_stream());
5904      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5905      fatal("... aborting");
5906    }
5907  }
5908}
5909
5910void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5911void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5912
5913//////////////////////////////////////////////////
5914// MarkRefsIntoAndScanClosure
5915//////////////////////////////////////////////////
5916
5917MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5918                                                       ReferenceProcessor* rp,
5919                                                       CMSBitMap* bit_map,
5920                                                       CMSBitMap* mod_union_table,
5921                                                       CMSMarkStack*  mark_stack,
5922                                                       CMSCollector* collector,
5923                                                       bool should_yield,
5924                                                       bool concurrent_precleaning):
5925  _collector(collector),
5926  _span(span),
5927  _bit_map(bit_map),
5928  _mark_stack(mark_stack),
5929  _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5930                      mark_stack, concurrent_precleaning),
5931  _yield(should_yield),
5932  _concurrent_precleaning(concurrent_precleaning),
5933  _freelistLock(NULL)
5934{
5935  // FIXME: Should initialize in base class constructor.
5936  assert(rp != NULL, "ref_processor shouldn't be NULL");
5937  set_ref_processor_internal(rp);
5938}
5939
5940// This closure is used to mark refs into the CMS generation at the
5941// second (final) checkpoint, and to scan and transitively follow
5942// the unmarked oops. It is also used during the concurrent precleaning
5943// phase while scanning objects on dirty cards in the CMS generation.
5944// The marks are made in the marking bit map and the marking stack is
5945// used for keeping the (newly) grey objects during the scan.
5946// The parallel version (Par_...) appears further below.
5947void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5948  if (obj != NULL) {
5949    assert(obj->is_oop(), "expected an oop");
5950    HeapWord* addr = (HeapWord*)obj;
5951    assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5952    assert(_collector->overflow_list_is_empty(),
5953           "overflow list should be empty");
5954    if (_span.contains(addr) &&
5955        !_bit_map->isMarked(addr)) {
5956      // mark bit map (object is now grey)
5957      _bit_map->mark(addr);
5958      // push on marking stack (stack should be empty), and drain the
5959      // stack by applying this closure to the oops in the oops popped
5960      // from the stack (i.e. blacken the grey objects)
5961      bool res = _mark_stack->push(obj);
5962      assert(res, "Should have space to push on empty stack");
5963      do {
5964        oop new_oop = _mark_stack->pop();
5965        assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5966        assert(_bit_map->isMarked((HeapWord*)new_oop),
5967               "only grey objects on this stack");
5968        // iterate over the oops in this oop, marking and pushing
5969        // the ones in CMS heap (i.e. in _span).
5970        new_oop->oop_iterate(&_pushAndMarkClosure);
5971        // check if it's time to yield
5972        do_yield_check();
5973      } while (!_mark_stack->isEmpty() ||
5974               (!_concurrent_precleaning && take_from_overflow_list()));
5975        // if marking stack is empty, and we are not doing this
5976        // during precleaning, then check the overflow list
5977    }
5978    assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5979    assert(_collector->overflow_list_is_empty(),
5980           "overflow list was drained above");
5981
5982    assert(_collector->no_preserved_marks(),
5983           "All preserved marks should have been restored above");
5984  }
5985}
5986
5987void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5988void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5989
5990void MarkRefsIntoAndScanClosure::do_yield_work() {
5991  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5992         "CMS thread should hold CMS token");
5993  assert_lock_strong(_freelistLock);
5994  assert_lock_strong(_bit_map->lock());
5995  // relinquish the free_list_lock and bitMaplock()
5996  _bit_map->lock()->unlock();
5997  _freelistLock->unlock();
5998  ConcurrentMarkSweepThread::desynchronize(true);
5999  _collector->stopTimer();
6000  _collector->incrementYields();
6001
6002  // See the comment in coordinator_yield()
6003  for (unsigned i = 0;
6004       i < CMSYieldSleepCount &&
6005       ConcurrentMarkSweepThread::should_yield() &&
6006       !CMSCollector::foregroundGCIsActive();
6007       ++i) {
6008    os::sleep(Thread::current(), 1, false);
6009  }
6010
6011  ConcurrentMarkSweepThread::synchronize(true);
6012  _freelistLock->lock_without_safepoint_check();
6013  _bit_map->lock()->lock_without_safepoint_check();
6014  _collector->startTimer();
6015}
6016
6017///////////////////////////////////////////////////////////
6018// ParMarkRefsIntoAndScanClosure: a parallel version of
6019//                                MarkRefsIntoAndScanClosure
6020///////////////////////////////////////////////////////////
6021ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6022  CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6023  CMSBitMap* bit_map, OopTaskQueue* work_queue):
6024  _span(span),
6025  _bit_map(bit_map),
6026  _work_queue(work_queue),
6027  _low_water_mark(MIN2((work_queue->max_elems()/4),
6028                       ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6029  _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6030{
6031  // FIXME: Should initialize in base class constructor.
6032  assert(rp != NULL, "ref_processor shouldn't be NULL");
6033  set_ref_processor_internal(rp);
6034}
6035
6036// This closure is used to mark refs into the CMS generation at the
6037// second (final) checkpoint, and to scan and transitively follow
6038// the unmarked oops. The marks are made in the marking bit map and
6039// the work_queue is used for keeping the (newly) grey objects during
6040// the scan phase whence they are also available for stealing by parallel
6041// threads. Since the marking bit map is shared, updates are
6042// synchronized (via CAS).
6043void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6044  if (obj != NULL) {
6045    // Ignore mark word because this could be an already marked oop
6046    // that may be chained at the end of the overflow list.
6047    assert(obj->is_oop(true), "expected an oop");
6048    HeapWord* addr = (HeapWord*)obj;
6049    if (_span.contains(addr) &&
6050        !_bit_map->isMarked(addr)) {
6051      // mark bit map (object will become grey):
6052      // It is possible for several threads to be
6053      // trying to "claim" this object concurrently;
6054      // the unique thread that succeeds in marking the
6055      // object first will do the subsequent push on
6056      // to the work queue (or overflow list).
6057      if (_bit_map->par_mark(addr)) {
6058        // push on work_queue (which may not be empty), and trim the
6059        // queue to an appropriate length by applying this closure to
6060        // the oops in the oops popped from the stack (i.e. blacken the
6061        // grey objects)
6062        bool res = _work_queue->push(obj);
6063        assert(res, "Low water mark should be less than capacity?");
6064        trim_queue(_low_water_mark);
6065      } // Else, another thread claimed the object
6066    }
6067  }
6068}
6069
6070void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6071void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6072
6073// This closure is used to rescan the marked objects on the dirty cards
6074// in the mod union table and the card table proper.
6075size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6076  oop p, MemRegion mr) {
6077
6078  size_t size = 0;
6079  HeapWord* addr = (HeapWord*)p;
6080  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6081  assert(_span.contains(addr), "we are scanning the CMS generation");
6082  // check if it's time to yield
6083  if (do_yield_check()) {
6084    // We yielded for some foreground stop-world work,
6085    // and we have been asked to abort this ongoing preclean cycle.
6086    return 0;
6087  }
6088  if (_bitMap->isMarked(addr)) {
6089    // it's marked; is it potentially uninitialized?
6090    if (p->klass_or_null() != NULL) {
6091        // an initialized object; ignore mark word in verification below
6092        // since we are running concurrent with mutators
6093        assert(p->is_oop(true), "should be an oop");
6094        if (p->is_objArray()) {
6095          // objArrays are precisely marked; restrict scanning
6096          // to dirty cards only.
6097          size = CompactibleFreeListSpace::adjustObjectSize(
6098                   p->oop_iterate_size(_scanningClosure, mr));
6099        } else {
6100          // A non-array may have been imprecisely marked; we need
6101          // to scan object in its entirety.
6102          size = CompactibleFreeListSpace::adjustObjectSize(
6103                   p->oop_iterate_size(_scanningClosure));
6104        }
6105      #ifdef ASSERT
6106        size_t direct_size =
6107          CompactibleFreeListSpace::adjustObjectSize(p->size());
6108        assert(size == direct_size, "Inconsistency in size");
6109        assert(size >= 3, "Necessary for Printezis marks to work");
6110        HeapWord* start_pbit = addr + 1;
6111        HeapWord* end_pbit = addr + size - 1;
6112        assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6113               "inconsistent Printezis mark");
6114        // Verify inner mark bits (between Printezis bits) are clear,
6115        // but don't repeat if there are multiple dirty regions for
6116        // the same object, to avoid potential O(N^2) performance.
6117        if (addr != _last_scanned_object) {
6118          _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6119          _last_scanned_object = addr;
6120        }
6121      #endif // ASSERT
6122    } else {
6123      // An uninitialized object.
6124      assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6125      HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6126      size = pointer_delta(nextOneAddr + 1, addr);
6127      assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6128             "alignment problem");
6129      // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6130      // will dirty the card when the klass pointer is installed in the
6131      // object (signaling the completion of initialization).
6132    }
6133  } else {
6134    // Either a not yet marked object or an uninitialized object
6135    if (p->klass_or_null() == NULL) {
6136      // An uninitialized object, skip to the next card, since
6137      // we may not be able to read its P-bits yet.
6138      assert(size == 0, "Initial value");
6139    } else {
6140      // An object not (yet) reached by marking: we merely need to
6141      // compute its size so as to go look at the next block.
6142      assert(p->is_oop(true), "should be an oop");
6143      size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6144    }
6145  }
6146  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6147  return size;
6148}
6149
6150void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6151  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6152         "CMS thread should hold CMS token");
6153  assert_lock_strong(_freelistLock);
6154  assert_lock_strong(_bitMap->lock());
6155  // relinquish the free_list_lock and bitMaplock()
6156  _bitMap->lock()->unlock();
6157  _freelistLock->unlock();
6158  ConcurrentMarkSweepThread::desynchronize(true);
6159  _collector->stopTimer();
6160  _collector->incrementYields();
6161
6162  // See the comment in coordinator_yield()
6163  for (unsigned i = 0; i < CMSYieldSleepCount &&
6164                   ConcurrentMarkSweepThread::should_yield() &&
6165                   !CMSCollector::foregroundGCIsActive(); ++i) {
6166    os::sleep(Thread::current(), 1, false);
6167  }
6168
6169  ConcurrentMarkSweepThread::synchronize(true);
6170  _freelistLock->lock_without_safepoint_check();
6171  _bitMap->lock()->lock_without_safepoint_check();
6172  _collector->startTimer();
6173}
6174
6175
6176//////////////////////////////////////////////////////////////////
6177// SurvivorSpacePrecleanClosure
6178//////////////////////////////////////////////////////////////////
6179// This (single-threaded) closure is used to preclean the oops in
6180// the survivor spaces.
6181size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6182
6183  HeapWord* addr = (HeapWord*)p;
6184  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6185  assert(!_span.contains(addr), "we are scanning the survivor spaces");
6186  assert(p->klass_or_null() != NULL, "object should be initialized");
6187  // an initialized object; ignore mark word in verification below
6188  // since we are running concurrent with mutators
6189  assert(p->is_oop(true), "should be an oop");
6190  // Note that we do not yield while we iterate over
6191  // the interior oops of p, pushing the relevant ones
6192  // on our marking stack.
6193  size_t size = p->oop_iterate_size(_scanning_closure);
6194  do_yield_check();
6195  // Observe that below, we do not abandon the preclean
6196  // phase as soon as we should; rather we empty the
6197  // marking stack before returning. This is to satisfy
6198  // some existing assertions. In general, it may be a
6199  // good idea to abort immediately and complete the marking
6200  // from the grey objects at a later time.
6201  while (!_mark_stack->isEmpty()) {
6202    oop new_oop = _mark_stack->pop();
6203    assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6204    assert(_bit_map->isMarked((HeapWord*)new_oop),
6205           "only grey objects on this stack");
6206    // iterate over the oops in this oop, marking and pushing
6207    // the ones in CMS heap (i.e. in _span).
6208    new_oop->oop_iterate(_scanning_closure);
6209    // check if it's time to yield
6210    do_yield_check();
6211  }
6212  unsigned int after_count =
6213    GenCollectedHeap::heap()->total_collections();
6214  bool abort = (_before_count != after_count) ||
6215               _collector->should_abort_preclean();
6216  return abort ? 0 : size;
6217}
6218
6219void SurvivorSpacePrecleanClosure::do_yield_work() {
6220  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6221         "CMS thread should hold CMS token");
6222  assert_lock_strong(_bit_map->lock());
6223  // Relinquish the bit map lock
6224  _bit_map->lock()->unlock();
6225  ConcurrentMarkSweepThread::desynchronize(true);
6226  _collector->stopTimer();
6227  _collector->incrementYields();
6228
6229  // See the comment in coordinator_yield()
6230  for (unsigned i = 0; i < CMSYieldSleepCount &&
6231                       ConcurrentMarkSweepThread::should_yield() &&
6232                       !CMSCollector::foregroundGCIsActive(); ++i) {
6233    os::sleep(Thread::current(), 1, false);
6234  }
6235
6236  ConcurrentMarkSweepThread::synchronize(true);
6237  _bit_map->lock()->lock_without_safepoint_check();
6238  _collector->startTimer();
6239}
6240
6241// This closure is used to rescan the marked objects on the dirty cards
6242// in the mod union table and the card table proper. In the parallel
6243// case, although the bitMap is shared, we do a single read so the
6244// isMarked() query is "safe".
6245bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6246  // Ignore mark word because we are running concurrent with mutators
6247  assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6248  HeapWord* addr = (HeapWord*)p;
6249  assert(_span.contains(addr), "we are scanning the CMS generation");
6250  bool is_obj_array = false;
6251  #ifdef ASSERT
6252    if (!_parallel) {
6253      assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6254      assert(_collector->overflow_list_is_empty(),
6255             "overflow list should be empty");
6256
6257    }
6258  #endif // ASSERT
6259  if (_bit_map->isMarked(addr)) {
6260    // Obj arrays are precisely marked, non-arrays are not;
6261    // so we scan objArrays precisely and non-arrays in their
6262    // entirety.
6263    if (p->is_objArray()) {
6264      is_obj_array = true;
6265      if (_parallel) {
6266        p->oop_iterate(_par_scan_closure, mr);
6267      } else {
6268        p->oop_iterate(_scan_closure, mr);
6269      }
6270    } else {
6271      if (_parallel) {
6272        p->oop_iterate(_par_scan_closure);
6273      } else {
6274        p->oop_iterate(_scan_closure);
6275      }
6276    }
6277  }
6278  #ifdef ASSERT
6279    if (!_parallel) {
6280      assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6281      assert(_collector->overflow_list_is_empty(),
6282             "overflow list should be empty");
6283
6284    }
6285  #endif // ASSERT
6286  return is_obj_array;
6287}
6288
6289MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6290                        MemRegion span,
6291                        CMSBitMap* bitMap, CMSMarkStack*  markStack,
6292                        bool should_yield, bool verifying):
6293  _collector(collector),
6294  _span(span),
6295  _bitMap(bitMap),
6296  _mut(&collector->_modUnionTable),
6297  _markStack(markStack),
6298  _yield(should_yield),
6299  _skipBits(0)
6300{
6301  assert(_markStack->isEmpty(), "stack should be empty");
6302  _finger = _bitMap->startWord();
6303  _threshold = _finger;
6304  assert(_collector->_restart_addr == NULL, "Sanity check");
6305  assert(_span.contains(_finger), "Out of bounds _finger?");
6306  DEBUG_ONLY(_verifying = verifying;)
6307}
6308
6309void MarkFromRootsClosure::reset(HeapWord* addr) {
6310  assert(_markStack->isEmpty(), "would cause duplicates on stack");
6311  assert(_span.contains(addr), "Out of bounds _finger?");
6312  _finger = addr;
6313  _threshold = (HeapWord*)round_to(
6314                 (intptr_t)_finger, CardTableModRefBS::card_size);
6315}
6316
6317// Should revisit to see if this should be restructured for
6318// greater efficiency.
6319bool MarkFromRootsClosure::do_bit(size_t offset) {
6320  if (_skipBits > 0) {
6321    _skipBits--;
6322    return true;
6323  }
6324  // convert offset into a HeapWord*
6325  HeapWord* addr = _bitMap->startWord() + offset;
6326  assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6327         "address out of range");
6328  assert(_bitMap->isMarked(addr), "tautology");
6329  if (_bitMap->isMarked(addr+1)) {
6330    // this is an allocated but not yet initialized object
6331    assert(_skipBits == 0, "tautology");
6332    _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6333    oop p = oop(addr);
6334    if (p->klass_or_null() == NULL) {
6335      DEBUG_ONLY(if (!_verifying) {)
6336        // We re-dirty the cards on which this object lies and increase
6337        // the _threshold so that we'll come back to scan this object
6338        // during the preclean or remark phase. (CMSCleanOnEnter)
6339        if (CMSCleanOnEnter) {
6340          size_t sz = _collector->block_size_using_printezis_bits(addr);
6341          HeapWord* end_card_addr   = (HeapWord*)round_to(
6342                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6343          MemRegion redirty_range = MemRegion(addr, end_card_addr);
6344          assert(!redirty_range.is_empty(), "Arithmetical tautology");
6345          // Bump _threshold to end_card_addr; note that
6346          // _threshold cannot possibly exceed end_card_addr, anyhow.
6347          // This prevents future clearing of the card as the scan proceeds
6348          // to the right.
6349          assert(_threshold <= end_card_addr,
6350                 "Because we are just scanning into this object");
6351          if (_threshold < end_card_addr) {
6352            _threshold = end_card_addr;
6353          }
6354          if (p->klass_or_null() != NULL) {
6355            // Redirty the range of cards...
6356            _mut->mark_range(redirty_range);
6357          } // ...else the setting of klass will dirty the card anyway.
6358        }
6359      DEBUG_ONLY(})
6360      return true;
6361    }
6362  }
6363  scanOopsInOop(addr);
6364  return true;
6365}
6366
6367// We take a break if we've been at this for a while,
6368// so as to avoid monopolizing the locks involved.
6369void MarkFromRootsClosure::do_yield_work() {
6370  // First give up the locks, then yield, then re-lock
6371  // We should probably use a constructor/destructor idiom to
6372  // do this unlock/lock or modify the MutexUnlocker class to
6373  // serve our purpose. XXX
6374  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6375         "CMS thread should hold CMS token");
6376  assert_lock_strong(_bitMap->lock());
6377  _bitMap->lock()->unlock();
6378  ConcurrentMarkSweepThread::desynchronize(true);
6379  _collector->stopTimer();
6380  _collector->incrementYields();
6381
6382  // See the comment in coordinator_yield()
6383  for (unsigned i = 0; i < CMSYieldSleepCount &&
6384                       ConcurrentMarkSweepThread::should_yield() &&
6385                       !CMSCollector::foregroundGCIsActive(); ++i) {
6386    os::sleep(Thread::current(), 1, false);
6387  }
6388
6389  ConcurrentMarkSweepThread::synchronize(true);
6390  _bitMap->lock()->lock_without_safepoint_check();
6391  _collector->startTimer();
6392}
6393
6394void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6395  assert(_bitMap->isMarked(ptr), "expected bit to be set");
6396  assert(_markStack->isEmpty(),
6397         "should drain stack to limit stack usage");
6398  // convert ptr to an oop preparatory to scanning
6399  oop obj = oop(ptr);
6400  // Ignore mark word in verification below, since we
6401  // may be running concurrent with mutators.
6402  assert(obj->is_oop(true), "should be an oop");
6403  assert(_finger <= ptr, "_finger runneth ahead");
6404  // advance the finger to right end of this object
6405  _finger = ptr + obj->size();
6406  assert(_finger > ptr, "we just incremented it above");
6407  // On large heaps, it may take us some time to get through
6408  // the marking phase. During
6409  // this time it's possible that a lot of mutations have
6410  // accumulated in the card table and the mod union table --
6411  // these mutation records are redundant until we have
6412  // actually traced into the corresponding card.
6413  // Here, we check whether advancing the finger would make
6414  // us cross into a new card, and if so clear corresponding
6415  // cards in the MUT (preclean them in the card-table in the
6416  // future).
6417
6418  DEBUG_ONLY(if (!_verifying) {)
6419    // The clean-on-enter optimization is disabled by default,
6420    // until we fix 6178663.
6421    if (CMSCleanOnEnter && (_finger > _threshold)) {
6422      // [_threshold, _finger) represents the interval
6423      // of cards to be cleared  in MUT (or precleaned in card table).
6424      // The set of cards to be cleared is all those that overlap
6425      // with the interval [_threshold, _finger); note that
6426      // _threshold is always kept card-aligned but _finger isn't
6427      // always card-aligned.
6428      HeapWord* old_threshold = _threshold;
6429      assert(old_threshold == (HeapWord*)round_to(
6430              (intptr_t)old_threshold, CardTableModRefBS::card_size),
6431             "_threshold should always be card-aligned");
6432      _threshold = (HeapWord*)round_to(
6433                     (intptr_t)_finger, CardTableModRefBS::card_size);
6434      MemRegion mr(old_threshold, _threshold);
6435      assert(!mr.is_empty(), "Control point invariant");
6436      assert(_span.contains(mr), "Should clear within span");
6437      _mut->clear_range(mr);
6438    }
6439  DEBUG_ONLY(})
6440  // Note: the finger doesn't advance while we drain
6441  // the stack below.
6442  PushOrMarkClosure pushOrMarkClosure(_collector,
6443                                      _span, _bitMap, _markStack,
6444                                      _finger, this);
6445  bool res = _markStack->push(obj);
6446  assert(res, "Empty non-zero size stack should have space for single push");
6447  while (!_markStack->isEmpty()) {
6448    oop new_oop = _markStack->pop();
6449    // Skip verifying header mark word below because we are
6450    // running concurrent with mutators.
6451    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6452    // now scan this oop's oops
6453    new_oop->oop_iterate(&pushOrMarkClosure);
6454    do_yield_check();
6455  }
6456  assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6457}
6458
6459ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6460                       CMSCollector* collector, MemRegion span,
6461                       CMSBitMap* bit_map,
6462                       OopTaskQueue* work_queue,
6463                       CMSMarkStack*  overflow_stack):
6464  _collector(collector),
6465  _whole_span(collector->_span),
6466  _span(span),
6467  _bit_map(bit_map),
6468  _mut(&collector->_modUnionTable),
6469  _work_queue(work_queue),
6470  _overflow_stack(overflow_stack),
6471  _skip_bits(0),
6472  _task(task)
6473{
6474  assert(_work_queue->size() == 0, "work_queue should be empty");
6475  _finger = span.start();
6476  _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6477  assert(_span.contains(_finger), "Out of bounds _finger?");
6478}
6479
6480// Should revisit to see if this should be restructured for
6481// greater efficiency.
6482bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6483  if (_skip_bits > 0) {
6484    _skip_bits--;
6485    return true;
6486  }
6487  // convert offset into a HeapWord*
6488  HeapWord* addr = _bit_map->startWord() + offset;
6489  assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6490         "address out of range");
6491  assert(_bit_map->isMarked(addr), "tautology");
6492  if (_bit_map->isMarked(addr+1)) {
6493    // this is an allocated object that might not yet be initialized
6494    assert(_skip_bits == 0, "tautology");
6495    _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6496    oop p = oop(addr);
6497    if (p->klass_or_null() == NULL) {
6498      // in the case of Clean-on-Enter optimization, redirty card
6499      // and avoid clearing card by increasing  the threshold.
6500      return true;
6501    }
6502  }
6503  scan_oops_in_oop(addr);
6504  return true;
6505}
6506
6507void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6508  assert(_bit_map->isMarked(ptr), "expected bit to be set");
6509  // Should we assert that our work queue is empty or
6510  // below some drain limit?
6511  assert(_work_queue->size() == 0,
6512         "should drain stack to limit stack usage");
6513  // convert ptr to an oop preparatory to scanning
6514  oop obj = oop(ptr);
6515  // Ignore mark word in verification below, since we
6516  // may be running concurrent with mutators.
6517  assert(obj->is_oop(true), "should be an oop");
6518  assert(_finger <= ptr, "_finger runneth ahead");
6519  // advance the finger to right end of this object
6520  _finger = ptr + obj->size();
6521  assert(_finger > ptr, "we just incremented it above");
6522  // On large heaps, it may take us some time to get through
6523  // the marking phase. During
6524  // this time it's possible that a lot of mutations have
6525  // accumulated in the card table and the mod union table --
6526  // these mutation records are redundant until we have
6527  // actually traced into the corresponding card.
6528  // Here, we check whether advancing the finger would make
6529  // us cross into a new card, and if so clear corresponding
6530  // cards in the MUT (preclean them in the card-table in the
6531  // future).
6532
6533  // The clean-on-enter optimization is disabled by default,
6534  // until we fix 6178663.
6535  if (CMSCleanOnEnter && (_finger > _threshold)) {
6536    // [_threshold, _finger) represents the interval
6537    // of cards to be cleared  in MUT (or precleaned in card table).
6538    // The set of cards to be cleared is all those that overlap
6539    // with the interval [_threshold, _finger); note that
6540    // _threshold is always kept card-aligned but _finger isn't
6541    // always card-aligned.
6542    HeapWord* old_threshold = _threshold;
6543    assert(old_threshold == (HeapWord*)round_to(
6544            (intptr_t)old_threshold, CardTableModRefBS::card_size),
6545           "_threshold should always be card-aligned");
6546    _threshold = (HeapWord*)round_to(
6547                   (intptr_t)_finger, CardTableModRefBS::card_size);
6548    MemRegion mr(old_threshold, _threshold);
6549    assert(!mr.is_empty(), "Control point invariant");
6550    assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6551    _mut->clear_range(mr);
6552  }
6553
6554  // Note: the local finger doesn't advance while we drain
6555  // the stack below, but the global finger sure can and will.
6556  HeapWord** gfa = _task->global_finger_addr();
6557  ParPushOrMarkClosure pushOrMarkClosure(_collector,
6558                                         _span, _bit_map,
6559                                         _work_queue,
6560                                         _overflow_stack,
6561                                         _finger,
6562                                         gfa, this);
6563  bool res = _work_queue->push(obj);   // overflow could occur here
6564  assert(res, "Will hold once we use workqueues");
6565  while (true) {
6566    oop new_oop;
6567    if (!_work_queue->pop_local(new_oop)) {
6568      // We emptied our work_queue; check if there's stuff that can
6569      // be gotten from the overflow stack.
6570      if (CMSConcMarkingTask::get_work_from_overflow_stack(
6571            _overflow_stack, _work_queue)) {
6572        do_yield_check();
6573        continue;
6574      } else {  // done
6575        break;
6576      }
6577    }
6578    // Skip verifying header mark word below because we are
6579    // running concurrent with mutators.
6580    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6581    // now scan this oop's oops
6582    new_oop->oop_iterate(&pushOrMarkClosure);
6583    do_yield_check();
6584  }
6585  assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6586}
6587
6588// Yield in response to a request from VM Thread or
6589// from mutators.
6590void ParMarkFromRootsClosure::do_yield_work() {
6591  assert(_task != NULL, "sanity");
6592  _task->yield();
6593}
6594
6595// A variant of the above used for verifying CMS marking work.
6596MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6597                        MemRegion span,
6598                        CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6599                        CMSMarkStack*  mark_stack):
6600  _collector(collector),
6601  _span(span),
6602  _verification_bm(verification_bm),
6603  _cms_bm(cms_bm),
6604  _mark_stack(mark_stack),
6605  _pam_verify_closure(collector, span, verification_bm, cms_bm,
6606                      mark_stack)
6607{
6608  assert(_mark_stack->isEmpty(), "stack should be empty");
6609  _finger = _verification_bm->startWord();
6610  assert(_collector->_restart_addr == NULL, "Sanity check");
6611  assert(_span.contains(_finger), "Out of bounds _finger?");
6612}
6613
6614void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6615  assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6616  assert(_span.contains(addr), "Out of bounds _finger?");
6617  _finger = addr;
6618}
6619
6620// Should revisit to see if this should be restructured for
6621// greater efficiency.
6622bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6623  // convert offset into a HeapWord*
6624  HeapWord* addr = _verification_bm->startWord() + offset;
6625  assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6626         "address out of range");
6627  assert(_verification_bm->isMarked(addr), "tautology");
6628  assert(_cms_bm->isMarked(addr), "tautology");
6629
6630  assert(_mark_stack->isEmpty(),
6631         "should drain stack to limit stack usage");
6632  // convert addr to an oop preparatory to scanning
6633  oop obj = oop(addr);
6634  assert(obj->is_oop(), "should be an oop");
6635  assert(_finger <= addr, "_finger runneth ahead");
6636  // advance the finger to right end of this object
6637  _finger = addr + obj->size();
6638  assert(_finger > addr, "we just incremented it above");
6639  // Note: the finger doesn't advance while we drain
6640  // the stack below.
6641  bool res = _mark_stack->push(obj);
6642  assert(res, "Empty non-zero size stack should have space for single push");
6643  while (!_mark_stack->isEmpty()) {
6644    oop new_oop = _mark_stack->pop();
6645    assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6646    // now scan this oop's oops
6647    new_oop->oop_iterate(&_pam_verify_closure);
6648  }
6649  assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6650  return true;
6651}
6652
6653PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6654  CMSCollector* collector, MemRegion span,
6655  CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6656  CMSMarkStack*  mark_stack):
6657  MetadataAwareOopClosure(collector->ref_processor()),
6658  _collector(collector),
6659  _span(span),
6660  _verification_bm(verification_bm),
6661  _cms_bm(cms_bm),
6662  _mark_stack(mark_stack)
6663{ }
6664
6665void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6666void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6667
6668// Upon stack overflow, we discard (part of) the stack,
6669// remembering the least address amongst those discarded
6670// in CMSCollector's _restart_address.
6671void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6672  // Remember the least grey address discarded
6673  HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6674  _collector->lower_restart_addr(ra);
6675  _mark_stack->reset();  // discard stack contents
6676  _mark_stack->expand(); // expand the stack if possible
6677}
6678
6679void PushAndMarkVerifyClosure::do_oop(oop obj) {
6680  assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6681  HeapWord* addr = (HeapWord*)obj;
6682  if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6683    // Oop lies in _span and isn't yet grey or black
6684    _verification_bm->mark(addr);            // now grey
6685    if (!_cms_bm->isMarked(addr)) {
6686      Log(gc, verify) log;
6687      ResourceMark rm;
6688      oop(addr)->print_on(log.error_stream());
6689      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6690      fatal("... aborting");
6691    }
6692
6693    if (!_mark_stack->push(obj)) { // stack overflow
6694      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6695      assert(_mark_stack->isFull(), "Else push should have succeeded");
6696      handle_stack_overflow(addr);
6697    }
6698    // anything including and to the right of _finger
6699    // will be scanned as we iterate over the remainder of the
6700    // bit map
6701  }
6702}
6703
6704PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6705                     MemRegion span,
6706                     CMSBitMap* bitMap, CMSMarkStack*  markStack,
6707                     HeapWord* finger, MarkFromRootsClosure* parent) :
6708  MetadataAwareOopClosure(collector->ref_processor()),
6709  _collector(collector),
6710  _span(span),
6711  _bitMap(bitMap),
6712  _markStack(markStack),
6713  _finger(finger),
6714  _parent(parent)
6715{ }
6716
6717ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6718                                           MemRegion span,
6719                                           CMSBitMap* bit_map,
6720                                           OopTaskQueue* work_queue,
6721                                           CMSMarkStack*  overflow_stack,
6722                                           HeapWord* finger,
6723                                           HeapWord** global_finger_addr,
6724                                           ParMarkFromRootsClosure* parent) :
6725  MetadataAwareOopClosure(collector->ref_processor()),
6726  _collector(collector),
6727  _whole_span(collector->_span),
6728  _span(span),
6729  _bit_map(bit_map),
6730  _work_queue(work_queue),
6731  _overflow_stack(overflow_stack),
6732  _finger(finger),
6733  _global_finger_addr(global_finger_addr),
6734  _parent(parent)
6735{ }
6736
6737// Assumes thread-safe access by callers, who are
6738// responsible for mutual exclusion.
6739void CMSCollector::lower_restart_addr(HeapWord* low) {
6740  assert(_span.contains(low), "Out of bounds addr");
6741  if (_restart_addr == NULL) {
6742    _restart_addr = low;
6743  } else {
6744    _restart_addr = MIN2(_restart_addr, low);
6745  }
6746}
6747
6748// Upon stack overflow, we discard (part of) the stack,
6749// remembering the least address amongst those discarded
6750// in CMSCollector's _restart_address.
6751void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6752  // Remember the least grey address discarded
6753  HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6754  _collector->lower_restart_addr(ra);
6755  _markStack->reset();  // discard stack contents
6756  _markStack->expand(); // expand the stack if possible
6757}
6758
6759// Upon stack overflow, we discard (part of) the stack,
6760// remembering the least address amongst those discarded
6761// in CMSCollector's _restart_address.
6762void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6763  // We need to do this under a mutex to prevent other
6764  // workers from interfering with the work done below.
6765  MutexLockerEx ml(_overflow_stack->par_lock(),
6766                   Mutex::_no_safepoint_check_flag);
6767  // Remember the least grey address discarded
6768  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6769  _collector->lower_restart_addr(ra);
6770  _overflow_stack->reset();  // discard stack contents
6771  _overflow_stack->expand(); // expand the stack if possible
6772}
6773
6774void PushOrMarkClosure::do_oop(oop obj) {
6775  // Ignore mark word because we are running concurrent with mutators.
6776  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6777  HeapWord* addr = (HeapWord*)obj;
6778  if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6779    // Oop lies in _span and isn't yet grey or black
6780    _bitMap->mark(addr);            // now grey
6781    if (addr < _finger) {
6782      // the bit map iteration has already either passed, or
6783      // sampled, this bit in the bit map; we'll need to
6784      // use the marking stack to scan this oop's oops.
6785      bool simulate_overflow = false;
6786      NOT_PRODUCT(
6787        if (CMSMarkStackOverflowALot &&
6788            _collector->simulate_overflow()) {
6789          // simulate a stack overflow
6790          simulate_overflow = true;
6791        }
6792      )
6793      if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6794        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6795        assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6796        handle_stack_overflow(addr);
6797      }
6798    }
6799    // anything including and to the right of _finger
6800    // will be scanned as we iterate over the remainder of the
6801    // bit map
6802    do_yield_check();
6803  }
6804}
6805
6806void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6807void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6808
6809void ParPushOrMarkClosure::do_oop(oop obj) {
6810  // Ignore mark word because we are running concurrent with mutators.
6811  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6812  HeapWord* addr = (HeapWord*)obj;
6813  if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6814    // Oop lies in _span and isn't yet grey or black
6815    // We read the global_finger (volatile read) strictly after marking oop
6816    bool res = _bit_map->par_mark(addr);    // now grey
6817    volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6818    // Should we push this marked oop on our stack?
6819    // -- if someone else marked it, nothing to do
6820    // -- if target oop is above global finger nothing to do
6821    // -- if target oop is in chunk and above local finger
6822    //      then nothing to do
6823    // -- else push on work queue
6824    if (   !res       // someone else marked it, they will deal with it
6825        || (addr >= *gfa)  // will be scanned in a later task
6826        || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6827      return;
6828    }
6829    // the bit map iteration has already either passed, or
6830    // sampled, this bit in the bit map; we'll need to
6831    // use the marking stack to scan this oop's oops.
6832    bool simulate_overflow = false;
6833    NOT_PRODUCT(
6834      if (CMSMarkStackOverflowALot &&
6835          _collector->simulate_overflow()) {
6836        // simulate a stack overflow
6837        simulate_overflow = true;
6838      }
6839    )
6840    if (simulate_overflow ||
6841        !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6842      // stack overflow
6843      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6844      // We cannot assert that the overflow stack is full because
6845      // it may have been emptied since.
6846      assert(simulate_overflow ||
6847             _work_queue->size() == _work_queue->max_elems(),
6848            "Else push should have succeeded");
6849      handle_stack_overflow(addr);
6850    }
6851    do_yield_check();
6852  }
6853}
6854
6855void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6856void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6857
6858PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6859                                       MemRegion span,
6860                                       ReferenceProcessor* rp,
6861                                       CMSBitMap* bit_map,
6862                                       CMSBitMap* mod_union_table,
6863                                       CMSMarkStack*  mark_stack,
6864                                       bool           concurrent_precleaning):
6865  MetadataAwareOopClosure(rp),
6866  _collector(collector),
6867  _span(span),
6868  _bit_map(bit_map),
6869  _mod_union_table(mod_union_table),
6870  _mark_stack(mark_stack),
6871  _concurrent_precleaning(concurrent_precleaning)
6872{
6873  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6874}
6875
6876// Grey object rescan during pre-cleaning and second checkpoint phases --
6877// the non-parallel version (the parallel version appears further below.)
6878void PushAndMarkClosure::do_oop(oop obj) {
6879  // Ignore mark word verification. If during concurrent precleaning,
6880  // the object monitor may be locked. If during the checkpoint
6881  // phases, the object may already have been reached by a  different
6882  // path and may be at the end of the global overflow list (so
6883  // the mark word may be NULL).
6884  assert(obj->is_oop_or_null(true /* ignore mark word */),
6885         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6886  HeapWord* addr = (HeapWord*)obj;
6887  // Check if oop points into the CMS generation
6888  // and is not marked
6889  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6890    // a white object ...
6891    _bit_map->mark(addr);         // ... now grey
6892    // push on the marking stack (grey set)
6893    bool simulate_overflow = false;
6894    NOT_PRODUCT(
6895      if (CMSMarkStackOverflowALot &&
6896          _collector->simulate_overflow()) {
6897        // simulate a stack overflow
6898        simulate_overflow = true;
6899      }
6900    )
6901    if (simulate_overflow || !_mark_stack->push(obj)) {
6902      if (_concurrent_precleaning) {
6903         // During precleaning we can just dirty the appropriate card(s)
6904         // in the mod union table, thus ensuring that the object remains
6905         // in the grey set  and continue. In the case of object arrays
6906         // we need to dirty all of the cards that the object spans,
6907         // since the rescan of object arrays will be limited to the
6908         // dirty cards.
6909         // Note that no one can be interfering with us in this action
6910         // of dirtying the mod union table, so no locking or atomics
6911         // are required.
6912         if (obj->is_objArray()) {
6913           size_t sz = obj->size();
6914           HeapWord* end_card_addr = (HeapWord*)round_to(
6915                                        (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6916           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6917           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6918           _mod_union_table->mark_range(redirty_range);
6919         } else {
6920           _mod_union_table->mark(addr);
6921         }
6922         _collector->_ser_pmc_preclean_ovflw++;
6923      } else {
6924         // During the remark phase, we need to remember this oop
6925         // in the overflow list.
6926         _collector->push_on_overflow_list(obj);
6927         _collector->_ser_pmc_remark_ovflw++;
6928      }
6929    }
6930  }
6931}
6932
6933ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6934                                             MemRegion span,
6935                                             ReferenceProcessor* rp,
6936                                             CMSBitMap* bit_map,
6937                                             OopTaskQueue* work_queue):
6938  MetadataAwareOopClosure(rp),
6939  _collector(collector),
6940  _span(span),
6941  _bit_map(bit_map),
6942  _work_queue(work_queue)
6943{
6944  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6945}
6946
6947void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6948void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6949
6950// Grey object rescan during second checkpoint phase --
6951// the parallel version.
6952void ParPushAndMarkClosure::do_oop(oop obj) {
6953  // In the assert below, we ignore the mark word because
6954  // this oop may point to an already visited object that is
6955  // on the overflow stack (in which case the mark word has
6956  // been hijacked for chaining into the overflow stack --
6957  // if this is the last object in the overflow stack then
6958  // its mark word will be NULL). Because this object may
6959  // have been subsequently popped off the global overflow
6960  // stack, and the mark word possibly restored to the prototypical
6961  // value, by the time we get to examined this failing assert in
6962  // the debugger, is_oop_or_null(false) may subsequently start
6963  // to hold.
6964  assert(obj->is_oop_or_null(true),
6965         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6966  HeapWord* addr = (HeapWord*)obj;
6967  // Check if oop points into the CMS generation
6968  // and is not marked
6969  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6970    // a white object ...
6971    // If we manage to "claim" the object, by being the
6972    // first thread to mark it, then we push it on our
6973    // marking stack
6974    if (_bit_map->par_mark(addr)) {     // ... now grey
6975      // push on work queue (grey set)
6976      bool simulate_overflow = false;
6977      NOT_PRODUCT(
6978        if (CMSMarkStackOverflowALot &&
6979            _collector->par_simulate_overflow()) {
6980          // simulate a stack overflow
6981          simulate_overflow = true;
6982        }
6983      )
6984      if (simulate_overflow || !_work_queue->push(obj)) {
6985        _collector->par_push_on_overflow_list(obj);
6986        _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6987      }
6988    } // Else, some other thread got there first
6989  }
6990}
6991
6992void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6993void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6994
6995void CMSPrecleanRefsYieldClosure::do_yield_work() {
6996  Mutex* bml = _collector->bitMapLock();
6997  assert_lock_strong(bml);
6998  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6999         "CMS thread should hold CMS token");
7000
7001  bml->unlock();
7002  ConcurrentMarkSweepThread::desynchronize(true);
7003
7004  _collector->stopTimer();
7005  _collector->incrementYields();
7006
7007  // See the comment in coordinator_yield()
7008  for (unsigned i = 0; i < CMSYieldSleepCount &&
7009                       ConcurrentMarkSweepThread::should_yield() &&
7010                       !CMSCollector::foregroundGCIsActive(); ++i) {
7011    os::sleep(Thread::current(), 1, false);
7012  }
7013
7014  ConcurrentMarkSweepThread::synchronize(true);
7015  bml->lock();
7016
7017  _collector->startTimer();
7018}
7019
7020bool CMSPrecleanRefsYieldClosure::should_return() {
7021  if (ConcurrentMarkSweepThread::should_yield()) {
7022    do_yield_work();
7023  }
7024  return _collector->foregroundGCIsActive();
7025}
7026
7027void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7028  assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7029         "mr should be aligned to start at a card boundary");
7030  // We'd like to assert:
7031  // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7032  //        "mr should be a range of cards");
7033  // However, that would be too strong in one case -- the last
7034  // partition ends at _unallocated_block which, in general, can be
7035  // an arbitrary boundary, not necessarily card aligned.
7036  _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7037  _space->object_iterate_mem(mr, &_scan_cl);
7038}
7039
7040SweepClosure::SweepClosure(CMSCollector* collector,
7041                           ConcurrentMarkSweepGeneration* g,
7042                           CMSBitMap* bitMap, bool should_yield) :
7043  _collector(collector),
7044  _g(g),
7045  _sp(g->cmsSpace()),
7046  _limit(_sp->sweep_limit()),
7047  _freelistLock(_sp->freelistLock()),
7048  _bitMap(bitMap),
7049  _yield(should_yield),
7050  _inFreeRange(false),           // No free range at beginning of sweep
7051  _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7052  _lastFreeRangeCoalesced(false),
7053  _freeFinger(g->used_region().start())
7054{
7055  NOT_PRODUCT(
7056    _numObjectsFreed = 0;
7057    _numWordsFreed   = 0;
7058    _numObjectsLive = 0;
7059    _numWordsLive = 0;
7060    _numObjectsAlreadyFree = 0;
7061    _numWordsAlreadyFree = 0;
7062    _last_fc = NULL;
7063
7064    _sp->initializeIndexedFreeListArrayReturnedBytes();
7065    _sp->dictionary()->initialize_dict_returned_bytes();
7066  )
7067  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7068         "sweep _limit out of bounds");
7069  log_develop_trace(gc, sweep)("====================");
7070  log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7071}
7072
7073void SweepClosure::print_on(outputStream* st) const {
7074  st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7075               p2i(_sp->bottom()), p2i(_sp->end()));
7076  st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7077  st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7078  NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7079  st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7080               _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7081}
7082
7083#ifndef PRODUCT
7084// Assertion checking only:  no useful work in product mode --
7085// however, if any of the flags below become product flags,
7086// you may need to review this code to see if it needs to be
7087// enabled in product mode.
7088SweepClosure::~SweepClosure() {
7089  assert_lock_strong(_freelistLock);
7090  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7091         "sweep _limit out of bounds");
7092  if (inFreeRange()) {
7093    Log(gc, sweep) log;
7094    log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7095    ResourceMark rm;
7096    print_on(log.error_stream());
7097    ShouldNotReachHere();
7098  }
7099
7100  if (log_is_enabled(Debug, gc, sweep)) {
7101    log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7102                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7103    log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7104                         _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7105    size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7106    log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7107  }
7108
7109  if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7110    size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7111    size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7112    size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7113    log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7114                         returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7115  }
7116  log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7117  log_develop_trace(gc, sweep)("================");
7118}
7119#endif  // PRODUCT
7120
7121void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7122    bool freeRangeInFreeLists) {
7123  log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7124                               p2i(freeFinger), freeRangeInFreeLists);
7125  assert(!inFreeRange(), "Trampling existing free range");
7126  set_inFreeRange(true);
7127  set_lastFreeRangeCoalesced(false);
7128
7129  set_freeFinger(freeFinger);
7130  set_freeRangeInFreeLists(freeRangeInFreeLists);
7131  if (CMSTestInFreeList) {
7132    if (freeRangeInFreeLists) {
7133      FreeChunk* fc = (FreeChunk*) freeFinger;
7134      assert(fc->is_free(), "A chunk on the free list should be free.");
7135      assert(fc->size() > 0, "Free range should have a size");
7136      assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7137    }
7138  }
7139}
7140
7141// Note that the sweeper runs concurrently with mutators. Thus,
7142// it is possible for direct allocation in this generation to happen
7143// in the middle of the sweep. Note that the sweeper also coalesces
7144// contiguous free blocks. Thus, unless the sweeper and the allocator
7145// synchronize appropriately freshly allocated blocks may get swept up.
7146// This is accomplished by the sweeper locking the free lists while
7147// it is sweeping. Thus blocks that are determined to be free are
7148// indeed free. There is however one additional complication:
7149// blocks that have been allocated since the final checkpoint and
7150// mark, will not have been marked and so would be treated as
7151// unreachable and swept up. To prevent this, the allocator marks
7152// the bit map when allocating during the sweep phase. This leads,
7153// however, to a further complication -- objects may have been allocated
7154// but not yet initialized -- in the sense that the header isn't yet
7155// installed. The sweeper can not then determine the size of the block
7156// in order to skip over it. To deal with this case, we use a technique
7157// (due to Printezis) to encode such uninitialized block sizes in the
7158// bit map. Since the bit map uses a bit per every HeapWord, but the
7159// CMS generation has a minimum object size of 3 HeapWords, it follows
7160// that "normal marks" won't be adjacent in the bit map (there will
7161// always be at least two 0 bits between successive 1 bits). We make use
7162// of these "unused" bits to represent uninitialized blocks -- the bit
7163// corresponding to the start of the uninitialized object and the next
7164// bit are both set. Finally, a 1 bit marks the end of the object that
7165// started with the two consecutive 1 bits to indicate its potentially
7166// uninitialized state.
7167
7168size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7169  FreeChunk* fc = (FreeChunk*)addr;
7170  size_t res;
7171
7172  // Check if we are done sweeping. Below we check "addr >= _limit" rather
7173  // than "addr == _limit" because although _limit was a block boundary when
7174  // we started the sweep, it may no longer be one because heap expansion
7175  // may have caused us to coalesce the block ending at the address _limit
7176  // with a newly expanded chunk (this happens when _limit was set to the
7177  // previous _end of the space), so we may have stepped past _limit:
7178  // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7179  if (addr >= _limit) { // we have swept up to or past the limit: finish up
7180    assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7181           "sweep _limit out of bounds");
7182    assert(addr < _sp->end(), "addr out of bounds");
7183    // Flush any free range we might be holding as a single
7184    // coalesced chunk to the appropriate free list.
7185    if (inFreeRange()) {
7186      assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7187             "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7188      flush_cur_free_chunk(freeFinger(),
7189                           pointer_delta(addr, freeFinger()));
7190      log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7191                                   p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7192                                   lastFreeRangeCoalesced() ? 1 : 0);
7193    }
7194
7195    // help the iterator loop finish
7196    return pointer_delta(_sp->end(), addr);
7197  }
7198
7199  assert(addr < _limit, "sweep invariant");
7200  // check if we should yield
7201  do_yield_check(addr);
7202  if (fc->is_free()) {
7203    // Chunk that is already free
7204    res = fc->size();
7205    do_already_free_chunk(fc);
7206    debug_only(_sp->verifyFreeLists());
7207    // If we flush the chunk at hand in lookahead_and_flush()
7208    // and it's coalesced with a preceding chunk, then the
7209    // process of "mangling" the payload of the coalesced block
7210    // will cause erasure of the size information from the
7211    // (erstwhile) header of all the coalesced blocks but the
7212    // first, so the first disjunct in the assert will not hold
7213    // in that specific case (in which case the second disjunct
7214    // will hold).
7215    assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7216           "Otherwise the size info doesn't change at this step");
7217    NOT_PRODUCT(
7218      _numObjectsAlreadyFree++;
7219      _numWordsAlreadyFree += res;
7220    )
7221    NOT_PRODUCT(_last_fc = fc;)
7222  } else if (!_bitMap->isMarked(addr)) {
7223    // Chunk is fresh garbage
7224    res = do_garbage_chunk(fc);
7225    debug_only(_sp->verifyFreeLists());
7226    NOT_PRODUCT(
7227      _numObjectsFreed++;
7228      _numWordsFreed += res;
7229    )
7230  } else {
7231    // Chunk that is alive.
7232    res = do_live_chunk(fc);
7233    debug_only(_sp->verifyFreeLists());
7234    NOT_PRODUCT(
7235        _numObjectsLive++;
7236        _numWordsLive += res;
7237    )
7238  }
7239  return res;
7240}
7241
7242// For the smart allocation, record following
7243//  split deaths - a free chunk is removed from its free list because
7244//      it is being split into two or more chunks.
7245//  split birth - a free chunk is being added to its free list because
7246//      a larger free chunk has been split and resulted in this free chunk.
7247//  coal death - a free chunk is being removed from its free list because
7248//      it is being coalesced into a large free chunk.
7249//  coal birth - a free chunk is being added to its free list because
7250//      it was created when two or more free chunks where coalesced into
7251//      this free chunk.
7252//
7253// These statistics are used to determine the desired number of free
7254// chunks of a given size.  The desired number is chosen to be relative
7255// to the end of a CMS sweep.  The desired number at the end of a sweep
7256// is the
7257//      count-at-end-of-previous-sweep (an amount that was enough)
7258//              - count-at-beginning-of-current-sweep  (the excess)
7259//              + split-births  (gains in this size during interval)
7260//              - split-deaths  (demands on this size during interval)
7261// where the interval is from the end of one sweep to the end of the
7262// next.
7263//
7264// When sweeping the sweeper maintains an accumulated chunk which is
7265// the chunk that is made up of chunks that have been coalesced.  That
7266// will be termed the left-hand chunk.  A new chunk of garbage that
7267// is being considered for coalescing will be referred to as the
7268// right-hand chunk.
7269//
7270// When making a decision on whether to coalesce a right-hand chunk with
7271// the current left-hand chunk, the current count vs. the desired count
7272// of the left-hand chunk is considered.  Also if the right-hand chunk
7273// is near the large chunk at the end of the heap (see
7274// ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7275// left-hand chunk is coalesced.
7276//
7277// When making a decision about whether to split a chunk, the desired count
7278// vs. the current count of the candidate to be split is also considered.
7279// If the candidate is underpopulated (currently fewer chunks than desired)
7280// a chunk of an overpopulated (currently more chunks than desired) size may
7281// be chosen.  The "hint" associated with a free list, if non-null, points
7282// to a free list which may be overpopulated.
7283//
7284
7285void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7286  const size_t size = fc->size();
7287  // Chunks that cannot be coalesced are not in the
7288  // free lists.
7289  if (CMSTestInFreeList && !fc->cantCoalesce()) {
7290    assert(_sp->verify_chunk_in_free_list(fc),
7291           "free chunk should be in free lists");
7292  }
7293  // a chunk that is already free, should not have been
7294  // marked in the bit map
7295  HeapWord* const addr = (HeapWord*) fc;
7296  assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7297  // Verify that the bit map has no bits marked between
7298  // addr and purported end of this block.
7299  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7300
7301  // Some chunks cannot be coalesced under any circumstances.
7302  // See the definition of cantCoalesce().
7303  if (!fc->cantCoalesce()) {
7304    // This chunk can potentially be coalesced.
7305    // All the work is done in
7306    do_post_free_or_garbage_chunk(fc, size);
7307    // Note that if the chunk is not coalescable (the else arm
7308    // below), we unconditionally flush, without needing to do
7309    // a "lookahead," as we do below.
7310    if (inFreeRange()) lookahead_and_flush(fc, size);
7311  } else {
7312    // Code path common to both original and adaptive free lists.
7313
7314    // cant coalesce with previous block; this should be treated
7315    // as the end of a free run if any
7316    if (inFreeRange()) {
7317      // we kicked some butt; time to pick up the garbage
7318      assert(freeFinger() < addr, "freeFinger points too high");
7319      flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7320    }
7321    // else, nothing to do, just continue
7322  }
7323}
7324
7325size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7326  // This is a chunk of garbage.  It is not in any free list.
7327  // Add it to a free list or let it possibly be coalesced into
7328  // a larger chunk.
7329  HeapWord* const addr = (HeapWord*) fc;
7330  const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7331
7332  // Verify that the bit map has no bits marked between
7333  // addr and purported end of just dead object.
7334  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7335  do_post_free_or_garbage_chunk(fc, size);
7336
7337  assert(_limit >= addr + size,
7338         "A freshly garbage chunk can't possibly straddle over _limit");
7339  if (inFreeRange()) lookahead_and_flush(fc, size);
7340  return size;
7341}
7342
7343size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7344  HeapWord* addr = (HeapWord*) fc;
7345  // The sweeper has just found a live object. Return any accumulated
7346  // left hand chunk to the free lists.
7347  if (inFreeRange()) {
7348    assert(freeFinger() < addr, "freeFinger points too high");
7349    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7350  }
7351
7352  // This object is live: we'd normally expect this to be
7353  // an oop, and like to assert the following:
7354  // assert(oop(addr)->is_oop(), "live block should be an oop");
7355  // However, as we commented above, this may be an object whose
7356  // header hasn't yet been initialized.
7357  size_t size;
7358  assert(_bitMap->isMarked(addr), "Tautology for this control point");
7359  if (_bitMap->isMarked(addr + 1)) {
7360    // Determine the size from the bit map, rather than trying to
7361    // compute it from the object header.
7362    HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7363    size = pointer_delta(nextOneAddr + 1, addr);
7364    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7365           "alignment problem");
7366
7367#ifdef ASSERT
7368      if (oop(addr)->klass_or_null() != NULL) {
7369        // Ignore mark word because we are running concurrent with mutators
7370        assert(oop(addr)->is_oop(true), "live block should be an oop");
7371        assert(size ==
7372               CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7373               "P-mark and computed size do not agree");
7374      }
7375#endif
7376
7377  } else {
7378    // This should be an initialized object that's alive.
7379    assert(oop(addr)->klass_or_null() != NULL,
7380           "Should be an initialized object");
7381    // Ignore mark word because we are running concurrent with mutators
7382    assert(oop(addr)->is_oop(true), "live block should be an oop");
7383    // Verify that the bit map has no bits marked between
7384    // addr and purported end of this block.
7385    size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7386    assert(size >= 3, "Necessary for Printezis marks to work");
7387    assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7388    DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7389  }
7390  return size;
7391}
7392
7393void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7394                                                 size_t chunkSize) {
7395  // do_post_free_or_garbage_chunk() should only be called in the case
7396  // of the adaptive free list allocator.
7397  const bool fcInFreeLists = fc->is_free();
7398  assert((HeapWord*)fc <= _limit, "sweep invariant");
7399  if (CMSTestInFreeList && fcInFreeLists) {
7400    assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7401  }
7402
7403  log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7404
7405  HeapWord* const fc_addr = (HeapWord*) fc;
7406
7407  bool coalesce = false;
7408  const size_t left  = pointer_delta(fc_addr, freeFinger());
7409  const size_t right = chunkSize;
7410  switch (FLSCoalescePolicy) {
7411    // numeric value forms a coalition aggressiveness metric
7412    case 0:  { // never coalesce
7413      coalesce = false;
7414      break;
7415    }
7416    case 1: { // coalesce if left & right chunks on overpopulated lists
7417      coalesce = _sp->coalOverPopulated(left) &&
7418                 _sp->coalOverPopulated(right);
7419      break;
7420    }
7421    case 2: { // coalesce if left chunk on overpopulated list (default)
7422      coalesce = _sp->coalOverPopulated(left);
7423      break;
7424    }
7425    case 3: { // coalesce if left OR right chunk on overpopulated list
7426      coalesce = _sp->coalOverPopulated(left) ||
7427                 _sp->coalOverPopulated(right);
7428      break;
7429    }
7430    case 4: { // always coalesce
7431      coalesce = true;
7432      break;
7433    }
7434    default:
7435     ShouldNotReachHere();
7436  }
7437
7438  // Should the current free range be coalesced?
7439  // If the chunk is in a free range and either we decided to coalesce above
7440  // or the chunk is near the large block at the end of the heap
7441  // (isNearLargestChunk() returns true), then coalesce this chunk.
7442  const bool doCoalesce = inFreeRange()
7443                          && (coalesce || _g->isNearLargestChunk(fc_addr));
7444  if (doCoalesce) {
7445    // Coalesce the current free range on the left with the new
7446    // chunk on the right.  If either is on a free list,
7447    // it must be removed from the list and stashed in the closure.
7448    if (freeRangeInFreeLists()) {
7449      FreeChunk* const ffc = (FreeChunk*)freeFinger();
7450      assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7451             "Size of free range is inconsistent with chunk size.");
7452      if (CMSTestInFreeList) {
7453        assert(_sp->verify_chunk_in_free_list(ffc),
7454               "Chunk is not in free lists");
7455      }
7456      _sp->coalDeath(ffc->size());
7457      _sp->removeFreeChunkFromFreeLists(ffc);
7458      set_freeRangeInFreeLists(false);
7459    }
7460    if (fcInFreeLists) {
7461      _sp->coalDeath(chunkSize);
7462      assert(fc->size() == chunkSize,
7463        "The chunk has the wrong size or is not in the free lists");
7464      _sp->removeFreeChunkFromFreeLists(fc);
7465    }
7466    set_lastFreeRangeCoalesced(true);
7467    print_free_block_coalesced(fc);
7468  } else {  // not in a free range and/or should not coalesce
7469    // Return the current free range and start a new one.
7470    if (inFreeRange()) {
7471      // In a free range but cannot coalesce with the right hand chunk.
7472      // Put the current free range into the free lists.
7473      flush_cur_free_chunk(freeFinger(),
7474                           pointer_delta(fc_addr, freeFinger()));
7475    }
7476    // Set up for new free range.  Pass along whether the right hand
7477    // chunk is in the free lists.
7478    initialize_free_range((HeapWord*)fc, fcInFreeLists);
7479  }
7480}
7481
7482// Lookahead flush:
7483// If we are tracking a free range, and this is the last chunk that
7484// we'll look at because its end crosses past _limit, we'll preemptively
7485// flush it along with any free range we may be holding on to. Note that
7486// this can be the case only for an already free or freshly garbage
7487// chunk. If this block is an object, it can never straddle
7488// over _limit. The "straddling" occurs when _limit is set at
7489// the previous end of the space when this cycle started, and
7490// a subsequent heap expansion caused the previously co-terminal
7491// free block to be coalesced with the newly expanded portion,
7492// thus rendering _limit a non-block-boundary making it dangerous
7493// for the sweeper to step over and examine.
7494void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7495  assert(inFreeRange(), "Should only be called if currently in a free range.");
7496  HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7497  assert(_sp->used_region().contains(eob - 1),
7498         "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7499         " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7500         " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7501         p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7502  if (eob >= _limit) {
7503    assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7504    log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7505                                 "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7506                                 "[" PTR_FORMAT "," PTR_FORMAT ")",
7507                                 p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7508    // Return the storage we are tracking back into the free lists.
7509    log_develop_trace(gc, sweep)("Flushing ... ");
7510    assert(freeFinger() < eob, "Error");
7511    flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7512  }
7513}
7514
7515void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7516  assert(inFreeRange(), "Should only be called if currently in a free range.");
7517  assert(size > 0,
7518    "A zero sized chunk cannot be added to the free lists.");
7519  if (!freeRangeInFreeLists()) {
7520    if (CMSTestInFreeList) {
7521      FreeChunk* fc = (FreeChunk*) chunk;
7522      fc->set_size(size);
7523      assert(!_sp->verify_chunk_in_free_list(fc),
7524             "chunk should not be in free lists yet");
7525    }
7526    log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7527    // A new free range is going to be starting.  The current
7528    // free range has not been added to the free lists yet or
7529    // was removed so add it back.
7530    // If the current free range was coalesced, then the death
7531    // of the free range was recorded.  Record a birth now.
7532    if (lastFreeRangeCoalesced()) {
7533      _sp->coalBirth(size);
7534    }
7535    _sp->addChunkAndRepairOffsetTable(chunk, size,
7536            lastFreeRangeCoalesced());
7537  } else {
7538    log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7539  }
7540  set_inFreeRange(false);
7541  set_freeRangeInFreeLists(false);
7542}
7543
7544// We take a break if we've been at this for a while,
7545// so as to avoid monopolizing the locks involved.
7546void SweepClosure::do_yield_work(HeapWord* addr) {
7547  // Return current free chunk being used for coalescing (if any)
7548  // to the appropriate freelist.  After yielding, the next
7549  // free block encountered will start a coalescing range of
7550  // free blocks.  If the next free block is adjacent to the
7551  // chunk just flushed, they will need to wait for the next
7552  // sweep to be coalesced.
7553  if (inFreeRange()) {
7554    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7555  }
7556
7557  // First give up the locks, then yield, then re-lock.
7558  // We should probably use a constructor/destructor idiom to
7559  // do this unlock/lock or modify the MutexUnlocker class to
7560  // serve our purpose. XXX
7561  assert_lock_strong(_bitMap->lock());
7562  assert_lock_strong(_freelistLock);
7563  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7564         "CMS thread should hold CMS token");
7565  _bitMap->lock()->unlock();
7566  _freelistLock->unlock();
7567  ConcurrentMarkSweepThread::desynchronize(true);
7568  _collector->stopTimer();
7569  _collector->incrementYields();
7570
7571  // See the comment in coordinator_yield()
7572  for (unsigned i = 0; i < CMSYieldSleepCount &&
7573                       ConcurrentMarkSweepThread::should_yield() &&
7574                       !CMSCollector::foregroundGCIsActive(); ++i) {
7575    os::sleep(Thread::current(), 1, false);
7576  }
7577
7578  ConcurrentMarkSweepThread::synchronize(true);
7579  _freelistLock->lock();
7580  _bitMap->lock()->lock_without_safepoint_check();
7581  _collector->startTimer();
7582}
7583
7584#ifndef PRODUCT
7585// This is actually very useful in a product build if it can
7586// be called from the debugger.  Compile it into the product
7587// as needed.
7588bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7589  return debug_cms_space->verify_chunk_in_free_list(fc);
7590}
7591#endif
7592
7593void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7594  log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7595                               p2i(fc), fc->size());
7596}
7597
7598// CMSIsAliveClosure
7599bool CMSIsAliveClosure::do_object_b(oop obj) {
7600  HeapWord* addr = (HeapWord*)obj;
7601  return addr != NULL &&
7602         (!_span.contains(addr) || _bit_map->isMarked(addr));
7603}
7604
7605
7606CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7607                      MemRegion span,
7608                      CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7609                      bool cpc):
7610  _collector(collector),
7611  _span(span),
7612  _bit_map(bit_map),
7613  _mark_stack(mark_stack),
7614  _concurrent_precleaning(cpc) {
7615  assert(!_span.is_empty(), "Empty span could spell trouble");
7616}
7617
7618
7619// CMSKeepAliveClosure: the serial version
7620void CMSKeepAliveClosure::do_oop(oop obj) {
7621  HeapWord* addr = (HeapWord*)obj;
7622  if (_span.contains(addr) &&
7623      !_bit_map->isMarked(addr)) {
7624    _bit_map->mark(addr);
7625    bool simulate_overflow = false;
7626    NOT_PRODUCT(
7627      if (CMSMarkStackOverflowALot &&
7628          _collector->simulate_overflow()) {
7629        // simulate a stack overflow
7630        simulate_overflow = true;
7631      }
7632    )
7633    if (simulate_overflow || !_mark_stack->push(obj)) {
7634      if (_concurrent_precleaning) {
7635        // We dirty the overflown object and let the remark
7636        // phase deal with it.
7637        assert(_collector->overflow_list_is_empty(), "Error");
7638        // In the case of object arrays, we need to dirty all of
7639        // the cards that the object spans. No locking or atomics
7640        // are needed since no one else can be mutating the mod union
7641        // table.
7642        if (obj->is_objArray()) {
7643          size_t sz = obj->size();
7644          HeapWord* end_card_addr =
7645            (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7646          MemRegion redirty_range = MemRegion(addr, end_card_addr);
7647          assert(!redirty_range.is_empty(), "Arithmetical tautology");
7648          _collector->_modUnionTable.mark_range(redirty_range);
7649        } else {
7650          _collector->_modUnionTable.mark(addr);
7651        }
7652        _collector->_ser_kac_preclean_ovflw++;
7653      } else {
7654        _collector->push_on_overflow_list(obj);
7655        _collector->_ser_kac_ovflw++;
7656      }
7657    }
7658  }
7659}
7660
7661void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7662void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7663
7664// CMSParKeepAliveClosure: a parallel version of the above.
7665// The work queues are private to each closure (thread),
7666// but (may be) available for stealing by other threads.
7667void CMSParKeepAliveClosure::do_oop(oop obj) {
7668  HeapWord* addr = (HeapWord*)obj;
7669  if (_span.contains(addr) &&
7670      !_bit_map->isMarked(addr)) {
7671    // In general, during recursive tracing, several threads
7672    // may be concurrently getting here; the first one to
7673    // "tag" it, claims it.
7674    if (_bit_map->par_mark(addr)) {
7675      bool res = _work_queue->push(obj);
7676      assert(res, "Low water mark should be much less than capacity");
7677      // Do a recursive trim in the hope that this will keep
7678      // stack usage lower, but leave some oops for potential stealers
7679      trim_queue(_low_water_mark);
7680    } // Else, another thread got there first
7681  }
7682}
7683
7684void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7685void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7686
7687void CMSParKeepAliveClosure::trim_queue(uint max) {
7688  while (_work_queue->size() > max) {
7689    oop new_oop;
7690    if (_work_queue->pop_local(new_oop)) {
7691      assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7692      assert(_bit_map->isMarked((HeapWord*)new_oop),
7693             "no white objects on this stack!");
7694      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7695      // iterate over the oops in this oop, marking and pushing
7696      // the ones in CMS heap (i.e. in _span).
7697      new_oop->oop_iterate(&_mark_and_push);
7698    }
7699  }
7700}
7701
7702CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7703                                CMSCollector* collector,
7704                                MemRegion span, CMSBitMap* bit_map,
7705                                OopTaskQueue* work_queue):
7706  _collector(collector),
7707  _span(span),
7708  _bit_map(bit_map),
7709  _work_queue(work_queue) { }
7710
7711void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7712  HeapWord* addr = (HeapWord*)obj;
7713  if (_span.contains(addr) &&
7714      !_bit_map->isMarked(addr)) {
7715    if (_bit_map->par_mark(addr)) {
7716      bool simulate_overflow = false;
7717      NOT_PRODUCT(
7718        if (CMSMarkStackOverflowALot &&
7719            _collector->par_simulate_overflow()) {
7720          // simulate a stack overflow
7721          simulate_overflow = true;
7722        }
7723      )
7724      if (simulate_overflow || !_work_queue->push(obj)) {
7725        _collector->par_push_on_overflow_list(obj);
7726        _collector->_par_kac_ovflw++;
7727      }
7728    } // Else another thread got there already
7729  }
7730}
7731
7732void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7733void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7734
7735//////////////////////////////////////////////////////////////////
7736//  CMSExpansionCause                /////////////////////////////
7737//////////////////////////////////////////////////////////////////
7738const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7739  switch (cause) {
7740    case _no_expansion:
7741      return "No expansion";
7742    case _satisfy_free_ratio:
7743      return "Free ratio";
7744    case _satisfy_promotion:
7745      return "Satisfy promotion";
7746    case _satisfy_allocation:
7747      return "allocation";
7748    case _allocate_par_lab:
7749      return "Par LAB";
7750    case _allocate_par_spooling_space:
7751      return "Par Spooling Space";
7752    case _adaptive_size_policy:
7753      return "Ergonomics";
7754    default:
7755      return "unknown";
7756  }
7757}
7758
7759void CMSDrainMarkingStackClosure::do_void() {
7760  // the max number to take from overflow list at a time
7761  const size_t num = _mark_stack->capacity()/4;
7762  assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7763         "Overflow list should be NULL during concurrent phases");
7764  while (!_mark_stack->isEmpty() ||
7765         // if stack is empty, check the overflow list
7766         _collector->take_from_overflow_list(num, _mark_stack)) {
7767    oop obj = _mark_stack->pop();
7768    HeapWord* addr = (HeapWord*)obj;
7769    assert(_span.contains(addr), "Should be within span");
7770    assert(_bit_map->isMarked(addr), "Should be marked");
7771    assert(obj->is_oop(), "Should be an oop");
7772    obj->oop_iterate(_keep_alive);
7773  }
7774}
7775
7776void CMSParDrainMarkingStackClosure::do_void() {
7777  // drain queue
7778  trim_queue(0);
7779}
7780
7781// Trim our work_queue so its length is below max at return
7782void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7783  while (_work_queue->size() > max) {
7784    oop new_oop;
7785    if (_work_queue->pop_local(new_oop)) {
7786      assert(new_oop->is_oop(), "Expected an oop");
7787      assert(_bit_map->isMarked((HeapWord*)new_oop),
7788             "no white objects on this stack!");
7789      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7790      // iterate over the oops in this oop, marking and pushing
7791      // the ones in CMS heap (i.e. in _span).
7792      new_oop->oop_iterate(&_mark_and_push);
7793    }
7794  }
7795}
7796
7797////////////////////////////////////////////////////////////////////
7798// Support for Marking Stack Overflow list handling and related code
7799////////////////////////////////////////////////////////////////////
7800// Much of the following code is similar in shape and spirit to the
7801// code used in ParNewGC. We should try and share that code
7802// as much as possible in the future.
7803
7804#ifndef PRODUCT
7805// Debugging support for CMSStackOverflowALot
7806
7807// It's OK to call this multi-threaded;  the worst thing
7808// that can happen is that we'll get a bunch of closely
7809// spaced simulated overflows, but that's OK, in fact
7810// probably good as it would exercise the overflow code
7811// under contention.
7812bool CMSCollector::simulate_overflow() {
7813  if (_overflow_counter-- <= 0) { // just being defensive
7814    _overflow_counter = CMSMarkStackOverflowInterval;
7815    return true;
7816  } else {
7817    return false;
7818  }
7819}
7820
7821bool CMSCollector::par_simulate_overflow() {
7822  return simulate_overflow();
7823}
7824#endif
7825
7826// Single-threaded
7827bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7828  assert(stack->isEmpty(), "Expected precondition");
7829  assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7830  size_t i = num;
7831  oop  cur = _overflow_list;
7832  const markOop proto = markOopDesc::prototype();
7833  NOT_PRODUCT(ssize_t n = 0;)
7834  for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7835    next = oop(cur->mark());
7836    cur->set_mark(proto);   // until proven otherwise
7837    assert(cur->is_oop(), "Should be an oop");
7838    bool res = stack->push(cur);
7839    assert(res, "Bit off more than can chew?");
7840    NOT_PRODUCT(n++;)
7841  }
7842  _overflow_list = cur;
7843#ifndef PRODUCT
7844  assert(_num_par_pushes >= n, "Too many pops?");
7845  _num_par_pushes -=n;
7846#endif
7847  return !stack->isEmpty();
7848}
7849
7850#define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7851// (MT-safe) Get a prefix of at most "num" from the list.
7852// The overflow list is chained through the mark word of
7853// each object in the list. We fetch the entire list,
7854// break off a prefix of the right size and return the
7855// remainder. If other threads try to take objects from
7856// the overflow list at that time, they will wait for
7857// some time to see if data becomes available. If (and
7858// only if) another thread places one or more object(s)
7859// on the global list before we have returned the suffix
7860// to the global list, we will walk down our local list
7861// to find its end and append the global list to
7862// our suffix before returning it. This suffix walk can
7863// prove to be expensive (quadratic in the amount of traffic)
7864// when there are many objects in the overflow list and
7865// there is much producer-consumer contention on the list.
7866// *NOTE*: The overflow list manipulation code here and
7867// in ParNewGeneration:: are very similar in shape,
7868// except that in the ParNew case we use the old (from/eden)
7869// copy of the object to thread the list via its klass word.
7870// Because of the common code, if you make any changes in
7871// the code below, please check the ParNew version to see if
7872// similar changes might be needed.
7873// CR 6797058 has been filed to consolidate the common code.
7874bool CMSCollector::par_take_from_overflow_list(size_t num,
7875                                               OopTaskQueue* work_q,
7876                                               int no_of_gc_threads) {
7877  assert(work_q->size() == 0, "First empty local work queue");
7878  assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7879  if (_overflow_list == NULL) {
7880    return false;
7881  }
7882  // Grab the entire list; we'll put back a suffix
7883  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7884  Thread* tid = Thread::current();
7885  // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7886  // set to ParallelGCThreads.
7887  size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7888  size_t sleep_time_millis = MAX2((size_t)1, num/100);
7889  // If the list is busy, we spin for a short while,
7890  // sleeping between attempts to get the list.
7891  for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7892    os::sleep(tid, sleep_time_millis, false);
7893    if (_overflow_list == NULL) {
7894      // Nothing left to take
7895      return false;
7896    } else if (_overflow_list != BUSY) {
7897      // Try and grab the prefix
7898      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7899    }
7900  }
7901  // If the list was found to be empty, or we spun long
7902  // enough, we give up and return empty-handed. If we leave
7903  // the list in the BUSY state below, it must be the case that
7904  // some other thread holds the overflow list and will set it
7905  // to a non-BUSY state in the future.
7906  if (prefix == NULL || prefix == BUSY) {
7907     // Nothing to take or waited long enough
7908     if (prefix == NULL) {
7909       // Write back the NULL in case we overwrote it with BUSY above
7910       // and it is still the same value.
7911       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7912     }
7913     return false;
7914  }
7915  assert(prefix != NULL && prefix != BUSY, "Error");
7916  size_t i = num;
7917  oop cur = prefix;
7918  // Walk down the first "num" objects, unless we reach the end.
7919  for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7920  if (cur->mark() == NULL) {
7921    // We have "num" or fewer elements in the list, so there
7922    // is nothing to return to the global list.
7923    // Write back the NULL in lieu of the BUSY we wrote
7924    // above, if it is still the same value.
7925    if (_overflow_list == BUSY) {
7926      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7927    }
7928  } else {
7929    // Chop off the suffix and return it to the global list.
7930    assert(cur->mark() != BUSY, "Error");
7931    oop suffix_head = cur->mark(); // suffix will be put back on global list
7932    cur->set_mark(NULL);           // break off suffix
7933    // It's possible that the list is still in the empty(busy) state
7934    // we left it in a short while ago; in that case we may be
7935    // able to place back the suffix without incurring the cost
7936    // of a walk down the list.
7937    oop observed_overflow_list = _overflow_list;
7938    oop cur_overflow_list = observed_overflow_list;
7939    bool attached = false;
7940    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7941      observed_overflow_list =
7942        (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7943      if (cur_overflow_list == observed_overflow_list) {
7944        attached = true;
7945        break;
7946      } else cur_overflow_list = observed_overflow_list;
7947    }
7948    if (!attached) {
7949      // Too bad, someone else sneaked in (at least) an element; we'll need
7950      // to do a splice. Find tail of suffix so we can prepend suffix to global
7951      // list.
7952      for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7953      oop suffix_tail = cur;
7954      assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7955             "Tautology");
7956      observed_overflow_list = _overflow_list;
7957      do {
7958        cur_overflow_list = observed_overflow_list;
7959        if (cur_overflow_list != BUSY) {
7960          // Do the splice ...
7961          suffix_tail->set_mark(markOop(cur_overflow_list));
7962        } else { // cur_overflow_list == BUSY
7963          suffix_tail->set_mark(NULL);
7964        }
7965        // ... and try to place spliced list back on overflow_list ...
7966        observed_overflow_list =
7967          (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7968      } while (cur_overflow_list != observed_overflow_list);
7969      // ... until we have succeeded in doing so.
7970    }
7971  }
7972
7973  // Push the prefix elements on work_q
7974  assert(prefix != NULL, "control point invariant");
7975  const markOop proto = markOopDesc::prototype();
7976  oop next;
7977  NOT_PRODUCT(ssize_t n = 0;)
7978  for (cur = prefix; cur != NULL; cur = next) {
7979    next = oop(cur->mark());
7980    cur->set_mark(proto);   // until proven otherwise
7981    assert(cur->is_oop(), "Should be an oop");
7982    bool res = work_q->push(cur);
7983    assert(res, "Bit off more than we can chew?");
7984    NOT_PRODUCT(n++;)
7985  }
7986#ifndef PRODUCT
7987  assert(_num_par_pushes >= n, "Too many pops?");
7988  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7989#endif
7990  return true;
7991}
7992
7993// Single-threaded
7994void CMSCollector::push_on_overflow_list(oop p) {
7995  NOT_PRODUCT(_num_par_pushes++;)
7996  assert(p->is_oop(), "Not an oop");
7997  preserve_mark_if_necessary(p);
7998  p->set_mark((markOop)_overflow_list);
7999  _overflow_list = p;
8000}
8001
8002// Multi-threaded; use CAS to prepend to overflow list
8003void CMSCollector::par_push_on_overflow_list(oop p) {
8004  NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8005  assert(p->is_oop(), "Not an oop");
8006  par_preserve_mark_if_necessary(p);
8007  oop observed_overflow_list = _overflow_list;
8008  oop cur_overflow_list;
8009  do {
8010    cur_overflow_list = observed_overflow_list;
8011    if (cur_overflow_list != BUSY) {
8012      p->set_mark(markOop(cur_overflow_list));
8013    } else {
8014      p->set_mark(NULL);
8015    }
8016    observed_overflow_list =
8017      (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8018  } while (cur_overflow_list != observed_overflow_list);
8019}
8020#undef BUSY
8021
8022// Single threaded
8023// General Note on GrowableArray: pushes may silently fail
8024// because we are (temporarily) out of C-heap for expanding
8025// the stack. The problem is quite ubiquitous and affects
8026// a lot of code in the JVM. The prudent thing for GrowableArray
8027// to do (for now) is to exit with an error. However, that may
8028// be too draconian in some cases because the caller may be
8029// able to recover without much harm. For such cases, we
8030// should probably introduce a "soft_push" method which returns
8031// an indication of success or failure with the assumption that
8032// the caller may be able to recover from a failure; code in
8033// the VM can then be changed, incrementally, to deal with such
8034// failures where possible, thus, incrementally hardening the VM
8035// in such low resource situations.
8036void CMSCollector::preserve_mark_work(oop p, markOop m) {
8037  _preserved_oop_stack.push(p);
8038  _preserved_mark_stack.push(m);
8039  assert(m == p->mark(), "Mark word changed");
8040  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8041         "bijection");
8042}
8043
8044// Single threaded
8045void CMSCollector::preserve_mark_if_necessary(oop p) {
8046  markOop m = p->mark();
8047  if (m->must_be_preserved(p)) {
8048    preserve_mark_work(p, m);
8049  }
8050}
8051
8052void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8053  markOop m = p->mark();
8054  if (m->must_be_preserved(p)) {
8055    MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8056    // Even though we read the mark word without holding
8057    // the lock, we are assured that it will not change
8058    // because we "own" this oop, so no other thread can
8059    // be trying to push it on the overflow list; see
8060    // the assertion in preserve_mark_work() that checks
8061    // that m == p->mark().
8062    preserve_mark_work(p, m);
8063  }
8064}
8065
8066// We should be able to do this multi-threaded,
8067// a chunk of stack being a task (this is
8068// correct because each oop only ever appears
8069// once in the overflow list. However, it's
8070// not very easy to completely overlap this with
8071// other operations, so will generally not be done
8072// until all work's been completed. Because we
8073// expect the preserved oop stack (set) to be small,
8074// it's probably fine to do this single-threaded.
8075// We can explore cleverer concurrent/overlapped/parallel
8076// processing of preserved marks if we feel the
8077// need for this in the future. Stack overflow should
8078// be so rare in practice and, when it happens, its
8079// effect on performance so great that this will
8080// likely just be in the noise anyway.
8081void CMSCollector::restore_preserved_marks_if_any() {
8082  assert(SafepointSynchronize::is_at_safepoint(),
8083         "world should be stopped");
8084  assert(Thread::current()->is_ConcurrentGC_thread() ||
8085         Thread::current()->is_VM_thread(),
8086         "should be single-threaded");
8087  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8088         "bijection");
8089
8090  while (!_preserved_oop_stack.is_empty()) {
8091    oop p = _preserved_oop_stack.pop();
8092    assert(p->is_oop(), "Should be an oop");
8093    assert(_span.contains(p), "oop should be in _span");
8094    assert(p->mark() == markOopDesc::prototype(),
8095           "Set when taken from overflow list");
8096    markOop m = _preserved_mark_stack.pop();
8097    p->set_mark(m);
8098  }
8099  assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8100         "stacks were cleared above");
8101}
8102
8103#ifndef PRODUCT
8104bool CMSCollector::no_preserved_marks() const {
8105  return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8106}
8107#endif
8108
8109// Transfer some number of overflown objects to usual marking
8110// stack. Return true if some objects were transferred.
8111bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8112  size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8113                    (size_t)ParGCDesiredObjsFromOverflowList);
8114
8115  bool res = _collector->take_from_overflow_list(num, _mark_stack);
8116  assert(_collector->overflow_list_is_empty() || res,
8117         "If list is not empty, we should have taken something");
8118  assert(!res || !_mark_stack->isEmpty(),
8119         "If we took something, it should now be on our stack");
8120  return res;
8121}
8122
8123size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8124  size_t res = _sp->block_size_no_stall(addr, _collector);
8125  if (_sp->block_is_obj(addr)) {
8126    if (_live_bit_map->isMarked(addr)) {
8127      // It can't have been dead in a previous cycle
8128      guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8129    } else {
8130      _dead_bit_map->mark(addr);      // mark the dead object
8131    }
8132  }
8133  // Could be 0, if the block size could not be computed without stalling.
8134  return res;
8135}
8136
8137TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8138
8139  switch (phase) {
8140    case CMSCollector::InitialMarking:
8141      initialize(true  /* fullGC */ ,
8142                 cause /* cause of the GC */,
8143                 true  /* recordGCBeginTime */,
8144                 true  /* recordPreGCUsage */,
8145                 false /* recordPeakUsage */,
8146                 false /* recordPostGCusage */,
8147                 true  /* recordAccumulatedGCTime */,
8148                 false /* recordGCEndTime */,
8149                 false /* countCollection */  );
8150      break;
8151
8152    case CMSCollector::FinalMarking:
8153      initialize(true  /* fullGC */ ,
8154                 cause /* cause of the GC */,
8155                 false /* recordGCBeginTime */,
8156                 false /* recordPreGCUsage */,
8157                 false /* recordPeakUsage */,
8158                 false /* recordPostGCusage */,
8159                 true  /* recordAccumulatedGCTime */,
8160                 false /* recordGCEndTime */,
8161                 false /* countCollection */  );
8162      break;
8163
8164    case CMSCollector::Sweeping:
8165      initialize(true  /* fullGC */ ,
8166                 cause /* cause of the GC */,
8167                 false /* recordGCBeginTime */,
8168                 false /* recordPreGCUsage */,
8169                 true  /* recordPeakUsage */,
8170                 true  /* recordPostGCusage */,
8171                 false /* recordAccumulatedGCTime */,
8172                 true  /* recordGCEndTime */,
8173                 true  /* countCollection */  );
8174      break;
8175
8176    default:
8177      ShouldNotReachHere();
8178  }
8179}
8180