concurrentMarkSweepGeneration.cpp revision 10756:4a0121d1e772
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoaderData.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/codeCache.hpp"
31#include "gc/cms/cmsCollectorPolicy.hpp"
32#include "gc/cms/cmsOopClosures.inline.hpp"
33#include "gc/cms/compactibleFreeListSpace.hpp"
34#include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
35#include "gc/cms/concurrentMarkSweepThread.hpp"
36#include "gc/cms/parNewGeneration.hpp"
37#include "gc/cms/vmCMSOperations.hpp"
38#include "gc/serial/genMarkSweep.hpp"
39#include "gc/serial/tenuredGeneration.hpp"
40#include "gc/shared/adaptiveSizePolicy.hpp"
41#include "gc/shared/cardGeneration.inline.hpp"
42#include "gc/shared/cardTableRS.hpp"
43#include "gc/shared/collectedHeap.inline.hpp"
44#include "gc/shared/collectorCounters.hpp"
45#include "gc/shared/collectorPolicy.hpp"
46#include "gc/shared/gcLocker.inline.hpp"
47#include "gc/shared/gcPolicyCounters.hpp"
48#include "gc/shared/gcTimer.hpp"
49#include "gc/shared/gcTrace.hpp"
50#include "gc/shared/gcTraceTime.inline.hpp"
51#include "gc/shared/genCollectedHeap.hpp"
52#include "gc/shared/genOopClosures.inline.hpp"
53#include "gc/shared/isGCActiveMark.hpp"
54#include "gc/shared/referencePolicy.hpp"
55#include "gc/shared/strongRootsScope.hpp"
56#include "gc/shared/taskqueue.inline.hpp"
57#include "logging/log.hpp"
58#include "memory/allocation.hpp"
59#include "memory/iterator.inline.hpp"
60#include "memory/padded.hpp"
61#include "memory/resourceArea.hpp"
62#include "oops/oop.inline.hpp"
63#include "prims/jvmtiExport.hpp"
64#include "runtime/atomic.inline.hpp"
65#include "runtime/globals_extension.hpp"
66#include "runtime/handles.inline.hpp"
67#include "runtime/java.hpp"
68#include "runtime/orderAccess.inline.hpp"
69#include "runtime/timer.hpp"
70#include "runtime/vmThread.hpp"
71#include "services/memoryService.hpp"
72#include "services/runtimeService.hpp"
73#include "utilities/stack.inline.hpp"
74
75// statics
76CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
77bool CMSCollector::_full_gc_requested = false;
78GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
79
80//////////////////////////////////////////////////////////////////
81// In support of CMS/VM thread synchronization
82//////////////////////////////////////////////////////////////////
83// We split use of the CGC_lock into 2 "levels".
84// The low-level locking is of the usual CGC_lock monitor. We introduce
85// a higher level "token" (hereafter "CMS token") built on top of the
86// low level monitor (hereafter "CGC lock").
87// The token-passing protocol gives priority to the VM thread. The
88// CMS-lock doesn't provide any fairness guarantees, but clients
89// should ensure that it is only held for very short, bounded
90// durations.
91//
92// When either of the CMS thread or the VM thread is involved in
93// collection operations during which it does not want the other
94// thread to interfere, it obtains the CMS token.
95//
96// If either thread tries to get the token while the other has
97// it, that thread waits. However, if the VM thread and CMS thread
98// both want the token, then the VM thread gets priority while the
99// CMS thread waits. This ensures, for instance, that the "concurrent"
100// phases of the CMS thread's work do not block out the VM thread
101// for long periods of time as the CMS thread continues to hog
102// the token. (See bug 4616232).
103//
104// The baton-passing functions are, however, controlled by the
105// flags _foregroundGCShouldWait and _foregroundGCIsActive,
106// and here the low-level CMS lock, not the high level token,
107// ensures mutual exclusion.
108//
109// Two important conditions that we have to satisfy:
110// 1. if a thread does a low-level wait on the CMS lock, then it
111//    relinquishes the CMS token if it were holding that token
112//    when it acquired the low-level CMS lock.
113// 2. any low-level notifications on the low-level lock
114//    should only be sent when a thread has relinquished the token.
115//
116// In the absence of either property, we'd have potential deadlock.
117//
118// We protect each of the CMS (concurrent and sequential) phases
119// with the CMS _token_, not the CMS _lock_.
120//
121// The only code protected by CMS lock is the token acquisition code
122// itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
123// baton-passing code.
124//
125// Unfortunately, i couldn't come up with a good abstraction to factor and
126// hide the naked CGC_lock manipulation in the baton-passing code
127// further below. That's something we should try to do. Also, the proof
128// of correctness of this 2-level locking scheme is far from obvious,
129// and potentially quite slippery. We have an uneasy suspicion, for instance,
130// that there may be a theoretical possibility of delay/starvation in the
131// low-level lock/wait/notify scheme used for the baton-passing because of
132// potential interference with the priority scheme embodied in the
133// CMS-token-passing protocol. See related comments at a CGC_lock->wait()
134// invocation further below and marked with "XXX 20011219YSR".
135// Indeed, as we note elsewhere, this may become yet more slippery
136// in the presence of multiple CMS and/or multiple VM threads. XXX
137
138class CMSTokenSync: public StackObj {
139 private:
140  bool _is_cms_thread;
141 public:
142  CMSTokenSync(bool is_cms_thread):
143    _is_cms_thread(is_cms_thread) {
144    assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
145           "Incorrect argument to constructor");
146    ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
147  }
148
149  ~CMSTokenSync() {
150    assert(_is_cms_thread ?
151             ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
152             ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
153          "Incorrect state");
154    ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
155  }
156};
157
158// Convenience class that does a CMSTokenSync, and then acquires
159// upto three locks.
160class CMSTokenSyncWithLocks: public CMSTokenSync {
161 private:
162  // Note: locks are acquired in textual declaration order
163  // and released in the opposite order
164  MutexLockerEx _locker1, _locker2, _locker3;
165 public:
166  CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
167                        Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
168    CMSTokenSync(is_cms_thread),
169    _locker1(mutex1, Mutex::_no_safepoint_check_flag),
170    _locker2(mutex2, Mutex::_no_safepoint_check_flag),
171    _locker3(mutex3, Mutex::_no_safepoint_check_flag)
172  { }
173};
174
175
176//////////////////////////////////////////////////////////////////
177//  Concurrent Mark-Sweep Generation /////////////////////////////
178//////////////////////////////////////////////////////////////////
179
180NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
181
182// This struct contains per-thread things necessary to support parallel
183// young-gen collection.
184class CMSParGCThreadState: public CHeapObj<mtGC> {
185 public:
186  CompactibleFreeListSpaceLAB lab;
187  PromotionInfo promo;
188
189  // Constructor.
190  CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
191    promo.setSpace(cfls);
192  }
193};
194
195ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
196     ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
197  CardGeneration(rs, initial_byte_size, ct),
198  _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
199  _did_compact(false)
200{
201  HeapWord* bottom = (HeapWord*) _virtual_space.low();
202  HeapWord* end    = (HeapWord*) _virtual_space.high();
203
204  _direct_allocated_words = 0;
205  NOT_PRODUCT(
206    _numObjectsPromoted = 0;
207    _numWordsPromoted = 0;
208    _numObjectsAllocated = 0;
209    _numWordsAllocated = 0;
210  )
211
212  _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
213  NOT_PRODUCT(debug_cms_space = _cmsSpace;)
214  _cmsSpace->_old_gen = this;
215
216  _gc_stats = new CMSGCStats();
217
218  // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
219  // offsets match. The ability to tell free chunks from objects
220  // depends on this property.
221  debug_only(
222    FreeChunk* junk = NULL;
223    assert(UseCompressedClassPointers ||
224           junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
225           "Offset of FreeChunk::_prev within FreeChunk must match"
226           "  that of OopDesc::_klass within OopDesc");
227  )
228
229  _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
230  for (uint i = 0; i < ParallelGCThreads; i++) {
231    _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
232  }
233
234  _incremental_collection_failed = false;
235  // The "dilatation_factor" is the expansion that can occur on
236  // account of the fact that the minimum object size in the CMS
237  // generation may be larger than that in, say, a contiguous young
238  //  generation.
239  // Ideally, in the calculation below, we'd compute the dilatation
240  // factor as: MinChunkSize/(promoting_gen's min object size)
241  // Since we do not have such a general query interface for the
242  // promoting generation, we'll instead just use the minimum
243  // object size (which today is a header's worth of space);
244  // note that all arithmetic is in units of HeapWords.
245  assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
246  assert(_dilatation_factor >= 1.0, "from previous assert");
247}
248
249
250// The field "_initiating_occupancy" represents the occupancy percentage
251// at which we trigger a new collection cycle.  Unless explicitly specified
252// via CMSInitiatingOccupancyFraction (argument "io" below), it
253// is calculated by:
254//
255//   Let "f" be MinHeapFreeRatio in
256//
257//    _initiating_occupancy = 100-f +
258//                           f * (CMSTriggerRatio/100)
259//   where CMSTriggerRatio is the argument "tr" below.
260//
261// That is, if we assume the heap is at its desired maximum occupancy at the
262// end of a collection, we let CMSTriggerRatio of the (purported) free
263// space be allocated before initiating a new collection cycle.
264//
265void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
266  assert(io <= 100 && tr <= 100, "Check the arguments");
267  if (io >= 0) {
268    _initiating_occupancy = (double)io / 100.0;
269  } else {
270    _initiating_occupancy = ((100 - MinHeapFreeRatio) +
271                             (double)(tr * MinHeapFreeRatio) / 100.0)
272                            / 100.0;
273  }
274}
275
276void ConcurrentMarkSweepGeneration::ref_processor_init() {
277  assert(collector() != NULL, "no collector");
278  collector()->ref_processor_init();
279}
280
281void CMSCollector::ref_processor_init() {
282  if (_ref_processor == NULL) {
283    // Allocate and initialize a reference processor
284    _ref_processor =
285      new ReferenceProcessor(_span,                               // span
286                             (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
287                             ParallelGCThreads,                   // mt processing degree
288                             _cmsGen->refs_discovery_is_mt(),     // mt discovery
289                             MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
290                             _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
291                             &_is_alive_closure);                 // closure for liveness info
292    // Initialize the _ref_processor field of CMSGen
293    _cmsGen->set_ref_processor(_ref_processor);
294
295  }
296}
297
298AdaptiveSizePolicy* CMSCollector::size_policy() {
299  GenCollectedHeap* gch = GenCollectedHeap::heap();
300  return gch->gen_policy()->size_policy();
301}
302
303void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
304
305  const char* gen_name = "old";
306  GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
307  // Generation Counters - generation 1, 1 subspace
308  _gen_counters = new GenerationCounters(gen_name, 1, 1,
309      gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
310
311  _space_counters = new GSpaceCounters(gen_name, 0,
312                                       _virtual_space.reserved_size(),
313                                       this, _gen_counters);
314}
315
316CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
317  _cms_gen(cms_gen)
318{
319  assert(alpha <= 100, "bad value");
320  _saved_alpha = alpha;
321
322  // Initialize the alphas to the bootstrap value of 100.
323  _gc0_alpha = _cms_alpha = 100;
324
325  _cms_begin_time.update();
326  _cms_end_time.update();
327
328  _gc0_duration = 0.0;
329  _gc0_period = 0.0;
330  _gc0_promoted = 0;
331
332  _cms_duration = 0.0;
333  _cms_period = 0.0;
334  _cms_allocated = 0;
335
336  _cms_used_at_gc0_begin = 0;
337  _cms_used_at_gc0_end = 0;
338  _allow_duty_cycle_reduction = false;
339  _valid_bits = 0;
340}
341
342double CMSStats::cms_free_adjustment_factor(size_t free) const {
343  // TBD: CR 6909490
344  return 1.0;
345}
346
347void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
348}
349
350// If promotion failure handling is on use
351// the padded average size of the promotion for each
352// young generation collection.
353double CMSStats::time_until_cms_gen_full() const {
354  size_t cms_free = _cms_gen->cmsSpace()->free();
355  GenCollectedHeap* gch = GenCollectedHeap::heap();
356  size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
357                                   (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
358  if (cms_free > expected_promotion) {
359    // Start a cms collection if there isn't enough space to promote
360    // for the next young collection.  Use the padded average as
361    // a safety factor.
362    cms_free -= expected_promotion;
363
364    // Adjust by the safety factor.
365    double cms_free_dbl = (double)cms_free;
366    double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
367    // Apply a further correction factor which tries to adjust
368    // for recent occurance of concurrent mode failures.
369    cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
370    cms_free_dbl = cms_free_dbl * cms_adjustment;
371
372    log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
373                  cms_free, expected_promotion);
374    log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
375    // Add 1 in case the consumption rate goes to zero.
376    return cms_free_dbl / (cms_consumption_rate() + 1.0);
377  }
378  return 0.0;
379}
380
381// Compare the duration of the cms collection to the
382// time remaining before the cms generation is empty.
383// Note that the time from the start of the cms collection
384// to the start of the cms sweep (less than the total
385// duration of the cms collection) can be used.  This
386// has been tried and some applications experienced
387// promotion failures early in execution.  This was
388// possibly because the averages were not accurate
389// enough at the beginning.
390double CMSStats::time_until_cms_start() const {
391  // We add "gc0_period" to the "work" calculation
392  // below because this query is done (mostly) at the
393  // end of a scavenge, so we need to conservatively
394  // account for that much possible delay
395  // in the query so as to avoid concurrent mode failures
396  // due to starting the collection just a wee bit too
397  // late.
398  double work = cms_duration() + gc0_period();
399  double deadline = time_until_cms_gen_full();
400  // If a concurrent mode failure occurred recently, we want to be
401  // more conservative and halve our expected time_until_cms_gen_full()
402  if (work > deadline) {
403    log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
404                          cms_duration(), gc0_period(), time_until_cms_gen_full());
405    return 0.0;
406  }
407  return work - deadline;
408}
409
410#ifndef PRODUCT
411void CMSStats::print_on(outputStream *st) const {
412  st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
413  st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
414               gc0_duration(), gc0_period(), gc0_promoted());
415  st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
416            cms_duration(), cms_period(), cms_allocated());
417  st->print(",cms_since_beg=%g,cms_since_end=%g",
418            cms_time_since_begin(), cms_time_since_end());
419  st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
420            _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
421
422  if (valid()) {
423    st->print(",promo_rate=%g,cms_alloc_rate=%g",
424              promotion_rate(), cms_allocation_rate());
425    st->print(",cms_consumption_rate=%g,time_until_full=%g",
426              cms_consumption_rate(), time_until_cms_gen_full());
427  }
428  st->print(" ");
429}
430#endif // #ifndef PRODUCT
431
432CMSCollector::CollectorState CMSCollector::_collectorState =
433                             CMSCollector::Idling;
434bool CMSCollector::_foregroundGCIsActive = false;
435bool CMSCollector::_foregroundGCShouldWait = false;
436
437CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
438                           CardTableRS*                   ct,
439                           ConcurrentMarkSweepPolicy*     cp):
440  _cmsGen(cmsGen),
441  _ct(ct),
442  _ref_processor(NULL),    // will be set later
443  _conc_workers(NULL),     // may be set later
444  _abort_preclean(false),
445  _start_sampling(false),
446  _between_prologue_and_epilogue(false),
447  _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
448  _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
449                 -1 /* lock-free */, "No_lock" /* dummy */),
450  _modUnionClosurePar(&_modUnionTable),
451  // Adjust my span to cover old (cms) gen
452  _span(cmsGen->reserved()),
453  // Construct the is_alive_closure with _span & markBitMap
454  _is_alive_closure(_span, &_markBitMap),
455  _restart_addr(NULL),
456  _overflow_list(NULL),
457  _stats(cmsGen),
458  _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
459                             //verify that this lock should be acquired with safepoint check.
460                             Monitor::_safepoint_check_sometimes)),
461  _eden_chunk_array(NULL),     // may be set in ctor body
462  _eden_chunk_capacity(0),     // -- ditto --
463  _eden_chunk_index(0),        // -- ditto --
464  _survivor_plab_array(NULL),  // -- ditto --
465  _survivor_chunk_array(NULL), // -- ditto --
466  _survivor_chunk_capacity(0), // -- ditto --
467  _survivor_chunk_index(0),    // -- ditto --
468  _ser_pmc_preclean_ovflw(0),
469  _ser_kac_preclean_ovflw(0),
470  _ser_pmc_remark_ovflw(0),
471  _par_pmc_remark_ovflw(0),
472  _ser_kac_ovflw(0),
473  _par_kac_ovflw(0),
474#ifndef PRODUCT
475  _num_par_pushes(0),
476#endif
477  _collection_count_start(0),
478  _verifying(false),
479  _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
480  _completed_initialization(false),
481  _collector_policy(cp),
482  _should_unload_classes(CMSClassUnloadingEnabled),
483  _concurrent_cycles_since_last_unload(0),
484  _roots_scanning_options(GenCollectedHeap::SO_None),
485  _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
486  _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
487  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
488  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
489  _cms_start_registered(false)
490{
491  if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
492    ExplicitGCInvokesConcurrent = true;
493  }
494  // Now expand the span and allocate the collection support structures
495  // (MUT, marking bit map etc.) to cover both generations subject to
496  // collection.
497
498  // For use by dirty card to oop closures.
499  _cmsGen->cmsSpace()->set_collector(this);
500
501  // Allocate MUT and marking bit map
502  {
503    MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
504    if (!_markBitMap.allocate(_span)) {
505      log_warning(gc)("Failed to allocate CMS Bit Map");
506      return;
507    }
508    assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
509  }
510  {
511    _modUnionTable.allocate(_span);
512    assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
513  }
514
515  if (!_markStack.allocate(MarkStackSize)) {
516    log_warning(gc)("Failed to allocate CMS Marking Stack");
517    return;
518  }
519
520  // Support for multi-threaded concurrent phases
521  if (CMSConcurrentMTEnabled) {
522    if (FLAG_IS_DEFAULT(ConcGCThreads)) {
523      // just for now
524      FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
525    }
526    if (ConcGCThreads > 1) {
527      _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
528                                 ConcGCThreads, true);
529      if (_conc_workers == NULL) {
530        log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
531        CMSConcurrentMTEnabled = false;
532      } else {
533        _conc_workers->initialize_workers();
534      }
535    } else {
536      CMSConcurrentMTEnabled = false;
537    }
538  }
539  if (!CMSConcurrentMTEnabled) {
540    ConcGCThreads = 0;
541  } else {
542    // Turn off CMSCleanOnEnter optimization temporarily for
543    // the MT case where it's not fixed yet; see 6178663.
544    CMSCleanOnEnter = false;
545  }
546  assert((_conc_workers != NULL) == (ConcGCThreads > 1),
547         "Inconsistency");
548
549  // Parallel task queues; these are shared for the
550  // concurrent and stop-world phases of CMS, but
551  // are not shared with parallel scavenge (ParNew).
552  {
553    uint i;
554    uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
555
556    if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
557         || ParallelRefProcEnabled)
558        && num_queues > 0) {
559      _task_queues = new OopTaskQueueSet(num_queues);
560      if (_task_queues == NULL) {
561        log_warning(gc)("task_queues allocation failure.");
562        return;
563      }
564      _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
565      typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
566      for (i = 0; i < num_queues; i++) {
567        PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
568        if (q == NULL) {
569          log_warning(gc)("work_queue allocation failure.");
570          return;
571        }
572        _task_queues->register_queue(i, q);
573      }
574      for (i = 0; i < num_queues; i++) {
575        _task_queues->queue(i)->initialize();
576        _hash_seed[i] = 17;  // copied from ParNew
577      }
578    }
579  }
580
581  _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
582
583  // Clip CMSBootstrapOccupancy between 0 and 100.
584  _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
585
586  // Now tell CMS generations the identity of their collector
587  ConcurrentMarkSweepGeneration::set_collector(this);
588
589  // Create & start a CMS thread for this CMS collector
590  _cmsThread = ConcurrentMarkSweepThread::start(this);
591  assert(cmsThread() != NULL, "CMS Thread should have been created");
592  assert(cmsThread()->collector() == this,
593         "CMS Thread should refer to this gen");
594  assert(CGC_lock != NULL, "Where's the CGC_lock?");
595
596  // Support for parallelizing young gen rescan
597  GenCollectedHeap* gch = GenCollectedHeap::heap();
598  assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
599  _young_gen = (ParNewGeneration*)gch->young_gen();
600  if (gch->supports_inline_contig_alloc()) {
601    _top_addr = gch->top_addr();
602    _end_addr = gch->end_addr();
603    assert(_young_gen != NULL, "no _young_gen");
604    _eden_chunk_index = 0;
605    _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
606    _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
607  }
608
609  // Support for parallelizing survivor space rescan
610  if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
611    const size_t max_plab_samples =
612      _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
613
614    _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
615    _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
616    _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
617    _survivor_chunk_capacity = max_plab_samples;
618    for (uint i = 0; i < ParallelGCThreads; i++) {
619      HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
620      ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
621      assert(cur->end() == 0, "Should be 0");
622      assert(cur->array() == vec, "Should be vec");
623      assert(cur->capacity() == max_plab_samples, "Error");
624    }
625  }
626
627  NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
628  _gc_counters = new CollectorCounters("CMS", 1);
629  _completed_initialization = true;
630  _inter_sweep_timer.start();  // start of time
631}
632
633const char* ConcurrentMarkSweepGeneration::name() const {
634  return "concurrent mark-sweep generation";
635}
636void ConcurrentMarkSweepGeneration::update_counters() {
637  if (UsePerfData) {
638    _space_counters->update_all();
639    _gen_counters->update_all();
640  }
641}
642
643// this is an optimized version of update_counters(). it takes the
644// used value as a parameter rather than computing it.
645//
646void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
647  if (UsePerfData) {
648    _space_counters->update_used(used);
649    _space_counters->update_capacity();
650    _gen_counters->update_all();
651  }
652}
653
654void ConcurrentMarkSweepGeneration::print() const {
655  Generation::print();
656  cmsSpace()->print();
657}
658
659#ifndef PRODUCT
660void ConcurrentMarkSweepGeneration::print_statistics() {
661  cmsSpace()->printFLCensus(0);
662}
663#endif
664
665size_t
666ConcurrentMarkSweepGeneration::contiguous_available() const {
667  // dld proposes an improvement in precision here. If the committed
668  // part of the space ends in a free block we should add that to
669  // uncommitted size in the calculation below. Will make this
670  // change later, staying with the approximation below for the
671  // time being. -- ysr.
672  return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
673}
674
675size_t
676ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
677  return _cmsSpace->max_alloc_in_words() * HeapWordSize;
678}
679
680size_t ConcurrentMarkSweepGeneration::max_available() const {
681  return free() + _virtual_space.uncommitted_size();
682}
683
684bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
685  size_t available = max_available();
686  size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
687  bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
688  log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
689                           res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
690  return res;
691}
692
693// At a promotion failure dump information on block layout in heap
694// (cms old generation).
695void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
696  Log(gc, promotion) log;
697  if (log.is_trace()) {
698    ResourceMark rm;
699    cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
700  }
701}
702
703void ConcurrentMarkSweepGeneration::reset_after_compaction() {
704  // Clear the promotion information.  These pointers can be adjusted
705  // along with all the other pointers into the heap but
706  // compaction is expected to be a rare event with
707  // a heap using cms so don't do it without seeing the need.
708  for (uint i = 0; i < ParallelGCThreads; i++) {
709    _par_gc_thread_states[i]->promo.reset();
710  }
711}
712
713void ConcurrentMarkSweepGeneration::compute_new_size() {
714  assert_locked_or_safepoint(Heap_lock);
715
716  // If incremental collection failed, we just want to expand
717  // to the limit.
718  if (incremental_collection_failed()) {
719    clear_incremental_collection_failed();
720    grow_to_reserved();
721    return;
722  }
723
724  // The heap has been compacted but not reset yet.
725  // Any metric such as free() or used() will be incorrect.
726
727  CardGeneration::compute_new_size();
728
729  // Reset again after a possible resizing
730  if (did_compact()) {
731    cmsSpace()->reset_after_compaction();
732  }
733}
734
735void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
736  assert_locked_or_safepoint(Heap_lock);
737
738  // If incremental collection failed, we just want to expand
739  // to the limit.
740  if (incremental_collection_failed()) {
741    clear_incremental_collection_failed();
742    grow_to_reserved();
743    return;
744  }
745
746  double free_percentage = ((double) free()) / capacity();
747  double desired_free_percentage = (double) MinHeapFreeRatio / 100;
748  double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
749
750  // compute expansion delta needed for reaching desired free percentage
751  if (free_percentage < desired_free_percentage) {
752    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
753    assert(desired_capacity >= capacity(), "invalid expansion size");
754    size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
755    Log(gc) log;
756    if (log.is_trace()) {
757      size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
758      log.trace("From compute_new_size: ");
759      log.trace("  Free fraction %f", free_percentage);
760      log.trace("  Desired free fraction %f", desired_free_percentage);
761      log.trace("  Maximum free fraction %f", maximum_free_percentage);
762      log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
763      log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
764      GenCollectedHeap* gch = GenCollectedHeap::heap();
765      assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
766      size_t young_size = gch->young_gen()->capacity();
767      log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
768      log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
769      log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
770      log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
771    }
772    // safe if expansion fails
773    expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
774    log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
775  } else {
776    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
777    assert(desired_capacity <= capacity(), "invalid expansion size");
778    size_t shrink_bytes = capacity() - desired_capacity;
779    // Don't shrink unless the delta is greater than the minimum shrink we want
780    if (shrink_bytes >= MinHeapDeltaBytes) {
781      shrink_free_list_by(shrink_bytes);
782    }
783  }
784}
785
786Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
787  return cmsSpace()->freelistLock();
788}
789
790HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
791  CMSSynchronousYieldRequest yr;
792  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
793  return have_lock_and_allocate(size, tlab);
794}
795
796HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
797                                                                bool   tlab /* ignored */) {
798  assert_lock_strong(freelistLock());
799  size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
800  HeapWord* res = cmsSpace()->allocate(adjustedSize);
801  // Allocate the object live (grey) if the background collector has
802  // started marking. This is necessary because the marker may
803  // have passed this address and consequently this object will
804  // not otherwise be greyed and would be incorrectly swept up.
805  // Note that if this object contains references, the writing
806  // of those references will dirty the card containing this object
807  // allowing the object to be blackened (and its references scanned)
808  // either during a preclean phase or at the final checkpoint.
809  if (res != NULL) {
810    // We may block here with an uninitialized object with
811    // its mark-bit or P-bits not yet set. Such objects need
812    // to be safely navigable by block_start().
813    assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
814    assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
815    collector()->direct_allocated(res, adjustedSize);
816    _direct_allocated_words += adjustedSize;
817    // allocation counters
818    NOT_PRODUCT(
819      _numObjectsAllocated++;
820      _numWordsAllocated += (int)adjustedSize;
821    )
822  }
823  return res;
824}
825
826// In the case of direct allocation by mutators in a generation that
827// is being concurrently collected, the object must be allocated
828// live (grey) if the background collector has started marking.
829// This is necessary because the marker may
830// have passed this address and consequently this object will
831// not otherwise be greyed and would be incorrectly swept up.
832// Note that if this object contains references, the writing
833// of those references will dirty the card containing this object
834// allowing the object to be blackened (and its references scanned)
835// either during a preclean phase or at the final checkpoint.
836void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
837  assert(_markBitMap.covers(start, size), "Out of bounds");
838  if (_collectorState >= Marking) {
839    MutexLockerEx y(_markBitMap.lock(),
840                    Mutex::_no_safepoint_check_flag);
841    // [see comments preceding SweepClosure::do_blk() below for details]
842    //
843    // Can the P-bits be deleted now?  JJJ
844    //
845    // 1. need to mark the object as live so it isn't collected
846    // 2. need to mark the 2nd bit to indicate the object may be uninitialized
847    // 3. need to mark the end of the object so marking, precleaning or sweeping
848    //    can skip over uninitialized or unparsable objects. An allocated
849    //    object is considered uninitialized for our purposes as long as
850    //    its klass word is NULL.  All old gen objects are parsable
851    //    as soon as they are initialized.)
852    _markBitMap.mark(start);          // object is live
853    _markBitMap.mark(start + 1);      // object is potentially uninitialized?
854    _markBitMap.mark(start + size - 1);
855                                      // mark end of object
856  }
857  // check that oop looks uninitialized
858  assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
859}
860
861void CMSCollector::promoted(bool par, HeapWord* start,
862                            bool is_obj_array, size_t obj_size) {
863  assert(_markBitMap.covers(start), "Out of bounds");
864  // See comment in direct_allocated() about when objects should
865  // be allocated live.
866  if (_collectorState >= Marking) {
867    // we already hold the marking bit map lock, taken in
868    // the prologue
869    if (par) {
870      _markBitMap.par_mark(start);
871    } else {
872      _markBitMap.mark(start);
873    }
874    // We don't need to mark the object as uninitialized (as
875    // in direct_allocated above) because this is being done with the
876    // world stopped and the object will be initialized by the
877    // time the marking, precleaning or sweeping get to look at it.
878    // But see the code for copying objects into the CMS generation,
879    // where we need to ensure that concurrent readers of the
880    // block offset table are able to safely navigate a block that
881    // is in flux from being free to being allocated (and in
882    // transition while being copied into) and subsequently
883    // becoming a bona-fide object when the copy/promotion is complete.
884    assert(SafepointSynchronize::is_at_safepoint(),
885           "expect promotion only at safepoints");
886
887    if (_collectorState < Sweeping) {
888      // Mark the appropriate cards in the modUnionTable, so that
889      // this object gets scanned before the sweep. If this is
890      // not done, CMS generation references in the object might
891      // not get marked.
892      // For the case of arrays, which are otherwise precisely
893      // marked, we need to dirty the entire array, not just its head.
894      if (is_obj_array) {
895        // The [par_]mark_range() method expects mr.end() below to
896        // be aligned to the granularity of a bit's representation
897        // in the heap. In the case of the MUT below, that's a
898        // card size.
899        MemRegion mr(start,
900                     (HeapWord*)round_to((intptr_t)(start + obj_size),
901                        CardTableModRefBS::card_size /* bytes */));
902        if (par) {
903          _modUnionTable.par_mark_range(mr);
904        } else {
905          _modUnionTable.mark_range(mr);
906        }
907      } else {  // not an obj array; we can just mark the head
908        if (par) {
909          _modUnionTable.par_mark(start);
910        } else {
911          _modUnionTable.mark(start);
912        }
913      }
914    }
915  }
916}
917
918oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
919  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
920  // allocate, copy and if necessary update promoinfo --
921  // delegate to underlying space.
922  assert_lock_strong(freelistLock());
923
924#ifndef PRODUCT
925  if (GenCollectedHeap::heap()->promotion_should_fail()) {
926    return NULL;
927  }
928#endif  // #ifndef PRODUCT
929
930  oop res = _cmsSpace->promote(obj, obj_size);
931  if (res == NULL) {
932    // expand and retry
933    size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
934    expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
935    // Since this is the old generation, we don't try to promote
936    // into a more senior generation.
937    res = _cmsSpace->promote(obj, obj_size);
938  }
939  if (res != NULL) {
940    // See comment in allocate() about when objects should
941    // be allocated live.
942    assert(obj->is_oop(), "Will dereference klass pointer below");
943    collector()->promoted(false,           // Not parallel
944                          (HeapWord*)res, obj->is_objArray(), obj_size);
945    // promotion counters
946    NOT_PRODUCT(
947      _numObjectsPromoted++;
948      _numWordsPromoted +=
949        (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
950    )
951  }
952  return res;
953}
954
955
956// IMPORTANT: Notes on object size recognition in CMS.
957// ---------------------------------------------------
958// A block of storage in the CMS generation is always in
959// one of three states. A free block (FREE), an allocated
960// object (OBJECT) whose size() method reports the correct size,
961// and an intermediate state (TRANSIENT) in which its size cannot
962// be accurately determined.
963// STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
964// -----------------------------------------------------
965// FREE:      klass_word & 1 == 1; mark_word holds block size
966//
967// OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
968//            obj->size() computes correct size
969//
970// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
971//
972// STATE IDENTIFICATION: (64 bit+COOPS)
973// ------------------------------------
974// FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
975//
976// OBJECT:    klass_word installed; klass_word != 0;
977//            obj->size() computes correct size
978//
979// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
980//
981//
982// STATE TRANSITION DIAGRAM
983//
984//        mut / parnew                     mut  /  parnew
985// FREE --------------------> TRANSIENT ---------------------> OBJECT --|
986//  ^                                                                   |
987//  |------------------------ DEAD <------------------------------------|
988//         sweep                            mut
989//
990// While a block is in TRANSIENT state its size cannot be determined
991// so readers will either need to come back later or stall until
992// the size can be determined. Note that for the case of direct
993// allocation, P-bits, when available, may be used to determine the
994// size of an object that may not yet have been initialized.
995
996// Things to support parallel young-gen collection.
997oop
998ConcurrentMarkSweepGeneration::par_promote(int thread_num,
999                                           oop old, markOop m,
1000                                           size_t word_sz) {
1001#ifndef PRODUCT
1002  if (GenCollectedHeap::heap()->promotion_should_fail()) {
1003    return NULL;
1004  }
1005#endif  // #ifndef PRODUCT
1006
1007  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1008  PromotionInfo* promoInfo = &ps->promo;
1009  // if we are tracking promotions, then first ensure space for
1010  // promotion (including spooling space for saving header if necessary).
1011  // then allocate and copy, then track promoted info if needed.
1012  // When tracking (see PromotionInfo::track()), the mark word may
1013  // be displaced and in this case restoration of the mark word
1014  // occurs in the (oop_since_save_marks_)iterate phase.
1015  if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1016    // Out of space for allocating spooling buffers;
1017    // try expanding and allocating spooling buffers.
1018    if (!expand_and_ensure_spooling_space(promoInfo)) {
1019      return NULL;
1020    }
1021  }
1022  assert(promoInfo->has_spooling_space(), "Control point invariant");
1023  const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1024  HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1025  if (obj_ptr == NULL) {
1026     obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1027     if (obj_ptr == NULL) {
1028       return NULL;
1029     }
1030  }
1031  oop obj = oop(obj_ptr);
1032  OrderAccess::storestore();
1033  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1034  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1035  // IMPORTANT: See note on object initialization for CMS above.
1036  // Otherwise, copy the object.  Here we must be careful to insert the
1037  // klass pointer last, since this marks the block as an allocated object.
1038  // Except with compressed oops it's the mark word.
1039  HeapWord* old_ptr = (HeapWord*)old;
1040  // Restore the mark word copied above.
1041  obj->set_mark(m);
1042  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1043  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1044  OrderAccess::storestore();
1045
1046  if (UseCompressedClassPointers) {
1047    // Copy gap missed by (aligned) header size calculation below
1048    obj->set_klass_gap(old->klass_gap());
1049  }
1050  if (word_sz > (size_t)oopDesc::header_size()) {
1051    Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1052                                 obj_ptr + oopDesc::header_size(),
1053                                 word_sz - oopDesc::header_size());
1054  }
1055
1056  // Now we can track the promoted object, if necessary.  We take care
1057  // to delay the transition from uninitialized to full object
1058  // (i.e., insertion of klass pointer) until after, so that it
1059  // atomically becomes a promoted object.
1060  if (promoInfo->tracking()) {
1061    promoInfo->track((PromotedObject*)obj, old->klass());
1062  }
1063  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1064  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1065  assert(old->is_oop(), "Will use and dereference old klass ptr below");
1066
1067  // Finally, install the klass pointer (this should be volatile).
1068  OrderAccess::storestore();
1069  obj->set_klass(old->klass());
1070  // We should now be able to calculate the right size for this object
1071  assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1072
1073  collector()->promoted(true,          // parallel
1074                        obj_ptr, old->is_objArray(), word_sz);
1075
1076  NOT_PRODUCT(
1077    Atomic::inc_ptr(&_numObjectsPromoted);
1078    Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1079  )
1080
1081  return obj;
1082}
1083
1084void
1085ConcurrentMarkSweepGeneration::
1086par_promote_alloc_done(int thread_num) {
1087  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1088  ps->lab.retire(thread_num);
1089}
1090
1091void
1092ConcurrentMarkSweepGeneration::
1093par_oop_since_save_marks_iterate_done(int thread_num) {
1094  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1095  ParScanWithoutBarrierClosure* dummy_cl = NULL;
1096  ps->promo.promoted_oops_iterate_nv(dummy_cl);
1097}
1098
1099bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1100                                                   size_t size,
1101                                                   bool   tlab)
1102{
1103  // We allow a STW collection only if a full
1104  // collection was requested.
1105  return full || should_allocate(size, tlab); // FIX ME !!!
1106  // This and promotion failure handling are connected at the
1107  // hip and should be fixed by untying them.
1108}
1109
1110bool CMSCollector::shouldConcurrentCollect() {
1111  if (_full_gc_requested) {
1112    log_trace(gc)("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1113    return true;
1114  }
1115
1116  FreelistLocker x(this);
1117  // ------------------------------------------------------------------
1118  // Print out lots of information which affects the initiation of
1119  // a collection.
1120  Log(gc) log;
1121  if (log.is_trace() && stats().valid()) {
1122    log.trace("CMSCollector shouldConcurrentCollect: ");
1123    ResourceMark rm;
1124    stats().print_on(log.debug_stream());
1125    log.trace("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1126    log.trace("free=" SIZE_FORMAT, _cmsGen->free());
1127    log.trace("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1128    log.trace("promotion_rate=%g", stats().promotion_rate());
1129    log.trace("cms_allocation_rate=%g", stats().cms_allocation_rate());
1130    log.trace("occupancy=%3.7f", _cmsGen->occupancy());
1131    log.trace("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1132    log.trace("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1133    log.trace("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1134    log.trace("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1135  }
1136  // ------------------------------------------------------------------
1137
1138  // If the estimated time to complete a cms collection (cms_duration())
1139  // is less than the estimated time remaining until the cms generation
1140  // is full, start a collection.
1141  if (!UseCMSInitiatingOccupancyOnly) {
1142    if (stats().valid()) {
1143      if (stats().time_until_cms_start() == 0.0) {
1144        return true;
1145      }
1146    } else {
1147      // We want to conservatively collect somewhat early in order
1148      // to try and "bootstrap" our CMS/promotion statistics;
1149      // this branch will not fire after the first successful CMS
1150      // collection because the stats should then be valid.
1151      if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1152        log_trace(gc)(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1153                      _cmsGen->occupancy(), _bootstrap_occupancy);
1154        return true;
1155      }
1156    }
1157  }
1158
1159  // Otherwise, we start a collection cycle if
1160  // old gen want a collection cycle started. Each may use
1161  // an appropriate criterion for making this decision.
1162  // XXX We need to make sure that the gen expansion
1163  // criterion dovetails well with this. XXX NEED TO FIX THIS
1164  if (_cmsGen->should_concurrent_collect()) {
1165    log_trace(gc)("CMS old gen initiated");
1166    return true;
1167  }
1168
1169  // We start a collection if we believe an incremental collection may fail;
1170  // this is not likely to be productive in practice because it's probably too
1171  // late anyway.
1172  GenCollectedHeap* gch = GenCollectedHeap::heap();
1173  assert(gch->collector_policy()->is_generation_policy(),
1174         "You may want to check the correctness of the following");
1175  if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1176    log_trace(gc)("CMSCollector: collect because incremental collection will fail ");
1177    return true;
1178  }
1179
1180  if (MetaspaceGC::should_concurrent_collect()) {
1181    log_trace(gc)("CMSCollector: collect for metadata allocation ");
1182    return true;
1183  }
1184
1185  // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1186  if (CMSTriggerInterval >= 0) {
1187    if (CMSTriggerInterval == 0) {
1188      // Trigger always
1189      return true;
1190    }
1191
1192    // Check the CMS time since begin (we do not check the stats validity
1193    // as we want to be able to trigger the first CMS cycle as well)
1194    if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1195      if (stats().valid()) {
1196        log_trace(gc)("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1197                      stats().cms_time_since_begin());
1198      } else {
1199        log_trace(gc)("CMSCollector: collect because of trigger interval (first collection)");
1200      }
1201      return true;
1202    }
1203  }
1204
1205  return false;
1206}
1207
1208void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1209
1210// Clear _expansion_cause fields of constituent generations
1211void CMSCollector::clear_expansion_cause() {
1212  _cmsGen->clear_expansion_cause();
1213}
1214
1215// We should be conservative in starting a collection cycle.  To
1216// start too eagerly runs the risk of collecting too often in the
1217// extreme.  To collect too rarely falls back on full collections,
1218// which works, even if not optimum in terms of concurrent work.
1219// As a work around for too eagerly collecting, use the flag
1220// UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1221// giving the user an easily understandable way of controlling the
1222// collections.
1223// We want to start a new collection cycle if any of the following
1224// conditions hold:
1225// . our current occupancy exceeds the configured initiating occupancy
1226//   for this generation, or
1227// . we recently needed to expand this space and have not, since that
1228//   expansion, done a collection of this generation, or
1229// . the underlying space believes that it may be a good idea to initiate
1230//   a concurrent collection (this may be based on criteria such as the
1231//   following: the space uses linear allocation and linear allocation is
1232//   going to fail, or there is believed to be excessive fragmentation in
1233//   the generation, etc... or ...
1234// [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1235//   the case of the old generation; see CR 6543076):
1236//   we may be approaching a point at which allocation requests may fail because
1237//   we will be out of sufficient free space given allocation rate estimates.]
1238bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1239
1240  assert_lock_strong(freelistLock());
1241  if (occupancy() > initiating_occupancy()) {
1242    log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1243                  short_name(), occupancy(), initiating_occupancy());
1244    return true;
1245  }
1246  if (UseCMSInitiatingOccupancyOnly) {
1247    return false;
1248  }
1249  if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1250    log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1251    return true;
1252  }
1253  return false;
1254}
1255
1256void ConcurrentMarkSweepGeneration::collect(bool   full,
1257                                            bool   clear_all_soft_refs,
1258                                            size_t size,
1259                                            bool   tlab)
1260{
1261  collector()->collect(full, clear_all_soft_refs, size, tlab);
1262}
1263
1264void CMSCollector::collect(bool   full,
1265                           bool   clear_all_soft_refs,
1266                           size_t size,
1267                           bool   tlab)
1268{
1269  // The following "if" branch is present for defensive reasons.
1270  // In the current uses of this interface, it can be replaced with:
1271  // assert(!GCLocker.is_active(), "Can't be called otherwise");
1272  // But I am not placing that assert here to allow future
1273  // generality in invoking this interface.
1274  if (GCLocker::is_active()) {
1275    // A consistency test for GCLocker
1276    assert(GCLocker::needs_gc(), "Should have been set already");
1277    // Skip this foreground collection, instead
1278    // expanding the heap if necessary.
1279    // Need the free list locks for the call to free() in compute_new_size()
1280    compute_new_size();
1281    return;
1282  }
1283  acquire_control_and_collect(full, clear_all_soft_refs);
1284}
1285
1286void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1287  GenCollectedHeap* gch = GenCollectedHeap::heap();
1288  unsigned int gc_count = gch->total_full_collections();
1289  if (gc_count == full_gc_count) {
1290    MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1291    _full_gc_requested = true;
1292    _full_gc_cause = cause;
1293    CGC_lock->notify();   // nudge CMS thread
1294  } else {
1295    assert(gc_count > full_gc_count, "Error: causal loop");
1296  }
1297}
1298
1299bool CMSCollector::is_external_interruption() {
1300  GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1301  return GCCause::is_user_requested_gc(cause) ||
1302         GCCause::is_serviceability_requested_gc(cause);
1303}
1304
1305void CMSCollector::report_concurrent_mode_interruption() {
1306  if (is_external_interruption()) {
1307    log_debug(gc)("Concurrent mode interrupted");
1308  } else {
1309    log_debug(gc)("Concurrent mode failure");
1310    _gc_tracer_cm->report_concurrent_mode_failure();
1311  }
1312}
1313
1314
1315// The foreground and background collectors need to coordinate in order
1316// to make sure that they do not mutually interfere with CMS collections.
1317// When a background collection is active,
1318// the foreground collector may need to take over (preempt) and
1319// synchronously complete an ongoing collection. Depending on the
1320// frequency of the background collections and the heap usage
1321// of the application, this preemption can be seldom or frequent.
1322// There are only certain
1323// points in the background collection that the "collection-baton"
1324// can be passed to the foreground collector.
1325//
1326// The foreground collector will wait for the baton before
1327// starting any part of the collection.  The foreground collector
1328// will only wait at one location.
1329//
1330// The background collector will yield the baton before starting a new
1331// phase of the collection (e.g., before initial marking, marking from roots,
1332// precleaning, final re-mark, sweep etc.)  This is normally done at the head
1333// of the loop which switches the phases. The background collector does some
1334// of the phases (initial mark, final re-mark) with the world stopped.
1335// Because of locking involved in stopping the world,
1336// the foreground collector should not block waiting for the background
1337// collector when it is doing a stop-the-world phase.  The background
1338// collector will yield the baton at an additional point just before
1339// it enters a stop-the-world phase.  Once the world is stopped, the
1340// background collector checks the phase of the collection.  If the
1341// phase has not changed, it proceeds with the collection.  If the
1342// phase has changed, it skips that phase of the collection.  See
1343// the comments on the use of the Heap_lock in collect_in_background().
1344//
1345// Variable used in baton passing.
1346//   _foregroundGCIsActive - Set to true by the foreground collector when
1347//      it wants the baton.  The foreground clears it when it has finished
1348//      the collection.
1349//   _foregroundGCShouldWait - Set to true by the background collector
1350//        when it is running.  The foreground collector waits while
1351//      _foregroundGCShouldWait is true.
1352//  CGC_lock - monitor used to protect access to the above variables
1353//      and to notify the foreground and background collectors.
1354//  _collectorState - current state of the CMS collection.
1355//
1356// The foreground collector
1357//   acquires the CGC_lock
1358//   sets _foregroundGCIsActive
1359//   waits on the CGC_lock for _foregroundGCShouldWait to be false
1360//     various locks acquired in preparation for the collection
1361//     are released so as not to block the background collector
1362//     that is in the midst of a collection
1363//   proceeds with the collection
1364//   clears _foregroundGCIsActive
1365//   returns
1366//
1367// The background collector in a loop iterating on the phases of the
1368//      collection
1369//   acquires the CGC_lock
1370//   sets _foregroundGCShouldWait
1371//   if _foregroundGCIsActive is set
1372//     clears _foregroundGCShouldWait, notifies _CGC_lock
1373//     waits on _CGC_lock for _foregroundGCIsActive to become false
1374//     and exits the loop.
1375//   otherwise
1376//     proceed with that phase of the collection
1377//     if the phase is a stop-the-world phase,
1378//       yield the baton once more just before enqueueing
1379//       the stop-world CMS operation (executed by the VM thread).
1380//   returns after all phases of the collection are done
1381//
1382
1383void CMSCollector::acquire_control_and_collect(bool full,
1384        bool clear_all_soft_refs) {
1385  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1386  assert(!Thread::current()->is_ConcurrentGC_thread(),
1387         "shouldn't try to acquire control from self!");
1388
1389  // Start the protocol for acquiring control of the
1390  // collection from the background collector (aka CMS thread).
1391  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1392         "VM thread should have CMS token");
1393  // Remember the possibly interrupted state of an ongoing
1394  // concurrent collection
1395  CollectorState first_state = _collectorState;
1396
1397  // Signal to a possibly ongoing concurrent collection that
1398  // we want to do a foreground collection.
1399  _foregroundGCIsActive = true;
1400
1401  // release locks and wait for a notify from the background collector
1402  // releasing the locks in only necessary for phases which
1403  // do yields to improve the granularity of the collection.
1404  assert_lock_strong(bitMapLock());
1405  // We need to lock the Free list lock for the space that we are
1406  // currently collecting.
1407  assert(haveFreelistLocks(), "Must be holding free list locks");
1408  bitMapLock()->unlock();
1409  releaseFreelistLocks();
1410  {
1411    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1412    if (_foregroundGCShouldWait) {
1413      // We are going to be waiting for action for the CMS thread;
1414      // it had better not be gone (for instance at shutdown)!
1415      assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1416             "CMS thread must be running");
1417      // Wait here until the background collector gives us the go-ahead
1418      ConcurrentMarkSweepThread::clear_CMS_flag(
1419        ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1420      // Get a possibly blocked CMS thread going:
1421      //   Note that we set _foregroundGCIsActive true above,
1422      //   without protection of the CGC_lock.
1423      CGC_lock->notify();
1424      assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1425             "Possible deadlock");
1426      while (_foregroundGCShouldWait) {
1427        // wait for notification
1428        CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1429        // Possibility of delay/starvation here, since CMS token does
1430        // not know to give priority to VM thread? Actually, i think
1431        // there wouldn't be any delay/starvation, but the proof of
1432        // that "fact" (?) appears non-trivial. XXX 20011219YSR
1433      }
1434      ConcurrentMarkSweepThread::set_CMS_flag(
1435        ConcurrentMarkSweepThread::CMS_vm_has_token);
1436    }
1437  }
1438  // The CMS_token is already held.  Get back the other locks.
1439  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1440         "VM thread should have CMS token");
1441  getFreelistLocks();
1442  bitMapLock()->lock_without_safepoint_check();
1443  log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1444                       p2i(Thread::current()), first_state);
1445  log_debug(gc, state)("    gets control with state %d", _collectorState);
1446
1447  // Inform cms gen if this was due to partial collection failing.
1448  // The CMS gen may use this fact to determine its expansion policy.
1449  GenCollectedHeap* gch = GenCollectedHeap::heap();
1450  if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1451    assert(!_cmsGen->incremental_collection_failed(),
1452           "Should have been noticed, reacted to and cleared");
1453    _cmsGen->set_incremental_collection_failed();
1454  }
1455
1456  if (first_state > Idling) {
1457    report_concurrent_mode_interruption();
1458  }
1459
1460  set_did_compact(true);
1461
1462  // If the collection is being acquired from the background
1463  // collector, there may be references on the discovered
1464  // references lists.  Abandon those references, since some
1465  // of them may have become unreachable after concurrent
1466  // discovery; the STW compacting collector will redo discovery
1467  // more precisely, without being subject to floating garbage.
1468  // Leaving otherwise unreachable references in the discovered
1469  // lists would require special handling.
1470  ref_processor()->disable_discovery();
1471  ref_processor()->abandon_partial_discovery();
1472  ref_processor()->verify_no_references_recorded();
1473
1474  if (first_state > Idling) {
1475    save_heap_summary();
1476  }
1477
1478  do_compaction_work(clear_all_soft_refs);
1479
1480  // Has the GC time limit been exceeded?
1481  size_t max_eden_size = _young_gen->max_eden_size();
1482  GCCause::Cause gc_cause = gch->gc_cause();
1483  size_policy()->check_gc_overhead_limit(_young_gen->used(),
1484                                         _young_gen->eden()->used(),
1485                                         _cmsGen->max_capacity(),
1486                                         max_eden_size,
1487                                         full,
1488                                         gc_cause,
1489                                         gch->collector_policy());
1490
1491  // Reset the expansion cause, now that we just completed
1492  // a collection cycle.
1493  clear_expansion_cause();
1494  _foregroundGCIsActive = false;
1495  return;
1496}
1497
1498// Resize the tenured generation
1499// after obtaining the free list locks for the
1500// two generations.
1501void CMSCollector::compute_new_size() {
1502  assert_locked_or_safepoint(Heap_lock);
1503  FreelistLocker z(this);
1504  MetaspaceGC::compute_new_size();
1505  _cmsGen->compute_new_size_free_list();
1506}
1507
1508// A work method used by the foreground collector to do
1509// a mark-sweep-compact.
1510void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1511  GenCollectedHeap* gch = GenCollectedHeap::heap();
1512
1513  STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1514  gc_timer->register_gc_start();
1515
1516  SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1517  gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1518
1519  gch->pre_full_gc_dump(gc_timer);
1520
1521  GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1522
1523  // Temporarily widen the span of the weak reference processing to
1524  // the entire heap.
1525  MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1526  ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1527  // Temporarily, clear the "is_alive_non_header" field of the
1528  // reference processor.
1529  ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1530  // Temporarily make reference _processing_ single threaded (non-MT).
1531  ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1532  // Temporarily make refs discovery atomic
1533  ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1534  // Temporarily make reference _discovery_ single threaded (non-MT)
1535  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1536
1537  ref_processor()->set_enqueuing_is_done(false);
1538  ref_processor()->enable_discovery();
1539  ref_processor()->setup_policy(clear_all_soft_refs);
1540  // If an asynchronous collection finishes, the _modUnionTable is
1541  // all clear.  If we are assuming the collection from an asynchronous
1542  // collection, clear the _modUnionTable.
1543  assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1544    "_modUnionTable should be clear if the baton was not passed");
1545  _modUnionTable.clear_all();
1546  assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1547    "mod union for klasses should be clear if the baton was passed");
1548  _ct->klass_rem_set()->clear_mod_union();
1549
1550  // We must adjust the allocation statistics being maintained
1551  // in the free list space. We do so by reading and clearing
1552  // the sweep timer and updating the block flux rate estimates below.
1553  assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1554  if (_inter_sweep_timer.is_active()) {
1555    _inter_sweep_timer.stop();
1556    // Note that we do not use this sample to update the _inter_sweep_estimate.
1557    _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1558                                            _inter_sweep_estimate.padded_average(),
1559                                            _intra_sweep_estimate.padded_average());
1560  }
1561
1562  GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1563  #ifdef ASSERT
1564    CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1565    size_t free_size = cms_space->free();
1566    assert(free_size ==
1567           pointer_delta(cms_space->end(), cms_space->compaction_top())
1568           * HeapWordSize,
1569      "All the free space should be compacted into one chunk at top");
1570    assert(cms_space->dictionary()->total_chunk_size(
1571                                      debug_only(cms_space->freelistLock())) == 0 ||
1572           cms_space->totalSizeInIndexedFreeLists() == 0,
1573      "All the free space should be in a single chunk");
1574    size_t num = cms_space->totalCount();
1575    assert((free_size == 0 && num == 0) ||
1576           (free_size > 0  && (num == 1 || num == 2)),
1577         "There should be at most 2 free chunks after compaction");
1578  #endif // ASSERT
1579  _collectorState = Resetting;
1580  assert(_restart_addr == NULL,
1581         "Should have been NULL'd before baton was passed");
1582  reset_stw();
1583  _cmsGen->reset_after_compaction();
1584  _concurrent_cycles_since_last_unload = 0;
1585
1586  // Clear any data recorded in the PLAB chunk arrays.
1587  if (_survivor_plab_array != NULL) {
1588    reset_survivor_plab_arrays();
1589  }
1590
1591  // Adjust the per-size allocation stats for the next epoch.
1592  _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1593  // Restart the "inter sweep timer" for the next epoch.
1594  _inter_sweep_timer.reset();
1595  _inter_sweep_timer.start();
1596
1597  gch->post_full_gc_dump(gc_timer);
1598
1599  gc_timer->register_gc_end();
1600
1601  gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1602
1603  // For a mark-sweep-compact, compute_new_size() will be called
1604  // in the heap's do_collection() method.
1605}
1606
1607void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1608  Log(gc, heap) log;
1609  if (!log.is_trace()) {
1610    return;
1611  }
1612
1613  ContiguousSpace* eden_space = _young_gen->eden();
1614  ContiguousSpace* from_space = _young_gen->from();
1615  ContiguousSpace* to_space   = _young_gen->to();
1616  // Eden
1617  if (_eden_chunk_array != NULL) {
1618    log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1619              p2i(eden_space->bottom()), p2i(eden_space->top()),
1620              p2i(eden_space->end()), eden_space->capacity());
1621    log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1622              _eden_chunk_index, _eden_chunk_capacity);
1623    for (size_t i = 0; i < _eden_chunk_index; i++) {
1624      log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1625    }
1626  }
1627  // Survivor
1628  if (_survivor_chunk_array != NULL) {
1629    log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1630              p2i(from_space->bottom()), p2i(from_space->top()),
1631              p2i(from_space->end()), from_space->capacity());
1632    log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1633              _survivor_chunk_index, _survivor_chunk_capacity);
1634    for (size_t i = 0; i < _survivor_chunk_index; i++) {
1635      log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1636    }
1637  }
1638}
1639
1640void CMSCollector::getFreelistLocks() const {
1641  // Get locks for all free lists in all generations that this
1642  // collector is responsible for
1643  _cmsGen->freelistLock()->lock_without_safepoint_check();
1644}
1645
1646void CMSCollector::releaseFreelistLocks() const {
1647  // Release locks for all free lists in all generations that this
1648  // collector is responsible for
1649  _cmsGen->freelistLock()->unlock();
1650}
1651
1652bool CMSCollector::haveFreelistLocks() const {
1653  // Check locks for all free lists in all generations that this
1654  // collector is responsible for
1655  assert_lock_strong(_cmsGen->freelistLock());
1656  PRODUCT_ONLY(ShouldNotReachHere());
1657  return true;
1658}
1659
1660// A utility class that is used by the CMS collector to
1661// temporarily "release" the foreground collector from its
1662// usual obligation to wait for the background collector to
1663// complete an ongoing phase before proceeding.
1664class ReleaseForegroundGC: public StackObj {
1665 private:
1666  CMSCollector* _c;
1667 public:
1668  ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1669    assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1670    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1671    // allow a potentially blocked foreground collector to proceed
1672    _c->_foregroundGCShouldWait = false;
1673    if (_c->_foregroundGCIsActive) {
1674      CGC_lock->notify();
1675    }
1676    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1677           "Possible deadlock");
1678  }
1679
1680  ~ReleaseForegroundGC() {
1681    assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1682    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1683    _c->_foregroundGCShouldWait = true;
1684  }
1685};
1686
1687void CMSCollector::collect_in_background(GCCause::Cause cause) {
1688  assert(Thread::current()->is_ConcurrentGC_thread(),
1689    "A CMS asynchronous collection is only allowed on a CMS thread.");
1690
1691  GenCollectedHeap* gch = GenCollectedHeap::heap();
1692  {
1693    bool safepoint_check = Mutex::_no_safepoint_check_flag;
1694    MutexLockerEx hl(Heap_lock, safepoint_check);
1695    FreelistLocker fll(this);
1696    MutexLockerEx x(CGC_lock, safepoint_check);
1697    if (_foregroundGCIsActive) {
1698      // The foreground collector is. Skip this
1699      // background collection.
1700      assert(!_foregroundGCShouldWait, "Should be clear");
1701      return;
1702    } else {
1703      assert(_collectorState == Idling, "Should be idling before start.");
1704      _collectorState = InitialMarking;
1705      register_gc_start(cause);
1706      // Reset the expansion cause, now that we are about to begin
1707      // a new cycle.
1708      clear_expansion_cause();
1709
1710      // Clear the MetaspaceGC flag since a concurrent collection
1711      // is starting but also clear it after the collection.
1712      MetaspaceGC::set_should_concurrent_collect(false);
1713    }
1714    // Decide if we want to enable class unloading as part of the
1715    // ensuing concurrent GC cycle.
1716    update_should_unload_classes();
1717    _full_gc_requested = false;           // acks all outstanding full gc requests
1718    _full_gc_cause = GCCause::_no_gc;
1719    // Signal that we are about to start a collection
1720    gch->increment_total_full_collections();  // ... starting a collection cycle
1721    _collection_count_start = gch->total_full_collections();
1722  }
1723
1724  size_t prev_used = _cmsGen->used();
1725
1726  // The change of the collection state is normally done at this level;
1727  // the exceptions are phases that are executed while the world is
1728  // stopped.  For those phases the change of state is done while the
1729  // world is stopped.  For baton passing purposes this allows the
1730  // background collector to finish the phase and change state atomically.
1731  // The foreground collector cannot wait on a phase that is done
1732  // while the world is stopped because the foreground collector already
1733  // has the world stopped and would deadlock.
1734  while (_collectorState != Idling) {
1735    log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1736                         p2i(Thread::current()), _collectorState);
1737    // The foreground collector
1738    //   holds the Heap_lock throughout its collection.
1739    //   holds the CMS token (but not the lock)
1740    //     except while it is waiting for the background collector to yield.
1741    //
1742    // The foreground collector should be blocked (not for long)
1743    //   if the background collector is about to start a phase
1744    //   executed with world stopped.  If the background
1745    //   collector has already started such a phase, the
1746    //   foreground collector is blocked waiting for the
1747    //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1748    //   are executed in the VM thread.
1749    //
1750    // The locking order is
1751    //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1752    //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1753    //   CMS token  (claimed in
1754    //                stop_world_and_do() -->
1755    //                  safepoint_synchronize() -->
1756    //                    CMSThread::synchronize())
1757
1758    {
1759      // Check if the FG collector wants us to yield.
1760      CMSTokenSync x(true); // is cms thread
1761      if (waitForForegroundGC()) {
1762        // We yielded to a foreground GC, nothing more to be
1763        // done this round.
1764        assert(_foregroundGCShouldWait == false, "We set it to false in "
1765               "waitForForegroundGC()");
1766        log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1767                             p2i(Thread::current()), _collectorState);
1768        return;
1769      } else {
1770        // The background collector can run but check to see if the
1771        // foreground collector has done a collection while the
1772        // background collector was waiting to get the CGC_lock
1773        // above.  If yes, break so that _foregroundGCShouldWait
1774        // is cleared before returning.
1775        if (_collectorState == Idling) {
1776          break;
1777        }
1778      }
1779    }
1780
1781    assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1782      "should be waiting");
1783
1784    switch (_collectorState) {
1785      case InitialMarking:
1786        {
1787          ReleaseForegroundGC x(this);
1788          stats().record_cms_begin();
1789          VM_CMS_Initial_Mark initial_mark_op(this);
1790          VMThread::execute(&initial_mark_op);
1791        }
1792        // The collector state may be any legal state at this point
1793        // since the background collector may have yielded to the
1794        // foreground collector.
1795        break;
1796      case Marking:
1797        // initial marking in checkpointRootsInitialWork has been completed
1798        if (markFromRoots()) { // we were successful
1799          assert(_collectorState == Precleaning, "Collector state should "
1800            "have changed");
1801        } else {
1802          assert(_foregroundGCIsActive, "Internal state inconsistency");
1803        }
1804        break;
1805      case Precleaning:
1806        // marking from roots in markFromRoots has been completed
1807        preclean();
1808        assert(_collectorState == AbortablePreclean ||
1809               _collectorState == FinalMarking,
1810               "Collector state should have changed");
1811        break;
1812      case AbortablePreclean:
1813        abortable_preclean();
1814        assert(_collectorState == FinalMarking, "Collector state should "
1815          "have changed");
1816        break;
1817      case FinalMarking:
1818        {
1819          ReleaseForegroundGC x(this);
1820
1821          VM_CMS_Final_Remark final_remark_op(this);
1822          VMThread::execute(&final_remark_op);
1823        }
1824        assert(_foregroundGCShouldWait, "block post-condition");
1825        break;
1826      case Sweeping:
1827        // final marking in checkpointRootsFinal has been completed
1828        sweep();
1829        assert(_collectorState == Resizing, "Collector state change "
1830          "to Resizing must be done under the free_list_lock");
1831
1832      case Resizing: {
1833        // Sweeping has been completed...
1834        // At this point the background collection has completed.
1835        // Don't move the call to compute_new_size() down
1836        // into code that might be executed if the background
1837        // collection was preempted.
1838        {
1839          ReleaseForegroundGC x(this);   // unblock FG collection
1840          MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1841          CMSTokenSync        z(true);   // not strictly needed.
1842          if (_collectorState == Resizing) {
1843            compute_new_size();
1844            save_heap_summary();
1845            _collectorState = Resetting;
1846          } else {
1847            assert(_collectorState == Idling, "The state should only change"
1848                   " because the foreground collector has finished the collection");
1849          }
1850        }
1851        break;
1852      }
1853      case Resetting:
1854        // CMS heap resizing has been completed
1855        reset_concurrent();
1856        assert(_collectorState == Idling, "Collector state should "
1857          "have changed");
1858
1859        MetaspaceGC::set_should_concurrent_collect(false);
1860
1861        stats().record_cms_end();
1862        // Don't move the concurrent_phases_end() and compute_new_size()
1863        // calls to here because a preempted background collection
1864        // has it's state set to "Resetting".
1865        break;
1866      case Idling:
1867      default:
1868        ShouldNotReachHere();
1869        break;
1870    }
1871    log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1872                         p2i(Thread::current()), _collectorState);
1873    assert(_foregroundGCShouldWait, "block post-condition");
1874  }
1875
1876  // Should this be in gc_epilogue?
1877  collector_policy()->counters()->update_counters();
1878
1879  {
1880    // Clear _foregroundGCShouldWait and, in the event that the
1881    // foreground collector is waiting, notify it, before
1882    // returning.
1883    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1884    _foregroundGCShouldWait = false;
1885    if (_foregroundGCIsActive) {
1886      CGC_lock->notify();
1887    }
1888    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1889           "Possible deadlock");
1890  }
1891  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1892                       p2i(Thread::current()), _collectorState);
1893  log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1894                     prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1895}
1896
1897void CMSCollector::register_gc_start(GCCause::Cause cause) {
1898  _cms_start_registered = true;
1899  _gc_timer_cm->register_gc_start();
1900  _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1901}
1902
1903void CMSCollector::register_gc_end() {
1904  if (_cms_start_registered) {
1905    report_heap_summary(GCWhen::AfterGC);
1906
1907    _gc_timer_cm->register_gc_end();
1908    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1909    _cms_start_registered = false;
1910  }
1911}
1912
1913void CMSCollector::save_heap_summary() {
1914  GenCollectedHeap* gch = GenCollectedHeap::heap();
1915  _last_heap_summary = gch->create_heap_summary();
1916  _last_metaspace_summary = gch->create_metaspace_summary();
1917}
1918
1919void CMSCollector::report_heap_summary(GCWhen::Type when) {
1920  _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1921  _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1922}
1923
1924bool CMSCollector::waitForForegroundGC() {
1925  bool res = false;
1926  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1927         "CMS thread should have CMS token");
1928  // Block the foreground collector until the
1929  // background collectors decides whether to
1930  // yield.
1931  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1932  _foregroundGCShouldWait = true;
1933  if (_foregroundGCIsActive) {
1934    // The background collector yields to the
1935    // foreground collector and returns a value
1936    // indicating that it has yielded.  The foreground
1937    // collector can proceed.
1938    res = true;
1939    _foregroundGCShouldWait = false;
1940    ConcurrentMarkSweepThread::clear_CMS_flag(
1941      ConcurrentMarkSweepThread::CMS_cms_has_token);
1942    ConcurrentMarkSweepThread::set_CMS_flag(
1943      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1944    // Get a possibly blocked foreground thread going
1945    CGC_lock->notify();
1946    log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1947                         p2i(Thread::current()), _collectorState);
1948    while (_foregroundGCIsActive) {
1949      CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1950    }
1951    ConcurrentMarkSweepThread::set_CMS_flag(
1952      ConcurrentMarkSweepThread::CMS_cms_has_token);
1953    ConcurrentMarkSweepThread::clear_CMS_flag(
1954      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1955  }
1956  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1957                       p2i(Thread::current()), _collectorState);
1958  return res;
1959}
1960
1961// Because of the need to lock the free lists and other structures in
1962// the collector, common to all the generations that the collector is
1963// collecting, we need the gc_prologues of individual CMS generations
1964// delegate to their collector. It may have been simpler had the
1965// current infrastructure allowed one to call a prologue on a
1966// collector. In the absence of that we have the generation's
1967// prologue delegate to the collector, which delegates back
1968// some "local" work to a worker method in the individual generations
1969// that it's responsible for collecting, while itself doing any
1970// work common to all generations it's responsible for. A similar
1971// comment applies to the  gc_epilogue()'s.
1972// The role of the variable _between_prologue_and_epilogue is to
1973// enforce the invocation protocol.
1974void CMSCollector::gc_prologue(bool full) {
1975  // Call gc_prologue_work() for the CMSGen
1976  // we are responsible for.
1977
1978  // The following locking discipline assumes that we are only called
1979  // when the world is stopped.
1980  assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1981
1982  // The CMSCollector prologue must call the gc_prologues for the
1983  // "generations" that it's responsible
1984  // for.
1985
1986  assert(   Thread::current()->is_VM_thread()
1987         || (   CMSScavengeBeforeRemark
1988             && Thread::current()->is_ConcurrentGC_thread()),
1989         "Incorrect thread type for prologue execution");
1990
1991  if (_between_prologue_and_epilogue) {
1992    // We have already been invoked; this is a gc_prologue delegation
1993    // from yet another CMS generation that we are responsible for, just
1994    // ignore it since all relevant work has already been done.
1995    return;
1996  }
1997
1998  // set a bit saying prologue has been called; cleared in epilogue
1999  _between_prologue_and_epilogue = true;
2000  // Claim locks for common data structures, then call gc_prologue_work()
2001  // for each CMSGen.
2002
2003  getFreelistLocks();   // gets free list locks on constituent spaces
2004  bitMapLock()->lock_without_safepoint_check();
2005
2006  // Should call gc_prologue_work() for all cms gens we are responsible for
2007  bool duringMarking =    _collectorState >= Marking
2008                         && _collectorState < Sweeping;
2009
2010  // The young collections clear the modified oops state, which tells if
2011  // there are any modified oops in the class. The remark phase also needs
2012  // that information. Tell the young collection to save the union of all
2013  // modified klasses.
2014  if (duringMarking) {
2015    _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2016  }
2017
2018  bool registerClosure = duringMarking;
2019
2020  _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2021
2022  if (!full) {
2023    stats().record_gc0_begin();
2024  }
2025}
2026
2027void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2028
2029  _capacity_at_prologue = capacity();
2030  _used_at_prologue = used();
2031
2032  // Delegate to CMScollector which knows how to coordinate between
2033  // this and any other CMS generations that it is responsible for
2034  // collecting.
2035  collector()->gc_prologue(full);
2036}
2037
2038// This is a "private" interface for use by this generation's CMSCollector.
2039// Not to be called directly by any other entity (for instance,
2040// GenCollectedHeap, which calls the "public" gc_prologue method above).
2041void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2042  bool registerClosure, ModUnionClosure* modUnionClosure) {
2043  assert(!incremental_collection_failed(), "Shouldn't be set yet");
2044  assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2045    "Should be NULL");
2046  if (registerClosure) {
2047    cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2048  }
2049  cmsSpace()->gc_prologue();
2050  // Clear stat counters
2051  NOT_PRODUCT(
2052    assert(_numObjectsPromoted == 0, "check");
2053    assert(_numWordsPromoted   == 0, "check");
2054    log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2055                                 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2056    _numObjectsAllocated = 0;
2057    _numWordsAllocated   = 0;
2058  )
2059}
2060
2061void CMSCollector::gc_epilogue(bool full) {
2062  // The following locking discipline assumes that we are only called
2063  // when the world is stopped.
2064  assert(SafepointSynchronize::is_at_safepoint(),
2065         "world is stopped assumption");
2066
2067  // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2068  // if linear allocation blocks need to be appropriately marked to allow the
2069  // the blocks to be parsable. We also check here whether we need to nudge the
2070  // CMS collector thread to start a new cycle (if it's not already active).
2071  assert(   Thread::current()->is_VM_thread()
2072         || (   CMSScavengeBeforeRemark
2073             && Thread::current()->is_ConcurrentGC_thread()),
2074         "Incorrect thread type for epilogue execution");
2075
2076  if (!_between_prologue_and_epilogue) {
2077    // We have already been invoked; this is a gc_epilogue delegation
2078    // from yet another CMS generation that we are responsible for, just
2079    // ignore it since all relevant work has already been done.
2080    return;
2081  }
2082  assert(haveFreelistLocks(), "must have freelist locks");
2083  assert_lock_strong(bitMapLock());
2084
2085  _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2086
2087  _cmsGen->gc_epilogue_work(full);
2088
2089  if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2090    // in case sampling was not already enabled, enable it
2091    _start_sampling = true;
2092  }
2093  // reset _eden_chunk_array so sampling starts afresh
2094  _eden_chunk_index = 0;
2095
2096  size_t cms_used   = _cmsGen->cmsSpace()->used();
2097
2098  // update performance counters - this uses a special version of
2099  // update_counters() that allows the utilization to be passed as a
2100  // parameter, avoiding multiple calls to used().
2101  //
2102  _cmsGen->update_counters(cms_used);
2103
2104  bitMapLock()->unlock();
2105  releaseFreelistLocks();
2106
2107  if (!CleanChunkPoolAsync) {
2108    Chunk::clean_chunk_pool();
2109  }
2110
2111  set_did_compact(false);
2112  _between_prologue_and_epilogue = false;  // ready for next cycle
2113}
2114
2115void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2116  collector()->gc_epilogue(full);
2117
2118  // Also reset promotion tracking in par gc thread states.
2119  for (uint i = 0; i < ParallelGCThreads; i++) {
2120    _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2121  }
2122}
2123
2124void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2125  assert(!incremental_collection_failed(), "Should have been cleared");
2126  cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2127  cmsSpace()->gc_epilogue();
2128    // Print stat counters
2129  NOT_PRODUCT(
2130    assert(_numObjectsAllocated == 0, "check");
2131    assert(_numWordsAllocated == 0, "check");
2132    log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2133                                     _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2134    _numObjectsPromoted = 0;
2135    _numWordsPromoted   = 0;
2136  )
2137
2138  // Call down the chain in contiguous_available needs the freelistLock
2139  // so print this out before releasing the freeListLock.
2140  log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2141}
2142
2143#ifndef PRODUCT
2144bool CMSCollector::have_cms_token() {
2145  Thread* thr = Thread::current();
2146  if (thr->is_VM_thread()) {
2147    return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2148  } else if (thr->is_ConcurrentGC_thread()) {
2149    return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2150  } else if (thr->is_GC_task_thread()) {
2151    return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2152           ParGCRareEvent_lock->owned_by_self();
2153  }
2154  return false;
2155}
2156
2157// Check reachability of the given heap address in CMS generation,
2158// treating all other generations as roots.
2159bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2160  // We could "guarantee" below, rather than assert, but I'll
2161  // leave these as "asserts" so that an adventurous debugger
2162  // could try this in the product build provided some subset of
2163  // the conditions were met, provided they were interested in the
2164  // results and knew that the computation below wouldn't interfere
2165  // with other concurrent computations mutating the structures
2166  // being read or written.
2167  assert(SafepointSynchronize::is_at_safepoint(),
2168         "Else mutations in object graph will make answer suspect");
2169  assert(have_cms_token(), "Should hold cms token");
2170  assert(haveFreelistLocks(), "must hold free list locks");
2171  assert_lock_strong(bitMapLock());
2172
2173  // Clear the marking bit map array before starting, but, just
2174  // for kicks, first report if the given address is already marked
2175  tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2176                _markBitMap.isMarked(addr) ? "" : " not");
2177
2178  if (verify_after_remark()) {
2179    MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2180    bool result = verification_mark_bm()->isMarked(addr);
2181    tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2182                  result ? "IS" : "is NOT");
2183    return result;
2184  } else {
2185    tty->print_cr("Could not compute result");
2186    return false;
2187  }
2188}
2189#endif
2190
2191void
2192CMSCollector::print_on_error(outputStream* st) {
2193  CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2194  if (collector != NULL) {
2195    CMSBitMap* bitmap = &collector->_markBitMap;
2196    st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2197    bitmap->print_on_error(st, " Bits: ");
2198
2199    st->cr();
2200
2201    CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2202    st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2203    mut_bitmap->print_on_error(st, " Bits: ");
2204  }
2205}
2206
2207////////////////////////////////////////////////////////
2208// CMS Verification Support
2209////////////////////////////////////////////////////////
2210// Following the remark phase, the following invariant
2211// should hold -- each object in the CMS heap which is
2212// marked in markBitMap() should be marked in the verification_mark_bm().
2213
2214class VerifyMarkedClosure: public BitMapClosure {
2215  CMSBitMap* _marks;
2216  bool       _failed;
2217
2218 public:
2219  VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2220
2221  bool do_bit(size_t offset) {
2222    HeapWord* addr = _marks->offsetToHeapWord(offset);
2223    if (!_marks->isMarked(addr)) {
2224      Log(gc, verify) log;
2225      ResourceMark rm;
2226      oop(addr)->print_on(log.error_stream());
2227      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2228      _failed = true;
2229    }
2230    return true;
2231  }
2232
2233  bool failed() { return _failed; }
2234};
2235
2236bool CMSCollector::verify_after_remark() {
2237  GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2238  MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2239  static bool init = false;
2240
2241  assert(SafepointSynchronize::is_at_safepoint(),
2242         "Else mutations in object graph will make answer suspect");
2243  assert(have_cms_token(),
2244         "Else there may be mutual interference in use of "
2245         " verification data structures");
2246  assert(_collectorState > Marking && _collectorState <= Sweeping,
2247         "Else marking info checked here may be obsolete");
2248  assert(haveFreelistLocks(), "must hold free list locks");
2249  assert_lock_strong(bitMapLock());
2250
2251
2252  // Allocate marking bit map if not already allocated
2253  if (!init) { // first time
2254    if (!verification_mark_bm()->allocate(_span)) {
2255      return false;
2256    }
2257    init = true;
2258  }
2259
2260  assert(verification_mark_stack()->isEmpty(), "Should be empty");
2261
2262  // Turn off refs discovery -- so we will be tracing through refs.
2263  // This is as intended, because by this time
2264  // GC must already have cleared any refs that need to be cleared,
2265  // and traced those that need to be marked; moreover,
2266  // the marking done here is not going to interfere in any
2267  // way with the marking information used by GC.
2268  NoRefDiscovery no_discovery(ref_processor());
2269
2270#if defined(COMPILER2) || INCLUDE_JVMCI
2271  DerivedPointerTableDeactivate dpt_deact;
2272#endif
2273
2274  // Clear any marks from a previous round
2275  verification_mark_bm()->clear_all();
2276  assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2277  verify_work_stacks_empty();
2278
2279  GenCollectedHeap* gch = GenCollectedHeap::heap();
2280  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2281  // Update the saved marks which may affect the root scans.
2282  gch->save_marks();
2283
2284  if (CMSRemarkVerifyVariant == 1) {
2285    // In this first variant of verification, we complete
2286    // all marking, then check if the new marks-vector is
2287    // a subset of the CMS marks-vector.
2288    verify_after_remark_work_1();
2289  } else {
2290    guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2291    // In this second variant of verification, we flag an error
2292    // (i.e. an object reachable in the new marks-vector not reachable
2293    // in the CMS marks-vector) immediately, also indicating the
2294    // identify of an object (A) that references the unmarked object (B) --
2295    // presumably, a mutation to A failed to be picked up by preclean/remark?
2296    verify_after_remark_work_2();
2297  }
2298
2299  return true;
2300}
2301
2302void CMSCollector::verify_after_remark_work_1() {
2303  ResourceMark rm;
2304  HandleMark  hm;
2305  GenCollectedHeap* gch = GenCollectedHeap::heap();
2306
2307  // Get a clear set of claim bits for the roots processing to work with.
2308  ClassLoaderDataGraph::clear_claimed_marks();
2309
2310  // Mark from roots one level into CMS
2311  MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2312  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2313
2314  {
2315    StrongRootsScope srs(1);
2316
2317    gch->gen_process_roots(&srs,
2318                           GenCollectedHeap::OldGen,
2319                           true,   // young gen as roots
2320                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2321                           should_unload_classes(),
2322                           &notOlder,
2323                           NULL,
2324                           NULL);
2325  }
2326
2327  // Now mark from the roots
2328  MarkFromRootsClosure markFromRootsClosure(this, _span,
2329    verification_mark_bm(), verification_mark_stack(),
2330    false /* don't yield */, true /* verifying */);
2331  assert(_restart_addr == NULL, "Expected pre-condition");
2332  verification_mark_bm()->iterate(&markFromRootsClosure);
2333  while (_restart_addr != NULL) {
2334    // Deal with stack overflow: by restarting at the indicated
2335    // address.
2336    HeapWord* ra = _restart_addr;
2337    markFromRootsClosure.reset(ra);
2338    _restart_addr = NULL;
2339    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2340  }
2341  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2342  verify_work_stacks_empty();
2343
2344  // Marking completed -- now verify that each bit marked in
2345  // verification_mark_bm() is also marked in markBitMap(); flag all
2346  // errors by printing corresponding objects.
2347  VerifyMarkedClosure vcl(markBitMap());
2348  verification_mark_bm()->iterate(&vcl);
2349  if (vcl.failed()) {
2350    Log(gc, verify) log;
2351    log.error("Failed marking verification after remark");
2352    ResourceMark rm;
2353    gch->print_on(log.error_stream());
2354    fatal("CMS: failed marking verification after remark");
2355  }
2356}
2357
2358class VerifyKlassOopsKlassClosure : public KlassClosure {
2359  class VerifyKlassOopsClosure : public OopClosure {
2360    CMSBitMap* _bitmap;
2361   public:
2362    VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2363    void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2364    void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2365  } _oop_closure;
2366 public:
2367  VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2368  void do_klass(Klass* k) {
2369    k->oops_do(&_oop_closure);
2370  }
2371};
2372
2373void CMSCollector::verify_after_remark_work_2() {
2374  ResourceMark rm;
2375  HandleMark  hm;
2376  GenCollectedHeap* gch = GenCollectedHeap::heap();
2377
2378  // Get a clear set of claim bits for the roots processing to work with.
2379  ClassLoaderDataGraph::clear_claimed_marks();
2380
2381  // Mark from roots one level into CMS
2382  MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2383                                     markBitMap());
2384  CLDToOopClosure cld_closure(&notOlder, true);
2385
2386  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2387
2388  {
2389    StrongRootsScope srs(1);
2390
2391    gch->gen_process_roots(&srs,
2392                           GenCollectedHeap::OldGen,
2393                           true,   // young gen as roots
2394                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2395                           should_unload_classes(),
2396                           &notOlder,
2397                           NULL,
2398                           &cld_closure);
2399  }
2400
2401  // Now mark from the roots
2402  MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2403    verification_mark_bm(), markBitMap(), verification_mark_stack());
2404  assert(_restart_addr == NULL, "Expected pre-condition");
2405  verification_mark_bm()->iterate(&markFromRootsClosure);
2406  while (_restart_addr != NULL) {
2407    // Deal with stack overflow: by restarting at the indicated
2408    // address.
2409    HeapWord* ra = _restart_addr;
2410    markFromRootsClosure.reset(ra);
2411    _restart_addr = NULL;
2412    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2413  }
2414  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2415  verify_work_stacks_empty();
2416
2417  VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2418  ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2419
2420  // Marking completed -- now verify that each bit marked in
2421  // verification_mark_bm() is also marked in markBitMap(); flag all
2422  // errors by printing corresponding objects.
2423  VerifyMarkedClosure vcl(markBitMap());
2424  verification_mark_bm()->iterate(&vcl);
2425  assert(!vcl.failed(), "Else verification above should not have succeeded");
2426}
2427
2428void ConcurrentMarkSweepGeneration::save_marks() {
2429  // delegate to CMS space
2430  cmsSpace()->save_marks();
2431  for (uint i = 0; i < ParallelGCThreads; i++) {
2432    _par_gc_thread_states[i]->promo.startTrackingPromotions();
2433  }
2434}
2435
2436bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2437  return cmsSpace()->no_allocs_since_save_marks();
2438}
2439
2440#define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2441                                                                \
2442void ConcurrentMarkSweepGeneration::                            \
2443oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2444  cl->set_generation(this);                                     \
2445  cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2446  cl->reset_generation();                                       \
2447  save_marks();                                                 \
2448}
2449
2450ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2451
2452void
2453ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2454  if (freelistLock()->owned_by_self()) {
2455    Generation::oop_iterate(cl);
2456  } else {
2457    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2458    Generation::oop_iterate(cl);
2459  }
2460}
2461
2462void
2463ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2464  if (freelistLock()->owned_by_self()) {
2465    Generation::object_iterate(cl);
2466  } else {
2467    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2468    Generation::object_iterate(cl);
2469  }
2470}
2471
2472void
2473ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2474  if (freelistLock()->owned_by_self()) {
2475    Generation::safe_object_iterate(cl);
2476  } else {
2477    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2478    Generation::safe_object_iterate(cl);
2479  }
2480}
2481
2482void
2483ConcurrentMarkSweepGeneration::post_compact() {
2484}
2485
2486void
2487ConcurrentMarkSweepGeneration::prepare_for_verify() {
2488  // Fix the linear allocation blocks to look like free blocks.
2489
2490  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2491  // are not called when the heap is verified during universe initialization and
2492  // at vm shutdown.
2493  if (freelistLock()->owned_by_self()) {
2494    cmsSpace()->prepare_for_verify();
2495  } else {
2496    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2497    cmsSpace()->prepare_for_verify();
2498  }
2499}
2500
2501void
2502ConcurrentMarkSweepGeneration::verify() {
2503  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2504  // are not called when the heap is verified during universe initialization and
2505  // at vm shutdown.
2506  if (freelistLock()->owned_by_self()) {
2507    cmsSpace()->verify();
2508  } else {
2509    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2510    cmsSpace()->verify();
2511  }
2512}
2513
2514void CMSCollector::verify() {
2515  _cmsGen->verify();
2516}
2517
2518#ifndef PRODUCT
2519bool CMSCollector::overflow_list_is_empty() const {
2520  assert(_num_par_pushes >= 0, "Inconsistency");
2521  if (_overflow_list == NULL) {
2522    assert(_num_par_pushes == 0, "Inconsistency");
2523  }
2524  return _overflow_list == NULL;
2525}
2526
2527// The methods verify_work_stacks_empty() and verify_overflow_empty()
2528// merely consolidate assertion checks that appear to occur together frequently.
2529void CMSCollector::verify_work_stacks_empty() const {
2530  assert(_markStack.isEmpty(), "Marking stack should be empty");
2531  assert(overflow_list_is_empty(), "Overflow list should be empty");
2532}
2533
2534void CMSCollector::verify_overflow_empty() const {
2535  assert(overflow_list_is_empty(), "Overflow list should be empty");
2536  assert(no_preserved_marks(), "No preserved marks");
2537}
2538#endif // PRODUCT
2539
2540// Decide if we want to enable class unloading as part of the
2541// ensuing concurrent GC cycle. We will collect and
2542// unload classes if it's the case that:
2543// (1) an explicit gc request has been made and the flag
2544//     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2545// (2) (a) class unloading is enabled at the command line, and
2546//     (b) old gen is getting really full
2547// NOTE: Provided there is no change in the state of the heap between
2548// calls to this method, it should have idempotent results. Moreover,
2549// its results should be monotonically increasing (i.e. going from 0 to 1,
2550// but not 1 to 0) between successive calls between which the heap was
2551// not collected. For the implementation below, it must thus rely on
2552// the property that concurrent_cycles_since_last_unload()
2553// will not decrease unless a collection cycle happened and that
2554// _cmsGen->is_too_full() are
2555// themselves also monotonic in that sense. See check_monotonicity()
2556// below.
2557void CMSCollector::update_should_unload_classes() {
2558  _should_unload_classes = false;
2559  // Condition 1 above
2560  if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2561    _should_unload_classes = true;
2562  } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2563    // Disjuncts 2.b.(i,ii,iii) above
2564    _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2565                              CMSClassUnloadingMaxInterval)
2566                           || _cmsGen->is_too_full();
2567  }
2568}
2569
2570bool ConcurrentMarkSweepGeneration::is_too_full() const {
2571  bool res = should_concurrent_collect();
2572  res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2573  return res;
2574}
2575
2576void CMSCollector::setup_cms_unloading_and_verification_state() {
2577  const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2578                             || VerifyBeforeExit;
2579  const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2580
2581  // We set the proper root for this CMS cycle here.
2582  if (should_unload_classes()) {   // Should unload classes this cycle
2583    remove_root_scanning_option(rso);  // Shrink the root set appropriately
2584    set_verifying(should_verify);    // Set verification state for this cycle
2585    return;                            // Nothing else needs to be done at this time
2586  }
2587
2588  // Not unloading classes this cycle
2589  assert(!should_unload_classes(), "Inconsistency!");
2590
2591  // If we are not unloading classes then add SO_AllCodeCache to root
2592  // scanning options.
2593  add_root_scanning_option(rso);
2594
2595  if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2596    set_verifying(true);
2597  } else if (verifying() && !should_verify) {
2598    // We were verifying, but some verification flags got disabled.
2599    set_verifying(false);
2600    // Exclude symbols, strings and code cache elements from root scanning to
2601    // reduce IM and RM pauses.
2602    remove_root_scanning_option(rso);
2603  }
2604}
2605
2606
2607#ifndef PRODUCT
2608HeapWord* CMSCollector::block_start(const void* p) const {
2609  const HeapWord* addr = (HeapWord*)p;
2610  if (_span.contains(p)) {
2611    if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2612      return _cmsGen->cmsSpace()->block_start(p);
2613    }
2614  }
2615  return NULL;
2616}
2617#endif
2618
2619HeapWord*
2620ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2621                                                   bool   tlab,
2622                                                   bool   parallel) {
2623  CMSSynchronousYieldRequest yr;
2624  assert(!tlab, "Can't deal with TLAB allocation");
2625  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2626  expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2627  if (GCExpandToAllocateDelayMillis > 0) {
2628    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2629  }
2630  return have_lock_and_allocate(word_size, tlab);
2631}
2632
2633void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2634    size_t bytes,
2635    size_t expand_bytes,
2636    CMSExpansionCause::Cause cause)
2637{
2638
2639  bool success = expand(bytes, expand_bytes);
2640
2641  // remember why we expanded; this information is used
2642  // by shouldConcurrentCollect() when making decisions on whether to start
2643  // a new CMS cycle.
2644  if (success) {
2645    set_expansion_cause(cause);
2646    log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2647  }
2648}
2649
2650HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2651  HeapWord* res = NULL;
2652  MutexLocker x(ParGCRareEvent_lock);
2653  while (true) {
2654    // Expansion by some other thread might make alloc OK now:
2655    res = ps->lab.alloc(word_sz);
2656    if (res != NULL) return res;
2657    // If there's not enough expansion space available, give up.
2658    if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2659      return NULL;
2660    }
2661    // Otherwise, we try expansion.
2662    expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2663    // Now go around the loop and try alloc again;
2664    // A competing par_promote might beat us to the expansion space,
2665    // so we may go around the loop again if promotion fails again.
2666    if (GCExpandToAllocateDelayMillis > 0) {
2667      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2668    }
2669  }
2670}
2671
2672
2673bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2674  PromotionInfo* promo) {
2675  MutexLocker x(ParGCRareEvent_lock);
2676  size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2677  while (true) {
2678    // Expansion by some other thread might make alloc OK now:
2679    if (promo->ensure_spooling_space()) {
2680      assert(promo->has_spooling_space(),
2681             "Post-condition of successful ensure_spooling_space()");
2682      return true;
2683    }
2684    // If there's not enough expansion space available, give up.
2685    if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2686      return false;
2687    }
2688    // Otherwise, we try expansion.
2689    expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2690    // Now go around the loop and try alloc again;
2691    // A competing allocation might beat us to the expansion space,
2692    // so we may go around the loop again if allocation fails again.
2693    if (GCExpandToAllocateDelayMillis > 0) {
2694      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2695    }
2696  }
2697}
2698
2699void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2700  // Only shrink if a compaction was done so that all the free space
2701  // in the generation is in a contiguous block at the end.
2702  if (did_compact()) {
2703    CardGeneration::shrink(bytes);
2704  }
2705}
2706
2707void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2708  assert_locked_or_safepoint(Heap_lock);
2709}
2710
2711void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2712  assert_locked_or_safepoint(Heap_lock);
2713  assert_lock_strong(freelistLock());
2714  log_trace(gc)("Shrinking of CMS not yet implemented");
2715  return;
2716}
2717
2718
2719// Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2720// phases.
2721class CMSPhaseAccounting: public StackObj {
2722 public:
2723  CMSPhaseAccounting(CMSCollector *collector,
2724                     const char *title);
2725  ~CMSPhaseAccounting();
2726
2727 private:
2728  CMSCollector *_collector;
2729  const char *_title;
2730  GCTraceConcTime(Info, gc) _trace_time;
2731
2732 public:
2733  // Not MT-safe; so do not pass around these StackObj's
2734  // where they may be accessed by other threads.
2735  double wallclock_millis() {
2736    return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2737  }
2738};
2739
2740CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2741                                       const char *title) :
2742  _collector(collector), _title(title), _trace_time(title) {
2743
2744  _collector->resetYields();
2745  _collector->resetTimer();
2746  _collector->startTimer();
2747  _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2748}
2749
2750CMSPhaseAccounting::~CMSPhaseAccounting() {
2751  _collector->gc_timer_cm()->register_gc_concurrent_end();
2752  _collector->stopTimer();
2753  log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2754  log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2755}
2756
2757// CMS work
2758
2759// The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2760class CMSParMarkTask : public AbstractGangTask {
2761 protected:
2762  CMSCollector*     _collector;
2763  uint              _n_workers;
2764  CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2765      AbstractGangTask(name),
2766      _collector(collector),
2767      _n_workers(n_workers) {}
2768  // Work method in support of parallel rescan ... of young gen spaces
2769  void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2770                             ContiguousSpace* space,
2771                             HeapWord** chunk_array, size_t chunk_top);
2772  void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2773};
2774
2775// Parallel initial mark task
2776class CMSParInitialMarkTask: public CMSParMarkTask {
2777  StrongRootsScope* _strong_roots_scope;
2778 public:
2779  CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2780      CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2781      _strong_roots_scope(strong_roots_scope) {}
2782  void work(uint worker_id);
2783};
2784
2785// Checkpoint the roots into this generation from outside
2786// this generation. [Note this initial checkpoint need only
2787// be approximate -- we'll do a catch up phase subsequently.]
2788void CMSCollector::checkpointRootsInitial() {
2789  assert(_collectorState == InitialMarking, "Wrong collector state");
2790  check_correct_thread_executing();
2791  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2792
2793  save_heap_summary();
2794  report_heap_summary(GCWhen::BeforeGC);
2795
2796  ReferenceProcessor* rp = ref_processor();
2797  assert(_restart_addr == NULL, "Control point invariant");
2798  {
2799    // acquire locks for subsequent manipulations
2800    MutexLockerEx x(bitMapLock(),
2801                    Mutex::_no_safepoint_check_flag);
2802    checkpointRootsInitialWork();
2803    // enable ("weak") refs discovery
2804    rp->enable_discovery();
2805    _collectorState = Marking;
2806  }
2807}
2808
2809void CMSCollector::checkpointRootsInitialWork() {
2810  assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2811  assert(_collectorState == InitialMarking, "just checking");
2812
2813  // Already have locks.
2814  assert_lock_strong(bitMapLock());
2815  assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2816
2817  // Setup the verification and class unloading state for this
2818  // CMS collection cycle.
2819  setup_cms_unloading_and_verification_state();
2820
2821  GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2822
2823  // Reset all the PLAB chunk arrays if necessary.
2824  if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2825    reset_survivor_plab_arrays();
2826  }
2827
2828  ResourceMark rm;
2829  HandleMark  hm;
2830
2831  MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2832  GenCollectedHeap* gch = GenCollectedHeap::heap();
2833
2834  verify_work_stacks_empty();
2835  verify_overflow_empty();
2836
2837  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2838  // Update the saved marks which may affect the root scans.
2839  gch->save_marks();
2840
2841  // weak reference processing has not started yet.
2842  ref_processor()->set_enqueuing_is_done(false);
2843
2844  // Need to remember all newly created CLDs,
2845  // so that we can guarantee that the remark finds them.
2846  ClassLoaderDataGraph::remember_new_clds(true);
2847
2848  // Whenever a CLD is found, it will be claimed before proceeding to mark
2849  // the klasses. The claimed marks need to be cleared before marking starts.
2850  ClassLoaderDataGraph::clear_claimed_marks();
2851
2852  print_eden_and_survivor_chunk_arrays();
2853
2854  {
2855#if defined(COMPILER2) || INCLUDE_JVMCI
2856    DerivedPointerTableDeactivate dpt_deact;
2857#endif
2858    if (CMSParallelInitialMarkEnabled) {
2859      // The parallel version.
2860      WorkGang* workers = gch->workers();
2861      assert(workers != NULL, "Need parallel worker threads.");
2862      uint n_workers = workers->active_workers();
2863
2864      StrongRootsScope srs(n_workers);
2865
2866      CMSParInitialMarkTask tsk(this, &srs, n_workers);
2867      initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2868      if (n_workers > 1) {
2869        workers->run_task(&tsk);
2870      } else {
2871        tsk.work(0);
2872      }
2873    } else {
2874      // The serial version.
2875      CLDToOopClosure cld_closure(&notOlder, true);
2876      gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2877
2878      StrongRootsScope srs(1);
2879
2880      gch->gen_process_roots(&srs,
2881                             GenCollectedHeap::OldGen,
2882                             true,   // young gen as roots
2883                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
2884                             should_unload_classes(),
2885                             &notOlder,
2886                             NULL,
2887                             &cld_closure);
2888    }
2889  }
2890
2891  // Clear mod-union table; it will be dirtied in the prologue of
2892  // CMS generation per each young generation collection.
2893
2894  assert(_modUnionTable.isAllClear(),
2895       "Was cleared in most recent final checkpoint phase"
2896       " or no bits are set in the gc_prologue before the start of the next "
2897       "subsequent marking phase.");
2898
2899  assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2900
2901  // Save the end of the used_region of the constituent generations
2902  // to be used to limit the extent of sweep in each generation.
2903  save_sweep_limits();
2904  verify_overflow_empty();
2905}
2906
2907bool CMSCollector::markFromRoots() {
2908  // we might be tempted to assert that:
2909  // assert(!SafepointSynchronize::is_at_safepoint(),
2910  //        "inconsistent argument?");
2911  // However that wouldn't be right, because it's possible that
2912  // a safepoint is indeed in progress as a young generation
2913  // stop-the-world GC happens even as we mark in this generation.
2914  assert(_collectorState == Marking, "inconsistent state?");
2915  check_correct_thread_executing();
2916  verify_overflow_empty();
2917
2918  // Weak ref discovery note: We may be discovering weak
2919  // refs in this generation concurrent (but interleaved) with
2920  // weak ref discovery by the young generation collector.
2921
2922  CMSTokenSyncWithLocks ts(true, bitMapLock());
2923  GCTraceCPUTime tcpu;
2924  CMSPhaseAccounting pa(this, "Concurrent Mark");
2925  bool res = markFromRootsWork();
2926  if (res) {
2927    _collectorState = Precleaning;
2928  } else { // We failed and a foreground collection wants to take over
2929    assert(_foregroundGCIsActive, "internal state inconsistency");
2930    assert(_restart_addr == NULL,  "foreground will restart from scratch");
2931    log_debug(gc)("bailing out to foreground collection");
2932  }
2933  verify_overflow_empty();
2934  return res;
2935}
2936
2937bool CMSCollector::markFromRootsWork() {
2938  // iterate over marked bits in bit map, doing a full scan and mark
2939  // from these roots using the following algorithm:
2940  // . if oop is to the right of the current scan pointer,
2941  //   mark corresponding bit (we'll process it later)
2942  // . else (oop is to left of current scan pointer)
2943  //   push oop on marking stack
2944  // . drain the marking stack
2945
2946  // Note that when we do a marking step we need to hold the
2947  // bit map lock -- recall that direct allocation (by mutators)
2948  // and promotion (by the young generation collector) is also
2949  // marking the bit map. [the so-called allocate live policy.]
2950  // Because the implementation of bit map marking is not
2951  // robust wrt simultaneous marking of bits in the same word,
2952  // we need to make sure that there is no such interference
2953  // between concurrent such updates.
2954
2955  // already have locks
2956  assert_lock_strong(bitMapLock());
2957
2958  verify_work_stacks_empty();
2959  verify_overflow_empty();
2960  bool result = false;
2961  if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2962    result = do_marking_mt();
2963  } else {
2964    result = do_marking_st();
2965  }
2966  return result;
2967}
2968
2969// Forward decl
2970class CMSConcMarkingTask;
2971
2972class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2973  CMSCollector*       _collector;
2974  CMSConcMarkingTask* _task;
2975 public:
2976  virtual void yield();
2977
2978  // "n_threads" is the number of threads to be terminated.
2979  // "queue_set" is a set of work queues of other threads.
2980  // "collector" is the CMS collector associated with this task terminator.
2981  // "yield" indicates whether we need the gang as a whole to yield.
2982  CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2983    ParallelTaskTerminator(n_threads, queue_set),
2984    _collector(collector) { }
2985
2986  void set_task(CMSConcMarkingTask* task) {
2987    _task = task;
2988  }
2989};
2990
2991class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
2992  CMSConcMarkingTask* _task;
2993 public:
2994  bool should_exit_termination();
2995  void set_task(CMSConcMarkingTask* task) {
2996    _task = task;
2997  }
2998};
2999
3000// MT Concurrent Marking Task
3001class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3002  CMSCollector* _collector;
3003  uint          _n_workers;       // requested/desired # workers
3004  bool          _result;
3005  CompactibleFreeListSpace*  _cms_space;
3006  char          _pad_front[64];   // padding to ...
3007  HeapWord*     _global_finger;   // ... avoid sharing cache line
3008  char          _pad_back[64];
3009  HeapWord*     _restart_addr;
3010
3011  //  Exposed here for yielding support
3012  Mutex* const _bit_map_lock;
3013
3014  // The per thread work queues, available here for stealing
3015  OopTaskQueueSet*  _task_queues;
3016
3017  // Termination (and yielding) support
3018  CMSConcMarkingTerminator _term;
3019  CMSConcMarkingTerminatorTerminator _term_term;
3020
3021 public:
3022  CMSConcMarkingTask(CMSCollector* collector,
3023                 CompactibleFreeListSpace* cms_space,
3024                 YieldingFlexibleWorkGang* workers,
3025                 OopTaskQueueSet* task_queues):
3026    YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3027    _collector(collector),
3028    _cms_space(cms_space),
3029    _n_workers(0), _result(true),
3030    _task_queues(task_queues),
3031    _term(_n_workers, task_queues, _collector),
3032    _bit_map_lock(collector->bitMapLock())
3033  {
3034    _requested_size = _n_workers;
3035    _term.set_task(this);
3036    _term_term.set_task(this);
3037    _restart_addr = _global_finger = _cms_space->bottom();
3038  }
3039
3040
3041  OopTaskQueueSet* task_queues()  { return _task_queues; }
3042
3043  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3044
3045  HeapWord** global_finger_addr() { return &_global_finger; }
3046
3047  CMSConcMarkingTerminator* terminator() { return &_term; }
3048
3049  virtual void set_for_termination(uint active_workers) {
3050    terminator()->reset_for_reuse(active_workers);
3051  }
3052
3053  void work(uint worker_id);
3054  bool should_yield() {
3055    return    ConcurrentMarkSweepThread::should_yield()
3056           && !_collector->foregroundGCIsActive();
3057  }
3058
3059  virtual void coordinator_yield();  // stuff done by coordinator
3060  bool result() { return _result; }
3061
3062  void reset(HeapWord* ra) {
3063    assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3064    _restart_addr = _global_finger = ra;
3065    _term.reset_for_reuse();
3066  }
3067
3068  static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3069                                           OopTaskQueue* work_q);
3070
3071 private:
3072  void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3073  void do_work_steal(int i);
3074  void bump_global_finger(HeapWord* f);
3075};
3076
3077bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3078  assert(_task != NULL, "Error");
3079  return _task->yielding();
3080  // Note that we do not need the disjunct || _task->should_yield() above
3081  // because we want terminating threads to yield only if the task
3082  // is already in the midst of yielding, which happens only after at least one
3083  // thread has yielded.
3084}
3085
3086void CMSConcMarkingTerminator::yield() {
3087  if (_task->should_yield()) {
3088    _task->yield();
3089  } else {
3090    ParallelTaskTerminator::yield();
3091  }
3092}
3093
3094////////////////////////////////////////////////////////////////
3095// Concurrent Marking Algorithm Sketch
3096////////////////////////////////////////////////////////////////
3097// Until all tasks exhausted (both spaces):
3098// -- claim next available chunk
3099// -- bump global finger via CAS
3100// -- find first object that starts in this chunk
3101//    and start scanning bitmap from that position
3102// -- scan marked objects for oops
3103// -- CAS-mark target, and if successful:
3104//    . if target oop is above global finger (volatile read)
3105//      nothing to do
3106//    . if target oop is in chunk and above local finger
3107//        then nothing to do
3108//    . else push on work-queue
3109// -- Deal with possible overflow issues:
3110//    . local work-queue overflow causes stuff to be pushed on
3111//      global (common) overflow queue
3112//    . always first empty local work queue
3113//    . then get a batch of oops from global work queue if any
3114//    . then do work stealing
3115// -- When all tasks claimed (both spaces)
3116//    and local work queue empty,
3117//    then in a loop do:
3118//    . check global overflow stack; steal a batch of oops and trace
3119//    . try to steal from other threads oif GOS is empty
3120//    . if neither is available, offer termination
3121// -- Terminate and return result
3122//
3123void CMSConcMarkingTask::work(uint worker_id) {
3124  elapsedTimer _timer;
3125  ResourceMark rm;
3126  HandleMark hm;
3127
3128  DEBUG_ONLY(_collector->verify_overflow_empty();)
3129
3130  // Before we begin work, our work queue should be empty
3131  assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3132  // Scan the bitmap covering _cms_space, tracing through grey objects.
3133  _timer.start();
3134  do_scan_and_mark(worker_id, _cms_space);
3135  _timer.stop();
3136  log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3137
3138  // ... do work stealing
3139  _timer.reset();
3140  _timer.start();
3141  do_work_steal(worker_id);
3142  _timer.stop();
3143  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3144  assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3145  assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3146  // Note that under the current task protocol, the
3147  // following assertion is true even of the spaces
3148  // expanded since the completion of the concurrent
3149  // marking. XXX This will likely change under a strict
3150  // ABORT semantics.
3151  // After perm removal the comparison was changed to
3152  // greater than or equal to from strictly greater than.
3153  // Before perm removal the highest address sweep would
3154  // have been at the end of perm gen but now is at the
3155  // end of the tenured gen.
3156  assert(_global_finger >=  _cms_space->end(),
3157         "All tasks have been completed");
3158  DEBUG_ONLY(_collector->verify_overflow_empty();)
3159}
3160
3161void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3162  HeapWord* read = _global_finger;
3163  HeapWord* cur  = read;
3164  while (f > read) {
3165    cur = read;
3166    read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3167    if (cur == read) {
3168      // our cas succeeded
3169      assert(_global_finger >= f, "protocol consistency");
3170      break;
3171    }
3172  }
3173}
3174
3175// This is really inefficient, and should be redone by
3176// using (not yet available) block-read and -write interfaces to the
3177// stack and the work_queue. XXX FIX ME !!!
3178bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3179                                                      OopTaskQueue* work_q) {
3180  // Fast lock-free check
3181  if (ovflw_stk->length() == 0) {
3182    return false;
3183  }
3184  assert(work_q->size() == 0, "Shouldn't steal");
3185  MutexLockerEx ml(ovflw_stk->par_lock(),
3186                   Mutex::_no_safepoint_check_flag);
3187  // Grab up to 1/4 the size of the work queue
3188  size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3189                    (size_t)ParGCDesiredObjsFromOverflowList);
3190  num = MIN2(num, ovflw_stk->length());
3191  for (int i = (int) num; i > 0; i--) {
3192    oop cur = ovflw_stk->pop();
3193    assert(cur != NULL, "Counted wrong?");
3194    work_q->push(cur);
3195  }
3196  return num > 0;
3197}
3198
3199void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3200  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3201  int n_tasks = pst->n_tasks();
3202  // We allow that there may be no tasks to do here because
3203  // we are restarting after a stack overflow.
3204  assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3205  uint nth_task = 0;
3206
3207  HeapWord* aligned_start = sp->bottom();
3208  if (sp->used_region().contains(_restart_addr)) {
3209    // Align down to a card boundary for the start of 0th task
3210    // for this space.
3211    aligned_start =
3212      (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3213                                 CardTableModRefBS::card_size);
3214  }
3215
3216  size_t chunk_size = sp->marking_task_size();
3217  while (!pst->is_task_claimed(/* reference */ nth_task)) {
3218    // Having claimed the nth task in this space,
3219    // compute the chunk that it corresponds to:
3220    MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3221                               aligned_start + (nth_task+1)*chunk_size);
3222    // Try and bump the global finger via a CAS;
3223    // note that we need to do the global finger bump
3224    // _before_ taking the intersection below, because
3225    // the task corresponding to that region will be
3226    // deemed done even if the used_region() expands
3227    // because of allocation -- as it almost certainly will
3228    // during start-up while the threads yield in the
3229    // closure below.
3230    HeapWord* finger = span.end();
3231    bump_global_finger(finger);   // atomically
3232    // There are null tasks here corresponding to chunks
3233    // beyond the "top" address of the space.
3234    span = span.intersection(sp->used_region());
3235    if (!span.is_empty()) {  // Non-null task
3236      HeapWord* prev_obj;
3237      assert(!span.contains(_restart_addr) || nth_task == 0,
3238             "Inconsistency");
3239      if (nth_task == 0) {
3240        // For the 0th task, we'll not need to compute a block_start.
3241        if (span.contains(_restart_addr)) {
3242          // In the case of a restart because of stack overflow,
3243          // we might additionally skip a chunk prefix.
3244          prev_obj = _restart_addr;
3245        } else {
3246          prev_obj = span.start();
3247        }
3248      } else {
3249        // We want to skip the first object because
3250        // the protocol is to scan any object in its entirety
3251        // that _starts_ in this span; a fortiori, any
3252        // object starting in an earlier span is scanned
3253        // as part of an earlier claimed task.
3254        // Below we use the "careful" version of block_start
3255        // so we do not try to navigate uninitialized objects.
3256        prev_obj = sp->block_start_careful(span.start());
3257        // Below we use a variant of block_size that uses the
3258        // Printezis bits to avoid waiting for allocated
3259        // objects to become initialized/parsable.
3260        while (prev_obj < span.start()) {
3261          size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3262          if (sz > 0) {
3263            prev_obj += sz;
3264          } else {
3265            // In this case we may end up doing a bit of redundant
3266            // scanning, but that appears unavoidable, short of
3267            // locking the free list locks; see bug 6324141.
3268            break;
3269          }
3270        }
3271      }
3272      if (prev_obj < span.end()) {
3273        MemRegion my_span = MemRegion(prev_obj, span.end());
3274        // Do the marking work within a non-empty span --
3275        // the last argument to the constructor indicates whether the
3276        // iteration should be incremental with periodic yields.
3277        ParMarkFromRootsClosure cl(this, _collector, my_span,
3278                                   &_collector->_markBitMap,
3279                                   work_queue(i),
3280                                   &_collector->_markStack);
3281        _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3282      } // else nothing to do for this task
3283    }   // else nothing to do for this task
3284  }
3285  // We'd be tempted to assert here that since there are no
3286  // more tasks left to claim in this space, the global_finger
3287  // must exceed space->top() and a fortiori space->end(). However,
3288  // that would not quite be correct because the bumping of
3289  // global_finger occurs strictly after the claiming of a task,
3290  // so by the time we reach here the global finger may not yet
3291  // have been bumped up by the thread that claimed the last
3292  // task.
3293  pst->all_tasks_completed();
3294}
3295
3296class ParConcMarkingClosure: public MetadataAwareOopClosure {
3297 private:
3298  CMSCollector* _collector;
3299  CMSConcMarkingTask* _task;
3300  MemRegion     _span;
3301  CMSBitMap*    _bit_map;
3302  CMSMarkStack* _overflow_stack;
3303  OopTaskQueue* _work_queue;
3304 protected:
3305  DO_OOP_WORK_DEFN
3306 public:
3307  ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3308                        CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3309    MetadataAwareOopClosure(collector->ref_processor()),
3310    _collector(collector),
3311    _task(task),
3312    _span(collector->_span),
3313    _work_queue(work_queue),
3314    _bit_map(bit_map),
3315    _overflow_stack(overflow_stack)
3316  { }
3317  virtual void do_oop(oop* p);
3318  virtual void do_oop(narrowOop* p);
3319
3320  void trim_queue(size_t max);
3321  void handle_stack_overflow(HeapWord* lost);
3322  void do_yield_check() {
3323    if (_task->should_yield()) {
3324      _task->yield();
3325    }
3326  }
3327};
3328
3329DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3330
3331// Grey object scanning during work stealing phase --
3332// the salient assumption here is that any references
3333// that are in these stolen objects being scanned must
3334// already have been initialized (else they would not have
3335// been published), so we do not need to check for
3336// uninitialized objects before pushing here.
3337void ParConcMarkingClosure::do_oop(oop obj) {
3338  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3339  HeapWord* addr = (HeapWord*)obj;
3340  // Check if oop points into the CMS generation
3341  // and is not marked
3342  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3343    // a white object ...
3344    // If we manage to "claim" the object, by being the
3345    // first thread to mark it, then we push it on our
3346    // marking stack
3347    if (_bit_map->par_mark(addr)) {     // ... now grey
3348      // push on work queue (grey set)
3349      bool simulate_overflow = false;
3350      NOT_PRODUCT(
3351        if (CMSMarkStackOverflowALot &&
3352            _collector->simulate_overflow()) {
3353          // simulate a stack overflow
3354          simulate_overflow = true;
3355        }
3356      )
3357      if (simulate_overflow ||
3358          !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3359        // stack overflow
3360        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3361        // We cannot assert that the overflow stack is full because
3362        // it may have been emptied since.
3363        assert(simulate_overflow ||
3364               _work_queue->size() == _work_queue->max_elems(),
3365              "Else push should have succeeded");
3366        handle_stack_overflow(addr);
3367      }
3368    } // Else, some other thread got there first
3369    do_yield_check();
3370  }
3371}
3372
3373void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3374void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3375
3376void ParConcMarkingClosure::trim_queue(size_t max) {
3377  while (_work_queue->size() > max) {
3378    oop new_oop;
3379    if (_work_queue->pop_local(new_oop)) {
3380      assert(new_oop->is_oop(), "Should be an oop");
3381      assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3382      assert(_span.contains((HeapWord*)new_oop), "Not in span");
3383      new_oop->oop_iterate(this);  // do_oop() above
3384      do_yield_check();
3385    }
3386  }
3387}
3388
3389// Upon stack overflow, we discard (part of) the stack,
3390// remembering the least address amongst those discarded
3391// in CMSCollector's _restart_address.
3392void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3393  // We need to do this under a mutex to prevent other
3394  // workers from interfering with the work done below.
3395  MutexLockerEx ml(_overflow_stack->par_lock(),
3396                   Mutex::_no_safepoint_check_flag);
3397  // Remember the least grey address discarded
3398  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3399  _collector->lower_restart_addr(ra);
3400  _overflow_stack->reset();  // discard stack contents
3401  _overflow_stack->expand(); // expand the stack if possible
3402}
3403
3404
3405void CMSConcMarkingTask::do_work_steal(int i) {
3406  OopTaskQueue* work_q = work_queue(i);
3407  oop obj_to_scan;
3408  CMSBitMap* bm = &(_collector->_markBitMap);
3409  CMSMarkStack* ovflw = &(_collector->_markStack);
3410  int* seed = _collector->hash_seed(i);
3411  ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3412  while (true) {
3413    cl.trim_queue(0);
3414    assert(work_q->size() == 0, "Should have been emptied above");
3415    if (get_work_from_overflow_stack(ovflw, work_q)) {
3416      // Can't assert below because the work obtained from the
3417      // overflow stack may already have been stolen from us.
3418      // assert(work_q->size() > 0, "Work from overflow stack");
3419      continue;
3420    } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3421      assert(obj_to_scan->is_oop(), "Should be an oop");
3422      assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3423      obj_to_scan->oop_iterate(&cl);
3424    } else if (terminator()->offer_termination(&_term_term)) {
3425      assert(work_q->size() == 0, "Impossible!");
3426      break;
3427    } else if (yielding() || should_yield()) {
3428      yield();
3429    }
3430  }
3431}
3432
3433// This is run by the CMS (coordinator) thread.
3434void CMSConcMarkingTask::coordinator_yield() {
3435  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3436         "CMS thread should hold CMS token");
3437  // First give up the locks, then yield, then re-lock
3438  // We should probably use a constructor/destructor idiom to
3439  // do this unlock/lock or modify the MutexUnlocker class to
3440  // serve our purpose. XXX
3441  assert_lock_strong(_bit_map_lock);
3442  _bit_map_lock->unlock();
3443  ConcurrentMarkSweepThread::desynchronize(true);
3444  _collector->stopTimer();
3445  _collector->incrementYields();
3446
3447  // It is possible for whichever thread initiated the yield request
3448  // not to get a chance to wake up and take the bitmap lock between
3449  // this thread releasing it and reacquiring it. So, while the
3450  // should_yield() flag is on, let's sleep for a bit to give the
3451  // other thread a chance to wake up. The limit imposed on the number
3452  // of iterations is defensive, to avoid any unforseen circumstances
3453  // putting us into an infinite loop. Since it's always been this
3454  // (coordinator_yield()) method that was observed to cause the
3455  // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3456  // which is by default non-zero. For the other seven methods that
3457  // also perform the yield operation, as are using a different
3458  // parameter (CMSYieldSleepCount) which is by default zero. This way we
3459  // can enable the sleeping for those methods too, if necessary.
3460  // See 6442774.
3461  //
3462  // We really need to reconsider the synchronization between the GC
3463  // thread and the yield-requesting threads in the future and we
3464  // should really use wait/notify, which is the recommended
3465  // way of doing this type of interaction. Additionally, we should
3466  // consolidate the eight methods that do the yield operation and they
3467  // are almost identical into one for better maintainability and
3468  // readability. See 6445193.
3469  //
3470  // Tony 2006.06.29
3471  for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3472                   ConcurrentMarkSweepThread::should_yield() &&
3473                   !CMSCollector::foregroundGCIsActive(); ++i) {
3474    os::sleep(Thread::current(), 1, false);
3475  }
3476
3477  ConcurrentMarkSweepThread::synchronize(true);
3478  _bit_map_lock->lock_without_safepoint_check();
3479  _collector->startTimer();
3480}
3481
3482bool CMSCollector::do_marking_mt() {
3483  assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3484  uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3485                                                                  conc_workers()->active_workers(),
3486                                                                  Threads::number_of_non_daemon_threads());
3487  conc_workers()->set_active_workers(num_workers);
3488
3489  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3490
3491  CMSConcMarkingTask tsk(this,
3492                         cms_space,
3493                         conc_workers(),
3494                         task_queues());
3495
3496  // Since the actual number of workers we get may be different
3497  // from the number we requested above, do we need to do anything different
3498  // below? In particular, may be we need to subclass the SequantialSubTasksDone
3499  // class?? XXX
3500  cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3501
3502  // Refs discovery is already non-atomic.
3503  assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3504  assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3505  conc_workers()->start_task(&tsk);
3506  while (tsk.yielded()) {
3507    tsk.coordinator_yield();
3508    conc_workers()->continue_task(&tsk);
3509  }
3510  // If the task was aborted, _restart_addr will be non-NULL
3511  assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3512  while (_restart_addr != NULL) {
3513    // XXX For now we do not make use of ABORTED state and have not
3514    // yet implemented the right abort semantics (even in the original
3515    // single-threaded CMS case). That needs some more investigation
3516    // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3517    assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3518    // If _restart_addr is non-NULL, a marking stack overflow
3519    // occurred; we need to do a fresh marking iteration from the
3520    // indicated restart address.
3521    if (_foregroundGCIsActive) {
3522      // We may be running into repeated stack overflows, having
3523      // reached the limit of the stack size, while making very
3524      // slow forward progress. It may be best to bail out and
3525      // let the foreground collector do its job.
3526      // Clear _restart_addr, so that foreground GC
3527      // works from scratch. This avoids the headache of
3528      // a "rescan" which would otherwise be needed because
3529      // of the dirty mod union table & card table.
3530      _restart_addr = NULL;
3531      return false;
3532    }
3533    // Adjust the task to restart from _restart_addr
3534    tsk.reset(_restart_addr);
3535    cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3536                  _restart_addr);
3537    _restart_addr = NULL;
3538    // Get the workers going again
3539    conc_workers()->start_task(&tsk);
3540    while (tsk.yielded()) {
3541      tsk.coordinator_yield();
3542      conc_workers()->continue_task(&tsk);
3543    }
3544  }
3545  assert(tsk.completed(), "Inconsistency");
3546  assert(tsk.result() == true, "Inconsistency");
3547  return true;
3548}
3549
3550bool CMSCollector::do_marking_st() {
3551  ResourceMark rm;
3552  HandleMark   hm;
3553
3554  // Temporarily make refs discovery single threaded (non-MT)
3555  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3556  MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3557    &_markStack, CMSYield);
3558  // the last argument to iterate indicates whether the iteration
3559  // should be incremental with periodic yields.
3560  _markBitMap.iterate(&markFromRootsClosure);
3561  // If _restart_addr is non-NULL, a marking stack overflow
3562  // occurred; we need to do a fresh iteration from the
3563  // indicated restart address.
3564  while (_restart_addr != NULL) {
3565    if (_foregroundGCIsActive) {
3566      // We may be running into repeated stack overflows, having
3567      // reached the limit of the stack size, while making very
3568      // slow forward progress. It may be best to bail out and
3569      // let the foreground collector do its job.
3570      // Clear _restart_addr, so that foreground GC
3571      // works from scratch. This avoids the headache of
3572      // a "rescan" which would otherwise be needed because
3573      // of the dirty mod union table & card table.
3574      _restart_addr = NULL;
3575      return false;  // indicating failure to complete marking
3576    }
3577    // Deal with stack overflow:
3578    // we restart marking from _restart_addr
3579    HeapWord* ra = _restart_addr;
3580    markFromRootsClosure.reset(ra);
3581    _restart_addr = NULL;
3582    _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3583  }
3584  return true;
3585}
3586
3587void CMSCollector::preclean() {
3588  check_correct_thread_executing();
3589  assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3590  verify_work_stacks_empty();
3591  verify_overflow_empty();
3592  _abort_preclean = false;
3593  if (CMSPrecleaningEnabled) {
3594    if (!CMSEdenChunksRecordAlways) {
3595      _eden_chunk_index = 0;
3596    }
3597    size_t used = get_eden_used();
3598    size_t capacity = get_eden_capacity();
3599    // Don't start sampling unless we will get sufficiently
3600    // many samples.
3601    if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3602                * CMSScheduleRemarkEdenPenetration)) {
3603      _start_sampling = true;
3604    } else {
3605      _start_sampling = false;
3606    }
3607    GCTraceCPUTime tcpu;
3608    CMSPhaseAccounting pa(this, "Concurrent Preclean");
3609    preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3610  }
3611  CMSTokenSync x(true); // is cms thread
3612  if (CMSPrecleaningEnabled) {
3613    sample_eden();
3614    _collectorState = AbortablePreclean;
3615  } else {
3616    _collectorState = FinalMarking;
3617  }
3618  verify_work_stacks_empty();
3619  verify_overflow_empty();
3620}
3621
3622// Try and schedule the remark such that young gen
3623// occupancy is CMSScheduleRemarkEdenPenetration %.
3624void CMSCollector::abortable_preclean() {
3625  check_correct_thread_executing();
3626  assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3627  assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3628
3629  // If Eden's current occupancy is below this threshold,
3630  // immediately schedule the remark; else preclean
3631  // past the next scavenge in an effort to
3632  // schedule the pause as described above. By choosing
3633  // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3634  // we will never do an actual abortable preclean cycle.
3635  if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3636    GCTraceCPUTime tcpu;
3637    CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3638    // We need more smarts in the abortable preclean
3639    // loop below to deal with cases where allocation
3640    // in young gen is very very slow, and our precleaning
3641    // is running a losing race against a horde of
3642    // mutators intent on flooding us with CMS updates
3643    // (dirty cards).
3644    // One, admittedly dumb, strategy is to give up
3645    // after a certain number of abortable precleaning loops
3646    // or after a certain maximum time. We want to make
3647    // this smarter in the next iteration.
3648    // XXX FIX ME!!! YSR
3649    size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3650    while (!(should_abort_preclean() ||
3651             ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3652      workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3653      cumworkdone += workdone;
3654      loops++;
3655      // Voluntarily terminate abortable preclean phase if we have
3656      // been at it for too long.
3657      if ((CMSMaxAbortablePrecleanLoops != 0) &&
3658          loops >= CMSMaxAbortablePrecleanLoops) {
3659        log_debug(gc)(" CMS: abort preclean due to loops ");
3660        break;
3661      }
3662      if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3663        log_debug(gc)(" CMS: abort preclean due to time ");
3664        break;
3665      }
3666      // If we are doing little work each iteration, we should
3667      // take a short break.
3668      if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3669        // Sleep for some time, waiting for work to accumulate
3670        stopTimer();
3671        cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3672        startTimer();
3673        waited++;
3674      }
3675    }
3676    log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3677                               loops, waited, cumworkdone);
3678  }
3679  CMSTokenSync x(true); // is cms thread
3680  if (_collectorState != Idling) {
3681    assert(_collectorState == AbortablePreclean,
3682           "Spontaneous state transition?");
3683    _collectorState = FinalMarking;
3684  } // Else, a foreground collection completed this CMS cycle.
3685  return;
3686}
3687
3688// Respond to an Eden sampling opportunity
3689void CMSCollector::sample_eden() {
3690  // Make sure a young gc cannot sneak in between our
3691  // reading and recording of a sample.
3692  assert(Thread::current()->is_ConcurrentGC_thread(),
3693         "Only the cms thread may collect Eden samples");
3694  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3695         "Should collect samples while holding CMS token");
3696  if (!_start_sampling) {
3697    return;
3698  }
3699  // When CMSEdenChunksRecordAlways is true, the eden chunk array
3700  // is populated by the young generation.
3701  if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3702    if (_eden_chunk_index < _eden_chunk_capacity) {
3703      _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3704      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3705             "Unexpected state of Eden");
3706      // We'd like to check that what we just sampled is an oop-start address;
3707      // however, we cannot do that here since the object may not yet have been
3708      // initialized. So we'll instead do the check when we _use_ this sample
3709      // later.
3710      if (_eden_chunk_index == 0 ||
3711          (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3712                         _eden_chunk_array[_eden_chunk_index-1])
3713           >= CMSSamplingGrain)) {
3714        _eden_chunk_index++;  // commit sample
3715      }
3716    }
3717  }
3718  if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3719    size_t used = get_eden_used();
3720    size_t capacity = get_eden_capacity();
3721    assert(used <= capacity, "Unexpected state of Eden");
3722    if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3723      _abort_preclean = true;
3724    }
3725  }
3726}
3727
3728
3729size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3730  assert(_collectorState == Precleaning ||
3731         _collectorState == AbortablePreclean, "incorrect state");
3732  ResourceMark rm;
3733  HandleMark   hm;
3734
3735  // Precleaning is currently not MT but the reference processor
3736  // may be set for MT.  Disable it temporarily here.
3737  ReferenceProcessor* rp = ref_processor();
3738  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3739
3740  // Do one pass of scrubbing the discovered reference lists
3741  // to remove any reference objects with strongly-reachable
3742  // referents.
3743  if (clean_refs) {
3744    CMSPrecleanRefsYieldClosure yield_cl(this);
3745    assert(rp->span().equals(_span), "Spans should be equal");
3746    CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3747                                   &_markStack, true /* preclean */);
3748    CMSDrainMarkingStackClosure complete_trace(this,
3749                                   _span, &_markBitMap, &_markStack,
3750                                   &keep_alive, true /* preclean */);
3751
3752    // We don't want this step to interfere with a young
3753    // collection because we don't want to take CPU
3754    // or memory bandwidth away from the young GC threads
3755    // (which may be as many as there are CPUs).
3756    // Note that we don't need to protect ourselves from
3757    // interference with mutators because they can't
3758    // manipulate the discovered reference lists nor affect
3759    // the computed reachability of the referents, the
3760    // only properties manipulated by the precleaning
3761    // of these reference lists.
3762    stopTimer();
3763    CMSTokenSyncWithLocks x(true /* is cms thread */,
3764                            bitMapLock());
3765    startTimer();
3766    sample_eden();
3767
3768    // The following will yield to allow foreground
3769    // collection to proceed promptly. XXX YSR:
3770    // The code in this method may need further
3771    // tweaking for better performance and some restructuring
3772    // for cleaner interfaces.
3773    GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3774    rp->preclean_discovered_references(
3775          rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3776          gc_timer);
3777  }
3778
3779  if (clean_survivor) {  // preclean the active survivor space(s)
3780    PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3781                             &_markBitMap, &_modUnionTable,
3782                             &_markStack, true /* precleaning phase */);
3783    stopTimer();
3784    CMSTokenSyncWithLocks ts(true /* is cms thread */,
3785                             bitMapLock());
3786    startTimer();
3787    unsigned int before_count =
3788      GenCollectedHeap::heap()->total_collections();
3789    SurvivorSpacePrecleanClosure
3790      sss_cl(this, _span, &_markBitMap, &_markStack,
3791             &pam_cl, before_count, CMSYield);
3792    _young_gen->from()->object_iterate_careful(&sss_cl);
3793    _young_gen->to()->object_iterate_careful(&sss_cl);
3794  }
3795  MarkRefsIntoAndScanClosure
3796    mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3797             &_markStack, this, CMSYield,
3798             true /* precleaning phase */);
3799  // CAUTION: The following closure has persistent state that may need to
3800  // be reset upon a decrease in the sequence of addresses it
3801  // processes.
3802  ScanMarkedObjectsAgainCarefullyClosure
3803    smoac_cl(this, _span,
3804      &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3805
3806  // Preclean dirty cards in ModUnionTable and CardTable using
3807  // appropriate convergence criterion;
3808  // repeat CMSPrecleanIter times unless we find that
3809  // we are losing.
3810  assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3811  assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3812         "Bad convergence multiplier");
3813  assert(CMSPrecleanThreshold >= 100,
3814         "Unreasonably low CMSPrecleanThreshold");
3815
3816  size_t numIter, cumNumCards, lastNumCards, curNumCards;
3817  for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3818       numIter < CMSPrecleanIter;
3819       numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3820    curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3821    log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3822    // Either there are very few dirty cards, so re-mark
3823    // pause will be small anyway, or our pre-cleaning isn't
3824    // that much faster than the rate at which cards are being
3825    // dirtied, so we might as well stop and re-mark since
3826    // precleaning won't improve our re-mark time by much.
3827    if (curNumCards <= CMSPrecleanThreshold ||
3828        (numIter > 0 &&
3829         (curNumCards * CMSPrecleanDenominator >
3830         lastNumCards * CMSPrecleanNumerator))) {
3831      numIter++;
3832      cumNumCards += curNumCards;
3833      break;
3834    }
3835  }
3836
3837  preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3838
3839  curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3840  cumNumCards += curNumCards;
3841  log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3842                             curNumCards, cumNumCards, numIter);
3843  return cumNumCards;   // as a measure of useful work done
3844}
3845
3846// PRECLEANING NOTES:
3847// Precleaning involves:
3848// . reading the bits of the modUnionTable and clearing the set bits.
3849// . For the cards corresponding to the set bits, we scan the
3850//   objects on those cards. This means we need the free_list_lock
3851//   so that we can safely iterate over the CMS space when scanning
3852//   for oops.
3853// . When we scan the objects, we'll be both reading and setting
3854//   marks in the marking bit map, so we'll need the marking bit map.
3855// . For protecting _collector_state transitions, we take the CGC_lock.
3856//   Note that any races in the reading of of card table entries by the
3857//   CMS thread on the one hand and the clearing of those entries by the
3858//   VM thread or the setting of those entries by the mutator threads on the
3859//   other are quite benign. However, for efficiency it makes sense to keep
3860//   the VM thread from racing with the CMS thread while the latter is
3861//   dirty card info to the modUnionTable. We therefore also use the
3862//   CGC_lock to protect the reading of the card table and the mod union
3863//   table by the CM thread.
3864// . We run concurrently with mutator updates, so scanning
3865//   needs to be done carefully  -- we should not try to scan
3866//   potentially uninitialized objects.
3867//
3868// Locking strategy: While holding the CGC_lock, we scan over and
3869// reset a maximal dirty range of the mod union / card tables, then lock
3870// the free_list_lock and bitmap lock to do a full marking, then
3871// release these locks; and repeat the cycle. This allows for a
3872// certain amount of fairness in the sharing of these locks between
3873// the CMS collector on the one hand, and the VM thread and the
3874// mutators on the other.
3875
3876// NOTE: preclean_mod_union_table() and preclean_card_table()
3877// further below are largely identical; if you need to modify
3878// one of these methods, please check the other method too.
3879
3880size_t CMSCollector::preclean_mod_union_table(
3881  ConcurrentMarkSweepGeneration* old_gen,
3882  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3883  verify_work_stacks_empty();
3884  verify_overflow_empty();
3885
3886  // strategy: starting with the first card, accumulate contiguous
3887  // ranges of dirty cards; clear these cards, then scan the region
3888  // covered by these cards.
3889
3890  // Since all of the MUT is committed ahead, we can just use
3891  // that, in case the generations expand while we are precleaning.
3892  // It might also be fine to just use the committed part of the
3893  // generation, but we might potentially miss cards when the
3894  // generation is rapidly expanding while we are in the midst
3895  // of precleaning.
3896  HeapWord* startAddr = old_gen->reserved().start();
3897  HeapWord* endAddr   = old_gen->reserved().end();
3898
3899  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3900
3901  size_t numDirtyCards, cumNumDirtyCards;
3902  HeapWord *nextAddr, *lastAddr;
3903  for (cumNumDirtyCards = numDirtyCards = 0,
3904       nextAddr = lastAddr = startAddr;
3905       nextAddr < endAddr;
3906       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3907
3908    ResourceMark rm;
3909    HandleMark   hm;
3910
3911    MemRegion dirtyRegion;
3912    {
3913      stopTimer();
3914      // Potential yield point
3915      CMSTokenSync ts(true);
3916      startTimer();
3917      sample_eden();
3918      // Get dirty region starting at nextOffset (inclusive),
3919      // simultaneously clearing it.
3920      dirtyRegion =
3921        _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3922      assert(dirtyRegion.start() >= nextAddr,
3923             "returned region inconsistent?");
3924    }
3925    // Remember where the next search should begin.
3926    // The returned region (if non-empty) is a right open interval,
3927    // so lastOffset is obtained from the right end of that
3928    // interval.
3929    lastAddr = dirtyRegion.end();
3930    // Should do something more transparent and less hacky XXX
3931    numDirtyCards =
3932      _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3933
3934    // We'll scan the cards in the dirty region (with periodic
3935    // yields for foreground GC as needed).
3936    if (!dirtyRegion.is_empty()) {
3937      assert(numDirtyCards > 0, "consistency check");
3938      HeapWord* stop_point = NULL;
3939      stopTimer();
3940      // Potential yield point
3941      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3942                               bitMapLock());
3943      startTimer();
3944      {
3945        verify_work_stacks_empty();
3946        verify_overflow_empty();
3947        sample_eden();
3948        stop_point =
3949          old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3950      }
3951      if (stop_point != NULL) {
3952        // The careful iteration stopped early either because it found an
3953        // uninitialized object, or because we were in the midst of an
3954        // "abortable preclean", which should now be aborted. Redirty
3955        // the bits corresponding to the partially-scanned or unscanned
3956        // cards. We'll either restart at the next block boundary or
3957        // abort the preclean.
3958        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3959               "Should only be AbortablePreclean.");
3960        _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3961        if (should_abort_preclean()) {
3962          break; // out of preclean loop
3963        } else {
3964          // Compute the next address at which preclean should pick up;
3965          // might need bitMapLock in order to read P-bits.
3966          lastAddr = next_card_start_after_block(stop_point);
3967        }
3968      }
3969    } else {
3970      assert(lastAddr == endAddr, "consistency check");
3971      assert(numDirtyCards == 0, "consistency check");
3972      break;
3973    }
3974  }
3975  verify_work_stacks_empty();
3976  verify_overflow_empty();
3977  return cumNumDirtyCards;
3978}
3979
3980// NOTE: preclean_mod_union_table() above and preclean_card_table()
3981// below are largely identical; if you need to modify
3982// one of these methods, please check the other method too.
3983
3984size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3985  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3986  // strategy: it's similar to precleamModUnionTable above, in that
3987  // we accumulate contiguous ranges of dirty cards, mark these cards
3988  // precleaned, then scan the region covered by these cards.
3989  HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3990  HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3991
3992  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3993
3994  size_t numDirtyCards, cumNumDirtyCards;
3995  HeapWord *lastAddr, *nextAddr;
3996
3997  for (cumNumDirtyCards = numDirtyCards = 0,
3998       nextAddr = lastAddr = startAddr;
3999       nextAddr < endAddr;
4000       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4001
4002    ResourceMark rm;
4003    HandleMark   hm;
4004
4005    MemRegion dirtyRegion;
4006    {
4007      // See comments in "Precleaning notes" above on why we
4008      // do this locking. XXX Could the locking overheads be
4009      // too high when dirty cards are sparse? [I don't think so.]
4010      stopTimer();
4011      CMSTokenSync x(true); // is cms thread
4012      startTimer();
4013      sample_eden();
4014      // Get and clear dirty region from card table
4015      dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4016                                    MemRegion(nextAddr, endAddr),
4017                                    true,
4018                                    CardTableModRefBS::precleaned_card_val());
4019
4020      assert(dirtyRegion.start() >= nextAddr,
4021             "returned region inconsistent?");
4022    }
4023    lastAddr = dirtyRegion.end();
4024    numDirtyCards =
4025      dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4026
4027    if (!dirtyRegion.is_empty()) {
4028      stopTimer();
4029      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4030      startTimer();
4031      sample_eden();
4032      verify_work_stacks_empty();
4033      verify_overflow_empty();
4034      HeapWord* stop_point =
4035        old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4036      if (stop_point != NULL) {
4037        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4038               "Should only be AbortablePreclean.");
4039        _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4040        if (should_abort_preclean()) {
4041          break; // out of preclean loop
4042        } else {
4043          // Compute the next address at which preclean should pick up.
4044          lastAddr = next_card_start_after_block(stop_point);
4045        }
4046      }
4047    } else {
4048      break;
4049    }
4050  }
4051  verify_work_stacks_empty();
4052  verify_overflow_empty();
4053  return cumNumDirtyCards;
4054}
4055
4056class PrecleanKlassClosure : public KlassClosure {
4057  KlassToOopClosure _cm_klass_closure;
4058 public:
4059  PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4060  void do_klass(Klass* k) {
4061    if (k->has_accumulated_modified_oops()) {
4062      k->clear_accumulated_modified_oops();
4063
4064      _cm_klass_closure.do_klass(k);
4065    }
4066  }
4067};
4068
4069// The freelist lock is needed to prevent asserts, is it really needed?
4070void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4071
4072  cl->set_freelistLock(freelistLock);
4073
4074  CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4075
4076  // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4077  // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4078  PrecleanKlassClosure preclean_klass_closure(cl);
4079  ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4080
4081  verify_work_stacks_empty();
4082  verify_overflow_empty();
4083}
4084
4085void CMSCollector::checkpointRootsFinal() {
4086  assert(_collectorState == FinalMarking, "incorrect state transition?");
4087  check_correct_thread_executing();
4088  // world is stopped at this checkpoint
4089  assert(SafepointSynchronize::is_at_safepoint(),
4090         "world should be stopped");
4091  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4092
4093  verify_work_stacks_empty();
4094  verify_overflow_empty();
4095
4096  log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4097                _young_gen->used() / K, _young_gen->capacity() / K);
4098  {
4099    if (CMSScavengeBeforeRemark) {
4100      GenCollectedHeap* gch = GenCollectedHeap::heap();
4101      // Temporarily set flag to false, GCH->do_collection will
4102      // expect it to be false and set to true
4103      FlagSetting fl(gch->_is_gc_active, false);
4104
4105      gch->do_collection(true,                      // full (i.e. force, see below)
4106                         false,                     // !clear_all_soft_refs
4107                         0,                         // size
4108                         false,                     // is_tlab
4109                         GenCollectedHeap::YoungGen // type
4110        );
4111    }
4112    FreelistLocker x(this);
4113    MutexLockerEx y(bitMapLock(),
4114                    Mutex::_no_safepoint_check_flag);
4115    checkpointRootsFinalWork();
4116  }
4117  verify_work_stacks_empty();
4118  verify_overflow_empty();
4119}
4120
4121void CMSCollector::checkpointRootsFinalWork() {
4122  GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4123
4124  assert(haveFreelistLocks(), "must have free list locks");
4125  assert_lock_strong(bitMapLock());
4126
4127  ResourceMark rm;
4128  HandleMark   hm;
4129
4130  GenCollectedHeap* gch = GenCollectedHeap::heap();
4131
4132  if (should_unload_classes()) {
4133    CodeCache::gc_prologue();
4134  }
4135  assert(haveFreelistLocks(), "must have free list locks");
4136  assert_lock_strong(bitMapLock());
4137
4138  // We might assume that we need not fill TLAB's when
4139  // CMSScavengeBeforeRemark is set, because we may have just done
4140  // a scavenge which would have filled all TLAB's -- and besides
4141  // Eden would be empty. This however may not always be the case --
4142  // for instance although we asked for a scavenge, it may not have
4143  // happened because of a JNI critical section. We probably need
4144  // a policy for deciding whether we can in that case wait until
4145  // the critical section releases and then do the remark following
4146  // the scavenge, and skip it here. In the absence of that policy,
4147  // or of an indication of whether the scavenge did indeed occur,
4148  // we cannot rely on TLAB's having been filled and must do
4149  // so here just in case a scavenge did not happen.
4150  gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4151  // Update the saved marks which may affect the root scans.
4152  gch->save_marks();
4153
4154  print_eden_and_survivor_chunk_arrays();
4155
4156  {
4157#if defined(COMPILER2) || INCLUDE_JVMCI
4158    DerivedPointerTableDeactivate dpt_deact;
4159#endif
4160
4161    // Note on the role of the mod union table:
4162    // Since the marker in "markFromRoots" marks concurrently with
4163    // mutators, it is possible for some reachable objects not to have been
4164    // scanned. For instance, an only reference to an object A was
4165    // placed in object B after the marker scanned B. Unless B is rescanned,
4166    // A would be collected. Such updates to references in marked objects
4167    // are detected via the mod union table which is the set of all cards
4168    // dirtied since the first checkpoint in this GC cycle and prior to
4169    // the most recent young generation GC, minus those cleaned up by the
4170    // concurrent precleaning.
4171    if (CMSParallelRemarkEnabled) {
4172      GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4173      do_remark_parallel();
4174    } else {
4175      GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4176      do_remark_non_parallel();
4177    }
4178  }
4179  verify_work_stacks_empty();
4180  verify_overflow_empty();
4181
4182  {
4183    GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4184    refProcessingWork();
4185  }
4186  verify_work_stacks_empty();
4187  verify_overflow_empty();
4188
4189  if (should_unload_classes()) {
4190    CodeCache::gc_epilogue();
4191  }
4192  JvmtiExport::gc_epilogue();
4193
4194  // If we encountered any (marking stack / work queue) overflow
4195  // events during the current CMS cycle, take appropriate
4196  // remedial measures, where possible, so as to try and avoid
4197  // recurrence of that condition.
4198  assert(_markStack.isEmpty(), "No grey objects");
4199  size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4200                     _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4201  if (ser_ovflw > 0) {
4202    log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4203                         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4204    _markStack.expand();
4205    _ser_pmc_remark_ovflw = 0;
4206    _ser_pmc_preclean_ovflw = 0;
4207    _ser_kac_preclean_ovflw = 0;
4208    _ser_kac_ovflw = 0;
4209  }
4210  if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4211     log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4212                          _par_pmc_remark_ovflw, _par_kac_ovflw);
4213     _par_pmc_remark_ovflw = 0;
4214    _par_kac_ovflw = 0;
4215  }
4216   if (_markStack._hit_limit > 0) {
4217     log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4218                          _markStack._hit_limit);
4219   }
4220   if (_markStack._failed_double > 0) {
4221     log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4222                          _markStack._failed_double, _markStack.capacity());
4223   }
4224  _markStack._hit_limit = 0;
4225  _markStack._failed_double = 0;
4226
4227  if ((VerifyAfterGC || VerifyDuringGC) &&
4228      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4229    verify_after_remark();
4230  }
4231
4232  _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4233
4234  // Change under the freelistLocks.
4235  _collectorState = Sweeping;
4236  // Call isAllClear() under bitMapLock
4237  assert(_modUnionTable.isAllClear(),
4238      "Should be clear by end of the final marking");
4239  assert(_ct->klass_rem_set()->mod_union_is_clear(),
4240      "Should be clear by end of the final marking");
4241}
4242
4243void CMSParInitialMarkTask::work(uint worker_id) {
4244  elapsedTimer _timer;
4245  ResourceMark rm;
4246  HandleMark   hm;
4247
4248  // ---------- scan from roots --------------
4249  _timer.start();
4250  GenCollectedHeap* gch = GenCollectedHeap::heap();
4251  ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4252
4253  // ---------- young gen roots --------------
4254  {
4255    work_on_young_gen_roots(worker_id, &par_mri_cl);
4256    _timer.stop();
4257    log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4258  }
4259
4260  // ---------- remaining roots --------------
4261  _timer.reset();
4262  _timer.start();
4263
4264  CLDToOopClosure cld_closure(&par_mri_cl, true);
4265
4266  gch->gen_process_roots(_strong_roots_scope,
4267                         GenCollectedHeap::OldGen,
4268                         false,     // yg was scanned above
4269                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4270                         _collector->should_unload_classes(),
4271                         &par_mri_cl,
4272                         NULL,
4273                         &cld_closure);
4274  assert(_collector->should_unload_classes()
4275         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4276         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4277  _timer.stop();
4278  log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4279}
4280
4281// Parallel remark task
4282class CMSParRemarkTask: public CMSParMarkTask {
4283  CompactibleFreeListSpace* _cms_space;
4284
4285  // The per-thread work queues, available here for stealing.
4286  OopTaskQueueSet*       _task_queues;
4287  ParallelTaskTerminator _term;
4288  StrongRootsScope*      _strong_roots_scope;
4289
4290 public:
4291  // A value of 0 passed to n_workers will cause the number of
4292  // workers to be taken from the active workers in the work gang.
4293  CMSParRemarkTask(CMSCollector* collector,
4294                   CompactibleFreeListSpace* cms_space,
4295                   uint n_workers, WorkGang* workers,
4296                   OopTaskQueueSet* task_queues,
4297                   StrongRootsScope* strong_roots_scope):
4298    CMSParMarkTask("Rescan roots and grey objects in parallel",
4299                   collector, n_workers),
4300    _cms_space(cms_space),
4301    _task_queues(task_queues),
4302    _term(n_workers, task_queues),
4303    _strong_roots_scope(strong_roots_scope) { }
4304
4305  OopTaskQueueSet* task_queues() { return _task_queues; }
4306
4307  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4308
4309  ParallelTaskTerminator* terminator() { return &_term; }
4310  uint n_workers() { return _n_workers; }
4311
4312  void work(uint worker_id);
4313
4314 private:
4315  // ... of  dirty cards in old space
4316  void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4317                                  ParMarkRefsIntoAndScanClosure* cl);
4318
4319  // ... work stealing for the above
4320  void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4321};
4322
4323class RemarkKlassClosure : public KlassClosure {
4324  KlassToOopClosure _cm_klass_closure;
4325 public:
4326  RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4327  void do_klass(Klass* k) {
4328    // Check if we have modified any oops in the Klass during the concurrent marking.
4329    if (k->has_accumulated_modified_oops()) {
4330      k->clear_accumulated_modified_oops();
4331
4332      // We could have transfered the current modified marks to the accumulated marks,
4333      // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4334    } else if (k->has_modified_oops()) {
4335      // Don't clear anything, this info is needed by the next young collection.
4336    } else {
4337      // No modified oops in the Klass.
4338      return;
4339    }
4340
4341    // The klass has modified fields, need to scan the klass.
4342    _cm_klass_closure.do_klass(k);
4343  }
4344};
4345
4346void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4347  ParNewGeneration* young_gen = _collector->_young_gen;
4348  ContiguousSpace* eden_space = young_gen->eden();
4349  ContiguousSpace* from_space = young_gen->from();
4350  ContiguousSpace* to_space   = young_gen->to();
4351
4352  HeapWord** eca = _collector->_eden_chunk_array;
4353  size_t     ect = _collector->_eden_chunk_index;
4354  HeapWord** sca = _collector->_survivor_chunk_array;
4355  size_t     sct = _collector->_survivor_chunk_index;
4356
4357  assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4358  assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4359
4360  do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4361  do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4362  do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4363}
4364
4365// work_queue(i) is passed to the closure
4366// ParMarkRefsIntoAndScanClosure.  The "i" parameter
4367// also is passed to do_dirty_card_rescan_tasks() and to
4368// do_work_steal() to select the i-th task_queue.
4369
4370void CMSParRemarkTask::work(uint worker_id) {
4371  elapsedTimer _timer;
4372  ResourceMark rm;
4373  HandleMark   hm;
4374
4375  // ---------- rescan from roots --------------
4376  _timer.start();
4377  GenCollectedHeap* gch = GenCollectedHeap::heap();
4378  ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4379    _collector->_span, _collector->ref_processor(),
4380    &(_collector->_markBitMap),
4381    work_queue(worker_id));
4382
4383  // Rescan young gen roots first since these are likely
4384  // coarsely partitioned and may, on that account, constitute
4385  // the critical path; thus, it's best to start off that
4386  // work first.
4387  // ---------- young gen roots --------------
4388  {
4389    work_on_young_gen_roots(worker_id, &par_mrias_cl);
4390    _timer.stop();
4391    log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4392  }
4393
4394  // ---------- remaining roots --------------
4395  _timer.reset();
4396  _timer.start();
4397  gch->gen_process_roots(_strong_roots_scope,
4398                         GenCollectedHeap::OldGen,
4399                         false,     // yg was scanned above
4400                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4401                         _collector->should_unload_classes(),
4402                         &par_mrias_cl,
4403                         NULL,
4404                         NULL);     // The dirty klasses will be handled below
4405
4406  assert(_collector->should_unload_classes()
4407         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4408         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4409  _timer.stop();
4410  log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4411
4412  // ---------- unhandled CLD scanning ----------
4413  if (worker_id == 0) { // Single threaded at the moment.
4414    _timer.reset();
4415    _timer.start();
4416
4417    // Scan all new class loader data objects and new dependencies that were
4418    // introduced during concurrent marking.
4419    ResourceMark rm;
4420    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4421    for (int i = 0; i < array->length(); i++) {
4422      par_mrias_cl.do_cld_nv(array->at(i));
4423    }
4424
4425    // We don't need to keep track of new CLDs anymore.
4426    ClassLoaderDataGraph::remember_new_clds(false);
4427
4428    _timer.stop();
4429    log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4430  }
4431
4432  // ---------- dirty klass scanning ----------
4433  if (worker_id == 0) { // Single threaded at the moment.
4434    _timer.reset();
4435    _timer.start();
4436
4437    // Scan all classes that was dirtied during the concurrent marking phase.
4438    RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4439    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4440
4441    _timer.stop();
4442    log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4443  }
4444
4445  // We might have added oops to ClassLoaderData::_handles during the
4446  // concurrent marking phase. These oops point to newly allocated objects
4447  // that are guaranteed to be kept alive. Either by the direct allocation
4448  // code, or when the young collector processes the roots. Hence,
4449  // we don't have to revisit the _handles block during the remark phase.
4450
4451  // ---------- rescan dirty cards ------------
4452  _timer.reset();
4453  _timer.start();
4454
4455  // Do the rescan tasks for each of the two spaces
4456  // (cms_space) in turn.
4457  // "worker_id" is passed to select the task_queue for "worker_id"
4458  do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4459  _timer.stop();
4460  log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4461
4462  // ---------- steal work from other threads ...
4463  // ---------- ... and drain overflow list.
4464  _timer.reset();
4465  _timer.start();
4466  do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4467  _timer.stop();
4468  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4469}
4470
4471// Note that parameter "i" is not used.
4472void
4473CMSParMarkTask::do_young_space_rescan(uint worker_id,
4474  OopsInGenClosure* cl, ContiguousSpace* space,
4475  HeapWord** chunk_array, size_t chunk_top) {
4476  // Until all tasks completed:
4477  // . claim an unclaimed task
4478  // . compute region boundaries corresponding to task claimed
4479  //   using chunk_array
4480  // . par_oop_iterate(cl) over that region
4481
4482  ResourceMark rm;
4483  HandleMark   hm;
4484
4485  SequentialSubTasksDone* pst = space->par_seq_tasks();
4486
4487  uint nth_task = 0;
4488  uint n_tasks  = pst->n_tasks();
4489
4490  if (n_tasks > 0) {
4491    assert(pst->valid(), "Uninitialized use?");
4492    HeapWord *start, *end;
4493    while (!pst->is_task_claimed(/* reference */ nth_task)) {
4494      // We claimed task # nth_task; compute its boundaries.
4495      if (chunk_top == 0) {  // no samples were taken
4496        assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4497        start = space->bottom();
4498        end   = space->top();
4499      } else if (nth_task == 0) {
4500        start = space->bottom();
4501        end   = chunk_array[nth_task];
4502      } else if (nth_task < (uint)chunk_top) {
4503        assert(nth_task >= 1, "Control point invariant");
4504        start = chunk_array[nth_task - 1];
4505        end   = chunk_array[nth_task];
4506      } else {
4507        assert(nth_task == (uint)chunk_top, "Control point invariant");
4508        start = chunk_array[chunk_top - 1];
4509        end   = space->top();
4510      }
4511      MemRegion mr(start, end);
4512      // Verify that mr is in space
4513      assert(mr.is_empty() || space->used_region().contains(mr),
4514             "Should be in space");
4515      // Verify that "start" is an object boundary
4516      assert(mr.is_empty() || oop(mr.start())->is_oop(),
4517             "Should be an oop");
4518      space->par_oop_iterate(mr, cl);
4519    }
4520    pst->all_tasks_completed();
4521  }
4522}
4523
4524void
4525CMSParRemarkTask::do_dirty_card_rescan_tasks(
4526  CompactibleFreeListSpace* sp, int i,
4527  ParMarkRefsIntoAndScanClosure* cl) {
4528  // Until all tasks completed:
4529  // . claim an unclaimed task
4530  // . compute region boundaries corresponding to task claimed
4531  // . transfer dirty bits ct->mut for that region
4532  // . apply rescanclosure to dirty mut bits for that region
4533
4534  ResourceMark rm;
4535  HandleMark   hm;
4536
4537  OopTaskQueue* work_q = work_queue(i);
4538  ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4539  // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4540  // CAUTION: This closure has state that persists across calls to
4541  // the work method dirty_range_iterate_clear() in that it has
4542  // embedded in it a (subtype of) UpwardsObjectClosure. The
4543  // use of that state in the embedded UpwardsObjectClosure instance
4544  // assumes that the cards are always iterated (even if in parallel
4545  // by several threads) in monotonically increasing order per each
4546  // thread. This is true of the implementation below which picks
4547  // card ranges (chunks) in monotonically increasing order globally
4548  // and, a-fortiori, in monotonically increasing order per thread
4549  // (the latter order being a subsequence of the former).
4550  // If the work code below is ever reorganized into a more chaotic
4551  // work-partitioning form than the current "sequential tasks"
4552  // paradigm, the use of that persistent state will have to be
4553  // revisited and modified appropriately. See also related
4554  // bug 4756801 work on which should examine this code to make
4555  // sure that the changes there do not run counter to the
4556  // assumptions made here and necessary for correctness and
4557  // efficiency. Note also that this code might yield inefficient
4558  // behavior in the case of very large objects that span one or
4559  // more work chunks. Such objects would potentially be scanned
4560  // several times redundantly. Work on 4756801 should try and
4561  // address that performance anomaly if at all possible. XXX
4562  MemRegion  full_span  = _collector->_span;
4563  CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4564  MarkFromDirtyCardsClosure
4565    greyRescanClosure(_collector, full_span, // entire span of interest
4566                      sp, bm, work_q, cl);
4567
4568  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4569  assert(pst->valid(), "Uninitialized use?");
4570  uint nth_task = 0;
4571  const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4572  MemRegion span = sp->used_region();
4573  HeapWord* start_addr = span.start();
4574  HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4575                                           alignment);
4576  const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4577  assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4578         start_addr, "Check alignment");
4579  assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4580         chunk_size, "Check alignment");
4581
4582  while (!pst->is_task_claimed(/* reference */ nth_task)) {
4583    // Having claimed the nth_task, compute corresponding mem-region,
4584    // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4585    // The alignment restriction ensures that we do not need any
4586    // synchronization with other gang-workers while setting or
4587    // clearing bits in thus chunk of the MUT.
4588    MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4589                                    start_addr + (nth_task+1)*chunk_size);
4590    // The last chunk's end might be way beyond end of the
4591    // used region. In that case pull back appropriately.
4592    if (this_span.end() > end_addr) {
4593      this_span.set_end(end_addr);
4594      assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4595    }
4596    // Iterate over the dirty cards covering this chunk, marking them
4597    // precleaned, and setting the corresponding bits in the mod union
4598    // table. Since we have been careful to partition at Card and MUT-word
4599    // boundaries no synchronization is needed between parallel threads.
4600    _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4601                                                 &modUnionClosure);
4602
4603    // Having transferred these marks into the modUnionTable,
4604    // rescan the marked objects on the dirty cards in the modUnionTable.
4605    // Even if this is at a synchronous collection, the initial marking
4606    // may have been done during an asynchronous collection so there
4607    // may be dirty bits in the mod-union table.
4608    _collector->_modUnionTable.dirty_range_iterate_clear(
4609                  this_span, &greyRescanClosure);
4610    _collector->_modUnionTable.verifyNoOneBitsInRange(
4611                                 this_span.start(),
4612                                 this_span.end());
4613  }
4614  pst->all_tasks_completed();  // declare that i am done
4615}
4616
4617// . see if we can share work_queues with ParNew? XXX
4618void
4619CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4620                                int* seed) {
4621  OopTaskQueue* work_q = work_queue(i);
4622  NOT_PRODUCT(int num_steals = 0;)
4623  oop obj_to_scan;
4624  CMSBitMap* bm = &(_collector->_markBitMap);
4625
4626  while (true) {
4627    // Completely finish any left over work from (an) earlier round(s)
4628    cl->trim_queue(0);
4629    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4630                                         (size_t)ParGCDesiredObjsFromOverflowList);
4631    // Now check if there's any work in the overflow list
4632    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4633    // only affects the number of attempts made to get work from the
4634    // overflow list and does not affect the number of workers.  Just
4635    // pass ParallelGCThreads so this behavior is unchanged.
4636    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4637                                                work_q,
4638                                                ParallelGCThreads)) {
4639      // found something in global overflow list;
4640      // not yet ready to go stealing work from others.
4641      // We'd like to assert(work_q->size() != 0, ...)
4642      // because we just took work from the overflow list,
4643      // but of course we can't since all of that could have
4644      // been already stolen from us.
4645      // "He giveth and He taketh away."
4646      continue;
4647    }
4648    // Verify that we have no work before we resort to stealing
4649    assert(work_q->size() == 0, "Have work, shouldn't steal");
4650    // Try to steal from other queues that have work
4651    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4652      NOT_PRODUCT(num_steals++;)
4653      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4654      assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4655      // Do scanning work
4656      obj_to_scan->oop_iterate(cl);
4657      // Loop around, finish this work, and try to steal some more
4658    } else if (terminator()->offer_termination()) {
4659        break;  // nirvana from the infinite cycle
4660    }
4661  }
4662  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4663  assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4664         "Else our work is not yet done");
4665}
4666
4667// Record object boundaries in _eden_chunk_array by sampling the eden
4668// top in the slow-path eden object allocation code path and record
4669// the boundaries, if CMSEdenChunksRecordAlways is true. If
4670// CMSEdenChunksRecordAlways is false, we use the other asynchronous
4671// sampling in sample_eden() that activates during the part of the
4672// preclean phase.
4673void CMSCollector::sample_eden_chunk() {
4674  if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4675    if (_eden_chunk_lock->try_lock()) {
4676      // Record a sample. This is the critical section. The contents
4677      // of the _eden_chunk_array have to be non-decreasing in the
4678      // address order.
4679      _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4680      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4681             "Unexpected state of Eden");
4682      if (_eden_chunk_index == 0 ||
4683          ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4684           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4685                          _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4686        _eden_chunk_index++;  // commit sample
4687      }
4688      _eden_chunk_lock->unlock();
4689    }
4690  }
4691}
4692
4693// Return a thread-local PLAB recording array, as appropriate.
4694void* CMSCollector::get_data_recorder(int thr_num) {
4695  if (_survivor_plab_array != NULL &&
4696      (CMSPLABRecordAlways ||
4697       (_collectorState > Marking && _collectorState < FinalMarking))) {
4698    assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4699    ChunkArray* ca = &_survivor_plab_array[thr_num];
4700    ca->reset();   // clear it so that fresh data is recorded
4701    return (void*) ca;
4702  } else {
4703    return NULL;
4704  }
4705}
4706
4707// Reset all the thread-local PLAB recording arrays
4708void CMSCollector::reset_survivor_plab_arrays() {
4709  for (uint i = 0; i < ParallelGCThreads; i++) {
4710    _survivor_plab_array[i].reset();
4711  }
4712}
4713
4714// Merge the per-thread plab arrays into the global survivor chunk
4715// array which will provide the partitioning of the survivor space
4716// for CMS initial scan and rescan.
4717void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4718                                              int no_of_gc_threads) {
4719  assert(_survivor_plab_array  != NULL, "Error");
4720  assert(_survivor_chunk_array != NULL, "Error");
4721  assert(_collectorState == FinalMarking ||
4722         (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4723  for (int j = 0; j < no_of_gc_threads; j++) {
4724    _cursor[j] = 0;
4725  }
4726  HeapWord* top = surv->top();
4727  size_t i;
4728  for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4729    HeapWord* min_val = top;          // Higher than any PLAB address
4730    uint      min_tid = 0;            // position of min_val this round
4731    for (int j = 0; j < no_of_gc_threads; j++) {
4732      ChunkArray* cur_sca = &_survivor_plab_array[j];
4733      if (_cursor[j] == cur_sca->end()) {
4734        continue;
4735      }
4736      assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4737      HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4738      assert(surv->used_region().contains(cur_val), "Out of bounds value");
4739      if (cur_val < min_val) {
4740        min_tid = j;
4741        min_val = cur_val;
4742      } else {
4743        assert(cur_val < top, "All recorded addresses should be less");
4744      }
4745    }
4746    // At this point min_val and min_tid are respectively
4747    // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4748    // and the thread (j) that witnesses that address.
4749    // We record this address in the _survivor_chunk_array[i]
4750    // and increment _cursor[min_tid] prior to the next round i.
4751    if (min_val == top) {
4752      break;
4753    }
4754    _survivor_chunk_array[i] = min_val;
4755    _cursor[min_tid]++;
4756  }
4757  // We are all done; record the size of the _survivor_chunk_array
4758  _survivor_chunk_index = i; // exclusive: [0, i)
4759  log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4760  // Verify that we used up all the recorded entries
4761  #ifdef ASSERT
4762    size_t total = 0;
4763    for (int j = 0; j < no_of_gc_threads; j++) {
4764      assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4765      total += _cursor[j];
4766    }
4767    assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4768    // Check that the merged array is in sorted order
4769    if (total > 0) {
4770      for (size_t i = 0; i < total - 1; i++) {
4771        log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4772                                     i, p2i(_survivor_chunk_array[i]));
4773        assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4774               "Not sorted");
4775      }
4776    }
4777  #endif // ASSERT
4778}
4779
4780// Set up the space's par_seq_tasks structure for work claiming
4781// for parallel initial scan and rescan of young gen.
4782// See ParRescanTask where this is currently used.
4783void
4784CMSCollector::
4785initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4786  assert(n_threads > 0, "Unexpected n_threads argument");
4787
4788  // Eden space
4789  if (!_young_gen->eden()->is_empty()) {
4790    SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4791    assert(!pst->valid(), "Clobbering existing data?");
4792    // Each valid entry in [0, _eden_chunk_index) represents a task.
4793    size_t n_tasks = _eden_chunk_index + 1;
4794    assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4795    // Sets the condition for completion of the subtask (how many threads
4796    // need to finish in order to be done).
4797    pst->set_n_threads(n_threads);
4798    pst->set_n_tasks((int)n_tasks);
4799  }
4800
4801  // Merge the survivor plab arrays into _survivor_chunk_array
4802  if (_survivor_plab_array != NULL) {
4803    merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4804  } else {
4805    assert(_survivor_chunk_index == 0, "Error");
4806  }
4807
4808  // To space
4809  {
4810    SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4811    assert(!pst->valid(), "Clobbering existing data?");
4812    // Sets the condition for completion of the subtask (how many threads
4813    // need to finish in order to be done).
4814    pst->set_n_threads(n_threads);
4815    pst->set_n_tasks(1);
4816    assert(pst->valid(), "Error");
4817  }
4818
4819  // From space
4820  {
4821    SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4822    assert(!pst->valid(), "Clobbering existing data?");
4823    size_t n_tasks = _survivor_chunk_index + 1;
4824    assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4825    // Sets the condition for completion of the subtask (how many threads
4826    // need to finish in order to be done).
4827    pst->set_n_threads(n_threads);
4828    pst->set_n_tasks((int)n_tasks);
4829    assert(pst->valid(), "Error");
4830  }
4831}
4832
4833// Parallel version of remark
4834void CMSCollector::do_remark_parallel() {
4835  GenCollectedHeap* gch = GenCollectedHeap::heap();
4836  WorkGang* workers = gch->workers();
4837  assert(workers != NULL, "Need parallel worker threads.");
4838  // Choose to use the number of GC workers most recently set
4839  // into "active_workers".
4840  uint n_workers = workers->active_workers();
4841
4842  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4843
4844  StrongRootsScope srs(n_workers);
4845
4846  CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4847
4848  // We won't be iterating over the cards in the card table updating
4849  // the younger_gen cards, so we shouldn't call the following else
4850  // the verification code as well as subsequent younger_refs_iterate
4851  // code would get confused. XXX
4852  // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4853
4854  // The young gen rescan work will not be done as part of
4855  // process_roots (which currently doesn't know how to
4856  // parallelize such a scan), but rather will be broken up into
4857  // a set of parallel tasks (via the sampling that the [abortable]
4858  // preclean phase did of eden, plus the [two] tasks of
4859  // scanning the [two] survivor spaces. Further fine-grain
4860  // parallelization of the scanning of the survivor spaces
4861  // themselves, and of precleaning of the young gen itself
4862  // is deferred to the future.
4863  initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4864
4865  // The dirty card rescan work is broken up into a "sequence"
4866  // of parallel tasks (per constituent space) that are dynamically
4867  // claimed by the parallel threads.
4868  cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4869
4870  // It turns out that even when we're using 1 thread, doing the work in a
4871  // separate thread causes wide variance in run times.  We can't help this
4872  // in the multi-threaded case, but we special-case n=1 here to get
4873  // repeatable measurements of the 1-thread overhead of the parallel code.
4874  if (n_workers > 1) {
4875    // Make refs discovery MT-safe, if it isn't already: it may not
4876    // necessarily be so, since it's possible that we are doing
4877    // ST marking.
4878    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4879    workers->run_task(&tsk);
4880  } else {
4881    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4882    tsk.work(0);
4883  }
4884
4885  // restore, single-threaded for now, any preserved marks
4886  // as a result of work_q overflow
4887  restore_preserved_marks_if_any();
4888}
4889
4890// Non-parallel version of remark
4891void CMSCollector::do_remark_non_parallel() {
4892  ResourceMark rm;
4893  HandleMark   hm;
4894  GenCollectedHeap* gch = GenCollectedHeap::heap();
4895  ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4896
4897  MarkRefsIntoAndScanClosure
4898    mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4899             &_markStack, this,
4900             false /* should_yield */, false /* not precleaning */);
4901  MarkFromDirtyCardsClosure
4902    markFromDirtyCardsClosure(this, _span,
4903                              NULL,  // space is set further below
4904                              &_markBitMap, &_markStack, &mrias_cl);
4905  {
4906    GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4907    // Iterate over the dirty cards, setting the corresponding bits in the
4908    // mod union table.
4909    {
4910      ModUnionClosure modUnionClosure(&_modUnionTable);
4911      _ct->ct_bs()->dirty_card_iterate(
4912                      _cmsGen->used_region(),
4913                      &modUnionClosure);
4914    }
4915    // Having transferred these marks into the modUnionTable, we just need
4916    // to rescan the marked objects on the dirty cards in the modUnionTable.
4917    // The initial marking may have been done during an asynchronous
4918    // collection so there may be dirty bits in the mod-union table.
4919    const int alignment =
4920      CardTableModRefBS::card_size * BitsPerWord;
4921    {
4922      // ... First handle dirty cards in CMS gen
4923      markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4924      MemRegion ur = _cmsGen->used_region();
4925      HeapWord* lb = ur.start();
4926      HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4927      MemRegion cms_span(lb, ub);
4928      _modUnionTable.dirty_range_iterate_clear(cms_span,
4929                                               &markFromDirtyCardsClosure);
4930      verify_work_stacks_empty();
4931      log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4932    }
4933  }
4934  if (VerifyDuringGC &&
4935      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4936    HandleMark hm;  // Discard invalid handles created during verification
4937    Universe::verify();
4938  }
4939  {
4940    GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4941
4942    verify_work_stacks_empty();
4943
4944    gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4945    StrongRootsScope srs(1);
4946
4947    gch->gen_process_roots(&srs,
4948                           GenCollectedHeap::OldGen,
4949                           true,  // young gen as roots
4950                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
4951                           should_unload_classes(),
4952                           &mrias_cl,
4953                           NULL,
4954                           NULL); // The dirty klasses will be handled below
4955
4956    assert(should_unload_classes()
4957           || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4958           "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4959  }
4960
4961  {
4962    GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4963
4964    verify_work_stacks_empty();
4965
4966    // Scan all class loader data objects that might have been introduced
4967    // during concurrent marking.
4968    ResourceMark rm;
4969    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4970    for (int i = 0; i < array->length(); i++) {
4971      mrias_cl.do_cld_nv(array->at(i));
4972    }
4973
4974    // We don't need to keep track of new CLDs anymore.
4975    ClassLoaderDataGraph::remember_new_clds(false);
4976
4977    verify_work_stacks_empty();
4978  }
4979
4980  {
4981    GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
4982
4983    verify_work_stacks_empty();
4984
4985    RemarkKlassClosure remark_klass_closure(&mrias_cl);
4986    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4987
4988    verify_work_stacks_empty();
4989  }
4990
4991  // We might have added oops to ClassLoaderData::_handles during the
4992  // concurrent marking phase. These oops point to newly allocated objects
4993  // that are guaranteed to be kept alive. Either by the direct allocation
4994  // code, or when the young collector processes the roots. Hence,
4995  // we don't have to revisit the _handles block during the remark phase.
4996
4997  verify_work_stacks_empty();
4998  // Restore evacuated mark words, if any, used for overflow list links
4999  restore_preserved_marks_if_any();
5000
5001  verify_overflow_empty();
5002}
5003
5004////////////////////////////////////////////////////////
5005// Parallel Reference Processing Task Proxy Class
5006////////////////////////////////////////////////////////
5007class AbstractGangTaskWOopQueues : public AbstractGangTask {
5008  OopTaskQueueSet*       _queues;
5009  ParallelTaskTerminator _terminator;
5010 public:
5011  AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5012    AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5013  ParallelTaskTerminator* terminator() { return &_terminator; }
5014  OopTaskQueueSet* queues() { return _queues; }
5015};
5016
5017class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5018  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5019  CMSCollector*          _collector;
5020  CMSBitMap*             _mark_bit_map;
5021  const MemRegion        _span;
5022  ProcessTask&           _task;
5023
5024public:
5025  CMSRefProcTaskProxy(ProcessTask&     task,
5026                      CMSCollector*    collector,
5027                      const MemRegion& span,
5028                      CMSBitMap*       mark_bit_map,
5029                      AbstractWorkGang* workers,
5030                      OopTaskQueueSet* task_queues):
5031    AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5032      task_queues,
5033      workers->active_workers()),
5034    _task(task),
5035    _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5036  {
5037    assert(_collector->_span.equals(_span) && !_span.is_empty(),
5038           "Inconsistency in _span");
5039  }
5040
5041  OopTaskQueueSet* task_queues() { return queues(); }
5042
5043  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5044
5045  void do_work_steal(int i,
5046                     CMSParDrainMarkingStackClosure* drain,
5047                     CMSParKeepAliveClosure* keep_alive,
5048                     int* seed);
5049
5050  virtual void work(uint worker_id);
5051};
5052
5053void CMSRefProcTaskProxy::work(uint worker_id) {
5054  ResourceMark rm;
5055  HandleMark hm;
5056  assert(_collector->_span.equals(_span), "Inconsistency in _span");
5057  CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5058                                        _mark_bit_map,
5059                                        work_queue(worker_id));
5060  CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5061                                                 _mark_bit_map,
5062                                                 work_queue(worker_id));
5063  CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5064  _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5065  if (_task.marks_oops_alive()) {
5066    do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5067                  _collector->hash_seed(worker_id));
5068  }
5069  assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5070  assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5071}
5072
5073class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5074  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5075  EnqueueTask& _task;
5076
5077public:
5078  CMSRefEnqueueTaskProxy(EnqueueTask& task)
5079    : AbstractGangTask("Enqueue reference objects in parallel"),
5080      _task(task)
5081  { }
5082
5083  virtual void work(uint worker_id)
5084  {
5085    _task.work(worker_id);
5086  }
5087};
5088
5089CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5090  MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5091   _span(span),
5092   _bit_map(bit_map),
5093   _work_queue(work_queue),
5094   _mark_and_push(collector, span, bit_map, work_queue),
5095   _low_water_mark(MIN2((work_queue->max_elems()/4),
5096                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5097{ }
5098
5099// . see if we can share work_queues with ParNew? XXX
5100void CMSRefProcTaskProxy::do_work_steal(int i,
5101  CMSParDrainMarkingStackClosure* drain,
5102  CMSParKeepAliveClosure* keep_alive,
5103  int* seed) {
5104  OopTaskQueue* work_q = work_queue(i);
5105  NOT_PRODUCT(int num_steals = 0;)
5106  oop obj_to_scan;
5107
5108  while (true) {
5109    // Completely finish any left over work from (an) earlier round(s)
5110    drain->trim_queue(0);
5111    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5112                                         (size_t)ParGCDesiredObjsFromOverflowList);
5113    // Now check if there's any work in the overflow list
5114    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5115    // only affects the number of attempts made to get work from the
5116    // overflow list and does not affect the number of workers.  Just
5117    // pass ParallelGCThreads so this behavior is unchanged.
5118    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5119                                                work_q,
5120                                                ParallelGCThreads)) {
5121      // Found something in global overflow list;
5122      // not yet ready to go stealing work from others.
5123      // We'd like to assert(work_q->size() != 0, ...)
5124      // because we just took work from the overflow list,
5125      // but of course we can't, since all of that might have
5126      // been already stolen from us.
5127      continue;
5128    }
5129    // Verify that we have no work before we resort to stealing
5130    assert(work_q->size() == 0, "Have work, shouldn't steal");
5131    // Try to steal from other queues that have work
5132    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5133      NOT_PRODUCT(num_steals++;)
5134      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5135      assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5136      // Do scanning work
5137      obj_to_scan->oop_iterate(keep_alive);
5138      // Loop around, finish this work, and try to steal some more
5139    } else if (terminator()->offer_termination()) {
5140      break;  // nirvana from the infinite cycle
5141    }
5142  }
5143  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5144}
5145
5146void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5147{
5148  GenCollectedHeap* gch = GenCollectedHeap::heap();
5149  WorkGang* workers = gch->workers();
5150  assert(workers != NULL, "Need parallel worker threads.");
5151  CMSRefProcTaskProxy rp_task(task, &_collector,
5152                              _collector.ref_processor()->span(),
5153                              _collector.markBitMap(),
5154                              workers, _collector.task_queues());
5155  workers->run_task(&rp_task);
5156}
5157
5158void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5159{
5160
5161  GenCollectedHeap* gch = GenCollectedHeap::heap();
5162  WorkGang* workers = gch->workers();
5163  assert(workers != NULL, "Need parallel worker threads.");
5164  CMSRefEnqueueTaskProxy enq_task(task);
5165  workers->run_task(&enq_task);
5166}
5167
5168void CMSCollector::refProcessingWork() {
5169  ResourceMark rm;
5170  HandleMark   hm;
5171
5172  ReferenceProcessor* rp = ref_processor();
5173  assert(rp->span().equals(_span), "Spans should be equal");
5174  assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5175  // Process weak references.
5176  rp->setup_policy(false);
5177  verify_work_stacks_empty();
5178
5179  CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5180                                          &_markStack, false /* !preclean */);
5181  CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5182                                _span, &_markBitMap, &_markStack,
5183                                &cmsKeepAliveClosure, false /* !preclean */);
5184  {
5185    GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5186
5187    ReferenceProcessorStats stats;
5188    if (rp->processing_is_mt()) {
5189      // Set the degree of MT here.  If the discovery is done MT, there
5190      // may have been a different number of threads doing the discovery
5191      // and a different number of discovered lists may have Ref objects.
5192      // That is OK as long as the Reference lists are balanced (see
5193      // balance_all_queues() and balance_queues()).
5194      GenCollectedHeap* gch = GenCollectedHeap::heap();
5195      uint active_workers = ParallelGCThreads;
5196      WorkGang* workers = gch->workers();
5197      if (workers != NULL) {
5198        active_workers = workers->active_workers();
5199        // The expectation is that active_workers will have already
5200        // been set to a reasonable value.  If it has not been set,
5201        // investigate.
5202        assert(active_workers > 0, "Should have been set during scavenge");
5203      }
5204      rp->set_active_mt_degree(active_workers);
5205      CMSRefProcTaskExecutor task_executor(*this);
5206      stats = rp->process_discovered_references(&_is_alive_closure,
5207                                        &cmsKeepAliveClosure,
5208                                        &cmsDrainMarkingStackClosure,
5209                                        &task_executor,
5210                                        _gc_timer_cm);
5211    } else {
5212      stats = rp->process_discovered_references(&_is_alive_closure,
5213                                        &cmsKeepAliveClosure,
5214                                        &cmsDrainMarkingStackClosure,
5215                                        NULL,
5216                                        _gc_timer_cm);
5217    }
5218    _gc_tracer_cm->report_gc_reference_stats(stats);
5219
5220  }
5221
5222  // This is the point where the entire marking should have completed.
5223  verify_work_stacks_empty();
5224
5225  if (should_unload_classes()) {
5226    {
5227      GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5228
5229      // Unload classes and purge the SystemDictionary.
5230      bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5231
5232      // Unload nmethods.
5233      CodeCache::do_unloading(&_is_alive_closure, purged_class);
5234
5235      // Prune dead klasses from subklass/sibling/implementor lists.
5236      Klass::clean_weak_klass_links(&_is_alive_closure);
5237    }
5238
5239    {
5240      GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5241      // Clean up unreferenced symbols in symbol table.
5242      SymbolTable::unlink();
5243    }
5244
5245    {
5246      GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5247      // Delete entries for dead interned strings.
5248      StringTable::unlink(&_is_alive_closure);
5249    }
5250  }
5251
5252
5253  // Restore any preserved marks as a result of mark stack or
5254  // work queue overflow
5255  restore_preserved_marks_if_any();  // done single-threaded for now
5256
5257  rp->set_enqueuing_is_done(true);
5258  if (rp->processing_is_mt()) {
5259    rp->balance_all_queues();
5260    CMSRefProcTaskExecutor task_executor(*this);
5261    rp->enqueue_discovered_references(&task_executor);
5262  } else {
5263    rp->enqueue_discovered_references(NULL);
5264  }
5265  rp->verify_no_references_recorded();
5266  assert(!rp->discovery_enabled(), "should have been disabled");
5267}
5268
5269#ifndef PRODUCT
5270void CMSCollector::check_correct_thread_executing() {
5271  Thread* t = Thread::current();
5272  // Only the VM thread or the CMS thread should be here.
5273  assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5274         "Unexpected thread type");
5275  // If this is the vm thread, the foreground process
5276  // should not be waiting.  Note that _foregroundGCIsActive is
5277  // true while the foreground collector is waiting.
5278  if (_foregroundGCShouldWait) {
5279    // We cannot be the VM thread
5280    assert(t->is_ConcurrentGC_thread(),
5281           "Should be CMS thread");
5282  } else {
5283    // We can be the CMS thread only if we are in a stop-world
5284    // phase of CMS collection.
5285    if (t->is_ConcurrentGC_thread()) {
5286      assert(_collectorState == InitialMarking ||
5287             _collectorState == FinalMarking,
5288             "Should be a stop-world phase");
5289      // The CMS thread should be holding the CMS_token.
5290      assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5291             "Potential interference with concurrently "
5292             "executing VM thread");
5293    }
5294  }
5295}
5296#endif
5297
5298void CMSCollector::sweep() {
5299  assert(_collectorState == Sweeping, "just checking");
5300  check_correct_thread_executing();
5301  verify_work_stacks_empty();
5302  verify_overflow_empty();
5303  increment_sweep_count();
5304  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5305
5306  _inter_sweep_timer.stop();
5307  _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5308
5309  assert(!_intra_sweep_timer.is_active(), "Should not be active");
5310  _intra_sweep_timer.reset();
5311  _intra_sweep_timer.start();
5312  {
5313    GCTraceCPUTime tcpu;
5314    CMSPhaseAccounting pa(this, "Concurrent Sweep");
5315    // First sweep the old gen
5316    {
5317      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5318                               bitMapLock());
5319      sweepWork(_cmsGen);
5320    }
5321
5322    // Update Universe::_heap_*_at_gc figures.
5323    // We need all the free list locks to make the abstract state
5324    // transition from Sweeping to Resetting. See detailed note
5325    // further below.
5326    {
5327      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5328      // Update heap occupancy information which is used as
5329      // input to soft ref clearing policy at the next gc.
5330      Universe::update_heap_info_at_gc();
5331      _collectorState = Resizing;
5332    }
5333  }
5334  verify_work_stacks_empty();
5335  verify_overflow_empty();
5336
5337  if (should_unload_classes()) {
5338    // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5339    // requires that the virtual spaces are stable and not deleted.
5340    ClassLoaderDataGraph::set_should_purge(true);
5341  }
5342
5343  _intra_sweep_timer.stop();
5344  _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5345
5346  _inter_sweep_timer.reset();
5347  _inter_sweep_timer.start();
5348
5349  // We need to use a monotonically non-decreasing time in ms
5350  // or we will see time-warp warnings and os::javaTimeMillis()
5351  // does not guarantee monotonicity.
5352  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5353  update_time_of_last_gc(now);
5354
5355  // NOTE on abstract state transitions:
5356  // Mutators allocate-live and/or mark the mod-union table dirty
5357  // based on the state of the collection.  The former is done in
5358  // the interval [Marking, Sweeping] and the latter in the interval
5359  // [Marking, Sweeping).  Thus the transitions into the Marking state
5360  // and out of the Sweeping state must be synchronously visible
5361  // globally to the mutators.
5362  // The transition into the Marking state happens with the world
5363  // stopped so the mutators will globally see it.  Sweeping is
5364  // done asynchronously by the background collector so the transition
5365  // from the Sweeping state to the Resizing state must be done
5366  // under the freelistLock (as is the check for whether to
5367  // allocate-live and whether to dirty the mod-union table).
5368  assert(_collectorState == Resizing, "Change of collector state to"
5369    " Resizing must be done under the freelistLocks (plural)");
5370
5371  // Now that sweeping has been completed, we clear
5372  // the incremental_collection_failed flag,
5373  // thus inviting a younger gen collection to promote into
5374  // this generation. If such a promotion may still fail,
5375  // the flag will be set again when a young collection is
5376  // attempted.
5377  GenCollectedHeap* gch = GenCollectedHeap::heap();
5378  gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5379  gch->update_full_collections_completed(_collection_count_start);
5380}
5381
5382// FIX ME!!! Looks like this belongs in CFLSpace, with
5383// CMSGen merely delegating to it.
5384void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5385  double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5386  HeapWord*  minAddr        = _cmsSpace->bottom();
5387  HeapWord*  largestAddr    =
5388    (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5389  if (largestAddr == NULL) {
5390    // The dictionary appears to be empty.  In this case
5391    // try to coalesce at the end of the heap.
5392    largestAddr = _cmsSpace->end();
5393  }
5394  size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5395  size_t nearLargestOffset =
5396    (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5397  log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5398                          p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5399  _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5400}
5401
5402bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5403  return addr >= _cmsSpace->nearLargestChunk();
5404}
5405
5406FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5407  return _cmsSpace->find_chunk_at_end();
5408}
5409
5410void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5411                                                    bool full) {
5412  // If the young generation has been collected, gather any statistics
5413  // that are of interest at this point.
5414  bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5415  if (!full && current_is_young) {
5416    // Gather statistics on the young generation collection.
5417    collector()->stats().record_gc0_end(used());
5418  }
5419}
5420
5421void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5422  // We iterate over the space(s) underlying this generation,
5423  // checking the mark bit map to see if the bits corresponding
5424  // to specific blocks are marked or not. Blocks that are
5425  // marked are live and are not swept up. All remaining blocks
5426  // are swept up, with coalescing on-the-fly as we sweep up
5427  // contiguous free and/or garbage blocks:
5428  // We need to ensure that the sweeper synchronizes with allocators
5429  // and stop-the-world collectors. In particular, the following
5430  // locks are used:
5431  // . CMS token: if this is held, a stop the world collection cannot occur
5432  // . freelistLock: if this is held no allocation can occur from this
5433  //                 generation by another thread
5434  // . bitMapLock: if this is held, no other thread can access or update
5435  //
5436
5437  // Note that we need to hold the freelistLock if we use
5438  // block iterate below; else the iterator might go awry if
5439  // a mutator (or promotion) causes block contents to change
5440  // (for instance if the allocator divvies up a block).
5441  // If we hold the free list lock, for all practical purposes
5442  // young generation GC's can't occur (they'll usually need to
5443  // promote), so we might as well prevent all young generation
5444  // GC's while we do a sweeping step. For the same reason, we might
5445  // as well take the bit map lock for the entire duration
5446
5447  // check that we hold the requisite locks
5448  assert(have_cms_token(), "Should hold cms token");
5449  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5450  assert_lock_strong(old_gen->freelistLock());
5451  assert_lock_strong(bitMapLock());
5452
5453  assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5454  assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5455  old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5456                                          _inter_sweep_estimate.padded_average(),
5457                                          _intra_sweep_estimate.padded_average());
5458  old_gen->setNearLargestChunk();
5459
5460  {
5461    SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5462    old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5463    // We need to free-up/coalesce garbage/blocks from a
5464    // co-terminal free run. This is done in the SweepClosure
5465    // destructor; so, do not remove this scope, else the
5466    // end-of-sweep-census below will be off by a little bit.
5467  }
5468  old_gen->cmsSpace()->sweep_completed();
5469  old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5470  if (should_unload_classes()) {                // unloaded classes this cycle,
5471    _concurrent_cycles_since_last_unload = 0;   // ... reset count
5472  } else {                                      // did not unload classes,
5473    _concurrent_cycles_since_last_unload++;     // ... increment count
5474  }
5475}
5476
5477// Reset CMS data structures (for now just the marking bit map)
5478// preparatory for the next cycle.
5479void CMSCollector::reset_concurrent() {
5480  CMSTokenSyncWithLocks ts(true, bitMapLock());
5481
5482  // If the state is not "Resetting", the foreground  thread
5483  // has done a collection and the resetting.
5484  if (_collectorState != Resetting) {
5485    assert(_collectorState == Idling, "The state should only change"
5486      " because the foreground collector has finished the collection");
5487    return;
5488  }
5489
5490  {
5491    // Clear the mark bitmap (no grey objects to start with)
5492    // for the next cycle.
5493    GCTraceCPUTime tcpu;
5494    CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5495
5496    HeapWord* curAddr = _markBitMap.startWord();
5497    while (curAddr < _markBitMap.endWord()) {
5498      size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5499      MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5500      _markBitMap.clear_large_range(chunk);
5501      if (ConcurrentMarkSweepThread::should_yield() &&
5502          !foregroundGCIsActive() &&
5503          CMSYield) {
5504        assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5505               "CMS thread should hold CMS token");
5506        assert_lock_strong(bitMapLock());
5507        bitMapLock()->unlock();
5508        ConcurrentMarkSweepThread::desynchronize(true);
5509        stopTimer();
5510        incrementYields();
5511
5512        // See the comment in coordinator_yield()
5513        for (unsigned i = 0; i < CMSYieldSleepCount &&
5514                         ConcurrentMarkSweepThread::should_yield() &&
5515                         !CMSCollector::foregroundGCIsActive(); ++i) {
5516          os::sleep(Thread::current(), 1, false);
5517        }
5518
5519        ConcurrentMarkSweepThread::synchronize(true);
5520        bitMapLock()->lock_without_safepoint_check();
5521        startTimer();
5522      }
5523      curAddr = chunk.end();
5524    }
5525    // A successful mostly concurrent collection has been done.
5526    // Because only the full (i.e., concurrent mode failure) collections
5527    // are being measured for gc overhead limits, clean the "near" flag
5528    // and count.
5529    size_policy()->reset_gc_overhead_limit_count();
5530    _collectorState = Idling;
5531  }
5532
5533  register_gc_end();
5534}
5535
5536// Same as above but for STW paths
5537void CMSCollector::reset_stw() {
5538  // already have the lock
5539  assert(_collectorState == Resetting, "just checking");
5540  assert_lock_strong(bitMapLock());
5541  GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5542  _markBitMap.clear_all();
5543  _collectorState = Idling;
5544  register_gc_end();
5545}
5546
5547void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5548  GCTraceCPUTime tcpu;
5549  TraceCollectorStats tcs(counters());
5550
5551  switch (op) {
5552    case CMS_op_checkpointRootsInitial: {
5553      GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5554      SvcGCMarker sgcm(SvcGCMarker::OTHER);
5555      checkpointRootsInitial();
5556      break;
5557    }
5558    case CMS_op_checkpointRootsFinal: {
5559      GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5560      SvcGCMarker sgcm(SvcGCMarker::OTHER);
5561      checkpointRootsFinal();
5562      break;
5563    }
5564    default:
5565      fatal("No such CMS_op");
5566  }
5567}
5568
5569#ifndef PRODUCT
5570size_t const CMSCollector::skip_header_HeapWords() {
5571  return FreeChunk::header_size();
5572}
5573
5574// Try and collect here conditions that should hold when
5575// CMS thread is exiting. The idea is that the foreground GC
5576// thread should not be blocked if it wants to terminate
5577// the CMS thread and yet continue to run the VM for a while
5578// after that.
5579void CMSCollector::verify_ok_to_terminate() const {
5580  assert(Thread::current()->is_ConcurrentGC_thread(),
5581         "should be called by CMS thread");
5582  assert(!_foregroundGCShouldWait, "should be false");
5583  // We could check here that all the various low-level locks
5584  // are not held by the CMS thread, but that is overkill; see
5585  // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5586  // is checked.
5587}
5588#endif
5589
5590size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5591   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5592          "missing Printezis mark?");
5593  HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5594  size_t size = pointer_delta(nextOneAddr + 1, addr);
5595  assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5596         "alignment problem");
5597  assert(size >= 3, "Necessary for Printezis marks to work");
5598  return size;
5599}
5600
5601// A variant of the above (block_size_using_printezis_bits()) except
5602// that we return 0 if the P-bits are not yet set.
5603size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5604  if (_markBitMap.isMarked(addr + 1)) {
5605    assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5606    HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5607    size_t size = pointer_delta(nextOneAddr + 1, addr);
5608    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5609           "alignment problem");
5610    assert(size >= 3, "Necessary for Printezis marks to work");
5611    return size;
5612  }
5613  return 0;
5614}
5615
5616HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5617  size_t sz = 0;
5618  oop p = (oop)addr;
5619  if (p->klass_or_null() != NULL) {
5620    sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5621  } else {
5622    sz = block_size_using_printezis_bits(addr);
5623  }
5624  assert(sz > 0, "size must be nonzero");
5625  HeapWord* next_block = addr + sz;
5626  HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5627                                             CardTableModRefBS::card_size);
5628  assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5629         round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5630         "must be different cards");
5631  return next_card;
5632}
5633
5634
5635// CMS Bit Map Wrapper /////////////////////////////////////////
5636
5637// Construct a CMS bit map infrastructure, but don't create the
5638// bit vector itself. That is done by a separate call CMSBitMap::allocate()
5639// further below.
5640CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5641  _bm(),
5642  _shifter(shifter),
5643  _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5644                                    Monitor::_safepoint_check_sometimes) : NULL)
5645{
5646  _bmStartWord = 0;
5647  _bmWordSize  = 0;
5648}
5649
5650bool CMSBitMap::allocate(MemRegion mr) {
5651  _bmStartWord = mr.start();
5652  _bmWordSize  = mr.word_size();
5653  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5654                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5655  if (!brs.is_reserved()) {
5656    log_warning(gc)("CMS bit map allocation failure");
5657    return false;
5658  }
5659  // For now we'll just commit all of the bit map up front.
5660  // Later on we'll try to be more parsimonious with swap.
5661  if (!_virtual_space.initialize(brs, brs.size())) {
5662    log_warning(gc)("CMS bit map backing store failure");
5663    return false;
5664  }
5665  assert(_virtual_space.committed_size() == brs.size(),
5666         "didn't reserve backing store for all of CMS bit map?");
5667  _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5668  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5669         _bmWordSize, "inconsistency in bit map sizing");
5670  _bm.set_size(_bmWordSize >> _shifter);
5671
5672  // bm.clear(); // can we rely on getting zero'd memory? verify below
5673  assert(isAllClear(),
5674         "Expected zero'd memory from ReservedSpace constructor");
5675  assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5676         "consistency check");
5677  return true;
5678}
5679
5680void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5681  HeapWord *next_addr, *end_addr, *last_addr;
5682  assert_locked();
5683  assert(covers(mr), "out-of-range error");
5684  // XXX assert that start and end are appropriately aligned
5685  for (next_addr = mr.start(), end_addr = mr.end();
5686       next_addr < end_addr; next_addr = last_addr) {
5687    MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5688    last_addr = dirty_region.end();
5689    if (!dirty_region.is_empty()) {
5690      cl->do_MemRegion(dirty_region);
5691    } else {
5692      assert(last_addr == end_addr, "program logic");
5693      return;
5694    }
5695  }
5696}
5697
5698void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5699  _bm.print_on_error(st, prefix);
5700}
5701
5702#ifndef PRODUCT
5703void CMSBitMap::assert_locked() const {
5704  CMSLockVerifier::assert_locked(lock());
5705}
5706
5707bool CMSBitMap::covers(MemRegion mr) const {
5708  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5709  assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5710         "size inconsistency");
5711  return (mr.start() >= _bmStartWord) &&
5712         (mr.end()   <= endWord());
5713}
5714
5715bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5716    return (start >= _bmStartWord && (start + size) <= endWord());
5717}
5718
5719void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5720  // verify that there are no 1 bits in the interval [left, right)
5721  FalseBitMapClosure falseBitMapClosure;
5722  iterate(&falseBitMapClosure, left, right);
5723}
5724
5725void CMSBitMap::region_invariant(MemRegion mr)
5726{
5727  assert_locked();
5728  // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5729  assert(!mr.is_empty(), "unexpected empty region");
5730  assert(covers(mr), "mr should be covered by bit map");
5731  // convert address range into offset range
5732  size_t start_ofs = heapWordToOffset(mr.start());
5733  // Make sure that end() is appropriately aligned
5734  assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5735                        (1 << (_shifter+LogHeapWordSize))),
5736         "Misaligned mr.end()");
5737  size_t end_ofs   = heapWordToOffset(mr.end());
5738  assert(end_ofs > start_ofs, "Should mark at least one bit");
5739}
5740
5741#endif
5742
5743bool CMSMarkStack::allocate(size_t size) {
5744  // allocate a stack of the requisite depth
5745  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5746                   size * sizeof(oop)));
5747  if (!rs.is_reserved()) {
5748    log_warning(gc)("CMSMarkStack allocation failure");
5749    return false;
5750  }
5751  if (!_virtual_space.initialize(rs, rs.size())) {
5752    log_warning(gc)("CMSMarkStack backing store failure");
5753    return false;
5754  }
5755  assert(_virtual_space.committed_size() == rs.size(),
5756         "didn't reserve backing store for all of CMS stack?");
5757  _base = (oop*)(_virtual_space.low());
5758  _index = 0;
5759  _capacity = size;
5760  NOT_PRODUCT(_max_depth = 0);
5761  return true;
5762}
5763
5764// XXX FIX ME !!! In the MT case we come in here holding a
5765// leaf lock. For printing we need to take a further lock
5766// which has lower rank. We need to recalibrate the two
5767// lock-ranks involved in order to be able to print the
5768// messages below. (Or defer the printing to the caller.
5769// For now we take the expedient path of just disabling the
5770// messages for the problematic case.)
5771void CMSMarkStack::expand() {
5772  assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5773  if (_capacity == MarkStackSizeMax) {
5774    if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5775      // We print a warning message only once per CMS cycle.
5776      log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5777    }
5778    return;
5779  }
5780  // Double capacity if possible
5781  size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5782  // Do not give up existing stack until we have managed to
5783  // get the double capacity that we desired.
5784  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5785                   new_capacity * sizeof(oop)));
5786  if (rs.is_reserved()) {
5787    // Release the backing store associated with old stack
5788    _virtual_space.release();
5789    // Reinitialize virtual space for new stack
5790    if (!_virtual_space.initialize(rs, rs.size())) {
5791      fatal("Not enough swap for expanded marking stack");
5792    }
5793    _base = (oop*)(_virtual_space.low());
5794    _index = 0;
5795    _capacity = new_capacity;
5796  } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5797    // Failed to double capacity, continue;
5798    // we print a detail message only once per CMS cycle.
5799    log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5800                        _capacity / K, new_capacity / K);
5801  }
5802}
5803
5804
5805// Closures
5806// XXX: there seems to be a lot of code  duplication here;
5807// should refactor and consolidate common code.
5808
5809// This closure is used to mark refs into the CMS generation in
5810// the CMS bit map. Called at the first checkpoint. This closure
5811// assumes that we do not need to re-mark dirty cards; if the CMS
5812// generation on which this is used is not an oldest
5813// generation then this will lose younger_gen cards!
5814
5815MarkRefsIntoClosure::MarkRefsIntoClosure(
5816  MemRegion span, CMSBitMap* bitMap):
5817    _span(span),
5818    _bitMap(bitMap)
5819{
5820  assert(ref_processor() == NULL, "deliberately left NULL");
5821  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5822}
5823
5824void MarkRefsIntoClosure::do_oop(oop obj) {
5825  // if p points into _span, then mark corresponding bit in _markBitMap
5826  assert(obj->is_oop(), "expected an oop");
5827  HeapWord* addr = (HeapWord*)obj;
5828  if (_span.contains(addr)) {
5829    // this should be made more efficient
5830    _bitMap->mark(addr);
5831  }
5832}
5833
5834void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5835void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5836
5837ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5838  MemRegion span, CMSBitMap* bitMap):
5839    _span(span),
5840    _bitMap(bitMap)
5841{
5842  assert(ref_processor() == NULL, "deliberately left NULL");
5843  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5844}
5845
5846void ParMarkRefsIntoClosure::do_oop(oop obj) {
5847  // if p points into _span, then mark corresponding bit in _markBitMap
5848  assert(obj->is_oop(), "expected an oop");
5849  HeapWord* addr = (HeapWord*)obj;
5850  if (_span.contains(addr)) {
5851    // this should be made more efficient
5852    _bitMap->par_mark(addr);
5853  }
5854}
5855
5856void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5857void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5858
5859// A variant of the above, used for CMS marking verification.
5860MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5861  MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5862    _span(span),
5863    _verification_bm(verification_bm),
5864    _cms_bm(cms_bm)
5865{
5866  assert(ref_processor() == NULL, "deliberately left NULL");
5867  assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5868}
5869
5870void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5871  // if p points into _span, then mark corresponding bit in _markBitMap
5872  assert(obj->is_oop(), "expected an oop");
5873  HeapWord* addr = (HeapWord*)obj;
5874  if (_span.contains(addr)) {
5875    _verification_bm->mark(addr);
5876    if (!_cms_bm->isMarked(addr)) {
5877      Log(gc, verify) log;
5878      ResourceMark rm;
5879      oop(addr)->print_on(log.error_stream());
5880      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5881      fatal("... aborting");
5882    }
5883  }
5884}
5885
5886void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5887void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5888
5889//////////////////////////////////////////////////
5890// MarkRefsIntoAndScanClosure
5891//////////////////////////////////////////////////
5892
5893MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5894                                                       ReferenceProcessor* rp,
5895                                                       CMSBitMap* bit_map,
5896                                                       CMSBitMap* mod_union_table,
5897                                                       CMSMarkStack*  mark_stack,
5898                                                       CMSCollector* collector,
5899                                                       bool should_yield,
5900                                                       bool concurrent_precleaning):
5901  _collector(collector),
5902  _span(span),
5903  _bit_map(bit_map),
5904  _mark_stack(mark_stack),
5905  _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5906                      mark_stack, concurrent_precleaning),
5907  _yield(should_yield),
5908  _concurrent_precleaning(concurrent_precleaning),
5909  _freelistLock(NULL)
5910{
5911  // FIXME: Should initialize in base class constructor.
5912  assert(rp != NULL, "ref_processor shouldn't be NULL");
5913  set_ref_processor_internal(rp);
5914}
5915
5916// This closure is used to mark refs into the CMS generation at the
5917// second (final) checkpoint, and to scan and transitively follow
5918// the unmarked oops. It is also used during the concurrent precleaning
5919// phase while scanning objects on dirty cards in the CMS generation.
5920// The marks are made in the marking bit map and the marking stack is
5921// used for keeping the (newly) grey objects during the scan.
5922// The parallel version (Par_...) appears further below.
5923void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5924  if (obj != NULL) {
5925    assert(obj->is_oop(), "expected an oop");
5926    HeapWord* addr = (HeapWord*)obj;
5927    assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5928    assert(_collector->overflow_list_is_empty(),
5929           "overflow list should be empty");
5930    if (_span.contains(addr) &&
5931        !_bit_map->isMarked(addr)) {
5932      // mark bit map (object is now grey)
5933      _bit_map->mark(addr);
5934      // push on marking stack (stack should be empty), and drain the
5935      // stack by applying this closure to the oops in the oops popped
5936      // from the stack (i.e. blacken the grey objects)
5937      bool res = _mark_stack->push(obj);
5938      assert(res, "Should have space to push on empty stack");
5939      do {
5940        oop new_oop = _mark_stack->pop();
5941        assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5942        assert(_bit_map->isMarked((HeapWord*)new_oop),
5943               "only grey objects on this stack");
5944        // iterate over the oops in this oop, marking and pushing
5945        // the ones in CMS heap (i.e. in _span).
5946        new_oop->oop_iterate(&_pushAndMarkClosure);
5947        // check if it's time to yield
5948        do_yield_check();
5949      } while (!_mark_stack->isEmpty() ||
5950               (!_concurrent_precleaning && take_from_overflow_list()));
5951        // if marking stack is empty, and we are not doing this
5952        // during precleaning, then check the overflow list
5953    }
5954    assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5955    assert(_collector->overflow_list_is_empty(),
5956           "overflow list was drained above");
5957
5958    assert(_collector->no_preserved_marks(),
5959           "All preserved marks should have been restored above");
5960  }
5961}
5962
5963void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5964void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5965
5966void MarkRefsIntoAndScanClosure::do_yield_work() {
5967  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5968         "CMS thread should hold CMS token");
5969  assert_lock_strong(_freelistLock);
5970  assert_lock_strong(_bit_map->lock());
5971  // relinquish the free_list_lock and bitMaplock()
5972  _bit_map->lock()->unlock();
5973  _freelistLock->unlock();
5974  ConcurrentMarkSweepThread::desynchronize(true);
5975  _collector->stopTimer();
5976  _collector->incrementYields();
5977
5978  // See the comment in coordinator_yield()
5979  for (unsigned i = 0;
5980       i < CMSYieldSleepCount &&
5981       ConcurrentMarkSweepThread::should_yield() &&
5982       !CMSCollector::foregroundGCIsActive();
5983       ++i) {
5984    os::sleep(Thread::current(), 1, false);
5985  }
5986
5987  ConcurrentMarkSweepThread::synchronize(true);
5988  _freelistLock->lock_without_safepoint_check();
5989  _bit_map->lock()->lock_without_safepoint_check();
5990  _collector->startTimer();
5991}
5992
5993///////////////////////////////////////////////////////////
5994// ParMarkRefsIntoAndScanClosure: a parallel version of
5995//                                MarkRefsIntoAndScanClosure
5996///////////////////////////////////////////////////////////
5997ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
5998  CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
5999  CMSBitMap* bit_map, OopTaskQueue* work_queue):
6000  _span(span),
6001  _bit_map(bit_map),
6002  _work_queue(work_queue),
6003  _low_water_mark(MIN2((work_queue->max_elems()/4),
6004                       ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6005  _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6006{
6007  // FIXME: Should initialize in base class constructor.
6008  assert(rp != NULL, "ref_processor shouldn't be NULL");
6009  set_ref_processor_internal(rp);
6010}
6011
6012// This closure is used to mark refs into the CMS generation at the
6013// second (final) checkpoint, and to scan and transitively follow
6014// the unmarked oops. The marks are made in the marking bit map and
6015// the work_queue is used for keeping the (newly) grey objects during
6016// the scan phase whence they are also available for stealing by parallel
6017// threads. Since the marking bit map is shared, updates are
6018// synchronized (via CAS).
6019void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6020  if (obj != NULL) {
6021    // Ignore mark word because this could be an already marked oop
6022    // that may be chained at the end of the overflow list.
6023    assert(obj->is_oop(true), "expected an oop");
6024    HeapWord* addr = (HeapWord*)obj;
6025    if (_span.contains(addr) &&
6026        !_bit_map->isMarked(addr)) {
6027      // mark bit map (object will become grey):
6028      // It is possible for several threads to be
6029      // trying to "claim" this object concurrently;
6030      // the unique thread that succeeds in marking the
6031      // object first will do the subsequent push on
6032      // to the work queue (or overflow list).
6033      if (_bit_map->par_mark(addr)) {
6034        // push on work_queue (which may not be empty), and trim the
6035        // queue to an appropriate length by applying this closure to
6036        // the oops in the oops popped from the stack (i.e. blacken the
6037        // grey objects)
6038        bool res = _work_queue->push(obj);
6039        assert(res, "Low water mark should be less than capacity?");
6040        trim_queue(_low_water_mark);
6041      } // Else, another thread claimed the object
6042    }
6043  }
6044}
6045
6046void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6047void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6048
6049// This closure is used to rescan the marked objects on the dirty cards
6050// in the mod union table and the card table proper.
6051size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6052  oop p, MemRegion mr) {
6053
6054  size_t size = 0;
6055  HeapWord* addr = (HeapWord*)p;
6056  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6057  assert(_span.contains(addr), "we are scanning the CMS generation");
6058  // check if it's time to yield
6059  if (do_yield_check()) {
6060    // We yielded for some foreground stop-world work,
6061    // and we have been asked to abort this ongoing preclean cycle.
6062    return 0;
6063  }
6064  if (_bitMap->isMarked(addr)) {
6065    // it's marked; is it potentially uninitialized?
6066    if (p->klass_or_null() != NULL) {
6067        // an initialized object; ignore mark word in verification below
6068        // since we are running concurrent with mutators
6069        assert(p->is_oop(true), "should be an oop");
6070        if (p->is_objArray()) {
6071          // objArrays are precisely marked; restrict scanning
6072          // to dirty cards only.
6073          size = CompactibleFreeListSpace::adjustObjectSize(
6074                   p->oop_iterate_size(_scanningClosure, mr));
6075        } else {
6076          // A non-array may have been imprecisely marked; we need
6077          // to scan object in its entirety.
6078          size = CompactibleFreeListSpace::adjustObjectSize(
6079                   p->oop_iterate_size(_scanningClosure));
6080        }
6081        #ifdef ASSERT
6082          size_t direct_size =
6083            CompactibleFreeListSpace::adjustObjectSize(p->size());
6084          assert(size == direct_size, "Inconsistency in size");
6085          assert(size >= 3, "Necessary for Printezis marks to work");
6086          if (!_bitMap->isMarked(addr+1)) {
6087            _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6088          } else {
6089            _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6090            assert(_bitMap->isMarked(addr+size-1),
6091                   "inconsistent Printezis mark");
6092          }
6093        #endif // ASSERT
6094    } else {
6095      // An uninitialized object.
6096      assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6097      HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6098      size = pointer_delta(nextOneAddr + 1, addr);
6099      assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6100             "alignment problem");
6101      // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6102      // will dirty the card when the klass pointer is installed in the
6103      // object (signaling the completion of initialization).
6104    }
6105  } else {
6106    // Either a not yet marked object or an uninitialized object
6107    if (p->klass_or_null() == NULL) {
6108      // An uninitialized object, skip to the next card, since
6109      // we may not be able to read its P-bits yet.
6110      assert(size == 0, "Initial value");
6111    } else {
6112      // An object not (yet) reached by marking: we merely need to
6113      // compute its size so as to go look at the next block.
6114      assert(p->is_oop(true), "should be an oop");
6115      size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6116    }
6117  }
6118  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6119  return size;
6120}
6121
6122void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6123  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6124         "CMS thread should hold CMS token");
6125  assert_lock_strong(_freelistLock);
6126  assert_lock_strong(_bitMap->lock());
6127  // relinquish the free_list_lock and bitMaplock()
6128  _bitMap->lock()->unlock();
6129  _freelistLock->unlock();
6130  ConcurrentMarkSweepThread::desynchronize(true);
6131  _collector->stopTimer();
6132  _collector->incrementYields();
6133
6134  // See the comment in coordinator_yield()
6135  for (unsigned i = 0; i < CMSYieldSleepCount &&
6136                   ConcurrentMarkSweepThread::should_yield() &&
6137                   !CMSCollector::foregroundGCIsActive(); ++i) {
6138    os::sleep(Thread::current(), 1, false);
6139  }
6140
6141  ConcurrentMarkSweepThread::synchronize(true);
6142  _freelistLock->lock_without_safepoint_check();
6143  _bitMap->lock()->lock_without_safepoint_check();
6144  _collector->startTimer();
6145}
6146
6147
6148//////////////////////////////////////////////////////////////////
6149// SurvivorSpacePrecleanClosure
6150//////////////////////////////////////////////////////////////////
6151// This (single-threaded) closure is used to preclean the oops in
6152// the survivor spaces.
6153size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6154
6155  HeapWord* addr = (HeapWord*)p;
6156  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6157  assert(!_span.contains(addr), "we are scanning the survivor spaces");
6158  assert(p->klass_or_null() != NULL, "object should be initialized");
6159  // an initialized object; ignore mark word in verification below
6160  // since we are running concurrent with mutators
6161  assert(p->is_oop(true), "should be an oop");
6162  // Note that we do not yield while we iterate over
6163  // the interior oops of p, pushing the relevant ones
6164  // on our marking stack.
6165  size_t size = p->oop_iterate_size(_scanning_closure);
6166  do_yield_check();
6167  // Observe that below, we do not abandon the preclean
6168  // phase as soon as we should; rather we empty the
6169  // marking stack before returning. This is to satisfy
6170  // some existing assertions. In general, it may be a
6171  // good idea to abort immediately and complete the marking
6172  // from the grey objects at a later time.
6173  while (!_mark_stack->isEmpty()) {
6174    oop new_oop = _mark_stack->pop();
6175    assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6176    assert(_bit_map->isMarked((HeapWord*)new_oop),
6177           "only grey objects on this stack");
6178    // iterate over the oops in this oop, marking and pushing
6179    // the ones in CMS heap (i.e. in _span).
6180    new_oop->oop_iterate(_scanning_closure);
6181    // check if it's time to yield
6182    do_yield_check();
6183  }
6184  unsigned int after_count =
6185    GenCollectedHeap::heap()->total_collections();
6186  bool abort = (_before_count != after_count) ||
6187               _collector->should_abort_preclean();
6188  return abort ? 0 : size;
6189}
6190
6191void SurvivorSpacePrecleanClosure::do_yield_work() {
6192  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6193         "CMS thread should hold CMS token");
6194  assert_lock_strong(_bit_map->lock());
6195  // Relinquish the bit map lock
6196  _bit_map->lock()->unlock();
6197  ConcurrentMarkSweepThread::desynchronize(true);
6198  _collector->stopTimer();
6199  _collector->incrementYields();
6200
6201  // See the comment in coordinator_yield()
6202  for (unsigned i = 0; i < CMSYieldSleepCount &&
6203                       ConcurrentMarkSweepThread::should_yield() &&
6204                       !CMSCollector::foregroundGCIsActive(); ++i) {
6205    os::sleep(Thread::current(), 1, false);
6206  }
6207
6208  ConcurrentMarkSweepThread::synchronize(true);
6209  _bit_map->lock()->lock_without_safepoint_check();
6210  _collector->startTimer();
6211}
6212
6213// This closure is used to rescan the marked objects on the dirty cards
6214// in the mod union table and the card table proper. In the parallel
6215// case, although the bitMap is shared, we do a single read so the
6216// isMarked() query is "safe".
6217bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6218  // Ignore mark word because we are running concurrent with mutators
6219  assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6220  HeapWord* addr = (HeapWord*)p;
6221  assert(_span.contains(addr), "we are scanning the CMS generation");
6222  bool is_obj_array = false;
6223  #ifdef ASSERT
6224    if (!_parallel) {
6225      assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6226      assert(_collector->overflow_list_is_empty(),
6227             "overflow list should be empty");
6228
6229    }
6230  #endif // ASSERT
6231  if (_bit_map->isMarked(addr)) {
6232    // Obj arrays are precisely marked, non-arrays are not;
6233    // so we scan objArrays precisely and non-arrays in their
6234    // entirety.
6235    if (p->is_objArray()) {
6236      is_obj_array = true;
6237      if (_parallel) {
6238        p->oop_iterate(_par_scan_closure, mr);
6239      } else {
6240        p->oop_iterate(_scan_closure, mr);
6241      }
6242    } else {
6243      if (_parallel) {
6244        p->oop_iterate(_par_scan_closure);
6245      } else {
6246        p->oop_iterate(_scan_closure);
6247      }
6248    }
6249  }
6250  #ifdef ASSERT
6251    if (!_parallel) {
6252      assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6253      assert(_collector->overflow_list_is_empty(),
6254             "overflow list should be empty");
6255
6256    }
6257  #endif // ASSERT
6258  return is_obj_array;
6259}
6260
6261MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6262                        MemRegion span,
6263                        CMSBitMap* bitMap, CMSMarkStack*  markStack,
6264                        bool should_yield, bool verifying):
6265  _collector(collector),
6266  _span(span),
6267  _bitMap(bitMap),
6268  _mut(&collector->_modUnionTable),
6269  _markStack(markStack),
6270  _yield(should_yield),
6271  _skipBits(0)
6272{
6273  assert(_markStack->isEmpty(), "stack should be empty");
6274  _finger = _bitMap->startWord();
6275  _threshold = _finger;
6276  assert(_collector->_restart_addr == NULL, "Sanity check");
6277  assert(_span.contains(_finger), "Out of bounds _finger?");
6278  DEBUG_ONLY(_verifying = verifying;)
6279}
6280
6281void MarkFromRootsClosure::reset(HeapWord* addr) {
6282  assert(_markStack->isEmpty(), "would cause duplicates on stack");
6283  assert(_span.contains(addr), "Out of bounds _finger?");
6284  _finger = addr;
6285  _threshold = (HeapWord*)round_to(
6286                 (intptr_t)_finger, CardTableModRefBS::card_size);
6287}
6288
6289// Should revisit to see if this should be restructured for
6290// greater efficiency.
6291bool MarkFromRootsClosure::do_bit(size_t offset) {
6292  if (_skipBits > 0) {
6293    _skipBits--;
6294    return true;
6295  }
6296  // convert offset into a HeapWord*
6297  HeapWord* addr = _bitMap->startWord() + offset;
6298  assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6299         "address out of range");
6300  assert(_bitMap->isMarked(addr), "tautology");
6301  if (_bitMap->isMarked(addr+1)) {
6302    // this is an allocated but not yet initialized object
6303    assert(_skipBits == 0, "tautology");
6304    _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6305    oop p = oop(addr);
6306    if (p->klass_or_null() == NULL) {
6307      DEBUG_ONLY(if (!_verifying) {)
6308        // We re-dirty the cards on which this object lies and increase
6309        // the _threshold so that we'll come back to scan this object
6310        // during the preclean or remark phase. (CMSCleanOnEnter)
6311        if (CMSCleanOnEnter) {
6312          size_t sz = _collector->block_size_using_printezis_bits(addr);
6313          HeapWord* end_card_addr   = (HeapWord*)round_to(
6314                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6315          MemRegion redirty_range = MemRegion(addr, end_card_addr);
6316          assert(!redirty_range.is_empty(), "Arithmetical tautology");
6317          // Bump _threshold to end_card_addr; note that
6318          // _threshold cannot possibly exceed end_card_addr, anyhow.
6319          // This prevents future clearing of the card as the scan proceeds
6320          // to the right.
6321          assert(_threshold <= end_card_addr,
6322                 "Because we are just scanning into this object");
6323          if (_threshold < end_card_addr) {
6324            _threshold = end_card_addr;
6325          }
6326          if (p->klass_or_null() != NULL) {
6327            // Redirty the range of cards...
6328            _mut->mark_range(redirty_range);
6329          } // ...else the setting of klass will dirty the card anyway.
6330        }
6331      DEBUG_ONLY(})
6332      return true;
6333    }
6334  }
6335  scanOopsInOop(addr);
6336  return true;
6337}
6338
6339// We take a break if we've been at this for a while,
6340// so as to avoid monopolizing the locks involved.
6341void MarkFromRootsClosure::do_yield_work() {
6342  // First give up the locks, then yield, then re-lock
6343  // We should probably use a constructor/destructor idiom to
6344  // do this unlock/lock or modify the MutexUnlocker class to
6345  // serve our purpose. XXX
6346  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6347         "CMS thread should hold CMS token");
6348  assert_lock_strong(_bitMap->lock());
6349  _bitMap->lock()->unlock();
6350  ConcurrentMarkSweepThread::desynchronize(true);
6351  _collector->stopTimer();
6352  _collector->incrementYields();
6353
6354  // See the comment in coordinator_yield()
6355  for (unsigned i = 0; i < CMSYieldSleepCount &&
6356                       ConcurrentMarkSweepThread::should_yield() &&
6357                       !CMSCollector::foregroundGCIsActive(); ++i) {
6358    os::sleep(Thread::current(), 1, false);
6359  }
6360
6361  ConcurrentMarkSweepThread::synchronize(true);
6362  _bitMap->lock()->lock_without_safepoint_check();
6363  _collector->startTimer();
6364}
6365
6366void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6367  assert(_bitMap->isMarked(ptr), "expected bit to be set");
6368  assert(_markStack->isEmpty(),
6369         "should drain stack to limit stack usage");
6370  // convert ptr to an oop preparatory to scanning
6371  oop obj = oop(ptr);
6372  // Ignore mark word in verification below, since we
6373  // may be running concurrent with mutators.
6374  assert(obj->is_oop(true), "should be an oop");
6375  assert(_finger <= ptr, "_finger runneth ahead");
6376  // advance the finger to right end of this object
6377  _finger = ptr + obj->size();
6378  assert(_finger > ptr, "we just incremented it above");
6379  // On large heaps, it may take us some time to get through
6380  // the marking phase. During
6381  // this time it's possible that a lot of mutations have
6382  // accumulated in the card table and the mod union table --
6383  // these mutation records are redundant until we have
6384  // actually traced into the corresponding card.
6385  // Here, we check whether advancing the finger would make
6386  // us cross into a new card, and if so clear corresponding
6387  // cards in the MUT (preclean them in the card-table in the
6388  // future).
6389
6390  DEBUG_ONLY(if (!_verifying) {)
6391    // The clean-on-enter optimization is disabled by default,
6392    // until we fix 6178663.
6393    if (CMSCleanOnEnter && (_finger > _threshold)) {
6394      // [_threshold, _finger) represents the interval
6395      // of cards to be cleared  in MUT (or precleaned in card table).
6396      // The set of cards to be cleared is all those that overlap
6397      // with the interval [_threshold, _finger); note that
6398      // _threshold is always kept card-aligned but _finger isn't
6399      // always card-aligned.
6400      HeapWord* old_threshold = _threshold;
6401      assert(old_threshold == (HeapWord*)round_to(
6402              (intptr_t)old_threshold, CardTableModRefBS::card_size),
6403             "_threshold should always be card-aligned");
6404      _threshold = (HeapWord*)round_to(
6405                     (intptr_t)_finger, CardTableModRefBS::card_size);
6406      MemRegion mr(old_threshold, _threshold);
6407      assert(!mr.is_empty(), "Control point invariant");
6408      assert(_span.contains(mr), "Should clear within span");
6409      _mut->clear_range(mr);
6410    }
6411  DEBUG_ONLY(})
6412  // Note: the finger doesn't advance while we drain
6413  // the stack below.
6414  PushOrMarkClosure pushOrMarkClosure(_collector,
6415                                      _span, _bitMap, _markStack,
6416                                      _finger, this);
6417  bool res = _markStack->push(obj);
6418  assert(res, "Empty non-zero size stack should have space for single push");
6419  while (!_markStack->isEmpty()) {
6420    oop new_oop = _markStack->pop();
6421    // Skip verifying header mark word below because we are
6422    // running concurrent with mutators.
6423    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6424    // now scan this oop's oops
6425    new_oop->oop_iterate(&pushOrMarkClosure);
6426    do_yield_check();
6427  }
6428  assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6429}
6430
6431ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6432                       CMSCollector* collector, MemRegion span,
6433                       CMSBitMap* bit_map,
6434                       OopTaskQueue* work_queue,
6435                       CMSMarkStack*  overflow_stack):
6436  _collector(collector),
6437  _whole_span(collector->_span),
6438  _span(span),
6439  _bit_map(bit_map),
6440  _mut(&collector->_modUnionTable),
6441  _work_queue(work_queue),
6442  _overflow_stack(overflow_stack),
6443  _skip_bits(0),
6444  _task(task)
6445{
6446  assert(_work_queue->size() == 0, "work_queue should be empty");
6447  _finger = span.start();
6448  _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6449  assert(_span.contains(_finger), "Out of bounds _finger?");
6450}
6451
6452// Should revisit to see if this should be restructured for
6453// greater efficiency.
6454bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6455  if (_skip_bits > 0) {
6456    _skip_bits--;
6457    return true;
6458  }
6459  // convert offset into a HeapWord*
6460  HeapWord* addr = _bit_map->startWord() + offset;
6461  assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6462         "address out of range");
6463  assert(_bit_map->isMarked(addr), "tautology");
6464  if (_bit_map->isMarked(addr+1)) {
6465    // this is an allocated object that might not yet be initialized
6466    assert(_skip_bits == 0, "tautology");
6467    _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6468    oop p = oop(addr);
6469    if (p->klass_or_null() == NULL) {
6470      // in the case of Clean-on-Enter optimization, redirty card
6471      // and avoid clearing card by increasing  the threshold.
6472      return true;
6473    }
6474  }
6475  scan_oops_in_oop(addr);
6476  return true;
6477}
6478
6479void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6480  assert(_bit_map->isMarked(ptr), "expected bit to be set");
6481  // Should we assert that our work queue is empty or
6482  // below some drain limit?
6483  assert(_work_queue->size() == 0,
6484         "should drain stack to limit stack usage");
6485  // convert ptr to an oop preparatory to scanning
6486  oop obj = oop(ptr);
6487  // Ignore mark word in verification below, since we
6488  // may be running concurrent with mutators.
6489  assert(obj->is_oop(true), "should be an oop");
6490  assert(_finger <= ptr, "_finger runneth ahead");
6491  // advance the finger to right end of this object
6492  _finger = ptr + obj->size();
6493  assert(_finger > ptr, "we just incremented it above");
6494  // On large heaps, it may take us some time to get through
6495  // the marking phase. During
6496  // this time it's possible that a lot of mutations have
6497  // accumulated in the card table and the mod union table --
6498  // these mutation records are redundant until we have
6499  // actually traced into the corresponding card.
6500  // Here, we check whether advancing the finger would make
6501  // us cross into a new card, and if so clear corresponding
6502  // cards in the MUT (preclean them in the card-table in the
6503  // future).
6504
6505  // The clean-on-enter optimization is disabled by default,
6506  // until we fix 6178663.
6507  if (CMSCleanOnEnter && (_finger > _threshold)) {
6508    // [_threshold, _finger) represents the interval
6509    // of cards to be cleared  in MUT (or precleaned in card table).
6510    // The set of cards to be cleared is all those that overlap
6511    // with the interval [_threshold, _finger); note that
6512    // _threshold is always kept card-aligned but _finger isn't
6513    // always card-aligned.
6514    HeapWord* old_threshold = _threshold;
6515    assert(old_threshold == (HeapWord*)round_to(
6516            (intptr_t)old_threshold, CardTableModRefBS::card_size),
6517           "_threshold should always be card-aligned");
6518    _threshold = (HeapWord*)round_to(
6519                   (intptr_t)_finger, CardTableModRefBS::card_size);
6520    MemRegion mr(old_threshold, _threshold);
6521    assert(!mr.is_empty(), "Control point invariant");
6522    assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6523    _mut->clear_range(mr);
6524  }
6525
6526  // Note: the local finger doesn't advance while we drain
6527  // the stack below, but the global finger sure can and will.
6528  HeapWord** gfa = _task->global_finger_addr();
6529  ParPushOrMarkClosure pushOrMarkClosure(_collector,
6530                                         _span, _bit_map,
6531                                         _work_queue,
6532                                         _overflow_stack,
6533                                         _finger,
6534                                         gfa, this);
6535  bool res = _work_queue->push(obj);   // overflow could occur here
6536  assert(res, "Will hold once we use workqueues");
6537  while (true) {
6538    oop new_oop;
6539    if (!_work_queue->pop_local(new_oop)) {
6540      // We emptied our work_queue; check if there's stuff that can
6541      // be gotten from the overflow stack.
6542      if (CMSConcMarkingTask::get_work_from_overflow_stack(
6543            _overflow_stack, _work_queue)) {
6544        do_yield_check();
6545        continue;
6546      } else {  // done
6547        break;
6548      }
6549    }
6550    // Skip verifying header mark word below because we are
6551    // running concurrent with mutators.
6552    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6553    // now scan this oop's oops
6554    new_oop->oop_iterate(&pushOrMarkClosure);
6555    do_yield_check();
6556  }
6557  assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6558}
6559
6560// Yield in response to a request from VM Thread or
6561// from mutators.
6562void ParMarkFromRootsClosure::do_yield_work() {
6563  assert(_task != NULL, "sanity");
6564  _task->yield();
6565}
6566
6567// A variant of the above used for verifying CMS marking work.
6568MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6569                        MemRegion span,
6570                        CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6571                        CMSMarkStack*  mark_stack):
6572  _collector(collector),
6573  _span(span),
6574  _verification_bm(verification_bm),
6575  _cms_bm(cms_bm),
6576  _mark_stack(mark_stack),
6577  _pam_verify_closure(collector, span, verification_bm, cms_bm,
6578                      mark_stack)
6579{
6580  assert(_mark_stack->isEmpty(), "stack should be empty");
6581  _finger = _verification_bm->startWord();
6582  assert(_collector->_restart_addr == NULL, "Sanity check");
6583  assert(_span.contains(_finger), "Out of bounds _finger?");
6584}
6585
6586void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6587  assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6588  assert(_span.contains(addr), "Out of bounds _finger?");
6589  _finger = addr;
6590}
6591
6592// Should revisit to see if this should be restructured for
6593// greater efficiency.
6594bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6595  // convert offset into a HeapWord*
6596  HeapWord* addr = _verification_bm->startWord() + offset;
6597  assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6598         "address out of range");
6599  assert(_verification_bm->isMarked(addr), "tautology");
6600  assert(_cms_bm->isMarked(addr), "tautology");
6601
6602  assert(_mark_stack->isEmpty(),
6603         "should drain stack to limit stack usage");
6604  // convert addr to an oop preparatory to scanning
6605  oop obj = oop(addr);
6606  assert(obj->is_oop(), "should be an oop");
6607  assert(_finger <= addr, "_finger runneth ahead");
6608  // advance the finger to right end of this object
6609  _finger = addr + obj->size();
6610  assert(_finger > addr, "we just incremented it above");
6611  // Note: the finger doesn't advance while we drain
6612  // the stack below.
6613  bool res = _mark_stack->push(obj);
6614  assert(res, "Empty non-zero size stack should have space for single push");
6615  while (!_mark_stack->isEmpty()) {
6616    oop new_oop = _mark_stack->pop();
6617    assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6618    // now scan this oop's oops
6619    new_oop->oop_iterate(&_pam_verify_closure);
6620  }
6621  assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6622  return true;
6623}
6624
6625PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6626  CMSCollector* collector, MemRegion span,
6627  CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6628  CMSMarkStack*  mark_stack):
6629  MetadataAwareOopClosure(collector->ref_processor()),
6630  _collector(collector),
6631  _span(span),
6632  _verification_bm(verification_bm),
6633  _cms_bm(cms_bm),
6634  _mark_stack(mark_stack)
6635{ }
6636
6637void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6638void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6639
6640// Upon stack overflow, we discard (part of) the stack,
6641// remembering the least address amongst those discarded
6642// in CMSCollector's _restart_address.
6643void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6644  // Remember the least grey address discarded
6645  HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6646  _collector->lower_restart_addr(ra);
6647  _mark_stack->reset();  // discard stack contents
6648  _mark_stack->expand(); // expand the stack if possible
6649}
6650
6651void PushAndMarkVerifyClosure::do_oop(oop obj) {
6652  assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6653  HeapWord* addr = (HeapWord*)obj;
6654  if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6655    // Oop lies in _span and isn't yet grey or black
6656    _verification_bm->mark(addr);            // now grey
6657    if (!_cms_bm->isMarked(addr)) {
6658      Log(gc, verify) log;
6659      ResourceMark rm;
6660      oop(addr)->print_on(log.error_stream());
6661      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6662      fatal("... aborting");
6663    }
6664
6665    if (!_mark_stack->push(obj)) { // stack overflow
6666      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6667      assert(_mark_stack->isFull(), "Else push should have succeeded");
6668      handle_stack_overflow(addr);
6669    }
6670    // anything including and to the right of _finger
6671    // will be scanned as we iterate over the remainder of the
6672    // bit map
6673  }
6674}
6675
6676PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6677                     MemRegion span,
6678                     CMSBitMap* bitMap, CMSMarkStack*  markStack,
6679                     HeapWord* finger, MarkFromRootsClosure* parent) :
6680  MetadataAwareOopClosure(collector->ref_processor()),
6681  _collector(collector),
6682  _span(span),
6683  _bitMap(bitMap),
6684  _markStack(markStack),
6685  _finger(finger),
6686  _parent(parent)
6687{ }
6688
6689ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6690                                           MemRegion span,
6691                                           CMSBitMap* bit_map,
6692                                           OopTaskQueue* work_queue,
6693                                           CMSMarkStack*  overflow_stack,
6694                                           HeapWord* finger,
6695                                           HeapWord** global_finger_addr,
6696                                           ParMarkFromRootsClosure* parent) :
6697  MetadataAwareOopClosure(collector->ref_processor()),
6698  _collector(collector),
6699  _whole_span(collector->_span),
6700  _span(span),
6701  _bit_map(bit_map),
6702  _work_queue(work_queue),
6703  _overflow_stack(overflow_stack),
6704  _finger(finger),
6705  _global_finger_addr(global_finger_addr),
6706  _parent(parent)
6707{ }
6708
6709// Assumes thread-safe access by callers, who are
6710// responsible for mutual exclusion.
6711void CMSCollector::lower_restart_addr(HeapWord* low) {
6712  assert(_span.contains(low), "Out of bounds addr");
6713  if (_restart_addr == NULL) {
6714    _restart_addr = low;
6715  } else {
6716    _restart_addr = MIN2(_restart_addr, low);
6717  }
6718}
6719
6720// Upon stack overflow, we discard (part of) the stack,
6721// remembering the least address amongst those discarded
6722// in CMSCollector's _restart_address.
6723void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6724  // Remember the least grey address discarded
6725  HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6726  _collector->lower_restart_addr(ra);
6727  _markStack->reset();  // discard stack contents
6728  _markStack->expand(); // expand the stack if possible
6729}
6730
6731// Upon stack overflow, we discard (part of) the stack,
6732// remembering the least address amongst those discarded
6733// in CMSCollector's _restart_address.
6734void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6735  // We need to do this under a mutex to prevent other
6736  // workers from interfering with the work done below.
6737  MutexLockerEx ml(_overflow_stack->par_lock(),
6738                   Mutex::_no_safepoint_check_flag);
6739  // Remember the least grey address discarded
6740  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6741  _collector->lower_restart_addr(ra);
6742  _overflow_stack->reset();  // discard stack contents
6743  _overflow_stack->expand(); // expand the stack if possible
6744}
6745
6746void PushOrMarkClosure::do_oop(oop obj) {
6747  // Ignore mark word because we are running concurrent with mutators.
6748  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6749  HeapWord* addr = (HeapWord*)obj;
6750  if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6751    // Oop lies in _span and isn't yet grey or black
6752    _bitMap->mark(addr);            // now grey
6753    if (addr < _finger) {
6754      // the bit map iteration has already either passed, or
6755      // sampled, this bit in the bit map; we'll need to
6756      // use the marking stack to scan this oop's oops.
6757      bool simulate_overflow = false;
6758      NOT_PRODUCT(
6759        if (CMSMarkStackOverflowALot &&
6760            _collector->simulate_overflow()) {
6761          // simulate a stack overflow
6762          simulate_overflow = true;
6763        }
6764      )
6765      if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6766        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6767        assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6768        handle_stack_overflow(addr);
6769      }
6770    }
6771    // anything including and to the right of _finger
6772    // will be scanned as we iterate over the remainder of the
6773    // bit map
6774    do_yield_check();
6775  }
6776}
6777
6778void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6779void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6780
6781void ParPushOrMarkClosure::do_oop(oop obj) {
6782  // Ignore mark word because we are running concurrent with mutators.
6783  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6784  HeapWord* addr = (HeapWord*)obj;
6785  if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6786    // Oop lies in _span and isn't yet grey or black
6787    // We read the global_finger (volatile read) strictly after marking oop
6788    bool res = _bit_map->par_mark(addr);    // now grey
6789    volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6790    // Should we push this marked oop on our stack?
6791    // -- if someone else marked it, nothing to do
6792    // -- if target oop is above global finger nothing to do
6793    // -- if target oop is in chunk and above local finger
6794    //      then nothing to do
6795    // -- else push on work queue
6796    if (   !res       // someone else marked it, they will deal with it
6797        || (addr >= *gfa)  // will be scanned in a later task
6798        || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6799      return;
6800    }
6801    // the bit map iteration has already either passed, or
6802    // sampled, this bit in the bit map; we'll need to
6803    // use the marking stack to scan this oop's oops.
6804    bool simulate_overflow = false;
6805    NOT_PRODUCT(
6806      if (CMSMarkStackOverflowALot &&
6807          _collector->simulate_overflow()) {
6808        // simulate a stack overflow
6809        simulate_overflow = true;
6810      }
6811    )
6812    if (simulate_overflow ||
6813        !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6814      // stack overflow
6815      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6816      // We cannot assert that the overflow stack is full because
6817      // it may have been emptied since.
6818      assert(simulate_overflow ||
6819             _work_queue->size() == _work_queue->max_elems(),
6820            "Else push should have succeeded");
6821      handle_stack_overflow(addr);
6822    }
6823    do_yield_check();
6824  }
6825}
6826
6827void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6828void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6829
6830PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6831                                       MemRegion span,
6832                                       ReferenceProcessor* rp,
6833                                       CMSBitMap* bit_map,
6834                                       CMSBitMap* mod_union_table,
6835                                       CMSMarkStack*  mark_stack,
6836                                       bool           concurrent_precleaning):
6837  MetadataAwareOopClosure(rp),
6838  _collector(collector),
6839  _span(span),
6840  _bit_map(bit_map),
6841  _mod_union_table(mod_union_table),
6842  _mark_stack(mark_stack),
6843  _concurrent_precleaning(concurrent_precleaning)
6844{
6845  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6846}
6847
6848// Grey object rescan during pre-cleaning and second checkpoint phases --
6849// the non-parallel version (the parallel version appears further below.)
6850void PushAndMarkClosure::do_oop(oop obj) {
6851  // Ignore mark word verification. If during concurrent precleaning,
6852  // the object monitor may be locked. If during the checkpoint
6853  // phases, the object may already have been reached by a  different
6854  // path and may be at the end of the global overflow list (so
6855  // the mark word may be NULL).
6856  assert(obj->is_oop_or_null(true /* ignore mark word */),
6857         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6858  HeapWord* addr = (HeapWord*)obj;
6859  // Check if oop points into the CMS generation
6860  // and is not marked
6861  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6862    // a white object ...
6863    _bit_map->mark(addr);         // ... now grey
6864    // push on the marking stack (grey set)
6865    bool simulate_overflow = false;
6866    NOT_PRODUCT(
6867      if (CMSMarkStackOverflowALot &&
6868          _collector->simulate_overflow()) {
6869        // simulate a stack overflow
6870        simulate_overflow = true;
6871      }
6872    )
6873    if (simulate_overflow || !_mark_stack->push(obj)) {
6874      if (_concurrent_precleaning) {
6875         // During precleaning we can just dirty the appropriate card(s)
6876         // in the mod union table, thus ensuring that the object remains
6877         // in the grey set  and continue. In the case of object arrays
6878         // we need to dirty all of the cards that the object spans,
6879         // since the rescan of object arrays will be limited to the
6880         // dirty cards.
6881         // Note that no one can be interfering with us in this action
6882         // of dirtying the mod union table, so no locking or atomics
6883         // are required.
6884         if (obj->is_objArray()) {
6885           size_t sz = obj->size();
6886           HeapWord* end_card_addr = (HeapWord*)round_to(
6887                                        (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6888           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6889           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6890           _mod_union_table->mark_range(redirty_range);
6891         } else {
6892           _mod_union_table->mark(addr);
6893         }
6894         _collector->_ser_pmc_preclean_ovflw++;
6895      } else {
6896         // During the remark phase, we need to remember this oop
6897         // in the overflow list.
6898         _collector->push_on_overflow_list(obj);
6899         _collector->_ser_pmc_remark_ovflw++;
6900      }
6901    }
6902  }
6903}
6904
6905ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6906                                             MemRegion span,
6907                                             ReferenceProcessor* rp,
6908                                             CMSBitMap* bit_map,
6909                                             OopTaskQueue* work_queue):
6910  MetadataAwareOopClosure(rp),
6911  _collector(collector),
6912  _span(span),
6913  _bit_map(bit_map),
6914  _work_queue(work_queue)
6915{
6916  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6917}
6918
6919void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6920void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6921
6922// Grey object rescan during second checkpoint phase --
6923// the parallel version.
6924void ParPushAndMarkClosure::do_oop(oop obj) {
6925  // In the assert below, we ignore the mark word because
6926  // this oop may point to an already visited object that is
6927  // on the overflow stack (in which case the mark word has
6928  // been hijacked for chaining into the overflow stack --
6929  // if this is the last object in the overflow stack then
6930  // its mark word will be NULL). Because this object may
6931  // have been subsequently popped off the global overflow
6932  // stack, and the mark word possibly restored to the prototypical
6933  // value, by the time we get to examined this failing assert in
6934  // the debugger, is_oop_or_null(false) may subsequently start
6935  // to hold.
6936  assert(obj->is_oop_or_null(true),
6937         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6938  HeapWord* addr = (HeapWord*)obj;
6939  // Check if oop points into the CMS generation
6940  // and is not marked
6941  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6942    // a white object ...
6943    // If we manage to "claim" the object, by being the
6944    // first thread to mark it, then we push it on our
6945    // marking stack
6946    if (_bit_map->par_mark(addr)) {     // ... now grey
6947      // push on work queue (grey set)
6948      bool simulate_overflow = false;
6949      NOT_PRODUCT(
6950        if (CMSMarkStackOverflowALot &&
6951            _collector->par_simulate_overflow()) {
6952          // simulate a stack overflow
6953          simulate_overflow = true;
6954        }
6955      )
6956      if (simulate_overflow || !_work_queue->push(obj)) {
6957        _collector->par_push_on_overflow_list(obj);
6958        _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6959      }
6960    } // Else, some other thread got there first
6961  }
6962}
6963
6964void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6965void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6966
6967void CMSPrecleanRefsYieldClosure::do_yield_work() {
6968  Mutex* bml = _collector->bitMapLock();
6969  assert_lock_strong(bml);
6970  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6971         "CMS thread should hold CMS token");
6972
6973  bml->unlock();
6974  ConcurrentMarkSweepThread::desynchronize(true);
6975
6976  _collector->stopTimer();
6977  _collector->incrementYields();
6978
6979  // See the comment in coordinator_yield()
6980  for (unsigned i = 0; i < CMSYieldSleepCount &&
6981                       ConcurrentMarkSweepThread::should_yield() &&
6982                       !CMSCollector::foregroundGCIsActive(); ++i) {
6983    os::sleep(Thread::current(), 1, false);
6984  }
6985
6986  ConcurrentMarkSweepThread::synchronize(true);
6987  bml->lock();
6988
6989  _collector->startTimer();
6990}
6991
6992bool CMSPrecleanRefsYieldClosure::should_return() {
6993  if (ConcurrentMarkSweepThread::should_yield()) {
6994    do_yield_work();
6995  }
6996  return _collector->foregroundGCIsActive();
6997}
6998
6999void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7000  assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7001         "mr should be aligned to start at a card boundary");
7002  // We'd like to assert:
7003  // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7004  //        "mr should be a range of cards");
7005  // However, that would be too strong in one case -- the last
7006  // partition ends at _unallocated_block which, in general, can be
7007  // an arbitrary boundary, not necessarily card aligned.
7008  _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7009  _space->object_iterate_mem(mr, &_scan_cl);
7010}
7011
7012SweepClosure::SweepClosure(CMSCollector* collector,
7013                           ConcurrentMarkSweepGeneration* g,
7014                           CMSBitMap* bitMap, bool should_yield) :
7015  _collector(collector),
7016  _g(g),
7017  _sp(g->cmsSpace()),
7018  _limit(_sp->sweep_limit()),
7019  _freelistLock(_sp->freelistLock()),
7020  _bitMap(bitMap),
7021  _yield(should_yield),
7022  _inFreeRange(false),           // No free range at beginning of sweep
7023  _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7024  _lastFreeRangeCoalesced(false),
7025  _freeFinger(g->used_region().start())
7026{
7027  NOT_PRODUCT(
7028    _numObjectsFreed = 0;
7029    _numWordsFreed   = 0;
7030    _numObjectsLive = 0;
7031    _numWordsLive = 0;
7032    _numObjectsAlreadyFree = 0;
7033    _numWordsAlreadyFree = 0;
7034    _last_fc = NULL;
7035
7036    _sp->initializeIndexedFreeListArrayReturnedBytes();
7037    _sp->dictionary()->initialize_dict_returned_bytes();
7038  )
7039  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7040         "sweep _limit out of bounds");
7041  log_develop_trace(gc, sweep)("====================");
7042  log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7043}
7044
7045void SweepClosure::print_on(outputStream* st) const {
7046  st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7047               p2i(_sp->bottom()), p2i(_sp->end()));
7048  st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7049  st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7050  NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7051  st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7052               _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7053}
7054
7055#ifndef PRODUCT
7056// Assertion checking only:  no useful work in product mode --
7057// however, if any of the flags below become product flags,
7058// you may need to review this code to see if it needs to be
7059// enabled in product mode.
7060SweepClosure::~SweepClosure() {
7061  assert_lock_strong(_freelistLock);
7062  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7063         "sweep _limit out of bounds");
7064  if (inFreeRange()) {
7065    Log(gc, sweep) log;
7066    log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7067    ResourceMark rm;
7068    print_on(log.error_stream());
7069    ShouldNotReachHere();
7070  }
7071
7072  if (log_is_enabled(Debug, gc, sweep)) {
7073    log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7074                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7075    log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7076                         _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7077    size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7078    log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7079  }
7080
7081  if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7082    size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7083    size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7084    size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7085    log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7086                         returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7087  }
7088  log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7089  log_develop_trace(gc, sweep)("================");
7090}
7091#endif  // PRODUCT
7092
7093void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7094    bool freeRangeInFreeLists) {
7095  log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7096                               p2i(freeFinger), freeRangeInFreeLists);
7097  assert(!inFreeRange(), "Trampling existing free range");
7098  set_inFreeRange(true);
7099  set_lastFreeRangeCoalesced(false);
7100
7101  set_freeFinger(freeFinger);
7102  set_freeRangeInFreeLists(freeRangeInFreeLists);
7103  if (CMSTestInFreeList) {
7104    if (freeRangeInFreeLists) {
7105      FreeChunk* fc = (FreeChunk*) freeFinger;
7106      assert(fc->is_free(), "A chunk on the free list should be free.");
7107      assert(fc->size() > 0, "Free range should have a size");
7108      assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7109    }
7110  }
7111}
7112
7113// Note that the sweeper runs concurrently with mutators. Thus,
7114// it is possible for direct allocation in this generation to happen
7115// in the middle of the sweep. Note that the sweeper also coalesces
7116// contiguous free blocks. Thus, unless the sweeper and the allocator
7117// synchronize appropriately freshly allocated blocks may get swept up.
7118// This is accomplished by the sweeper locking the free lists while
7119// it is sweeping. Thus blocks that are determined to be free are
7120// indeed free. There is however one additional complication:
7121// blocks that have been allocated since the final checkpoint and
7122// mark, will not have been marked and so would be treated as
7123// unreachable and swept up. To prevent this, the allocator marks
7124// the bit map when allocating during the sweep phase. This leads,
7125// however, to a further complication -- objects may have been allocated
7126// but not yet initialized -- in the sense that the header isn't yet
7127// installed. The sweeper can not then determine the size of the block
7128// in order to skip over it. To deal with this case, we use a technique
7129// (due to Printezis) to encode such uninitialized block sizes in the
7130// bit map. Since the bit map uses a bit per every HeapWord, but the
7131// CMS generation has a minimum object size of 3 HeapWords, it follows
7132// that "normal marks" won't be adjacent in the bit map (there will
7133// always be at least two 0 bits between successive 1 bits). We make use
7134// of these "unused" bits to represent uninitialized blocks -- the bit
7135// corresponding to the start of the uninitialized object and the next
7136// bit are both set. Finally, a 1 bit marks the end of the object that
7137// started with the two consecutive 1 bits to indicate its potentially
7138// uninitialized state.
7139
7140size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7141  FreeChunk* fc = (FreeChunk*)addr;
7142  size_t res;
7143
7144  // Check if we are done sweeping. Below we check "addr >= _limit" rather
7145  // than "addr == _limit" because although _limit was a block boundary when
7146  // we started the sweep, it may no longer be one because heap expansion
7147  // may have caused us to coalesce the block ending at the address _limit
7148  // with a newly expanded chunk (this happens when _limit was set to the
7149  // previous _end of the space), so we may have stepped past _limit:
7150  // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7151  if (addr >= _limit) { // we have swept up to or past the limit: finish up
7152    assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7153           "sweep _limit out of bounds");
7154    assert(addr < _sp->end(), "addr out of bounds");
7155    // Flush any free range we might be holding as a single
7156    // coalesced chunk to the appropriate free list.
7157    if (inFreeRange()) {
7158      assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7159             "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7160      flush_cur_free_chunk(freeFinger(),
7161                           pointer_delta(addr, freeFinger()));
7162      log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7163                                   p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7164                                   lastFreeRangeCoalesced() ? 1 : 0);
7165    }
7166
7167    // help the iterator loop finish
7168    return pointer_delta(_sp->end(), addr);
7169  }
7170
7171  assert(addr < _limit, "sweep invariant");
7172  // check if we should yield
7173  do_yield_check(addr);
7174  if (fc->is_free()) {
7175    // Chunk that is already free
7176    res = fc->size();
7177    do_already_free_chunk(fc);
7178    debug_only(_sp->verifyFreeLists());
7179    // If we flush the chunk at hand in lookahead_and_flush()
7180    // and it's coalesced with a preceding chunk, then the
7181    // process of "mangling" the payload of the coalesced block
7182    // will cause erasure of the size information from the
7183    // (erstwhile) header of all the coalesced blocks but the
7184    // first, so the first disjunct in the assert will not hold
7185    // in that specific case (in which case the second disjunct
7186    // will hold).
7187    assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7188           "Otherwise the size info doesn't change at this step");
7189    NOT_PRODUCT(
7190      _numObjectsAlreadyFree++;
7191      _numWordsAlreadyFree += res;
7192    )
7193    NOT_PRODUCT(_last_fc = fc;)
7194  } else if (!_bitMap->isMarked(addr)) {
7195    // Chunk is fresh garbage
7196    res = do_garbage_chunk(fc);
7197    debug_only(_sp->verifyFreeLists());
7198    NOT_PRODUCT(
7199      _numObjectsFreed++;
7200      _numWordsFreed += res;
7201    )
7202  } else {
7203    // Chunk that is alive.
7204    res = do_live_chunk(fc);
7205    debug_only(_sp->verifyFreeLists());
7206    NOT_PRODUCT(
7207        _numObjectsLive++;
7208        _numWordsLive += res;
7209    )
7210  }
7211  return res;
7212}
7213
7214// For the smart allocation, record following
7215//  split deaths - a free chunk is removed from its free list because
7216//      it is being split into two or more chunks.
7217//  split birth - a free chunk is being added to its free list because
7218//      a larger free chunk has been split and resulted in this free chunk.
7219//  coal death - a free chunk is being removed from its free list because
7220//      it is being coalesced into a large free chunk.
7221//  coal birth - a free chunk is being added to its free list because
7222//      it was created when two or more free chunks where coalesced into
7223//      this free chunk.
7224//
7225// These statistics are used to determine the desired number of free
7226// chunks of a given size.  The desired number is chosen to be relative
7227// to the end of a CMS sweep.  The desired number at the end of a sweep
7228// is the
7229//      count-at-end-of-previous-sweep (an amount that was enough)
7230//              - count-at-beginning-of-current-sweep  (the excess)
7231//              + split-births  (gains in this size during interval)
7232//              - split-deaths  (demands on this size during interval)
7233// where the interval is from the end of one sweep to the end of the
7234// next.
7235//
7236// When sweeping the sweeper maintains an accumulated chunk which is
7237// the chunk that is made up of chunks that have been coalesced.  That
7238// will be termed the left-hand chunk.  A new chunk of garbage that
7239// is being considered for coalescing will be referred to as the
7240// right-hand chunk.
7241//
7242// When making a decision on whether to coalesce a right-hand chunk with
7243// the current left-hand chunk, the current count vs. the desired count
7244// of the left-hand chunk is considered.  Also if the right-hand chunk
7245// is near the large chunk at the end of the heap (see
7246// ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7247// left-hand chunk is coalesced.
7248//
7249// When making a decision about whether to split a chunk, the desired count
7250// vs. the current count of the candidate to be split is also considered.
7251// If the candidate is underpopulated (currently fewer chunks than desired)
7252// a chunk of an overpopulated (currently more chunks than desired) size may
7253// be chosen.  The "hint" associated with a free list, if non-null, points
7254// to a free list which may be overpopulated.
7255//
7256
7257void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7258  const size_t size = fc->size();
7259  // Chunks that cannot be coalesced are not in the
7260  // free lists.
7261  if (CMSTestInFreeList && !fc->cantCoalesce()) {
7262    assert(_sp->verify_chunk_in_free_list(fc),
7263           "free chunk should be in free lists");
7264  }
7265  // a chunk that is already free, should not have been
7266  // marked in the bit map
7267  HeapWord* const addr = (HeapWord*) fc;
7268  assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7269  // Verify that the bit map has no bits marked between
7270  // addr and purported end of this block.
7271  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7272
7273  // Some chunks cannot be coalesced under any circumstances.
7274  // See the definition of cantCoalesce().
7275  if (!fc->cantCoalesce()) {
7276    // This chunk can potentially be coalesced.
7277    // All the work is done in
7278    do_post_free_or_garbage_chunk(fc, size);
7279    // Note that if the chunk is not coalescable (the else arm
7280    // below), we unconditionally flush, without needing to do
7281    // a "lookahead," as we do below.
7282    if (inFreeRange()) lookahead_and_flush(fc, size);
7283  } else {
7284    // Code path common to both original and adaptive free lists.
7285
7286    // cant coalesce with previous block; this should be treated
7287    // as the end of a free run if any
7288    if (inFreeRange()) {
7289      // we kicked some butt; time to pick up the garbage
7290      assert(freeFinger() < addr, "freeFinger points too high");
7291      flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7292    }
7293    // else, nothing to do, just continue
7294  }
7295}
7296
7297size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7298  // This is a chunk of garbage.  It is not in any free list.
7299  // Add it to a free list or let it possibly be coalesced into
7300  // a larger chunk.
7301  HeapWord* const addr = (HeapWord*) fc;
7302  const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7303
7304  // Verify that the bit map has no bits marked between
7305  // addr and purported end of just dead object.
7306  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7307  do_post_free_or_garbage_chunk(fc, size);
7308
7309  assert(_limit >= addr + size,
7310         "A freshly garbage chunk can't possibly straddle over _limit");
7311  if (inFreeRange()) lookahead_and_flush(fc, size);
7312  return size;
7313}
7314
7315size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7316  HeapWord* addr = (HeapWord*) fc;
7317  // The sweeper has just found a live object. Return any accumulated
7318  // left hand chunk to the free lists.
7319  if (inFreeRange()) {
7320    assert(freeFinger() < addr, "freeFinger points too high");
7321    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7322  }
7323
7324  // This object is live: we'd normally expect this to be
7325  // an oop, and like to assert the following:
7326  // assert(oop(addr)->is_oop(), "live block should be an oop");
7327  // However, as we commented above, this may be an object whose
7328  // header hasn't yet been initialized.
7329  size_t size;
7330  assert(_bitMap->isMarked(addr), "Tautology for this control point");
7331  if (_bitMap->isMarked(addr + 1)) {
7332    // Determine the size from the bit map, rather than trying to
7333    // compute it from the object header.
7334    HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7335    size = pointer_delta(nextOneAddr + 1, addr);
7336    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7337           "alignment problem");
7338
7339#ifdef ASSERT
7340      if (oop(addr)->klass_or_null() != NULL) {
7341        // Ignore mark word because we are running concurrent with mutators
7342        assert(oop(addr)->is_oop(true), "live block should be an oop");
7343        assert(size ==
7344               CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7345               "P-mark and computed size do not agree");
7346      }
7347#endif
7348
7349  } else {
7350    // This should be an initialized object that's alive.
7351    assert(oop(addr)->klass_or_null() != NULL,
7352           "Should be an initialized object");
7353    // Ignore mark word because we are running concurrent with mutators
7354    assert(oop(addr)->is_oop(true), "live block should be an oop");
7355    // Verify that the bit map has no bits marked between
7356    // addr and purported end of this block.
7357    size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7358    assert(size >= 3, "Necessary for Printezis marks to work");
7359    assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7360    DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7361  }
7362  return size;
7363}
7364
7365void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7366                                                 size_t chunkSize) {
7367  // do_post_free_or_garbage_chunk() should only be called in the case
7368  // of the adaptive free list allocator.
7369  const bool fcInFreeLists = fc->is_free();
7370  assert((HeapWord*)fc <= _limit, "sweep invariant");
7371  if (CMSTestInFreeList && fcInFreeLists) {
7372    assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7373  }
7374
7375  log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7376
7377  HeapWord* const fc_addr = (HeapWord*) fc;
7378
7379  bool coalesce = false;
7380  const size_t left  = pointer_delta(fc_addr, freeFinger());
7381  const size_t right = chunkSize;
7382  switch (FLSCoalescePolicy) {
7383    // numeric value forms a coalition aggressiveness metric
7384    case 0:  { // never coalesce
7385      coalesce = false;
7386      break;
7387    }
7388    case 1: { // coalesce if left & right chunks on overpopulated lists
7389      coalesce = _sp->coalOverPopulated(left) &&
7390                 _sp->coalOverPopulated(right);
7391      break;
7392    }
7393    case 2: { // coalesce if left chunk on overpopulated list (default)
7394      coalesce = _sp->coalOverPopulated(left);
7395      break;
7396    }
7397    case 3: { // coalesce if left OR right chunk on overpopulated list
7398      coalesce = _sp->coalOverPopulated(left) ||
7399                 _sp->coalOverPopulated(right);
7400      break;
7401    }
7402    case 4: { // always coalesce
7403      coalesce = true;
7404      break;
7405    }
7406    default:
7407     ShouldNotReachHere();
7408  }
7409
7410  // Should the current free range be coalesced?
7411  // If the chunk is in a free range and either we decided to coalesce above
7412  // or the chunk is near the large block at the end of the heap
7413  // (isNearLargestChunk() returns true), then coalesce this chunk.
7414  const bool doCoalesce = inFreeRange()
7415                          && (coalesce || _g->isNearLargestChunk(fc_addr));
7416  if (doCoalesce) {
7417    // Coalesce the current free range on the left with the new
7418    // chunk on the right.  If either is on a free list,
7419    // it must be removed from the list and stashed in the closure.
7420    if (freeRangeInFreeLists()) {
7421      FreeChunk* const ffc = (FreeChunk*)freeFinger();
7422      assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7423             "Size of free range is inconsistent with chunk size.");
7424      if (CMSTestInFreeList) {
7425        assert(_sp->verify_chunk_in_free_list(ffc),
7426               "Chunk is not in free lists");
7427      }
7428      _sp->coalDeath(ffc->size());
7429      _sp->removeFreeChunkFromFreeLists(ffc);
7430      set_freeRangeInFreeLists(false);
7431    }
7432    if (fcInFreeLists) {
7433      _sp->coalDeath(chunkSize);
7434      assert(fc->size() == chunkSize,
7435        "The chunk has the wrong size or is not in the free lists");
7436      _sp->removeFreeChunkFromFreeLists(fc);
7437    }
7438    set_lastFreeRangeCoalesced(true);
7439    print_free_block_coalesced(fc);
7440  } else {  // not in a free range and/or should not coalesce
7441    // Return the current free range and start a new one.
7442    if (inFreeRange()) {
7443      // In a free range but cannot coalesce with the right hand chunk.
7444      // Put the current free range into the free lists.
7445      flush_cur_free_chunk(freeFinger(),
7446                           pointer_delta(fc_addr, freeFinger()));
7447    }
7448    // Set up for new free range.  Pass along whether the right hand
7449    // chunk is in the free lists.
7450    initialize_free_range((HeapWord*)fc, fcInFreeLists);
7451  }
7452}
7453
7454// Lookahead flush:
7455// If we are tracking a free range, and this is the last chunk that
7456// we'll look at because its end crosses past _limit, we'll preemptively
7457// flush it along with any free range we may be holding on to. Note that
7458// this can be the case only for an already free or freshly garbage
7459// chunk. If this block is an object, it can never straddle
7460// over _limit. The "straddling" occurs when _limit is set at
7461// the previous end of the space when this cycle started, and
7462// a subsequent heap expansion caused the previously co-terminal
7463// free block to be coalesced with the newly expanded portion,
7464// thus rendering _limit a non-block-boundary making it dangerous
7465// for the sweeper to step over and examine.
7466void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7467  assert(inFreeRange(), "Should only be called if currently in a free range.");
7468  HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7469  assert(_sp->used_region().contains(eob - 1),
7470         "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7471         " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7472         " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7473         p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7474  if (eob >= _limit) {
7475    assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7476    log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7477                                 "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7478                                 "[" PTR_FORMAT "," PTR_FORMAT ")",
7479                                 p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7480    // Return the storage we are tracking back into the free lists.
7481    log_develop_trace(gc, sweep)("Flushing ... ");
7482    assert(freeFinger() < eob, "Error");
7483    flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7484  }
7485}
7486
7487void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7488  assert(inFreeRange(), "Should only be called if currently in a free range.");
7489  assert(size > 0,
7490    "A zero sized chunk cannot be added to the free lists.");
7491  if (!freeRangeInFreeLists()) {
7492    if (CMSTestInFreeList) {
7493      FreeChunk* fc = (FreeChunk*) chunk;
7494      fc->set_size(size);
7495      assert(!_sp->verify_chunk_in_free_list(fc),
7496             "chunk should not be in free lists yet");
7497    }
7498    log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7499    // A new free range is going to be starting.  The current
7500    // free range has not been added to the free lists yet or
7501    // was removed so add it back.
7502    // If the current free range was coalesced, then the death
7503    // of the free range was recorded.  Record a birth now.
7504    if (lastFreeRangeCoalesced()) {
7505      _sp->coalBirth(size);
7506    }
7507    _sp->addChunkAndRepairOffsetTable(chunk, size,
7508            lastFreeRangeCoalesced());
7509  } else {
7510    log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7511  }
7512  set_inFreeRange(false);
7513  set_freeRangeInFreeLists(false);
7514}
7515
7516// We take a break if we've been at this for a while,
7517// so as to avoid monopolizing the locks involved.
7518void SweepClosure::do_yield_work(HeapWord* addr) {
7519  // Return current free chunk being used for coalescing (if any)
7520  // to the appropriate freelist.  After yielding, the next
7521  // free block encountered will start a coalescing range of
7522  // free blocks.  If the next free block is adjacent to the
7523  // chunk just flushed, they will need to wait for the next
7524  // sweep to be coalesced.
7525  if (inFreeRange()) {
7526    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7527  }
7528
7529  // First give up the locks, then yield, then re-lock.
7530  // We should probably use a constructor/destructor idiom to
7531  // do this unlock/lock or modify the MutexUnlocker class to
7532  // serve our purpose. XXX
7533  assert_lock_strong(_bitMap->lock());
7534  assert_lock_strong(_freelistLock);
7535  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7536         "CMS thread should hold CMS token");
7537  _bitMap->lock()->unlock();
7538  _freelistLock->unlock();
7539  ConcurrentMarkSweepThread::desynchronize(true);
7540  _collector->stopTimer();
7541  _collector->incrementYields();
7542
7543  // See the comment in coordinator_yield()
7544  for (unsigned i = 0; i < CMSYieldSleepCount &&
7545                       ConcurrentMarkSweepThread::should_yield() &&
7546                       !CMSCollector::foregroundGCIsActive(); ++i) {
7547    os::sleep(Thread::current(), 1, false);
7548  }
7549
7550  ConcurrentMarkSweepThread::synchronize(true);
7551  _freelistLock->lock();
7552  _bitMap->lock()->lock_without_safepoint_check();
7553  _collector->startTimer();
7554}
7555
7556#ifndef PRODUCT
7557// This is actually very useful in a product build if it can
7558// be called from the debugger.  Compile it into the product
7559// as needed.
7560bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7561  return debug_cms_space->verify_chunk_in_free_list(fc);
7562}
7563#endif
7564
7565void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7566  log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7567                               p2i(fc), fc->size());
7568}
7569
7570// CMSIsAliveClosure
7571bool CMSIsAliveClosure::do_object_b(oop obj) {
7572  HeapWord* addr = (HeapWord*)obj;
7573  return addr != NULL &&
7574         (!_span.contains(addr) || _bit_map->isMarked(addr));
7575}
7576
7577
7578CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7579                      MemRegion span,
7580                      CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7581                      bool cpc):
7582  _collector(collector),
7583  _span(span),
7584  _bit_map(bit_map),
7585  _mark_stack(mark_stack),
7586  _concurrent_precleaning(cpc) {
7587  assert(!_span.is_empty(), "Empty span could spell trouble");
7588}
7589
7590
7591// CMSKeepAliveClosure: the serial version
7592void CMSKeepAliveClosure::do_oop(oop obj) {
7593  HeapWord* addr = (HeapWord*)obj;
7594  if (_span.contains(addr) &&
7595      !_bit_map->isMarked(addr)) {
7596    _bit_map->mark(addr);
7597    bool simulate_overflow = false;
7598    NOT_PRODUCT(
7599      if (CMSMarkStackOverflowALot &&
7600          _collector->simulate_overflow()) {
7601        // simulate a stack overflow
7602        simulate_overflow = true;
7603      }
7604    )
7605    if (simulate_overflow || !_mark_stack->push(obj)) {
7606      if (_concurrent_precleaning) {
7607        // We dirty the overflown object and let the remark
7608        // phase deal with it.
7609        assert(_collector->overflow_list_is_empty(), "Error");
7610        // In the case of object arrays, we need to dirty all of
7611        // the cards that the object spans. No locking or atomics
7612        // are needed since no one else can be mutating the mod union
7613        // table.
7614        if (obj->is_objArray()) {
7615          size_t sz = obj->size();
7616          HeapWord* end_card_addr =
7617            (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7618          MemRegion redirty_range = MemRegion(addr, end_card_addr);
7619          assert(!redirty_range.is_empty(), "Arithmetical tautology");
7620          _collector->_modUnionTable.mark_range(redirty_range);
7621        } else {
7622          _collector->_modUnionTable.mark(addr);
7623        }
7624        _collector->_ser_kac_preclean_ovflw++;
7625      } else {
7626        _collector->push_on_overflow_list(obj);
7627        _collector->_ser_kac_ovflw++;
7628      }
7629    }
7630  }
7631}
7632
7633void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7634void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7635
7636// CMSParKeepAliveClosure: a parallel version of the above.
7637// The work queues are private to each closure (thread),
7638// but (may be) available for stealing by other threads.
7639void CMSParKeepAliveClosure::do_oop(oop obj) {
7640  HeapWord* addr = (HeapWord*)obj;
7641  if (_span.contains(addr) &&
7642      !_bit_map->isMarked(addr)) {
7643    // In general, during recursive tracing, several threads
7644    // may be concurrently getting here; the first one to
7645    // "tag" it, claims it.
7646    if (_bit_map->par_mark(addr)) {
7647      bool res = _work_queue->push(obj);
7648      assert(res, "Low water mark should be much less than capacity");
7649      // Do a recursive trim in the hope that this will keep
7650      // stack usage lower, but leave some oops for potential stealers
7651      trim_queue(_low_water_mark);
7652    } // Else, another thread got there first
7653  }
7654}
7655
7656void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7657void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7658
7659void CMSParKeepAliveClosure::trim_queue(uint max) {
7660  while (_work_queue->size() > max) {
7661    oop new_oop;
7662    if (_work_queue->pop_local(new_oop)) {
7663      assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7664      assert(_bit_map->isMarked((HeapWord*)new_oop),
7665             "no white objects on this stack!");
7666      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7667      // iterate over the oops in this oop, marking and pushing
7668      // the ones in CMS heap (i.e. in _span).
7669      new_oop->oop_iterate(&_mark_and_push);
7670    }
7671  }
7672}
7673
7674CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7675                                CMSCollector* collector,
7676                                MemRegion span, CMSBitMap* bit_map,
7677                                OopTaskQueue* work_queue):
7678  _collector(collector),
7679  _span(span),
7680  _bit_map(bit_map),
7681  _work_queue(work_queue) { }
7682
7683void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7684  HeapWord* addr = (HeapWord*)obj;
7685  if (_span.contains(addr) &&
7686      !_bit_map->isMarked(addr)) {
7687    if (_bit_map->par_mark(addr)) {
7688      bool simulate_overflow = false;
7689      NOT_PRODUCT(
7690        if (CMSMarkStackOverflowALot &&
7691            _collector->par_simulate_overflow()) {
7692          // simulate a stack overflow
7693          simulate_overflow = true;
7694        }
7695      )
7696      if (simulate_overflow || !_work_queue->push(obj)) {
7697        _collector->par_push_on_overflow_list(obj);
7698        _collector->_par_kac_ovflw++;
7699      }
7700    } // Else another thread got there already
7701  }
7702}
7703
7704void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7705void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7706
7707//////////////////////////////////////////////////////////////////
7708//  CMSExpansionCause                /////////////////////////////
7709//////////////////////////////////////////////////////////////////
7710const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7711  switch (cause) {
7712    case _no_expansion:
7713      return "No expansion";
7714    case _satisfy_free_ratio:
7715      return "Free ratio";
7716    case _satisfy_promotion:
7717      return "Satisfy promotion";
7718    case _satisfy_allocation:
7719      return "allocation";
7720    case _allocate_par_lab:
7721      return "Par LAB";
7722    case _allocate_par_spooling_space:
7723      return "Par Spooling Space";
7724    case _adaptive_size_policy:
7725      return "Ergonomics";
7726    default:
7727      return "unknown";
7728  }
7729}
7730
7731void CMSDrainMarkingStackClosure::do_void() {
7732  // the max number to take from overflow list at a time
7733  const size_t num = _mark_stack->capacity()/4;
7734  assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7735         "Overflow list should be NULL during concurrent phases");
7736  while (!_mark_stack->isEmpty() ||
7737         // if stack is empty, check the overflow list
7738         _collector->take_from_overflow_list(num, _mark_stack)) {
7739    oop obj = _mark_stack->pop();
7740    HeapWord* addr = (HeapWord*)obj;
7741    assert(_span.contains(addr), "Should be within span");
7742    assert(_bit_map->isMarked(addr), "Should be marked");
7743    assert(obj->is_oop(), "Should be an oop");
7744    obj->oop_iterate(_keep_alive);
7745  }
7746}
7747
7748void CMSParDrainMarkingStackClosure::do_void() {
7749  // drain queue
7750  trim_queue(0);
7751}
7752
7753// Trim our work_queue so its length is below max at return
7754void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7755  while (_work_queue->size() > max) {
7756    oop new_oop;
7757    if (_work_queue->pop_local(new_oop)) {
7758      assert(new_oop->is_oop(), "Expected an oop");
7759      assert(_bit_map->isMarked((HeapWord*)new_oop),
7760             "no white objects on this stack!");
7761      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7762      // iterate over the oops in this oop, marking and pushing
7763      // the ones in CMS heap (i.e. in _span).
7764      new_oop->oop_iterate(&_mark_and_push);
7765    }
7766  }
7767}
7768
7769////////////////////////////////////////////////////////////////////
7770// Support for Marking Stack Overflow list handling and related code
7771////////////////////////////////////////////////////////////////////
7772// Much of the following code is similar in shape and spirit to the
7773// code used in ParNewGC. We should try and share that code
7774// as much as possible in the future.
7775
7776#ifndef PRODUCT
7777// Debugging support for CMSStackOverflowALot
7778
7779// It's OK to call this multi-threaded;  the worst thing
7780// that can happen is that we'll get a bunch of closely
7781// spaced simulated overflows, but that's OK, in fact
7782// probably good as it would exercise the overflow code
7783// under contention.
7784bool CMSCollector::simulate_overflow() {
7785  if (_overflow_counter-- <= 0) { // just being defensive
7786    _overflow_counter = CMSMarkStackOverflowInterval;
7787    return true;
7788  } else {
7789    return false;
7790  }
7791}
7792
7793bool CMSCollector::par_simulate_overflow() {
7794  return simulate_overflow();
7795}
7796#endif
7797
7798// Single-threaded
7799bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7800  assert(stack->isEmpty(), "Expected precondition");
7801  assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7802  size_t i = num;
7803  oop  cur = _overflow_list;
7804  const markOop proto = markOopDesc::prototype();
7805  NOT_PRODUCT(ssize_t n = 0;)
7806  for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7807    next = oop(cur->mark());
7808    cur->set_mark(proto);   // until proven otherwise
7809    assert(cur->is_oop(), "Should be an oop");
7810    bool res = stack->push(cur);
7811    assert(res, "Bit off more than can chew?");
7812    NOT_PRODUCT(n++;)
7813  }
7814  _overflow_list = cur;
7815#ifndef PRODUCT
7816  assert(_num_par_pushes >= n, "Too many pops?");
7817  _num_par_pushes -=n;
7818#endif
7819  return !stack->isEmpty();
7820}
7821
7822#define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7823// (MT-safe) Get a prefix of at most "num" from the list.
7824// The overflow list is chained through the mark word of
7825// each object in the list. We fetch the entire list,
7826// break off a prefix of the right size and return the
7827// remainder. If other threads try to take objects from
7828// the overflow list at that time, they will wait for
7829// some time to see if data becomes available. If (and
7830// only if) another thread places one or more object(s)
7831// on the global list before we have returned the suffix
7832// to the global list, we will walk down our local list
7833// to find its end and append the global list to
7834// our suffix before returning it. This suffix walk can
7835// prove to be expensive (quadratic in the amount of traffic)
7836// when there are many objects in the overflow list and
7837// there is much producer-consumer contention on the list.
7838// *NOTE*: The overflow list manipulation code here and
7839// in ParNewGeneration:: are very similar in shape,
7840// except that in the ParNew case we use the old (from/eden)
7841// copy of the object to thread the list via its klass word.
7842// Because of the common code, if you make any changes in
7843// the code below, please check the ParNew version to see if
7844// similar changes might be needed.
7845// CR 6797058 has been filed to consolidate the common code.
7846bool CMSCollector::par_take_from_overflow_list(size_t num,
7847                                               OopTaskQueue* work_q,
7848                                               int no_of_gc_threads) {
7849  assert(work_q->size() == 0, "First empty local work queue");
7850  assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7851  if (_overflow_list == NULL) {
7852    return false;
7853  }
7854  // Grab the entire list; we'll put back a suffix
7855  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7856  Thread* tid = Thread::current();
7857  // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7858  // set to ParallelGCThreads.
7859  size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7860  size_t sleep_time_millis = MAX2((size_t)1, num/100);
7861  // If the list is busy, we spin for a short while,
7862  // sleeping between attempts to get the list.
7863  for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7864    os::sleep(tid, sleep_time_millis, false);
7865    if (_overflow_list == NULL) {
7866      // Nothing left to take
7867      return false;
7868    } else if (_overflow_list != BUSY) {
7869      // Try and grab the prefix
7870      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7871    }
7872  }
7873  // If the list was found to be empty, or we spun long
7874  // enough, we give up and return empty-handed. If we leave
7875  // the list in the BUSY state below, it must be the case that
7876  // some other thread holds the overflow list and will set it
7877  // to a non-BUSY state in the future.
7878  if (prefix == NULL || prefix == BUSY) {
7879     // Nothing to take or waited long enough
7880     if (prefix == NULL) {
7881       // Write back the NULL in case we overwrote it with BUSY above
7882       // and it is still the same value.
7883       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7884     }
7885     return false;
7886  }
7887  assert(prefix != NULL && prefix != BUSY, "Error");
7888  size_t i = num;
7889  oop cur = prefix;
7890  // Walk down the first "num" objects, unless we reach the end.
7891  for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7892  if (cur->mark() == NULL) {
7893    // We have "num" or fewer elements in the list, so there
7894    // is nothing to return to the global list.
7895    // Write back the NULL in lieu of the BUSY we wrote
7896    // above, if it is still the same value.
7897    if (_overflow_list == BUSY) {
7898      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7899    }
7900  } else {
7901    // Chop off the suffix and return it to the global list.
7902    assert(cur->mark() != BUSY, "Error");
7903    oop suffix_head = cur->mark(); // suffix will be put back on global list
7904    cur->set_mark(NULL);           // break off suffix
7905    // It's possible that the list is still in the empty(busy) state
7906    // we left it in a short while ago; in that case we may be
7907    // able to place back the suffix without incurring the cost
7908    // of a walk down the list.
7909    oop observed_overflow_list = _overflow_list;
7910    oop cur_overflow_list = observed_overflow_list;
7911    bool attached = false;
7912    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7913      observed_overflow_list =
7914        (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7915      if (cur_overflow_list == observed_overflow_list) {
7916        attached = true;
7917        break;
7918      } else cur_overflow_list = observed_overflow_list;
7919    }
7920    if (!attached) {
7921      // Too bad, someone else sneaked in (at least) an element; we'll need
7922      // to do a splice. Find tail of suffix so we can prepend suffix to global
7923      // list.
7924      for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7925      oop suffix_tail = cur;
7926      assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7927             "Tautology");
7928      observed_overflow_list = _overflow_list;
7929      do {
7930        cur_overflow_list = observed_overflow_list;
7931        if (cur_overflow_list != BUSY) {
7932          // Do the splice ...
7933          suffix_tail->set_mark(markOop(cur_overflow_list));
7934        } else { // cur_overflow_list == BUSY
7935          suffix_tail->set_mark(NULL);
7936        }
7937        // ... and try to place spliced list back on overflow_list ...
7938        observed_overflow_list =
7939          (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7940      } while (cur_overflow_list != observed_overflow_list);
7941      // ... until we have succeeded in doing so.
7942    }
7943  }
7944
7945  // Push the prefix elements on work_q
7946  assert(prefix != NULL, "control point invariant");
7947  const markOop proto = markOopDesc::prototype();
7948  oop next;
7949  NOT_PRODUCT(ssize_t n = 0;)
7950  for (cur = prefix; cur != NULL; cur = next) {
7951    next = oop(cur->mark());
7952    cur->set_mark(proto);   // until proven otherwise
7953    assert(cur->is_oop(), "Should be an oop");
7954    bool res = work_q->push(cur);
7955    assert(res, "Bit off more than we can chew?");
7956    NOT_PRODUCT(n++;)
7957  }
7958#ifndef PRODUCT
7959  assert(_num_par_pushes >= n, "Too many pops?");
7960  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7961#endif
7962  return true;
7963}
7964
7965// Single-threaded
7966void CMSCollector::push_on_overflow_list(oop p) {
7967  NOT_PRODUCT(_num_par_pushes++;)
7968  assert(p->is_oop(), "Not an oop");
7969  preserve_mark_if_necessary(p);
7970  p->set_mark((markOop)_overflow_list);
7971  _overflow_list = p;
7972}
7973
7974// Multi-threaded; use CAS to prepend to overflow list
7975void CMSCollector::par_push_on_overflow_list(oop p) {
7976  NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7977  assert(p->is_oop(), "Not an oop");
7978  par_preserve_mark_if_necessary(p);
7979  oop observed_overflow_list = _overflow_list;
7980  oop cur_overflow_list;
7981  do {
7982    cur_overflow_list = observed_overflow_list;
7983    if (cur_overflow_list != BUSY) {
7984      p->set_mark(markOop(cur_overflow_list));
7985    } else {
7986      p->set_mark(NULL);
7987    }
7988    observed_overflow_list =
7989      (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7990  } while (cur_overflow_list != observed_overflow_list);
7991}
7992#undef BUSY
7993
7994// Single threaded
7995// General Note on GrowableArray: pushes may silently fail
7996// because we are (temporarily) out of C-heap for expanding
7997// the stack. The problem is quite ubiquitous and affects
7998// a lot of code in the JVM. The prudent thing for GrowableArray
7999// to do (for now) is to exit with an error. However, that may
8000// be too draconian in some cases because the caller may be
8001// able to recover without much harm. For such cases, we
8002// should probably introduce a "soft_push" method which returns
8003// an indication of success or failure with the assumption that
8004// the caller may be able to recover from a failure; code in
8005// the VM can then be changed, incrementally, to deal with such
8006// failures where possible, thus, incrementally hardening the VM
8007// in such low resource situations.
8008void CMSCollector::preserve_mark_work(oop p, markOop m) {
8009  _preserved_oop_stack.push(p);
8010  _preserved_mark_stack.push(m);
8011  assert(m == p->mark(), "Mark word changed");
8012  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8013         "bijection");
8014}
8015
8016// Single threaded
8017void CMSCollector::preserve_mark_if_necessary(oop p) {
8018  markOop m = p->mark();
8019  if (m->must_be_preserved(p)) {
8020    preserve_mark_work(p, m);
8021  }
8022}
8023
8024void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8025  markOop m = p->mark();
8026  if (m->must_be_preserved(p)) {
8027    MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8028    // Even though we read the mark word without holding
8029    // the lock, we are assured that it will not change
8030    // because we "own" this oop, so no other thread can
8031    // be trying to push it on the overflow list; see
8032    // the assertion in preserve_mark_work() that checks
8033    // that m == p->mark().
8034    preserve_mark_work(p, m);
8035  }
8036}
8037
8038// We should be able to do this multi-threaded,
8039// a chunk of stack being a task (this is
8040// correct because each oop only ever appears
8041// once in the overflow list. However, it's
8042// not very easy to completely overlap this with
8043// other operations, so will generally not be done
8044// until all work's been completed. Because we
8045// expect the preserved oop stack (set) to be small,
8046// it's probably fine to do this single-threaded.
8047// We can explore cleverer concurrent/overlapped/parallel
8048// processing of preserved marks if we feel the
8049// need for this in the future. Stack overflow should
8050// be so rare in practice and, when it happens, its
8051// effect on performance so great that this will
8052// likely just be in the noise anyway.
8053void CMSCollector::restore_preserved_marks_if_any() {
8054  assert(SafepointSynchronize::is_at_safepoint(),
8055         "world should be stopped");
8056  assert(Thread::current()->is_ConcurrentGC_thread() ||
8057         Thread::current()->is_VM_thread(),
8058         "should be single-threaded");
8059  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8060         "bijection");
8061
8062  while (!_preserved_oop_stack.is_empty()) {
8063    oop p = _preserved_oop_stack.pop();
8064    assert(p->is_oop(), "Should be an oop");
8065    assert(_span.contains(p), "oop should be in _span");
8066    assert(p->mark() == markOopDesc::prototype(),
8067           "Set when taken from overflow list");
8068    markOop m = _preserved_mark_stack.pop();
8069    p->set_mark(m);
8070  }
8071  assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8072         "stacks were cleared above");
8073}
8074
8075#ifndef PRODUCT
8076bool CMSCollector::no_preserved_marks() const {
8077  return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8078}
8079#endif
8080
8081// Transfer some number of overflown objects to usual marking
8082// stack. Return true if some objects were transferred.
8083bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8084  size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8085                    (size_t)ParGCDesiredObjsFromOverflowList);
8086
8087  bool res = _collector->take_from_overflow_list(num, _mark_stack);
8088  assert(_collector->overflow_list_is_empty() || res,
8089         "If list is not empty, we should have taken something");
8090  assert(!res || !_mark_stack->isEmpty(),
8091         "If we took something, it should now be on our stack");
8092  return res;
8093}
8094
8095size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8096  size_t res = _sp->block_size_no_stall(addr, _collector);
8097  if (_sp->block_is_obj(addr)) {
8098    if (_live_bit_map->isMarked(addr)) {
8099      // It can't have been dead in a previous cycle
8100      guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8101    } else {
8102      _dead_bit_map->mark(addr);      // mark the dead object
8103    }
8104  }
8105  // Could be 0, if the block size could not be computed without stalling.
8106  return res;
8107}
8108
8109TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8110
8111  switch (phase) {
8112    case CMSCollector::InitialMarking:
8113      initialize(true  /* fullGC */ ,
8114                 cause /* cause of the GC */,
8115                 true  /* recordGCBeginTime */,
8116                 true  /* recordPreGCUsage */,
8117                 false /* recordPeakUsage */,
8118                 false /* recordPostGCusage */,
8119                 true  /* recordAccumulatedGCTime */,
8120                 false /* recordGCEndTime */,
8121                 false /* countCollection */  );
8122      break;
8123
8124    case CMSCollector::FinalMarking:
8125      initialize(true  /* fullGC */ ,
8126                 cause /* cause of the GC */,
8127                 false /* recordGCBeginTime */,
8128                 false /* recordPreGCUsage */,
8129                 false /* recordPeakUsage */,
8130                 false /* recordPostGCusage */,
8131                 true  /* recordAccumulatedGCTime */,
8132                 false /* recordGCEndTime */,
8133                 false /* countCollection */  );
8134      break;
8135
8136    case CMSCollector::Sweeping:
8137      initialize(true  /* fullGC */ ,
8138                 cause /* cause of the GC */,
8139                 false /* recordGCBeginTime */,
8140                 false /* recordPreGCUsage */,
8141                 true  /* recordPeakUsage */,
8142                 true  /* recordPostGCusage */,
8143                 false /* recordAccumulatedGCTime */,
8144                 true  /* recordGCEndTime */,
8145                 true  /* countCollection */  );
8146      break;
8147
8148    default:
8149      ShouldNotReachHere();
8150  }
8151}
8152