concurrentMarkSweepGeneration.cpp revision 10732:252b571bbb86
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoaderData.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/codeCache.hpp"
31#include "gc/cms/cmsCollectorPolicy.hpp"
32#include "gc/cms/cmsOopClosures.inline.hpp"
33#include "gc/cms/compactibleFreeListSpace.hpp"
34#include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
35#include "gc/cms/concurrentMarkSweepThread.hpp"
36#include "gc/cms/parNewGeneration.hpp"
37#include "gc/cms/vmCMSOperations.hpp"
38#include "gc/serial/genMarkSweep.hpp"
39#include "gc/serial/tenuredGeneration.hpp"
40#include "gc/shared/adaptiveSizePolicy.hpp"
41#include "gc/shared/cardGeneration.inline.hpp"
42#include "gc/shared/cardTableRS.hpp"
43#include "gc/shared/collectedHeap.inline.hpp"
44#include "gc/shared/collectorCounters.hpp"
45#include "gc/shared/collectorPolicy.hpp"
46#include "gc/shared/gcLocker.inline.hpp"
47#include "gc/shared/gcPolicyCounters.hpp"
48#include "gc/shared/gcTimer.hpp"
49#include "gc/shared/gcTrace.hpp"
50#include "gc/shared/gcTraceTime.inline.hpp"
51#include "gc/shared/genCollectedHeap.hpp"
52#include "gc/shared/genOopClosures.inline.hpp"
53#include "gc/shared/isGCActiveMark.hpp"
54#include "gc/shared/referencePolicy.hpp"
55#include "gc/shared/strongRootsScope.hpp"
56#include "gc/shared/taskqueue.inline.hpp"
57#include "logging/log.hpp"
58#include "memory/allocation.hpp"
59#include "memory/iterator.inline.hpp"
60#include "memory/padded.hpp"
61#include "memory/resourceArea.hpp"
62#include "oops/oop.inline.hpp"
63#include "prims/jvmtiExport.hpp"
64#include "runtime/atomic.inline.hpp"
65#include "runtime/globals_extension.hpp"
66#include "runtime/handles.inline.hpp"
67#include "runtime/java.hpp"
68#include "runtime/orderAccess.inline.hpp"
69#include "runtime/timer.hpp"
70#include "runtime/vmThread.hpp"
71#include "services/memoryService.hpp"
72#include "services/runtimeService.hpp"
73#include "utilities/stack.inline.hpp"
74
75// statics
76CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
77bool CMSCollector::_full_gc_requested = false;
78GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
79
80//////////////////////////////////////////////////////////////////
81// In support of CMS/VM thread synchronization
82//////////////////////////////////////////////////////////////////
83// We split use of the CGC_lock into 2 "levels".
84// The low-level locking is of the usual CGC_lock monitor. We introduce
85// a higher level "token" (hereafter "CMS token") built on top of the
86// low level monitor (hereafter "CGC lock").
87// The token-passing protocol gives priority to the VM thread. The
88// CMS-lock doesn't provide any fairness guarantees, but clients
89// should ensure that it is only held for very short, bounded
90// durations.
91//
92// When either of the CMS thread or the VM thread is involved in
93// collection operations during which it does not want the other
94// thread to interfere, it obtains the CMS token.
95//
96// If either thread tries to get the token while the other has
97// it, that thread waits. However, if the VM thread and CMS thread
98// both want the token, then the VM thread gets priority while the
99// CMS thread waits. This ensures, for instance, that the "concurrent"
100// phases of the CMS thread's work do not block out the VM thread
101// for long periods of time as the CMS thread continues to hog
102// the token. (See bug 4616232).
103//
104// The baton-passing functions are, however, controlled by the
105// flags _foregroundGCShouldWait and _foregroundGCIsActive,
106// and here the low-level CMS lock, not the high level token,
107// ensures mutual exclusion.
108//
109// Two important conditions that we have to satisfy:
110// 1. if a thread does a low-level wait on the CMS lock, then it
111//    relinquishes the CMS token if it were holding that token
112//    when it acquired the low-level CMS lock.
113// 2. any low-level notifications on the low-level lock
114//    should only be sent when a thread has relinquished the token.
115//
116// In the absence of either property, we'd have potential deadlock.
117//
118// We protect each of the CMS (concurrent and sequential) phases
119// with the CMS _token_, not the CMS _lock_.
120//
121// The only code protected by CMS lock is the token acquisition code
122// itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
123// baton-passing code.
124//
125// Unfortunately, i couldn't come up with a good abstraction to factor and
126// hide the naked CGC_lock manipulation in the baton-passing code
127// further below. That's something we should try to do. Also, the proof
128// of correctness of this 2-level locking scheme is far from obvious,
129// and potentially quite slippery. We have an uneasy suspicion, for instance,
130// that there may be a theoretical possibility of delay/starvation in the
131// low-level lock/wait/notify scheme used for the baton-passing because of
132// potential interference with the priority scheme embodied in the
133// CMS-token-passing protocol. See related comments at a CGC_lock->wait()
134// invocation further below and marked with "XXX 20011219YSR".
135// Indeed, as we note elsewhere, this may become yet more slippery
136// in the presence of multiple CMS and/or multiple VM threads. XXX
137
138class CMSTokenSync: public StackObj {
139 private:
140  bool _is_cms_thread;
141 public:
142  CMSTokenSync(bool is_cms_thread):
143    _is_cms_thread(is_cms_thread) {
144    assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
145           "Incorrect argument to constructor");
146    ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
147  }
148
149  ~CMSTokenSync() {
150    assert(_is_cms_thread ?
151             ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
152             ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
153          "Incorrect state");
154    ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
155  }
156};
157
158// Convenience class that does a CMSTokenSync, and then acquires
159// upto three locks.
160class CMSTokenSyncWithLocks: public CMSTokenSync {
161 private:
162  // Note: locks are acquired in textual declaration order
163  // and released in the opposite order
164  MutexLockerEx _locker1, _locker2, _locker3;
165 public:
166  CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
167                        Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
168    CMSTokenSync(is_cms_thread),
169    _locker1(mutex1, Mutex::_no_safepoint_check_flag),
170    _locker2(mutex2, Mutex::_no_safepoint_check_flag),
171    _locker3(mutex3, Mutex::_no_safepoint_check_flag)
172  { }
173};
174
175
176//////////////////////////////////////////////////////////////////
177//  Concurrent Mark-Sweep Generation /////////////////////////////
178//////////////////////////////////////////////////////////////////
179
180NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
181
182// This struct contains per-thread things necessary to support parallel
183// young-gen collection.
184class CMSParGCThreadState: public CHeapObj<mtGC> {
185 public:
186  CompactibleFreeListSpaceLAB lab;
187  PromotionInfo promo;
188
189  // Constructor.
190  CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
191    promo.setSpace(cfls);
192  }
193};
194
195ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
196     ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
197  CardGeneration(rs, initial_byte_size, ct),
198  _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
199  _did_compact(false)
200{
201  HeapWord* bottom = (HeapWord*) _virtual_space.low();
202  HeapWord* end    = (HeapWord*) _virtual_space.high();
203
204  _direct_allocated_words = 0;
205  NOT_PRODUCT(
206    _numObjectsPromoted = 0;
207    _numWordsPromoted = 0;
208    _numObjectsAllocated = 0;
209    _numWordsAllocated = 0;
210  )
211
212  _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
213  NOT_PRODUCT(debug_cms_space = _cmsSpace;)
214  _cmsSpace->_old_gen = this;
215
216  _gc_stats = new CMSGCStats();
217
218  // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
219  // offsets match. The ability to tell free chunks from objects
220  // depends on this property.
221  debug_only(
222    FreeChunk* junk = NULL;
223    assert(UseCompressedClassPointers ||
224           junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
225           "Offset of FreeChunk::_prev within FreeChunk must match"
226           "  that of OopDesc::_klass within OopDesc");
227  )
228
229  _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
230  for (uint i = 0; i < ParallelGCThreads; i++) {
231    _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
232  }
233
234  _incremental_collection_failed = false;
235  // The "dilatation_factor" is the expansion that can occur on
236  // account of the fact that the minimum object size in the CMS
237  // generation may be larger than that in, say, a contiguous young
238  //  generation.
239  // Ideally, in the calculation below, we'd compute the dilatation
240  // factor as: MinChunkSize/(promoting_gen's min object size)
241  // Since we do not have such a general query interface for the
242  // promoting generation, we'll instead just use the minimum
243  // object size (which today is a header's worth of space);
244  // note that all arithmetic is in units of HeapWords.
245  assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
246  assert(_dilatation_factor >= 1.0, "from previous assert");
247}
248
249
250// The field "_initiating_occupancy" represents the occupancy percentage
251// at which we trigger a new collection cycle.  Unless explicitly specified
252// via CMSInitiatingOccupancyFraction (argument "io" below), it
253// is calculated by:
254//
255//   Let "f" be MinHeapFreeRatio in
256//
257//    _initiating_occupancy = 100-f +
258//                           f * (CMSTriggerRatio/100)
259//   where CMSTriggerRatio is the argument "tr" below.
260//
261// That is, if we assume the heap is at its desired maximum occupancy at the
262// end of a collection, we let CMSTriggerRatio of the (purported) free
263// space be allocated before initiating a new collection cycle.
264//
265void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
266  assert(io <= 100 && tr <= 100, "Check the arguments");
267  if (io >= 0) {
268    _initiating_occupancy = (double)io / 100.0;
269  } else {
270    _initiating_occupancy = ((100 - MinHeapFreeRatio) +
271                             (double)(tr * MinHeapFreeRatio) / 100.0)
272                            / 100.0;
273  }
274}
275
276void ConcurrentMarkSweepGeneration::ref_processor_init() {
277  assert(collector() != NULL, "no collector");
278  collector()->ref_processor_init();
279}
280
281void CMSCollector::ref_processor_init() {
282  if (_ref_processor == NULL) {
283    // Allocate and initialize a reference processor
284    _ref_processor =
285      new ReferenceProcessor(_span,                               // span
286                             (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
287                             ParallelGCThreads,                   // mt processing degree
288                             _cmsGen->refs_discovery_is_mt(),     // mt discovery
289                             MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
290                             _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
291                             &_is_alive_closure);                 // closure for liveness info
292    // Initialize the _ref_processor field of CMSGen
293    _cmsGen->set_ref_processor(_ref_processor);
294
295  }
296}
297
298AdaptiveSizePolicy* CMSCollector::size_policy() {
299  GenCollectedHeap* gch = GenCollectedHeap::heap();
300  return gch->gen_policy()->size_policy();
301}
302
303void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
304
305  const char* gen_name = "old";
306  GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
307  // Generation Counters - generation 1, 1 subspace
308  _gen_counters = new GenerationCounters(gen_name, 1, 1,
309      gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
310
311  _space_counters = new GSpaceCounters(gen_name, 0,
312                                       _virtual_space.reserved_size(),
313                                       this, _gen_counters);
314}
315
316CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
317  _cms_gen(cms_gen)
318{
319  assert(alpha <= 100, "bad value");
320  _saved_alpha = alpha;
321
322  // Initialize the alphas to the bootstrap value of 100.
323  _gc0_alpha = _cms_alpha = 100;
324
325  _cms_begin_time.update();
326  _cms_end_time.update();
327
328  _gc0_duration = 0.0;
329  _gc0_period = 0.0;
330  _gc0_promoted = 0;
331
332  _cms_duration = 0.0;
333  _cms_period = 0.0;
334  _cms_allocated = 0;
335
336  _cms_used_at_gc0_begin = 0;
337  _cms_used_at_gc0_end = 0;
338  _allow_duty_cycle_reduction = false;
339  _valid_bits = 0;
340}
341
342double CMSStats::cms_free_adjustment_factor(size_t free) const {
343  // TBD: CR 6909490
344  return 1.0;
345}
346
347void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
348}
349
350// If promotion failure handling is on use
351// the padded average size of the promotion for each
352// young generation collection.
353double CMSStats::time_until_cms_gen_full() const {
354  size_t cms_free = _cms_gen->cmsSpace()->free();
355  GenCollectedHeap* gch = GenCollectedHeap::heap();
356  size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
357                                   (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
358  if (cms_free > expected_promotion) {
359    // Start a cms collection if there isn't enough space to promote
360    // for the next young collection.  Use the padded average as
361    // a safety factor.
362    cms_free -= expected_promotion;
363
364    // Adjust by the safety factor.
365    double cms_free_dbl = (double)cms_free;
366    double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
367    // Apply a further correction factor which tries to adjust
368    // for recent occurance of concurrent mode failures.
369    cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
370    cms_free_dbl = cms_free_dbl * cms_adjustment;
371
372    log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
373                  cms_free, expected_promotion);
374    log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
375    // Add 1 in case the consumption rate goes to zero.
376    return cms_free_dbl / (cms_consumption_rate() + 1.0);
377  }
378  return 0.0;
379}
380
381// Compare the duration of the cms collection to the
382// time remaining before the cms generation is empty.
383// Note that the time from the start of the cms collection
384// to the start of the cms sweep (less than the total
385// duration of the cms collection) can be used.  This
386// has been tried and some applications experienced
387// promotion failures early in execution.  This was
388// possibly because the averages were not accurate
389// enough at the beginning.
390double CMSStats::time_until_cms_start() const {
391  // We add "gc0_period" to the "work" calculation
392  // below because this query is done (mostly) at the
393  // end of a scavenge, so we need to conservatively
394  // account for that much possible delay
395  // in the query so as to avoid concurrent mode failures
396  // due to starting the collection just a wee bit too
397  // late.
398  double work = cms_duration() + gc0_period();
399  double deadline = time_until_cms_gen_full();
400  // If a concurrent mode failure occurred recently, we want to be
401  // more conservative and halve our expected time_until_cms_gen_full()
402  if (work > deadline) {
403    log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
404                          cms_duration(), gc0_period(), time_until_cms_gen_full());
405    return 0.0;
406  }
407  return work - deadline;
408}
409
410#ifndef PRODUCT
411void CMSStats::print_on(outputStream *st) const {
412  st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
413  st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
414               gc0_duration(), gc0_period(), gc0_promoted());
415  st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
416            cms_duration(), cms_period(), cms_allocated());
417  st->print(",cms_since_beg=%g,cms_since_end=%g",
418            cms_time_since_begin(), cms_time_since_end());
419  st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
420            _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
421
422  if (valid()) {
423    st->print(",promo_rate=%g,cms_alloc_rate=%g",
424              promotion_rate(), cms_allocation_rate());
425    st->print(",cms_consumption_rate=%g,time_until_full=%g",
426              cms_consumption_rate(), time_until_cms_gen_full());
427  }
428  st->print(" ");
429}
430#endif // #ifndef PRODUCT
431
432CMSCollector::CollectorState CMSCollector::_collectorState =
433                             CMSCollector::Idling;
434bool CMSCollector::_foregroundGCIsActive = false;
435bool CMSCollector::_foregroundGCShouldWait = false;
436
437CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
438                           CardTableRS*                   ct,
439                           ConcurrentMarkSweepPolicy*     cp):
440  _cmsGen(cmsGen),
441  _ct(ct),
442  _ref_processor(NULL),    // will be set later
443  _conc_workers(NULL),     // may be set later
444  _abort_preclean(false),
445  _start_sampling(false),
446  _between_prologue_and_epilogue(false),
447  _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
448  _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
449                 -1 /* lock-free */, "No_lock" /* dummy */),
450  _modUnionClosurePar(&_modUnionTable),
451  // Adjust my span to cover old (cms) gen
452  _span(cmsGen->reserved()),
453  // Construct the is_alive_closure with _span & markBitMap
454  _is_alive_closure(_span, &_markBitMap),
455  _restart_addr(NULL),
456  _overflow_list(NULL),
457  _stats(cmsGen),
458  _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
459                             //verify that this lock should be acquired with safepoint check.
460                             Monitor::_safepoint_check_sometimes)),
461  _eden_chunk_array(NULL),     // may be set in ctor body
462  _eden_chunk_capacity(0),     // -- ditto --
463  _eden_chunk_index(0),        // -- ditto --
464  _survivor_plab_array(NULL),  // -- ditto --
465  _survivor_chunk_array(NULL), // -- ditto --
466  _survivor_chunk_capacity(0), // -- ditto --
467  _survivor_chunk_index(0),    // -- ditto --
468  _ser_pmc_preclean_ovflw(0),
469  _ser_kac_preclean_ovflw(0),
470  _ser_pmc_remark_ovflw(0),
471  _par_pmc_remark_ovflw(0),
472  _ser_kac_ovflw(0),
473  _par_kac_ovflw(0),
474#ifndef PRODUCT
475  _num_par_pushes(0),
476#endif
477  _collection_count_start(0),
478  _verifying(false),
479  _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
480  _completed_initialization(false),
481  _collector_policy(cp),
482  _should_unload_classes(CMSClassUnloadingEnabled),
483  _concurrent_cycles_since_last_unload(0),
484  _roots_scanning_options(GenCollectedHeap::SO_None),
485  _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
486  _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
487  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
488  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
489  _cms_start_registered(false)
490{
491  if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
492    ExplicitGCInvokesConcurrent = true;
493  }
494  // Now expand the span and allocate the collection support structures
495  // (MUT, marking bit map etc.) to cover both generations subject to
496  // collection.
497
498  // For use by dirty card to oop closures.
499  _cmsGen->cmsSpace()->set_collector(this);
500
501  // Allocate MUT and marking bit map
502  {
503    MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
504    if (!_markBitMap.allocate(_span)) {
505      log_warning(gc)("Failed to allocate CMS Bit Map");
506      return;
507    }
508    assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
509  }
510  {
511    _modUnionTable.allocate(_span);
512    assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
513  }
514
515  if (!_markStack.allocate(MarkStackSize)) {
516    log_warning(gc)("Failed to allocate CMS Marking Stack");
517    return;
518  }
519
520  // Support for multi-threaded concurrent phases
521  if (CMSConcurrentMTEnabled) {
522    if (FLAG_IS_DEFAULT(ConcGCThreads)) {
523      // just for now
524      FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
525    }
526    if (ConcGCThreads > 1) {
527      _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
528                                 ConcGCThreads, true);
529      if (_conc_workers == NULL) {
530        log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
531        CMSConcurrentMTEnabled = false;
532      } else {
533        _conc_workers->initialize_workers();
534      }
535    } else {
536      CMSConcurrentMTEnabled = false;
537    }
538  }
539  if (!CMSConcurrentMTEnabled) {
540    ConcGCThreads = 0;
541  } else {
542    // Turn off CMSCleanOnEnter optimization temporarily for
543    // the MT case where it's not fixed yet; see 6178663.
544    CMSCleanOnEnter = false;
545  }
546  assert((_conc_workers != NULL) == (ConcGCThreads > 1),
547         "Inconsistency");
548
549  // Parallel task queues; these are shared for the
550  // concurrent and stop-world phases of CMS, but
551  // are not shared with parallel scavenge (ParNew).
552  {
553    uint i;
554    uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
555
556    if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
557         || ParallelRefProcEnabled)
558        && num_queues > 0) {
559      _task_queues = new OopTaskQueueSet(num_queues);
560      if (_task_queues == NULL) {
561        log_warning(gc)("task_queues allocation failure.");
562        return;
563      }
564      _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
565      typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
566      for (i = 0; i < num_queues; i++) {
567        PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
568        if (q == NULL) {
569          log_warning(gc)("work_queue allocation failure.");
570          return;
571        }
572        _task_queues->register_queue(i, q);
573      }
574      for (i = 0; i < num_queues; i++) {
575        _task_queues->queue(i)->initialize();
576        _hash_seed[i] = 17;  // copied from ParNew
577      }
578    }
579  }
580
581  _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
582
583  // Clip CMSBootstrapOccupancy between 0 and 100.
584  _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
585
586  // Now tell CMS generations the identity of their collector
587  ConcurrentMarkSweepGeneration::set_collector(this);
588
589  // Create & start a CMS thread for this CMS collector
590  _cmsThread = ConcurrentMarkSweepThread::start(this);
591  assert(cmsThread() != NULL, "CMS Thread should have been created");
592  assert(cmsThread()->collector() == this,
593         "CMS Thread should refer to this gen");
594  assert(CGC_lock != NULL, "Where's the CGC_lock?");
595
596  // Support for parallelizing young gen rescan
597  GenCollectedHeap* gch = GenCollectedHeap::heap();
598  assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
599  _young_gen = (ParNewGeneration*)gch->young_gen();
600  if (gch->supports_inline_contig_alloc()) {
601    _top_addr = gch->top_addr();
602    _end_addr = gch->end_addr();
603    assert(_young_gen != NULL, "no _young_gen");
604    _eden_chunk_index = 0;
605    _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
606    _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
607  }
608
609  // Support for parallelizing survivor space rescan
610  if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
611    const size_t max_plab_samples =
612      _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
613
614    _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
615    _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
616    _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
617    _survivor_chunk_capacity = max_plab_samples;
618    for (uint i = 0; i < ParallelGCThreads; i++) {
619      HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
620      ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
621      assert(cur->end() == 0, "Should be 0");
622      assert(cur->array() == vec, "Should be vec");
623      assert(cur->capacity() == max_plab_samples, "Error");
624    }
625  }
626
627  NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
628  _gc_counters = new CollectorCounters("CMS", 1);
629  _cgc_counters = new CollectorCounters("CMS stop-the-world phases", 2);
630  _completed_initialization = true;
631  _inter_sweep_timer.start();  // start of time
632}
633
634const char* ConcurrentMarkSweepGeneration::name() const {
635  return "concurrent mark-sweep generation";
636}
637void ConcurrentMarkSweepGeneration::update_counters() {
638  if (UsePerfData) {
639    _space_counters->update_all();
640    _gen_counters->update_all();
641  }
642}
643
644// this is an optimized version of update_counters(). it takes the
645// used value as a parameter rather than computing it.
646//
647void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
648  if (UsePerfData) {
649    _space_counters->update_used(used);
650    _space_counters->update_capacity();
651    _gen_counters->update_all();
652  }
653}
654
655void ConcurrentMarkSweepGeneration::print() const {
656  Generation::print();
657  cmsSpace()->print();
658}
659
660#ifndef PRODUCT
661void ConcurrentMarkSweepGeneration::print_statistics() {
662  cmsSpace()->printFLCensus(0);
663}
664#endif
665
666size_t
667ConcurrentMarkSweepGeneration::contiguous_available() const {
668  // dld proposes an improvement in precision here. If the committed
669  // part of the space ends in a free block we should add that to
670  // uncommitted size in the calculation below. Will make this
671  // change later, staying with the approximation below for the
672  // time being. -- ysr.
673  return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
674}
675
676size_t
677ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
678  return _cmsSpace->max_alloc_in_words() * HeapWordSize;
679}
680
681size_t ConcurrentMarkSweepGeneration::max_available() const {
682  return free() + _virtual_space.uncommitted_size();
683}
684
685bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
686  size_t available = max_available();
687  size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
688  bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
689  log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
690                           res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
691  return res;
692}
693
694// At a promotion failure dump information on block layout in heap
695// (cms old generation).
696void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
697  LogHandle(gc, promotion) log;
698  if (log.is_trace()) {
699    ResourceMark rm;
700    cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
701  }
702}
703
704void ConcurrentMarkSweepGeneration::reset_after_compaction() {
705  // Clear the promotion information.  These pointers can be adjusted
706  // along with all the other pointers into the heap but
707  // compaction is expected to be a rare event with
708  // a heap using cms so don't do it without seeing the need.
709  for (uint i = 0; i < ParallelGCThreads; i++) {
710    _par_gc_thread_states[i]->promo.reset();
711  }
712}
713
714void ConcurrentMarkSweepGeneration::compute_new_size() {
715  assert_locked_or_safepoint(Heap_lock);
716
717  // If incremental collection failed, we just want to expand
718  // to the limit.
719  if (incremental_collection_failed()) {
720    clear_incremental_collection_failed();
721    grow_to_reserved();
722    return;
723  }
724
725  // The heap has been compacted but not reset yet.
726  // Any metric such as free() or used() will be incorrect.
727
728  CardGeneration::compute_new_size();
729
730  // Reset again after a possible resizing
731  if (did_compact()) {
732    cmsSpace()->reset_after_compaction();
733  }
734}
735
736void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
737  assert_locked_or_safepoint(Heap_lock);
738
739  // If incremental collection failed, we just want to expand
740  // to the limit.
741  if (incremental_collection_failed()) {
742    clear_incremental_collection_failed();
743    grow_to_reserved();
744    return;
745  }
746
747  double free_percentage = ((double) free()) / capacity();
748  double desired_free_percentage = (double) MinHeapFreeRatio / 100;
749  double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
750
751  // compute expansion delta needed for reaching desired free percentage
752  if (free_percentage < desired_free_percentage) {
753    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
754    assert(desired_capacity >= capacity(), "invalid expansion size");
755    size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
756    LogHandle(gc) log;
757    if (log.is_trace()) {
758      size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
759      log.trace("From compute_new_size: ");
760      log.trace("  Free fraction %f", free_percentage);
761      log.trace("  Desired free fraction %f", desired_free_percentage);
762      log.trace("  Maximum free fraction %f", maximum_free_percentage);
763      log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
764      log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
765      GenCollectedHeap* gch = GenCollectedHeap::heap();
766      assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
767      size_t young_size = gch->young_gen()->capacity();
768      log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
769      log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
770      log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
771      log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
772    }
773    // safe if expansion fails
774    expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
775    log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
776  } else {
777    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
778    assert(desired_capacity <= capacity(), "invalid expansion size");
779    size_t shrink_bytes = capacity() - desired_capacity;
780    // Don't shrink unless the delta is greater than the minimum shrink we want
781    if (shrink_bytes >= MinHeapDeltaBytes) {
782      shrink_free_list_by(shrink_bytes);
783    }
784  }
785}
786
787Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
788  return cmsSpace()->freelistLock();
789}
790
791HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
792  CMSSynchronousYieldRequest yr;
793  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
794  return have_lock_and_allocate(size, tlab);
795}
796
797HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
798                                                                bool   tlab /* ignored */) {
799  assert_lock_strong(freelistLock());
800  size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
801  HeapWord* res = cmsSpace()->allocate(adjustedSize);
802  // Allocate the object live (grey) if the background collector has
803  // started marking. This is necessary because the marker may
804  // have passed this address and consequently this object will
805  // not otherwise be greyed and would be incorrectly swept up.
806  // Note that if this object contains references, the writing
807  // of those references will dirty the card containing this object
808  // allowing the object to be blackened (and its references scanned)
809  // either during a preclean phase or at the final checkpoint.
810  if (res != NULL) {
811    // We may block here with an uninitialized object with
812    // its mark-bit or P-bits not yet set. Such objects need
813    // to be safely navigable by block_start().
814    assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
815    assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
816    collector()->direct_allocated(res, adjustedSize);
817    _direct_allocated_words += adjustedSize;
818    // allocation counters
819    NOT_PRODUCT(
820      _numObjectsAllocated++;
821      _numWordsAllocated += (int)adjustedSize;
822    )
823  }
824  return res;
825}
826
827// In the case of direct allocation by mutators in a generation that
828// is being concurrently collected, the object must be allocated
829// live (grey) if the background collector has started marking.
830// This is necessary because the marker may
831// have passed this address and consequently this object will
832// not otherwise be greyed and would be incorrectly swept up.
833// Note that if this object contains references, the writing
834// of those references will dirty the card containing this object
835// allowing the object to be blackened (and its references scanned)
836// either during a preclean phase or at the final checkpoint.
837void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
838  assert(_markBitMap.covers(start, size), "Out of bounds");
839  if (_collectorState >= Marking) {
840    MutexLockerEx y(_markBitMap.lock(),
841                    Mutex::_no_safepoint_check_flag);
842    // [see comments preceding SweepClosure::do_blk() below for details]
843    //
844    // Can the P-bits be deleted now?  JJJ
845    //
846    // 1. need to mark the object as live so it isn't collected
847    // 2. need to mark the 2nd bit to indicate the object may be uninitialized
848    // 3. need to mark the end of the object so marking, precleaning or sweeping
849    //    can skip over uninitialized or unparsable objects. An allocated
850    //    object is considered uninitialized for our purposes as long as
851    //    its klass word is NULL.  All old gen objects are parsable
852    //    as soon as they are initialized.)
853    _markBitMap.mark(start);          // object is live
854    _markBitMap.mark(start + 1);      // object is potentially uninitialized?
855    _markBitMap.mark(start + size - 1);
856                                      // mark end of object
857  }
858  // check that oop looks uninitialized
859  assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
860}
861
862void CMSCollector::promoted(bool par, HeapWord* start,
863                            bool is_obj_array, size_t obj_size) {
864  assert(_markBitMap.covers(start), "Out of bounds");
865  // See comment in direct_allocated() about when objects should
866  // be allocated live.
867  if (_collectorState >= Marking) {
868    // we already hold the marking bit map lock, taken in
869    // the prologue
870    if (par) {
871      _markBitMap.par_mark(start);
872    } else {
873      _markBitMap.mark(start);
874    }
875    // We don't need to mark the object as uninitialized (as
876    // in direct_allocated above) because this is being done with the
877    // world stopped and the object will be initialized by the
878    // time the marking, precleaning or sweeping get to look at it.
879    // But see the code for copying objects into the CMS generation,
880    // where we need to ensure that concurrent readers of the
881    // block offset table are able to safely navigate a block that
882    // is in flux from being free to being allocated (and in
883    // transition while being copied into) and subsequently
884    // becoming a bona-fide object when the copy/promotion is complete.
885    assert(SafepointSynchronize::is_at_safepoint(),
886           "expect promotion only at safepoints");
887
888    if (_collectorState < Sweeping) {
889      // Mark the appropriate cards in the modUnionTable, so that
890      // this object gets scanned before the sweep. If this is
891      // not done, CMS generation references in the object might
892      // not get marked.
893      // For the case of arrays, which are otherwise precisely
894      // marked, we need to dirty the entire array, not just its head.
895      if (is_obj_array) {
896        // The [par_]mark_range() method expects mr.end() below to
897        // be aligned to the granularity of a bit's representation
898        // in the heap. In the case of the MUT below, that's a
899        // card size.
900        MemRegion mr(start,
901                     (HeapWord*)round_to((intptr_t)(start + obj_size),
902                        CardTableModRefBS::card_size /* bytes */));
903        if (par) {
904          _modUnionTable.par_mark_range(mr);
905        } else {
906          _modUnionTable.mark_range(mr);
907        }
908      } else {  // not an obj array; we can just mark the head
909        if (par) {
910          _modUnionTable.par_mark(start);
911        } else {
912          _modUnionTable.mark(start);
913        }
914      }
915    }
916  }
917}
918
919oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
920  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
921  // allocate, copy and if necessary update promoinfo --
922  // delegate to underlying space.
923  assert_lock_strong(freelistLock());
924
925#ifndef PRODUCT
926  if (GenCollectedHeap::heap()->promotion_should_fail()) {
927    return NULL;
928  }
929#endif  // #ifndef PRODUCT
930
931  oop res = _cmsSpace->promote(obj, obj_size);
932  if (res == NULL) {
933    // expand and retry
934    size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
935    expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
936    // Since this is the old generation, we don't try to promote
937    // into a more senior generation.
938    res = _cmsSpace->promote(obj, obj_size);
939  }
940  if (res != NULL) {
941    // See comment in allocate() about when objects should
942    // be allocated live.
943    assert(obj->is_oop(), "Will dereference klass pointer below");
944    collector()->promoted(false,           // Not parallel
945                          (HeapWord*)res, obj->is_objArray(), obj_size);
946    // promotion counters
947    NOT_PRODUCT(
948      _numObjectsPromoted++;
949      _numWordsPromoted +=
950        (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
951    )
952  }
953  return res;
954}
955
956
957// IMPORTANT: Notes on object size recognition in CMS.
958// ---------------------------------------------------
959// A block of storage in the CMS generation is always in
960// one of three states. A free block (FREE), an allocated
961// object (OBJECT) whose size() method reports the correct size,
962// and an intermediate state (TRANSIENT) in which its size cannot
963// be accurately determined.
964// STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
965// -----------------------------------------------------
966// FREE:      klass_word & 1 == 1; mark_word holds block size
967//
968// OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
969//            obj->size() computes correct size
970//
971// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
972//
973// STATE IDENTIFICATION: (64 bit+COOPS)
974// ------------------------------------
975// FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
976//
977// OBJECT:    klass_word installed; klass_word != 0;
978//            obj->size() computes correct size
979//
980// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
981//
982//
983// STATE TRANSITION DIAGRAM
984//
985//        mut / parnew                     mut  /  parnew
986// FREE --------------------> TRANSIENT ---------------------> OBJECT --|
987//  ^                                                                   |
988//  |------------------------ DEAD <------------------------------------|
989//         sweep                            mut
990//
991// While a block is in TRANSIENT state its size cannot be determined
992// so readers will either need to come back later or stall until
993// the size can be determined. Note that for the case of direct
994// allocation, P-bits, when available, may be used to determine the
995// size of an object that may not yet have been initialized.
996
997// Things to support parallel young-gen collection.
998oop
999ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1000                                           oop old, markOop m,
1001                                           size_t word_sz) {
1002#ifndef PRODUCT
1003  if (GenCollectedHeap::heap()->promotion_should_fail()) {
1004    return NULL;
1005  }
1006#endif  // #ifndef PRODUCT
1007
1008  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1009  PromotionInfo* promoInfo = &ps->promo;
1010  // if we are tracking promotions, then first ensure space for
1011  // promotion (including spooling space for saving header if necessary).
1012  // then allocate and copy, then track promoted info if needed.
1013  // When tracking (see PromotionInfo::track()), the mark word may
1014  // be displaced and in this case restoration of the mark word
1015  // occurs in the (oop_since_save_marks_)iterate phase.
1016  if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1017    // Out of space for allocating spooling buffers;
1018    // try expanding and allocating spooling buffers.
1019    if (!expand_and_ensure_spooling_space(promoInfo)) {
1020      return NULL;
1021    }
1022  }
1023  assert(promoInfo->has_spooling_space(), "Control point invariant");
1024  const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1025  HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1026  if (obj_ptr == NULL) {
1027     obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1028     if (obj_ptr == NULL) {
1029       return NULL;
1030     }
1031  }
1032  oop obj = oop(obj_ptr);
1033  OrderAccess::storestore();
1034  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1035  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1036  // IMPORTANT: See note on object initialization for CMS above.
1037  // Otherwise, copy the object.  Here we must be careful to insert the
1038  // klass pointer last, since this marks the block as an allocated object.
1039  // Except with compressed oops it's the mark word.
1040  HeapWord* old_ptr = (HeapWord*)old;
1041  // Restore the mark word copied above.
1042  obj->set_mark(m);
1043  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1044  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1045  OrderAccess::storestore();
1046
1047  if (UseCompressedClassPointers) {
1048    // Copy gap missed by (aligned) header size calculation below
1049    obj->set_klass_gap(old->klass_gap());
1050  }
1051  if (word_sz > (size_t)oopDesc::header_size()) {
1052    Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1053                                 obj_ptr + oopDesc::header_size(),
1054                                 word_sz - oopDesc::header_size());
1055  }
1056
1057  // Now we can track the promoted object, if necessary.  We take care
1058  // to delay the transition from uninitialized to full object
1059  // (i.e., insertion of klass pointer) until after, so that it
1060  // atomically becomes a promoted object.
1061  if (promoInfo->tracking()) {
1062    promoInfo->track((PromotedObject*)obj, old->klass());
1063  }
1064  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1065  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1066  assert(old->is_oop(), "Will use and dereference old klass ptr below");
1067
1068  // Finally, install the klass pointer (this should be volatile).
1069  OrderAccess::storestore();
1070  obj->set_klass(old->klass());
1071  // We should now be able to calculate the right size for this object
1072  assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1073
1074  collector()->promoted(true,          // parallel
1075                        obj_ptr, old->is_objArray(), word_sz);
1076
1077  NOT_PRODUCT(
1078    Atomic::inc_ptr(&_numObjectsPromoted);
1079    Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1080  )
1081
1082  return obj;
1083}
1084
1085void
1086ConcurrentMarkSweepGeneration::
1087par_promote_alloc_done(int thread_num) {
1088  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1089  ps->lab.retire(thread_num);
1090}
1091
1092void
1093ConcurrentMarkSweepGeneration::
1094par_oop_since_save_marks_iterate_done(int thread_num) {
1095  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1096  ParScanWithoutBarrierClosure* dummy_cl = NULL;
1097  ps->promo.promoted_oops_iterate_nv(dummy_cl);
1098}
1099
1100bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1101                                                   size_t size,
1102                                                   bool   tlab)
1103{
1104  // We allow a STW collection only if a full
1105  // collection was requested.
1106  return full || should_allocate(size, tlab); // FIX ME !!!
1107  // This and promotion failure handling are connected at the
1108  // hip and should be fixed by untying them.
1109}
1110
1111bool CMSCollector::shouldConcurrentCollect() {
1112  if (_full_gc_requested) {
1113    log_trace(gc)("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1114    return true;
1115  }
1116
1117  FreelistLocker x(this);
1118  // ------------------------------------------------------------------
1119  // Print out lots of information which affects the initiation of
1120  // a collection.
1121  LogHandle(gc) log;
1122  if (log.is_trace() && stats().valid()) {
1123    log.trace("CMSCollector shouldConcurrentCollect: ");
1124    ResourceMark rm;
1125    stats().print_on(log.debug_stream());
1126    log.trace("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1127    log.trace("free=" SIZE_FORMAT, _cmsGen->free());
1128    log.trace("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1129    log.trace("promotion_rate=%g", stats().promotion_rate());
1130    log.trace("cms_allocation_rate=%g", stats().cms_allocation_rate());
1131    log.trace("occupancy=%3.7f", _cmsGen->occupancy());
1132    log.trace("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1133    log.trace("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1134    log.trace("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1135    log.trace("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1136  }
1137  // ------------------------------------------------------------------
1138
1139  // If the estimated time to complete a cms collection (cms_duration())
1140  // is less than the estimated time remaining until the cms generation
1141  // is full, start a collection.
1142  if (!UseCMSInitiatingOccupancyOnly) {
1143    if (stats().valid()) {
1144      if (stats().time_until_cms_start() == 0.0) {
1145        return true;
1146      }
1147    } else {
1148      // We want to conservatively collect somewhat early in order
1149      // to try and "bootstrap" our CMS/promotion statistics;
1150      // this branch will not fire after the first successful CMS
1151      // collection because the stats should then be valid.
1152      if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1153        log_trace(gc)(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1154                      _cmsGen->occupancy(), _bootstrap_occupancy);
1155        return true;
1156      }
1157    }
1158  }
1159
1160  // Otherwise, we start a collection cycle if
1161  // old gen want a collection cycle started. Each may use
1162  // an appropriate criterion for making this decision.
1163  // XXX We need to make sure that the gen expansion
1164  // criterion dovetails well with this. XXX NEED TO FIX THIS
1165  if (_cmsGen->should_concurrent_collect()) {
1166    log_trace(gc)("CMS old gen initiated");
1167    return true;
1168  }
1169
1170  // We start a collection if we believe an incremental collection may fail;
1171  // this is not likely to be productive in practice because it's probably too
1172  // late anyway.
1173  GenCollectedHeap* gch = GenCollectedHeap::heap();
1174  assert(gch->collector_policy()->is_generation_policy(),
1175         "You may want to check the correctness of the following");
1176  if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1177    log_trace(gc)("CMSCollector: collect because incremental collection will fail ");
1178    return true;
1179  }
1180
1181  if (MetaspaceGC::should_concurrent_collect()) {
1182    log_trace(gc)("CMSCollector: collect for metadata allocation ");
1183    return true;
1184  }
1185
1186  // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1187  if (CMSTriggerInterval >= 0) {
1188    if (CMSTriggerInterval == 0) {
1189      // Trigger always
1190      return true;
1191    }
1192
1193    // Check the CMS time since begin (we do not check the stats validity
1194    // as we want to be able to trigger the first CMS cycle as well)
1195    if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1196      if (stats().valid()) {
1197        log_trace(gc)("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1198                      stats().cms_time_since_begin());
1199      } else {
1200        log_trace(gc)("CMSCollector: collect because of trigger interval (first collection)");
1201      }
1202      return true;
1203    }
1204  }
1205
1206  return false;
1207}
1208
1209void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1210
1211// Clear _expansion_cause fields of constituent generations
1212void CMSCollector::clear_expansion_cause() {
1213  _cmsGen->clear_expansion_cause();
1214}
1215
1216// We should be conservative in starting a collection cycle.  To
1217// start too eagerly runs the risk of collecting too often in the
1218// extreme.  To collect too rarely falls back on full collections,
1219// which works, even if not optimum in terms of concurrent work.
1220// As a work around for too eagerly collecting, use the flag
1221// UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1222// giving the user an easily understandable way of controlling the
1223// collections.
1224// We want to start a new collection cycle if any of the following
1225// conditions hold:
1226// . our current occupancy exceeds the configured initiating occupancy
1227//   for this generation, or
1228// . we recently needed to expand this space and have not, since that
1229//   expansion, done a collection of this generation, or
1230// . the underlying space believes that it may be a good idea to initiate
1231//   a concurrent collection (this may be based on criteria such as the
1232//   following: the space uses linear allocation and linear allocation is
1233//   going to fail, or there is believed to be excessive fragmentation in
1234//   the generation, etc... or ...
1235// [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1236//   the case of the old generation; see CR 6543076):
1237//   we may be approaching a point at which allocation requests may fail because
1238//   we will be out of sufficient free space given allocation rate estimates.]
1239bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1240
1241  assert_lock_strong(freelistLock());
1242  if (occupancy() > initiating_occupancy()) {
1243    log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1244                  short_name(), occupancy(), initiating_occupancy());
1245    return true;
1246  }
1247  if (UseCMSInitiatingOccupancyOnly) {
1248    return false;
1249  }
1250  if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1251    log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1252    return true;
1253  }
1254  return false;
1255}
1256
1257void ConcurrentMarkSweepGeneration::collect(bool   full,
1258                                            bool   clear_all_soft_refs,
1259                                            size_t size,
1260                                            bool   tlab)
1261{
1262  collector()->collect(full, clear_all_soft_refs, size, tlab);
1263}
1264
1265void CMSCollector::collect(bool   full,
1266                           bool   clear_all_soft_refs,
1267                           size_t size,
1268                           bool   tlab)
1269{
1270  // The following "if" branch is present for defensive reasons.
1271  // In the current uses of this interface, it can be replaced with:
1272  // assert(!GCLocker.is_active(), "Can't be called otherwise");
1273  // But I am not placing that assert here to allow future
1274  // generality in invoking this interface.
1275  if (GCLocker::is_active()) {
1276    // A consistency test for GCLocker
1277    assert(GCLocker::needs_gc(), "Should have been set already");
1278    // Skip this foreground collection, instead
1279    // expanding the heap if necessary.
1280    // Need the free list locks for the call to free() in compute_new_size()
1281    compute_new_size();
1282    return;
1283  }
1284  acquire_control_and_collect(full, clear_all_soft_refs);
1285}
1286
1287void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1288  GenCollectedHeap* gch = GenCollectedHeap::heap();
1289  unsigned int gc_count = gch->total_full_collections();
1290  if (gc_count == full_gc_count) {
1291    MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1292    _full_gc_requested = true;
1293    _full_gc_cause = cause;
1294    CGC_lock->notify();   // nudge CMS thread
1295  } else {
1296    assert(gc_count > full_gc_count, "Error: causal loop");
1297  }
1298}
1299
1300bool CMSCollector::is_external_interruption() {
1301  GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1302  return GCCause::is_user_requested_gc(cause) ||
1303         GCCause::is_serviceability_requested_gc(cause);
1304}
1305
1306void CMSCollector::report_concurrent_mode_interruption() {
1307  if (is_external_interruption()) {
1308    log_debug(gc)("Concurrent mode interrupted");
1309  } else {
1310    log_debug(gc)("Concurrent mode failure");
1311    _gc_tracer_cm->report_concurrent_mode_failure();
1312  }
1313}
1314
1315
1316// The foreground and background collectors need to coordinate in order
1317// to make sure that they do not mutually interfere with CMS collections.
1318// When a background collection is active,
1319// the foreground collector may need to take over (preempt) and
1320// synchronously complete an ongoing collection. Depending on the
1321// frequency of the background collections and the heap usage
1322// of the application, this preemption can be seldom or frequent.
1323// There are only certain
1324// points in the background collection that the "collection-baton"
1325// can be passed to the foreground collector.
1326//
1327// The foreground collector will wait for the baton before
1328// starting any part of the collection.  The foreground collector
1329// will only wait at one location.
1330//
1331// The background collector will yield the baton before starting a new
1332// phase of the collection (e.g., before initial marking, marking from roots,
1333// precleaning, final re-mark, sweep etc.)  This is normally done at the head
1334// of the loop which switches the phases. The background collector does some
1335// of the phases (initial mark, final re-mark) with the world stopped.
1336// Because of locking involved in stopping the world,
1337// the foreground collector should not block waiting for the background
1338// collector when it is doing a stop-the-world phase.  The background
1339// collector will yield the baton at an additional point just before
1340// it enters a stop-the-world phase.  Once the world is stopped, the
1341// background collector checks the phase of the collection.  If the
1342// phase has not changed, it proceeds with the collection.  If the
1343// phase has changed, it skips that phase of the collection.  See
1344// the comments on the use of the Heap_lock in collect_in_background().
1345//
1346// Variable used in baton passing.
1347//   _foregroundGCIsActive - Set to true by the foreground collector when
1348//      it wants the baton.  The foreground clears it when it has finished
1349//      the collection.
1350//   _foregroundGCShouldWait - Set to true by the background collector
1351//        when it is running.  The foreground collector waits while
1352//      _foregroundGCShouldWait is true.
1353//  CGC_lock - monitor used to protect access to the above variables
1354//      and to notify the foreground and background collectors.
1355//  _collectorState - current state of the CMS collection.
1356//
1357// The foreground collector
1358//   acquires the CGC_lock
1359//   sets _foregroundGCIsActive
1360//   waits on the CGC_lock for _foregroundGCShouldWait to be false
1361//     various locks acquired in preparation for the collection
1362//     are released so as not to block the background collector
1363//     that is in the midst of a collection
1364//   proceeds with the collection
1365//   clears _foregroundGCIsActive
1366//   returns
1367//
1368// The background collector in a loop iterating on the phases of the
1369//      collection
1370//   acquires the CGC_lock
1371//   sets _foregroundGCShouldWait
1372//   if _foregroundGCIsActive is set
1373//     clears _foregroundGCShouldWait, notifies _CGC_lock
1374//     waits on _CGC_lock for _foregroundGCIsActive to become false
1375//     and exits the loop.
1376//   otherwise
1377//     proceed with that phase of the collection
1378//     if the phase is a stop-the-world phase,
1379//       yield the baton once more just before enqueueing
1380//       the stop-world CMS operation (executed by the VM thread).
1381//   returns after all phases of the collection are done
1382//
1383
1384void CMSCollector::acquire_control_and_collect(bool full,
1385        bool clear_all_soft_refs) {
1386  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1387  assert(!Thread::current()->is_ConcurrentGC_thread(),
1388         "shouldn't try to acquire control from self!");
1389
1390  // Start the protocol for acquiring control of the
1391  // collection from the background collector (aka CMS thread).
1392  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1393         "VM thread should have CMS token");
1394  // Remember the possibly interrupted state of an ongoing
1395  // concurrent collection
1396  CollectorState first_state = _collectorState;
1397
1398  // Signal to a possibly ongoing concurrent collection that
1399  // we want to do a foreground collection.
1400  _foregroundGCIsActive = true;
1401
1402  // release locks and wait for a notify from the background collector
1403  // releasing the locks in only necessary for phases which
1404  // do yields to improve the granularity of the collection.
1405  assert_lock_strong(bitMapLock());
1406  // We need to lock the Free list lock for the space that we are
1407  // currently collecting.
1408  assert(haveFreelistLocks(), "Must be holding free list locks");
1409  bitMapLock()->unlock();
1410  releaseFreelistLocks();
1411  {
1412    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1413    if (_foregroundGCShouldWait) {
1414      // We are going to be waiting for action for the CMS thread;
1415      // it had better not be gone (for instance at shutdown)!
1416      assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1417             "CMS thread must be running");
1418      // Wait here until the background collector gives us the go-ahead
1419      ConcurrentMarkSweepThread::clear_CMS_flag(
1420        ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1421      // Get a possibly blocked CMS thread going:
1422      //   Note that we set _foregroundGCIsActive true above,
1423      //   without protection of the CGC_lock.
1424      CGC_lock->notify();
1425      assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1426             "Possible deadlock");
1427      while (_foregroundGCShouldWait) {
1428        // wait for notification
1429        CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1430        // Possibility of delay/starvation here, since CMS token does
1431        // not know to give priority to VM thread? Actually, i think
1432        // there wouldn't be any delay/starvation, but the proof of
1433        // that "fact" (?) appears non-trivial. XXX 20011219YSR
1434      }
1435      ConcurrentMarkSweepThread::set_CMS_flag(
1436        ConcurrentMarkSweepThread::CMS_vm_has_token);
1437    }
1438  }
1439  // The CMS_token is already held.  Get back the other locks.
1440  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1441         "VM thread should have CMS token");
1442  getFreelistLocks();
1443  bitMapLock()->lock_without_safepoint_check();
1444  log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1445                       p2i(Thread::current()), first_state);
1446  log_debug(gc, state)("    gets control with state %d", _collectorState);
1447
1448  // Inform cms gen if this was due to partial collection failing.
1449  // The CMS gen may use this fact to determine its expansion policy.
1450  GenCollectedHeap* gch = GenCollectedHeap::heap();
1451  if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1452    assert(!_cmsGen->incremental_collection_failed(),
1453           "Should have been noticed, reacted to and cleared");
1454    _cmsGen->set_incremental_collection_failed();
1455  }
1456
1457  if (first_state > Idling) {
1458    report_concurrent_mode_interruption();
1459  }
1460
1461  set_did_compact(true);
1462
1463  // If the collection is being acquired from the background
1464  // collector, there may be references on the discovered
1465  // references lists.  Abandon those references, since some
1466  // of them may have become unreachable after concurrent
1467  // discovery; the STW compacting collector will redo discovery
1468  // more precisely, without being subject to floating garbage.
1469  // Leaving otherwise unreachable references in the discovered
1470  // lists would require special handling.
1471  ref_processor()->disable_discovery();
1472  ref_processor()->abandon_partial_discovery();
1473  ref_processor()->verify_no_references_recorded();
1474
1475  if (first_state > Idling) {
1476    save_heap_summary();
1477  }
1478
1479  do_compaction_work(clear_all_soft_refs);
1480
1481  // Has the GC time limit been exceeded?
1482  size_t max_eden_size = _young_gen->max_eden_size();
1483  GCCause::Cause gc_cause = gch->gc_cause();
1484  size_policy()->check_gc_overhead_limit(_young_gen->used(),
1485                                         _young_gen->eden()->used(),
1486                                         _cmsGen->max_capacity(),
1487                                         max_eden_size,
1488                                         full,
1489                                         gc_cause,
1490                                         gch->collector_policy());
1491
1492  // Reset the expansion cause, now that we just completed
1493  // a collection cycle.
1494  clear_expansion_cause();
1495  _foregroundGCIsActive = false;
1496  return;
1497}
1498
1499// Resize the tenured generation
1500// after obtaining the free list locks for the
1501// two generations.
1502void CMSCollector::compute_new_size() {
1503  assert_locked_or_safepoint(Heap_lock);
1504  FreelistLocker z(this);
1505  MetaspaceGC::compute_new_size();
1506  _cmsGen->compute_new_size_free_list();
1507}
1508
1509// A work method used by the foreground collector to do
1510// a mark-sweep-compact.
1511void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1512  GenCollectedHeap* gch = GenCollectedHeap::heap();
1513
1514  STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1515  gc_timer->register_gc_start();
1516
1517  SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1518  gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1519
1520  gch->pre_full_gc_dump(gc_timer);
1521
1522  GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1523
1524  // Temporarily widen the span of the weak reference processing to
1525  // the entire heap.
1526  MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1527  ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1528  // Temporarily, clear the "is_alive_non_header" field of the
1529  // reference processor.
1530  ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1531  // Temporarily make reference _processing_ single threaded (non-MT).
1532  ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1533  // Temporarily make refs discovery atomic
1534  ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1535  // Temporarily make reference _discovery_ single threaded (non-MT)
1536  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1537
1538  ref_processor()->set_enqueuing_is_done(false);
1539  ref_processor()->enable_discovery();
1540  ref_processor()->setup_policy(clear_all_soft_refs);
1541  // If an asynchronous collection finishes, the _modUnionTable is
1542  // all clear.  If we are assuming the collection from an asynchronous
1543  // collection, clear the _modUnionTable.
1544  assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1545    "_modUnionTable should be clear if the baton was not passed");
1546  _modUnionTable.clear_all();
1547  assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1548    "mod union for klasses should be clear if the baton was passed");
1549  _ct->klass_rem_set()->clear_mod_union();
1550
1551  // We must adjust the allocation statistics being maintained
1552  // in the free list space. We do so by reading and clearing
1553  // the sweep timer and updating the block flux rate estimates below.
1554  assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1555  if (_inter_sweep_timer.is_active()) {
1556    _inter_sweep_timer.stop();
1557    // Note that we do not use this sample to update the _inter_sweep_estimate.
1558    _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1559                                            _inter_sweep_estimate.padded_average(),
1560                                            _intra_sweep_estimate.padded_average());
1561  }
1562
1563  GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1564  #ifdef ASSERT
1565    CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1566    size_t free_size = cms_space->free();
1567    assert(free_size ==
1568           pointer_delta(cms_space->end(), cms_space->compaction_top())
1569           * HeapWordSize,
1570      "All the free space should be compacted into one chunk at top");
1571    assert(cms_space->dictionary()->total_chunk_size(
1572                                      debug_only(cms_space->freelistLock())) == 0 ||
1573           cms_space->totalSizeInIndexedFreeLists() == 0,
1574      "All the free space should be in a single chunk");
1575    size_t num = cms_space->totalCount();
1576    assert((free_size == 0 && num == 0) ||
1577           (free_size > 0  && (num == 1 || num == 2)),
1578         "There should be at most 2 free chunks after compaction");
1579  #endif // ASSERT
1580  _collectorState = Resetting;
1581  assert(_restart_addr == NULL,
1582         "Should have been NULL'd before baton was passed");
1583  reset_stw();
1584  _cmsGen->reset_after_compaction();
1585  _concurrent_cycles_since_last_unload = 0;
1586
1587  // Clear any data recorded in the PLAB chunk arrays.
1588  if (_survivor_plab_array != NULL) {
1589    reset_survivor_plab_arrays();
1590  }
1591
1592  // Adjust the per-size allocation stats for the next epoch.
1593  _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1594  // Restart the "inter sweep timer" for the next epoch.
1595  _inter_sweep_timer.reset();
1596  _inter_sweep_timer.start();
1597
1598  gch->post_full_gc_dump(gc_timer);
1599
1600  gc_timer->register_gc_end();
1601
1602  gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1603
1604  // For a mark-sweep-compact, compute_new_size() will be called
1605  // in the heap's do_collection() method.
1606}
1607
1608void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1609  LogHandle(gc, heap) log;
1610  if (!log.is_trace()) {
1611    return;
1612  }
1613
1614  ContiguousSpace* eden_space = _young_gen->eden();
1615  ContiguousSpace* from_space = _young_gen->from();
1616  ContiguousSpace* to_space   = _young_gen->to();
1617  // Eden
1618  if (_eden_chunk_array != NULL) {
1619    log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1620              p2i(eden_space->bottom()), p2i(eden_space->top()),
1621              p2i(eden_space->end()), eden_space->capacity());
1622    log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1623              _eden_chunk_index, _eden_chunk_capacity);
1624    for (size_t i = 0; i < _eden_chunk_index; i++) {
1625      log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1626    }
1627  }
1628  // Survivor
1629  if (_survivor_chunk_array != NULL) {
1630    log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1631              p2i(from_space->bottom()), p2i(from_space->top()),
1632              p2i(from_space->end()), from_space->capacity());
1633    log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1634              _survivor_chunk_index, _survivor_chunk_capacity);
1635    for (size_t i = 0; i < _survivor_chunk_index; i++) {
1636      log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1637    }
1638  }
1639}
1640
1641void CMSCollector::getFreelistLocks() const {
1642  // Get locks for all free lists in all generations that this
1643  // collector is responsible for
1644  _cmsGen->freelistLock()->lock_without_safepoint_check();
1645}
1646
1647void CMSCollector::releaseFreelistLocks() const {
1648  // Release locks for all free lists in all generations that this
1649  // collector is responsible for
1650  _cmsGen->freelistLock()->unlock();
1651}
1652
1653bool CMSCollector::haveFreelistLocks() const {
1654  // Check locks for all free lists in all generations that this
1655  // collector is responsible for
1656  assert_lock_strong(_cmsGen->freelistLock());
1657  PRODUCT_ONLY(ShouldNotReachHere());
1658  return true;
1659}
1660
1661// A utility class that is used by the CMS collector to
1662// temporarily "release" the foreground collector from its
1663// usual obligation to wait for the background collector to
1664// complete an ongoing phase before proceeding.
1665class ReleaseForegroundGC: public StackObj {
1666 private:
1667  CMSCollector* _c;
1668 public:
1669  ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1670    assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1671    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1672    // allow a potentially blocked foreground collector to proceed
1673    _c->_foregroundGCShouldWait = false;
1674    if (_c->_foregroundGCIsActive) {
1675      CGC_lock->notify();
1676    }
1677    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1678           "Possible deadlock");
1679  }
1680
1681  ~ReleaseForegroundGC() {
1682    assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1683    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1684    _c->_foregroundGCShouldWait = true;
1685  }
1686};
1687
1688void CMSCollector::collect_in_background(GCCause::Cause cause) {
1689  assert(Thread::current()->is_ConcurrentGC_thread(),
1690    "A CMS asynchronous collection is only allowed on a CMS thread.");
1691
1692  GenCollectedHeap* gch = GenCollectedHeap::heap();
1693  {
1694    bool safepoint_check = Mutex::_no_safepoint_check_flag;
1695    MutexLockerEx hl(Heap_lock, safepoint_check);
1696    FreelistLocker fll(this);
1697    MutexLockerEx x(CGC_lock, safepoint_check);
1698    if (_foregroundGCIsActive) {
1699      // The foreground collector is. Skip this
1700      // background collection.
1701      assert(!_foregroundGCShouldWait, "Should be clear");
1702      return;
1703    } else {
1704      assert(_collectorState == Idling, "Should be idling before start.");
1705      _collectorState = InitialMarking;
1706      register_gc_start(cause);
1707      // Reset the expansion cause, now that we are about to begin
1708      // a new cycle.
1709      clear_expansion_cause();
1710
1711      // Clear the MetaspaceGC flag since a concurrent collection
1712      // is starting but also clear it after the collection.
1713      MetaspaceGC::set_should_concurrent_collect(false);
1714    }
1715    // Decide if we want to enable class unloading as part of the
1716    // ensuing concurrent GC cycle.
1717    update_should_unload_classes();
1718    _full_gc_requested = false;           // acks all outstanding full gc requests
1719    _full_gc_cause = GCCause::_no_gc;
1720    // Signal that we are about to start a collection
1721    gch->increment_total_full_collections();  // ... starting a collection cycle
1722    _collection_count_start = gch->total_full_collections();
1723  }
1724
1725  size_t prev_used = _cmsGen->used();
1726
1727  // The change of the collection state is normally done at this level;
1728  // the exceptions are phases that are executed while the world is
1729  // stopped.  For those phases the change of state is done while the
1730  // world is stopped.  For baton passing purposes this allows the
1731  // background collector to finish the phase and change state atomically.
1732  // The foreground collector cannot wait on a phase that is done
1733  // while the world is stopped because the foreground collector already
1734  // has the world stopped and would deadlock.
1735  while (_collectorState != Idling) {
1736    log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1737                         p2i(Thread::current()), _collectorState);
1738    // The foreground collector
1739    //   holds the Heap_lock throughout its collection.
1740    //   holds the CMS token (but not the lock)
1741    //     except while it is waiting for the background collector to yield.
1742    //
1743    // The foreground collector should be blocked (not for long)
1744    //   if the background collector is about to start a phase
1745    //   executed with world stopped.  If the background
1746    //   collector has already started such a phase, the
1747    //   foreground collector is blocked waiting for the
1748    //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1749    //   are executed in the VM thread.
1750    //
1751    // The locking order is
1752    //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1753    //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1754    //   CMS token  (claimed in
1755    //                stop_world_and_do() -->
1756    //                  safepoint_synchronize() -->
1757    //                    CMSThread::synchronize())
1758
1759    {
1760      // Check if the FG collector wants us to yield.
1761      CMSTokenSync x(true); // is cms thread
1762      if (waitForForegroundGC()) {
1763        // We yielded to a foreground GC, nothing more to be
1764        // done this round.
1765        assert(_foregroundGCShouldWait == false, "We set it to false in "
1766               "waitForForegroundGC()");
1767        log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1768                             p2i(Thread::current()), _collectorState);
1769        return;
1770      } else {
1771        // The background collector can run but check to see if the
1772        // foreground collector has done a collection while the
1773        // background collector was waiting to get the CGC_lock
1774        // above.  If yes, break so that _foregroundGCShouldWait
1775        // is cleared before returning.
1776        if (_collectorState == Idling) {
1777          break;
1778        }
1779      }
1780    }
1781
1782    assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1783      "should be waiting");
1784
1785    switch (_collectorState) {
1786      case InitialMarking:
1787        {
1788          ReleaseForegroundGC x(this);
1789          stats().record_cms_begin();
1790          VM_CMS_Initial_Mark initial_mark_op(this);
1791          VMThread::execute(&initial_mark_op);
1792        }
1793        // The collector state may be any legal state at this point
1794        // since the background collector may have yielded to the
1795        // foreground collector.
1796        break;
1797      case Marking:
1798        // initial marking in checkpointRootsInitialWork has been completed
1799        if (markFromRoots()) { // we were successful
1800          assert(_collectorState == Precleaning, "Collector state should "
1801            "have changed");
1802        } else {
1803          assert(_foregroundGCIsActive, "Internal state inconsistency");
1804        }
1805        break;
1806      case Precleaning:
1807        // marking from roots in markFromRoots has been completed
1808        preclean();
1809        assert(_collectorState == AbortablePreclean ||
1810               _collectorState == FinalMarking,
1811               "Collector state should have changed");
1812        break;
1813      case AbortablePreclean:
1814        abortable_preclean();
1815        assert(_collectorState == FinalMarking, "Collector state should "
1816          "have changed");
1817        break;
1818      case FinalMarking:
1819        {
1820          ReleaseForegroundGC x(this);
1821
1822          VM_CMS_Final_Remark final_remark_op(this);
1823          VMThread::execute(&final_remark_op);
1824        }
1825        assert(_foregroundGCShouldWait, "block post-condition");
1826        break;
1827      case Sweeping:
1828        // final marking in checkpointRootsFinal has been completed
1829        sweep();
1830        assert(_collectorState == Resizing, "Collector state change "
1831          "to Resizing must be done under the free_list_lock");
1832
1833      case Resizing: {
1834        // Sweeping has been completed...
1835        // At this point the background collection has completed.
1836        // Don't move the call to compute_new_size() down
1837        // into code that might be executed if the background
1838        // collection was preempted.
1839        {
1840          ReleaseForegroundGC x(this);   // unblock FG collection
1841          MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1842          CMSTokenSync        z(true);   // not strictly needed.
1843          if (_collectorState == Resizing) {
1844            compute_new_size();
1845            save_heap_summary();
1846            _collectorState = Resetting;
1847          } else {
1848            assert(_collectorState == Idling, "The state should only change"
1849                   " because the foreground collector has finished the collection");
1850          }
1851        }
1852        break;
1853      }
1854      case Resetting:
1855        // CMS heap resizing has been completed
1856        reset_concurrent();
1857        assert(_collectorState == Idling, "Collector state should "
1858          "have changed");
1859
1860        MetaspaceGC::set_should_concurrent_collect(false);
1861
1862        stats().record_cms_end();
1863        // Don't move the concurrent_phases_end() and compute_new_size()
1864        // calls to here because a preempted background collection
1865        // has it's state set to "Resetting".
1866        break;
1867      case Idling:
1868      default:
1869        ShouldNotReachHere();
1870        break;
1871    }
1872    log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1873                         p2i(Thread::current()), _collectorState);
1874    assert(_foregroundGCShouldWait, "block post-condition");
1875  }
1876
1877  // Should this be in gc_epilogue?
1878  collector_policy()->counters()->update_counters();
1879
1880  {
1881    // Clear _foregroundGCShouldWait and, in the event that the
1882    // foreground collector is waiting, notify it, before
1883    // returning.
1884    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1885    _foregroundGCShouldWait = false;
1886    if (_foregroundGCIsActive) {
1887      CGC_lock->notify();
1888    }
1889    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1890           "Possible deadlock");
1891  }
1892  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1893                       p2i(Thread::current()), _collectorState);
1894  log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1895                     prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1896}
1897
1898void CMSCollector::register_gc_start(GCCause::Cause cause) {
1899  _cms_start_registered = true;
1900  _gc_timer_cm->register_gc_start();
1901  _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1902}
1903
1904void CMSCollector::register_gc_end() {
1905  if (_cms_start_registered) {
1906    report_heap_summary(GCWhen::AfterGC);
1907
1908    _gc_timer_cm->register_gc_end();
1909    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1910    _cms_start_registered = false;
1911  }
1912}
1913
1914void CMSCollector::save_heap_summary() {
1915  GenCollectedHeap* gch = GenCollectedHeap::heap();
1916  _last_heap_summary = gch->create_heap_summary();
1917  _last_metaspace_summary = gch->create_metaspace_summary();
1918}
1919
1920void CMSCollector::report_heap_summary(GCWhen::Type when) {
1921  _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1922  _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1923}
1924
1925bool CMSCollector::waitForForegroundGC() {
1926  bool res = false;
1927  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1928         "CMS thread should have CMS token");
1929  // Block the foreground collector until the
1930  // background collectors decides whether to
1931  // yield.
1932  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1933  _foregroundGCShouldWait = true;
1934  if (_foregroundGCIsActive) {
1935    // The background collector yields to the
1936    // foreground collector and returns a value
1937    // indicating that it has yielded.  The foreground
1938    // collector can proceed.
1939    res = true;
1940    _foregroundGCShouldWait = false;
1941    ConcurrentMarkSweepThread::clear_CMS_flag(
1942      ConcurrentMarkSweepThread::CMS_cms_has_token);
1943    ConcurrentMarkSweepThread::set_CMS_flag(
1944      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1945    // Get a possibly blocked foreground thread going
1946    CGC_lock->notify();
1947    log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1948                         p2i(Thread::current()), _collectorState);
1949    while (_foregroundGCIsActive) {
1950      CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1951    }
1952    ConcurrentMarkSweepThread::set_CMS_flag(
1953      ConcurrentMarkSweepThread::CMS_cms_has_token);
1954    ConcurrentMarkSweepThread::clear_CMS_flag(
1955      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1956  }
1957  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1958                       p2i(Thread::current()), _collectorState);
1959  return res;
1960}
1961
1962// Because of the need to lock the free lists and other structures in
1963// the collector, common to all the generations that the collector is
1964// collecting, we need the gc_prologues of individual CMS generations
1965// delegate to their collector. It may have been simpler had the
1966// current infrastructure allowed one to call a prologue on a
1967// collector. In the absence of that we have the generation's
1968// prologue delegate to the collector, which delegates back
1969// some "local" work to a worker method in the individual generations
1970// that it's responsible for collecting, while itself doing any
1971// work common to all generations it's responsible for. A similar
1972// comment applies to the  gc_epilogue()'s.
1973// The role of the variable _between_prologue_and_epilogue is to
1974// enforce the invocation protocol.
1975void CMSCollector::gc_prologue(bool full) {
1976  // Call gc_prologue_work() for the CMSGen
1977  // we are responsible for.
1978
1979  // The following locking discipline assumes that we are only called
1980  // when the world is stopped.
1981  assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1982
1983  // The CMSCollector prologue must call the gc_prologues for the
1984  // "generations" that it's responsible
1985  // for.
1986
1987  assert(   Thread::current()->is_VM_thread()
1988         || (   CMSScavengeBeforeRemark
1989             && Thread::current()->is_ConcurrentGC_thread()),
1990         "Incorrect thread type for prologue execution");
1991
1992  if (_between_prologue_and_epilogue) {
1993    // We have already been invoked; this is a gc_prologue delegation
1994    // from yet another CMS generation that we are responsible for, just
1995    // ignore it since all relevant work has already been done.
1996    return;
1997  }
1998
1999  // set a bit saying prologue has been called; cleared in epilogue
2000  _between_prologue_and_epilogue = true;
2001  // Claim locks for common data structures, then call gc_prologue_work()
2002  // for each CMSGen.
2003
2004  getFreelistLocks();   // gets free list locks on constituent spaces
2005  bitMapLock()->lock_without_safepoint_check();
2006
2007  // Should call gc_prologue_work() for all cms gens we are responsible for
2008  bool duringMarking =    _collectorState >= Marking
2009                         && _collectorState < Sweeping;
2010
2011  // The young collections clear the modified oops state, which tells if
2012  // there are any modified oops in the class. The remark phase also needs
2013  // that information. Tell the young collection to save the union of all
2014  // modified klasses.
2015  if (duringMarking) {
2016    _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2017  }
2018
2019  bool registerClosure = duringMarking;
2020
2021  _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2022
2023  if (!full) {
2024    stats().record_gc0_begin();
2025  }
2026}
2027
2028void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2029
2030  _capacity_at_prologue = capacity();
2031  _used_at_prologue = used();
2032
2033  // Delegate to CMScollector which knows how to coordinate between
2034  // this and any other CMS generations that it is responsible for
2035  // collecting.
2036  collector()->gc_prologue(full);
2037}
2038
2039// This is a "private" interface for use by this generation's CMSCollector.
2040// Not to be called directly by any other entity (for instance,
2041// GenCollectedHeap, which calls the "public" gc_prologue method above).
2042void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2043  bool registerClosure, ModUnionClosure* modUnionClosure) {
2044  assert(!incremental_collection_failed(), "Shouldn't be set yet");
2045  assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2046    "Should be NULL");
2047  if (registerClosure) {
2048    cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2049  }
2050  cmsSpace()->gc_prologue();
2051  // Clear stat counters
2052  NOT_PRODUCT(
2053    assert(_numObjectsPromoted == 0, "check");
2054    assert(_numWordsPromoted   == 0, "check");
2055    log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2056                                 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2057    _numObjectsAllocated = 0;
2058    _numWordsAllocated   = 0;
2059  )
2060}
2061
2062void CMSCollector::gc_epilogue(bool full) {
2063  // The following locking discipline assumes that we are only called
2064  // when the world is stopped.
2065  assert(SafepointSynchronize::is_at_safepoint(),
2066         "world is stopped assumption");
2067
2068  // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2069  // if linear allocation blocks need to be appropriately marked to allow the
2070  // the blocks to be parsable. We also check here whether we need to nudge the
2071  // CMS collector thread to start a new cycle (if it's not already active).
2072  assert(   Thread::current()->is_VM_thread()
2073         || (   CMSScavengeBeforeRemark
2074             && Thread::current()->is_ConcurrentGC_thread()),
2075         "Incorrect thread type for epilogue execution");
2076
2077  if (!_between_prologue_and_epilogue) {
2078    // We have already been invoked; this is a gc_epilogue delegation
2079    // from yet another CMS generation that we are responsible for, just
2080    // ignore it since all relevant work has already been done.
2081    return;
2082  }
2083  assert(haveFreelistLocks(), "must have freelist locks");
2084  assert_lock_strong(bitMapLock());
2085
2086  _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2087
2088  _cmsGen->gc_epilogue_work(full);
2089
2090  if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2091    // in case sampling was not already enabled, enable it
2092    _start_sampling = true;
2093  }
2094  // reset _eden_chunk_array so sampling starts afresh
2095  _eden_chunk_index = 0;
2096
2097  size_t cms_used   = _cmsGen->cmsSpace()->used();
2098
2099  // update performance counters - this uses a special version of
2100  // update_counters() that allows the utilization to be passed as a
2101  // parameter, avoiding multiple calls to used().
2102  //
2103  _cmsGen->update_counters(cms_used);
2104
2105  bitMapLock()->unlock();
2106  releaseFreelistLocks();
2107
2108  if (!CleanChunkPoolAsync) {
2109    Chunk::clean_chunk_pool();
2110  }
2111
2112  set_did_compact(false);
2113  _between_prologue_and_epilogue = false;  // ready for next cycle
2114}
2115
2116void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2117  collector()->gc_epilogue(full);
2118
2119  // Also reset promotion tracking in par gc thread states.
2120  for (uint i = 0; i < ParallelGCThreads; i++) {
2121    _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2122  }
2123}
2124
2125void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2126  assert(!incremental_collection_failed(), "Should have been cleared");
2127  cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2128  cmsSpace()->gc_epilogue();
2129    // Print stat counters
2130  NOT_PRODUCT(
2131    assert(_numObjectsAllocated == 0, "check");
2132    assert(_numWordsAllocated == 0, "check");
2133    log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2134                                     _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2135    _numObjectsPromoted = 0;
2136    _numWordsPromoted   = 0;
2137  )
2138
2139  // Call down the chain in contiguous_available needs the freelistLock
2140  // so print this out before releasing the freeListLock.
2141  log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2142}
2143
2144#ifndef PRODUCT
2145bool CMSCollector::have_cms_token() {
2146  Thread* thr = Thread::current();
2147  if (thr->is_VM_thread()) {
2148    return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2149  } else if (thr->is_ConcurrentGC_thread()) {
2150    return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2151  } else if (thr->is_GC_task_thread()) {
2152    return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2153           ParGCRareEvent_lock->owned_by_self();
2154  }
2155  return false;
2156}
2157
2158// Check reachability of the given heap address in CMS generation,
2159// treating all other generations as roots.
2160bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2161  // We could "guarantee" below, rather than assert, but I'll
2162  // leave these as "asserts" so that an adventurous debugger
2163  // could try this in the product build provided some subset of
2164  // the conditions were met, provided they were interested in the
2165  // results and knew that the computation below wouldn't interfere
2166  // with other concurrent computations mutating the structures
2167  // being read or written.
2168  assert(SafepointSynchronize::is_at_safepoint(),
2169         "Else mutations in object graph will make answer suspect");
2170  assert(have_cms_token(), "Should hold cms token");
2171  assert(haveFreelistLocks(), "must hold free list locks");
2172  assert_lock_strong(bitMapLock());
2173
2174  // Clear the marking bit map array before starting, but, just
2175  // for kicks, first report if the given address is already marked
2176  tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2177                _markBitMap.isMarked(addr) ? "" : " not");
2178
2179  if (verify_after_remark()) {
2180    MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2181    bool result = verification_mark_bm()->isMarked(addr);
2182    tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2183                  result ? "IS" : "is NOT");
2184    return result;
2185  } else {
2186    tty->print_cr("Could not compute result");
2187    return false;
2188  }
2189}
2190#endif
2191
2192void
2193CMSCollector::print_on_error(outputStream* st) {
2194  CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2195  if (collector != NULL) {
2196    CMSBitMap* bitmap = &collector->_markBitMap;
2197    st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2198    bitmap->print_on_error(st, " Bits: ");
2199
2200    st->cr();
2201
2202    CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2203    st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2204    mut_bitmap->print_on_error(st, " Bits: ");
2205  }
2206}
2207
2208////////////////////////////////////////////////////////
2209// CMS Verification Support
2210////////////////////////////////////////////////////////
2211// Following the remark phase, the following invariant
2212// should hold -- each object in the CMS heap which is
2213// marked in markBitMap() should be marked in the verification_mark_bm().
2214
2215class VerifyMarkedClosure: public BitMapClosure {
2216  CMSBitMap* _marks;
2217  bool       _failed;
2218
2219 public:
2220  VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2221
2222  bool do_bit(size_t offset) {
2223    HeapWord* addr = _marks->offsetToHeapWord(offset);
2224    if (!_marks->isMarked(addr)) {
2225      LogHandle(gc, verify) log;
2226      ResourceMark rm;
2227      oop(addr)->print_on(log.error_stream());
2228      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2229      _failed = true;
2230    }
2231    return true;
2232  }
2233
2234  bool failed() { return _failed; }
2235};
2236
2237bool CMSCollector::verify_after_remark() {
2238  GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2239  MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2240  static bool init = false;
2241
2242  assert(SafepointSynchronize::is_at_safepoint(),
2243         "Else mutations in object graph will make answer suspect");
2244  assert(have_cms_token(),
2245         "Else there may be mutual interference in use of "
2246         " verification data structures");
2247  assert(_collectorState > Marking && _collectorState <= Sweeping,
2248         "Else marking info checked here may be obsolete");
2249  assert(haveFreelistLocks(), "must hold free list locks");
2250  assert_lock_strong(bitMapLock());
2251
2252
2253  // Allocate marking bit map if not already allocated
2254  if (!init) { // first time
2255    if (!verification_mark_bm()->allocate(_span)) {
2256      return false;
2257    }
2258    init = true;
2259  }
2260
2261  assert(verification_mark_stack()->isEmpty(), "Should be empty");
2262
2263  // Turn off refs discovery -- so we will be tracing through refs.
2264  // This is as intended, because by this time
2265  // GC must already have cleared any refs that need to be cleared,
2266  // and traced those that need to be marked; moreover,
2267  // the marking done here is not going to interfere in any
2268  // way with the marking information used by GC.
2269  NoRefDiscovery no_discovery(ref_processor());
2270
2271#if defined(COMPILER2) || INCLUDE_JVMCI
2272  DerivedPointerTableDeactivate dpt_deact;
2273#endif
2274
2275  // Clear any marks from a previous round
2276  verification_mark_bm()->clear_all();
2277  assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2278  verify_work_stacks_empty();
2279
2280  GenCollectedHeap* gch = GenCollectedHeap::heap();
2281  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2282  // Update the saved marks which may affect the root scans.
2283  gch->save_marks();
2284
2285  if (CMSRemarkVerifyVariant == 1) {
2286    // In this first variant of verification, we complete
2287    // all marking, then check if the new marks-vector is
2288    // a subset of the CMS marks-vector.
2289    verify_after_remark_work_1();
2290  } else {
2291    guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2292    // In this second variant of verification, we flag an error
2293    // (i.e. an object reachable in the new marks-vector not reachable
2294    // in the CMS marks-vector) immediately, also indicating the
2295    // identify of an object (A) that references the unmarked object (B) --
2296    // presumably, a mutation to A failed to be picked up by preclean/remark?
2297    verify_after_remark_work_2();
2298  }
2299
2300  return true;
2301}
2302
2303void CMSCollector::verify_after_remark_work_1() {
2304  ResourceMark rm;
2305  HandleMark  hm;
2306  GenCollectedHeap* gch = GenCollectedHeap::heap();
2307
2308  // Get a clear set of claim bits for the roots processing to work with.
2309  ClassLoaderDataGraph::clear_claimed_marks();
2310
2311  // Mark from roots one level into CMS
2312  MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2313  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2314
2315  {
2316    StrongRootsScope srs(1);
2317
2318    gch->gen_process_roots(&srs,
2319                           GenCollectedHeap::OldGen,
2320                           true,   // young gen as roots
2321                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2322                           should_unload_classes(),
2323                           &notOlder,
2324                           NULL,
2325                           NULL);
2326  }
2327
2328  // Now mark from the roots
2329  MarkFromRootsClosure markFromRootsClosure(this, _span,
2330    verification_mark_bm(), verification_mark_stack(),
2331    false /* don't yield */, true /* verifying */);
2332  assert(_restart_addr == NULL, "Expected pre-condition");
2333  verification_mark_bm()->iterate(&markFromRootsClosure);
2334  while (_restart_addr != NULL) {
2335    // Deal with stack overflow: by restarting at the indicated
2336    // address.
2337    HeapWord* ra = _restart_addr;
2338    markFromRootsClosure.reset(ra);
2339    _restart_addr = NULL;
2340    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2341  }
2342  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2343  verify_work_stacks_empty();
2344
2345  // Marking completed -- now verify that each bit marked in
2346  // verification_mark_bm() is also marked in markBitMap(); flag all
2347  // errors by printing corresponding objects.
2348  VerifyMarkedClosure vcl(markBitMap());
2349  verification_mark_bm()->iterate(&vcl);
2350  if (vcl.failed()) {
2351    LogHandle(gc, verify) log;
2352    log.error("Failed marking verification after remark");
2353    ResourceMark rm;
2354    gch->print_on(log.error_stream());
2355    fatal("CMS: failed marking verification after remark");
2356  }
2357}
2358
2359class VerifyKlassOopsKlassClosure : public KlassClosure {
2360  class VerifyKlassOopsClosure : public OopClosure {
2361    CMSBitMap* _bitmap;
2362   public:
2363    VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2364    void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2365    void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2366  } _oop_closure;
2367 public:
2368  VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2369  void do_klass(Klass* k) {
2370    k->oops_do(&_oop_closure);
2371  }
2372};
2373
2374void CMSCollector::verify_after_remark_work_2() {
2375  ResourceMark rm;
2376  HandleMark  hm;
2377  GenCollectedHeap* gch = GenCollectedHeap::heap();
2378
2379  // Get a clear set of claim bits for the roots processing to work with.
2380  ClassLoaderDataGraph::clear_claimed_marks();
2381
2382  // Mark from roots one level into CMS
2383  MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2384                                     markBitMap());
2385  CLDToOopClosure cld_closure(&notOlder, true);
2386
2387  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2388
2389  {
2390    StrongRootsScope srs(1);
2391
2392    gch->gen_process_roots(&srs,
2393                           GenCollectedHeap::OldGen,
2394                           true,   // young gen as roots
2395                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2396                           should_unload_classes(),
2397                           &notOlder,
2398                           NULL,
2399                           &cld_closure);
2400  }
2401
2402  // Now mark from the roots
2403  MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2404    verification_mark_bm(), markBitMap(), verification_mark_stack());
2405  assert(_restart_addr == NULL, "Expected pre-condition");
2406  verification_mark_bm()->iterate(&markFromRootsClosure);
2407  while (_restart_addr != NULL) {
2408    // Deal with stack overflow: by restarting at the indicated
2409    // address.
2410    HeapWord* ra = _restart_addr;
2411    markFromRootsClosure.reset(ra);
2412    _restart_addr = NULL;
2413    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2414  }
2415  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2416  verify_work_stacks_empty();
2417
2418  VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2419  ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2420
2421  // Marking completed -- now verify that each bit marked in
2422  // verification_mark_bm() is also marked in markBitMap(); flag all
2423  // errors by printing corresponding objects.
2424  VerifyMarkedClosure vcl(markBitMap());
2425  verification_mark_bm()->iterate(&vcl);
2426  assert(!vcl.failed(), "Else verification above should not have succeeded");
2427}
2428
2429void ConcurrentMarkSweepGeneration::save_marks() {
2430  // delegate to CMS space
2431  cmsSpace()->save_marks();
2432  for (uint i = 0; i < ParallelGCThreads; i++) {
2433    _par_gc_thread_states[i]->promo.startTrackingPromotions();
2434  }
2435}
2436
2437bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2438  return cmsSpace()->no_allocs_since_save_marks();
2439}
2440
2441#define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2442                                                                \
2443void ConcurrentMarkSweepGeneration::                            \
2444oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2445  cl->set_generation(this);                                     \
2446  cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2447  cl->reset_generation();                                       \
2448  save_marks();                                                 \
2449}
2450
2451ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2452
2453void
2454ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2455  if (freelistLock()->owned_by_self()) {
2456    Generation::oop_iterate(cl);
2457  } else {
2458    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2459    Generation::oop_iterate(cl);
2460  }
2461}
2462
2463void
2464ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2465  if (freelistLock()->owned_by_self()) {
2466    Generation::object_iterate(cl);
2467  } else {
2468    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2469    Generation::object_iterate(cl);
2470  }
2471}
2472
2473void
2474ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2475  if (freelistLock()->owned_by_self()) {
2476    Generation::safe_object_iterate(cl);
2477  } else {
2478    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2479    Generation::safe_object_iterate(cl);
2480  }
2481}
2482
2483void
2484ConcurrentMarkSweepGeneration::post_compact() {
2485}
2486
2487void
2488ConcurrentMarkSweepGeneration::prepare_for_verify() {
2489  // Fix the linear allocation blocks to look like free blocks.
2490
2491  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2492  // are not called when the heap is verified during universe initialization and
2493  // at vm shutdown.
2494  if (freelistLock()->owned_by_self()) {
2495    cmsSpace()->prepare_for_verify();
2496  } else {
2497    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2498    cmsSpace()->prepare_for_verify();
2499  }
2500}
2501
2502void
2503ConcurrentMarkSweepGeneration::verify() {
2504  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2505  // are not called when the heap is verified during universe initialization and
2506  // at vm shutdown.
2507  if (freelistLock()->owned_by_self()) {
2508    cmsSpace()->verify();
2509  } else {
2510    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2511    cmsSpace()->verify();
2512  }
2513}
2514
2515void CMSCollector::verify() {
2516  _cmsGen->verify();
2517}
2518
2519#ifndef PRODUCT
2520bool CMSCollector::overflow_list_is_empty() const {
2521  assert(_num_par_pushes >= 0, "Inconsistency");
2522  if (_overflow_list == NULL) {
2523    assert(_num_par_pushes == 0, "Inconsistency");
2524  }
2525  return _overflow_list == NULL;
2526}
2527
2528// The methods verify_work_stacks_empty() and verify_overflow_empty()
2529// merely consolidate assertion checks that appear to occur together frequently.
2530void CMSCollector::verify_work_stacks_empty() const {
2531  assert(_markStack.isEmpty(), "Marking stack should be empty");
2532  assert(overflow_list_is_empty(), "Overflow list should be empty");
2533}
2534
2535void CMSCollector::verify_overflow_empty() const {
2536  assert(overflow_list_is_empty(), "Overflow list should be empty");
2537  assert(no_preserved_marks(), "No preserved marks");
2538}
2539#endif // PRODUCT
2540
2541// Decide if we want to enable class unloading as part of the
2542// ensuing concurrent GC cycle. We will collect and
2543// unload classes if it's the case that:
2544// (1) an explicit gc request has been made and the flag
2545//     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2546// (2) (a) class unloading is enabled at the command line, and
2547//     (b) old gen is getting really full
2548// NOTE: Provided there is no change in the state of the heap between
2549// calls to this method, it should have idempotent results. Moreover,
2550// its results should be monotonically increasing (i.e. going from 0 to 1,
2551// but not 1 to 0) between successive calls between which the heap was
2552// not collected. For the implementation below, it must thus rely on
2553// the property that concurrent_cycles_since_last_unload()
2554// will not decrease unless a collection cycle happened and that
2555// _cmsGen->is_too_full() are
2556// themselves also monotonic in that sense. See check_monotonicity()
2557// below.
2558void CMSCollector::update_should_unload_classes() {
2559  _should_unload_classes = false;
2560  // Condition 1 above
2561  if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2562    _should_unload_classes = true;
2563  } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2564    // Disjuncts 2.b.(i,ii,iii) above
2565    _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2566                              CMSClassUnloadingMaxInterval)
2567                           || _cmsGen->is_too_full();
2568  }
2569}
2570
2571bool ConcurrentMarkSweepGeneration::is_too_full() const {
2572  bool res = should_concurrent_collect();
2573  res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2574  return res;
2575}
2576
2577void CMSCollector::setup_cms_unloading_and_verification_state() {
2578  const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2579                             || VerifyBeforeExit;
2580  const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2581
2582  // We set the proper root for this CMS cycle here.
2583  if (should_unload_classes()) {   // Should unload classes this cycle
2584    remove_root_scanning_option(rso);  // Shrink the root set appropriately
2585    set_verifying(should_verify);    // Set verification state for this cycle
2586    return;                            // Nothing else needs to be done at this time
2587  }
2588
2589  // Not unloading classes this cycle
2590  assert(!should_unload_classes(), "Inconsistency!");
2591
2592  // If we are not unloading classes then add SO_AllCodeCache to root
2593  // scanning options.
2594  add_root_scanning_option(rso);
2595
2596  if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2597    set_verifying(true);
2598  } else if (verifying() && !should_verify) {
2599    // We were verifying, but some verification flags got disabled.
2600    set_verifying(false);
2601    // Exclude symbols, strings and code cache elements from root scanning to
2602    // reduce IM and RM pauses.
2603    remove_root_scanning_option(rso);
2604  }
2605}
2606
2607
2608#ifndef PRODUCT
2609HeapWord* CMSCollector::block_start(const void* p) const {
2610  const HeapWord* addr = (HeapWord*)p;
2611  if (_span.contains(p)) {
2612    if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2613      return _cmsGen->cmsSpace()->block_start(p);
2614    }
2615  }
2616  return NULL;
2617}
2618#endif
2619
2620HeapWord*
2621ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2622                                                   bool   tlab,
2623                                                   bool   parallel) {
2624  CMSSynchronousYieldRequest yr;
2625  assert(!tlab, "Can't deal with TLAB allocation");
2626  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2627  expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2628  if (GCExpandToAllocateDelayMillis > 0) {
2629    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2630  }
2631  return have_lock_and_allocate(word_size, tlab);
2632}
2633
2634void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2635    size_t bytes,
2636    size_t expand_bytes,
2637    CMSExpansionCause::Cause cause)
2638{
2639
2640  bool success = expand(bytes, expand_bytes);
2641
2642  // remember why we expanded; this information is used
2643  // by shouldConcurrentCollect() when making decisions on whether to start
2644  // a new CMS cycle.
2645  if (success) {
2646    set_expansion_cause(cause);
2647    log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2648  }
2649}
2650
2651HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2652  HeapWord* res = NULL;
2653  MutexLocker x(ParGCRareEvent_lock);
2654  while (true) {
2655    // Expansion by some other thread might make alloc OK now:
2656    res = ps->lab.alloc(word_sz);
2657    if (res != NULL) return res;
2658    // If there's not enough expansion space available, give up.
2659    if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2660      return NULL;
2661    }
2662    // Otherwise, we try expansion.
2663    expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2664    // Now go around the loop and try alloc again;
2665    // A competing par_promote might beat us to the expansion space,
2666    // so we may go around the loop again if promotion fails again.
2667    if (GCExpandToAllocateDelayMillis > 0) {
2668      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2669    }
2670  }
2671}
2672
2673
2674bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2675  PromotionInfo* promo) {
2676  MutexLocker x(ParGCRareEvent_lock);
2677  size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2678  while (true) {
2679    // Expansion by some other thread might make alloc OK now:
2680    if (promo->ensure_spooling_space()) {
2681      assert(promo->has_spooling_space(),
2682             "Post-condition of successful ensure_spooling_space()");
2683      return true;
2684    }
2685    // If there's not enough expansion space available, give up.
2686    if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2687      return false;
2688    }
2689    // Otherwise, we try expansion.
2690    expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2691    // Now go around the loop and try alloc again;
2692    // A competing allocation might beat us to the expansion space,
2693    // so we may go around the loop again if allocation fails again.
2694    if (GCExpandToAllocateDelayMillis > 0) {
2695      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2696    }
2697  }
2698}
2699
2700void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2701  // Only shrink if a compaction was done so that all the free space
2702  // in the generation is in a contiguous block at the end.
2703  if (did_compact()) {
2704    CardGeneration::shrink(bytes);
2705  }
2706}
2707
2708void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2709  assert_locked_or_safepoint(Heap_lock);
2710}
2711
2712void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2713  assert_locked_or_safepoint(Heap_lock);
2714  assert_lock_strong(freelistLock());
2715  log_trace(gc)("Shrinking of CMS not yet implemented");
2716  return;
2717}
2718
2719
2720// Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2721// phases.
2722class CMSPhaseAccounting: public StackObj {
2723 public:
2724  CMSPhaseAccounting(CMSCollector *collector,
2725                     const char *title);
2726  ~CMSPhaseAccounting();
2727
2728 private:
2729  CMSCollector *_collector;
2730  const char *_title;
2731  GCTraceConcTime(Info, gc) _trace_time;
2732
2733 public:
2734  // Not MT-safe; so do not pass around these StackObj's
2735  // where they may be accessed by other threads.
2736  double wallclock_millis() {
2737    return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2738  }
2739};
2740
2741CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2742                                       const char *title) :
2743  _collector(collector), _title(title), _trace_time(title) {
2744
2745  _collector->resetYields();
2746  _collector->resetTimer();
2747  _collector->startTimer();
2748  _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2749}
2750
2751CMSPhaseAccounting::~CMSPhaseAccounting() {
2752  _collector->gc_timer_cm()->register_gc_concurrent_end();
2753  _collector->stopTimer();
2754  log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2755  log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2756}
2757
2758// CMS work
2759
2760// The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2761class CMSParMarkTask : public AbstractGangTask {
2762 protected:
2763  CMSCollector*     _collector;
2764  uint              _n_workers;
2765  CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2766      AbstractGangTask(name),
2767      _collector(collector),
2768      _n_workers(n_workers) {}
2769  // Work method in support of parallel rescan ... of young gen spaces
2770  void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2771                             ContiguousSpace* space,
2772                             HeapWord** chunk_array, size_t chunk_top);
2773  void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2774};
2775
2776// Parallel initial mark task
2777class CMSParInitialMarkTask: public CMSParMarkTask {
2778  StrongRootsScope* _strong_roots_scope;
2779 public:
2780  CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2781      CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2782      _strong_roots_scope(strong_roots_scope) {}
2783  void work(uint worker_id);
2784};
2785
2786// Checkpoint the roots into this generation from outside
2787// this generation. [Note this initial checkpoint need only
2788// be approximate -- we'll do a catch up phase subsequently.]
2789void CMSCollector::checkpointRootsInitial() {
2790  assert(_collectorState == InitialMarking, "Wrong collector state");
2791  check_correct_thread_executing();
2792  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2793
2794  save_heap_summary();
2795  report_heap_summary(GCWhen::BeforeGC);
2796
2797  ReferenceProcessor* rp = ref_processor();
2798  assert(_restart_addr == NULL, "Control point invariant");
2799  {
2800    // acquire locks for subsequent manipulations
2801    MutexLockerEx x(bitMapLock(),
2802                    Mutex::_no_safepoint_check_flag);
2803    checkpointRootsInitialWork();
2804    // enable ("weak") refs discovery
2805    rp->enable_discovery();
2806    _collectorState = Marking;
2807  }
2808}
2809
2810void CMSCollector::checkpointRootsInitialWork() {
2811  assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2812  assert(_collectorState == InitialMarking, "just checking");
2813
2814  // Already have locks.
2815  assert_lock_strong(bitMapLock());
2816  assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2817
2818  // Setup the verification and class unloading state for this
2819  // CMS collection cycle.
2820  setup_cms_unloading_and_verification_state();
2821
2822  GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2823
2824  // Reset all the PLAB chunk arrays if necessary.
2825  if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2826    reset_survivor_plab_arrays();
2827  }
2828
2829  ResourceMark rm;
2830  HandleMark  hm;
2831
2832  MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2833  GenCollectedHeap* gch = GenCollectedHeap::heap();
2834
2835  verify_work_stacks_empty();
2836  verify_overflow_empty();
2837
2838  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2839  // Update the saved marks which may affect the root scans.
2840  gch->save_marks();
2841
2842  // weak reference processing has not started yet.
2843  ref_processor()->set_enqueuing_is_done(false);
2844
2845  // Need to remember all newly created CLDs,
2846  // so that we can guarantee that the remark finds them.
2847  ClassLoaderDataGraph::remember_new_clds(true);
2848
2849  // Whenever a CLD is found, it will be claimed before proceeding to mark
2850  // the klasses. The claimed marks need to be cleared before marking starts.
2851  ClassLoaderDataGraph::clear_claimed_marks();
2852
2853  print_eden_and_survivor_chunk_arrays();
2854
2855  {
2856#if defined(COMPILER2) || INCLUDE_JVMCI
2857    DerivedPointerTableDeactivate dpt_deact;
2858#endif
2859    if (CMSParallelInitialMarkEnabled) {
2860      // The parallel version.
2861      WorkGang* workers = gch->workers();
2862      assert(workers != NULL, "Need parallel worker threads.");
2863      uint n_workers = workers->active_workers();
2864
2865      StrongRootsScope srs(n_workers);
2866
2867      CMSParInitialMarkTask tsk(this, &srs, n_workers);
2868      initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2869      if (n_workers > 1) {
2870        workers->run_task(&tsk);
2871      } else {
2872        tsk.work(0);
2873      }
2874    } else {
2875      // The serial version.
2876      CLDToOopClosure cld_closure(&notOlder, true);
2877      gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2878
2879      StrongRootsScope srs(1);
2880
2881      gch->gen_process_roots(&srs,
2882                             GenCollectedHeap::OldGen,
2883                             true,   // young gen as roots
2884                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
2885                             should_unload_classes(),
2886                             &notOlder,
2887                             NULL,
2888                             &cld_closure);
2889    }
2890  }
2891
2892  // Clear mod-union table; it will be dirtied in the prologue of
2893  // CMS generation per each young generation collection.
2894
2895  assert(_modUnionTable.isAllClear(),
2896       "Was cleared in most recent final checkpoint phase"
2897       " or no bits are set in the gc_prologue before the start of the next "
2898       "subsequent marking phase.");
2899
2900  assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2901
2902  // Save the end of the used_region of the constituent generations
2903  // to be used to limit the extent of sweep in each generation.
2904  save_sweep_limits();
2905  verify_overflow_empty();
2906}
2907
2908bool CMSCollector::markFromRoots() {
2909  // we might be tempted to assert that:
2910  // assert(!SafepointSynchronize::is_at_safepoint(),
2911  //        "inconsistent argument?");
2912  // However that wouldn't be right, because it's possible that
2913  // a safepoint is indeed in progress as a young generation
2914  // stop-the-world GC happens even as we mark in this generation.
2915  assert(_collectorState == Marking, "inconsistent state?");
2916  check_correct_thread_executing();
2917  verify_overflow_empty();
2918
2919  // Weak ref discovery note: We may be discovering weak
2920  // refs in this generation concurrent (but interleaved) with
2921  // weak ref discovery by the young generation collector.
2922
2923  CMSTokenSyncWithLocks ts(true, bitMapLock());
2924  GCTraceCPUTime tcpu;
2925  CMSPhaseAccounting pa(this, "Concurrent Mark");
2926  bool res = markFromRootsWork();
2927  if (res) {
2928    _collectorState = Precleaning;
2929  } else { // We failed and a foreground collection wants to take over
2930    assert(_foregroundGCIsActive, "internal state inconsistency");
2931    assert(_restart_addr == NULL,  "foreground will restart from scratch");
2932    log_debug(gc)("bailing out to foreground collection");
2933  }
2934  verify_overflow_empty();
2935  return res;
2936}
2937
2938bool CMSCollector::markFromRootsWork() {
2939  // iterate over marked bits in bit map, doing a full scan and mark
2940  // from these roots using the following algorithm:
2941  // . if oop is to the right of the current scan pointer,
2942  //   mark corresponding bit (we'll process it later)
2943  // . else (oop is to left of current scan pointer)
2944  //   push oop on marking stack
2945  // . drain the marking stack
2946
2947  // Note that when we do a marking step we need to hold the
2948  // bit map lock -- recall that direct allocation (by mutators)
2949  // and promotion (by the young generation collector) is also
2950  // marking the bit map. [the so-called allocate live policy.]
2951  // Because the implementation of bit map marking is not
2952  // robust wrt simultaneous marking of bits in the same word,
2953  // we need to make sure that there is no such interference
2954  // between concurrent such updates.
2955
2956  // already have locks
2957  assert_lock_strong(bitMapLock());
2958
2959  verify_work_stacks_empty();
2960  verify_overflow_empty();
2961  bool result = false;
2962  if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2963    result = do_marking_mt();
2964  } else {
2965    result = do_marking_st();
2966  }
2967  return result;
2968}
2969
2970// Forward decl
2971class CMSConcMarkingTask;
2972
2973class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2974  CMSCollector*       _collector;
2975  CMSConcMarkingTask* _task;
2976 public:
2977  virtual void yield();
2978
2979  // "n_threads" is the number of threads to be terminated.
2980  // "queue_set" is a set of work queues of other threads.
2981  // "collector" is the CMS collector associated with this task terminator.
2982  // "yield" indicates whether we need the gang as a whole to yield.
2983  CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2984    ParallelTaskTerminator(n_threads, queue_set),
2985    _collector(collector) { }
2986
2987  void set_task(CMSConcMarkingTask* task) {
2988    _task = task;
2989  }
2990};
2991
2992class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
2993  CMSConcMarkingTask* _task;
2994 public:
2995  bool should_exit_termination();
2996  void set_task(CMSConcMarkingTask* task) {
2997    _task = task;
2998  }
2999};
3000
3001// MT Concurrent Marking Task
3002class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3003  CMSCollector* _collector;
3004  uint          _n_workers;       // requested/desired # workers
3005  bool          _result;
3006  CompactibleFreeListSpace*  _cms_space;
3007  char          _pad_front[64];   // padding to ...
3008  HeapWord*     _global_finger;   // ... avoid sharing cache line
3009  char          _pad_back[64];
3010  HeapWord*     _restart_addr;
3011
3012  //  Exposed here for yielding support
3013  Mutex* const _bit_map_lock;
3014
3015  // The per thread work queues, available here for stealing
3016  OopTaskQueueSet*  _task_queues;
3017
3018  // Termination (and yielding) support
3019  CMSConcMarkingTerminator _term;
3020  CMSConcMarkingTerminatorTerminator _term_term;
3021
3022 public:
3023  CMSConcMarkingTask(CMSCollector* collector,
3024                 CompactibleFreeListSpace* cms_space,
3025                 YieldingFlexibleWorkGang* workers,
3026                 OopTaskQueueSet* task_queues):
3027    YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3028    _collector(collector),
3029    _cms_space(cms_space),
3030    _n_workers(0), _result(true),
3031    _task_queues(task_queues),
3032    _term(_n_workers, task_queues, _collector),
3033    _bit_map_lock(collector->bitMapLock())
3034  {
3035    _requested_size = _n_workers;
3036    _term.set_task(this);
3037    _term_term.set_task(this);
3038    _restart_addr = _global_finger = _cms_space->bottom();
3039  }
3040
3041
3042  OopTaskQueueSet* task_queues()  { return _task_queues; }
3043
3044  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3045
3046  HeapWord** global_finger_addr() { return &_global_finger; }
3047
3048  CMSConcMarkingTerminator* terminator() { return &_term; }
3049
3050  virtual void set_for_termination(uint active_workers) {
3051    terminator()->reset_for_reuse(active_workers);
3052  }
3053
3054  void work(uint worker_id);
3055  bool should_yield() {
3056    return    ConcurrentMarkSweepThread::should_yield()
3057           && !_collector->foregroundGCIsActive();
3058  }
3059
3060  virtual void coordinator_yield();  // stuff done by coordinator
3061  bool result() { return _result; }
3062
3063  void reset(HeapWord* ra) {
3064    assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3065    _restart_addr = _global_finger = ra;
3066    _term.reset_for_reuse();
3067  }
3068
3069  static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3070                                           OopTaskQueue* work_q);
3071
3072 private:
3073  void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3074  void do_work_steal(int i);
3075  void bump_global_finger(HeapWord* f);
3076};
3077
3078bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3079  assert(_task != NULL, "Error");
3080  return _task->yielding();
3081  // Note that we do not need the disjunct || _task->should_yield() above
3082  // because we want terminating threads to yield only if the task
3083  // is already in the midst of yielding, which happens only after at least one
3084  // thread has yielded.
3085}
3086
3087void CMSConcMarkingTerminator::yield() {
3088  if (_task->should_yield()) {
3089    _task->yield();
3090  } else {
3091    ParallelTaskTerminator::yield();
3092  }
3093}
3094
3095////////////////////////////////////////////////////////////////
3096// Concurrent Marking Algorithm Sketch
3097////////////////////////////////////////////////////////////////
3098// Until all tasks exhausted (both spaces):
3099// -- claim next available chunk
3100// -- bump global finger via CAS
3101// -- find first object that starts in this chunk
3102//    and start scanning bitmap from that position
3103// -- scan marked objects for oops
3104// -- CAS-mark target, and if successful:
3105//    . if target oop is above global finger (volatile read)
3106//      nothing to do
3107//    . if target oop is in chunk and above local finger
3108//        then nothing to do
3109//    . else push on work-queue
3110// -- Deal with possible overflow issues:
3111//    . local work-queue overflow causes stuff to be pushed on
3112//      global (common) overflow queue
3113//    . always first empty local work queue
3114//    . then get a batch of oops from global work queue if any
3115//    . then do work stealing
3116// -- When all tasks claimed (both spaces)
3117//    and local work queue empty,
3118//    then in a loop do:
3119//    . check global overflow stack; steal a batch of oops and trace
3120//    . try to steal from other threads oif GOS is empty
3121//    . if neither is available, offer termination
3122// -- Terminate and return result
3123//
3124void CMSConcMarkingTask::work(uint worker_id) {
3125  elapsedTimer _timer;
3126  ResourceMark rm;
3127  HandleMark hm;
3128
3129  DEBUG_ONLY(_collector->verify_overflow_empty();)
3130
3131  // Before we begin work, our work queue should be empty
3132  assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3133  // Scan the bitmap covering _cms_space, tracing through grey objects.
3134  _timer.start();
3135  do_scan_and_mark(worker_id, _cms_space);
3136  _timer.stop();
3137  log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3138
3139  // ... do work stealing
3140  _timer.reset();
3141  _timer.start();
3142  do_work_steal(worker_id);
3143  _timer.stop();
3144  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3145  assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3146  assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3147  // Note that under the current task protocol, the
3148  // following assertion is true even of the spaces
3149  // expanded since the completion of the concurrent
3150  // marking. XXX This will likely change under a strict
3151  // ABORT semantics.
3152  // After perm removal the comparison was changed to
3153  // greater than or equal to from strictly greater than.
3154  // Before perm removal the highest address sweep would
3155  // have been at the end of perm gen but now is at the
3156  // end of the tenured gen.
3157  assert(_global_finger >=  _cms_space->end(),
3158         "All tasks have been completed");
3159  DEBUG_ONLY(_collector->verify_overflow_empty();)
3160}
3161
3162void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3163  HeapWord* read = _global_finger;
3164  HeapWord* cur  = read;
3165  while (f > read) {
3166    cur = read;
3167    read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3168    if (cur == read) {
3169      // our cas succeeded
3170      assert(_global_finger >= f, "protocol consistency");
3171      break;
3172    }
3173  }
3174}
3175
3176// This is really inefficient, and should be redone by
3177// using (not yet available) block-read and -write interfaces to the
3178// stack and the work_queue. XXX FIX ME !!!
3179bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3180                                                      OopTaskQueue* work_q) {
3181  // Fast lock-free check
3182  if (ovflw_stk->length() == 0) {
3183    return false;
3184  }
3185  assert(work_q->size() == 0, "Shouldn't steal");
3186  MutexLockerEx ml(ovflw_stk->par_lock(),
3187                   Mutex::_no_safepoint_check_flag);
3188  // Grab up to 1/4 the size of the work queue
3189  size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3190                    (size_t)ParGCDesiredObjsFromOverflowList);
3191  num = MIN2(num, ovflw_stk->length());
3192  for (int i = (int) num; i > 0; i--) {
3193    oop cur = ovflw_stk->pop();
3194    assert(cur != NULL, "Counted wrong?");
3195    work_q->push(cur);
3196  }
3197  return num > 0;
3198}
3199
3200void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3201  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3202  int n_tasks = pst->n_tasks();
3203  // We allow that there may be no tasks to do here because
3204  // we are restarting after a stack overflow.
3205  assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3206  uint nth_task = 0;
3207
3208  HeapWord* aligned_start = sp->bottom();
3209  if (sp->used_region().contains(_restart_addr)) {
3210    // Align down to a card boundary for the start of 0th task
3211    // for this space.
3212    aligned_start =
3213      (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3214                                 CardTableModRefBS::card_size);
3215  }
3216
3217  size_t chunk_size = sp->marking_task_size();
3218  while (!pst->is_task_claimed(/* reference */ nth_task)) {
3219    // Having claimed the nth task in this space,
3220    // compute the chunk that it corresponds to:
3221    MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3222                               aligned_start + (nth_task+1)*chunk_size);
3223    // Try and bump the global finger via a CAS;
3224    // note that we need to do the global finger bump
3225    // _before_ taking the intersection below, because
3226    // the task corresponding to that region will be
3227    // deemed done even if the used_region() expands
3228    // because of allocation -- as it almost certainly will
3229    // during start-up while the threads yield in the
3230    // closure below.
3231    HeapWord* finger = span.end();
3232    bump_global_finger(finger);   // atomically
3233    // There are null tasks here corresponding to chunks
3234    // beyond the "top" address of the space.
3235    span = span.intersection(sp->used_region());
3236    if (!span.is_empty()) {  // Non-null task
3237      HeapWord* prev_obj;
3238      assert(!span.contains(_restart_addr) || nth_task == 0,
3239             "Inconsistency");
3240      if (nth_task == 0) {
3241        // For the 0th task, we'll not need to compute a block_start.
3242        if (span.contains(_restart_addr)) {
3243          // In the case of a restart because of stack overflow,
3244          // we might additionally skip a chunk prefix.
3245          prev_obj = _restart_addr;
3246        } else {
3247          prev_obj = span.start();
3248        }
3249      } else {
3250        // We want to skip the first object because
3251        // the protocol is to scan any object in its entirety
3252        // that _starts_ in this span; a fortiori, any
3253        // object starting in an earlier span is scanned
3254        // as part of an earlier claimed task.
3255        // Below we use the "careful" version of block_start
3256        // so we do not try to navigate uninitialized objects.
3257        prev_obj = sp->block_start_careful(span.start());
3258        // Below we use a variant of block_size that uses the
3259        // Printezis bits to avoid waiting for allocated
3260        // objects to become initialized/parsable.
3261        while (prev_obj < span.start()) {
3262          size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3263          if (sz > 0) {
3264            prev_obj += sz;
3265          } else {
3266            // In this case we may end up doing a bit of redundant
3267            // scanning, but that appears unavoidable, short of
3268            // locking the free list locks; see bug 6324141.
3269            break;
3270          }
3271        }
3272      }
3273      if (prev_obj < span.end()) {
3274        MemRegion my_span = MemRegion(prev_obj, span.end());
3275        // Do the marking work within a non-empty span --
3276        // the last argument to the constructor indicates whether the
3277        // iteration should be incremental with periodic yields.
3278        ParMarkFromRootsClosure cl(this, _collector, my_span,
3279                                   &_collector->_markBitMap,
3280                                   work_queue(i),
3281                                   &_collector->_markStack);
3282        _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3283      } // else nothing to do for this task
3284    }   // else nothing to do for this task
3285  }
3286  // We'd be tempted to assert here that since there are no
3287  // more tasks left to claim in this space, the global_finger
3288  // must exceed space->top() and a fortiori space->end(). However,
3289  // that would not quite be correct because the bumping of
3290  // global_finger occurs strictly after the claiming of a task,
3291  // so by the time we reach here the global finger may not yet
3292  // have been bumped up by the thread that claimed the last
3293  // task.
3294  pst->all_tasks_completed();
3295}
3296
3297class ParConcMarkingClosure: public MetadataAwareOopClosure {
3298 private:
3299  CMSCollector* _collector;
3300  CMSConcMarkingTask* _task;
3301  MemRegion     _span;
3302  CMSBitMap*    _bit_map;
3303  CMSMarkStack* _overflow_stack;
3304  OopTaskQueue* _work_queue;
3305 protected:
3306  DO_OOP_WORK_DEFN
3307 public:
3308  ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3309                        CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3310    MetadataAwareOopClosure(collector->ref_processor()),
3311    _collector(collector),
3312    _task(task),
3313    _span(collector->_span),
3314    _work_queue(work_queue),
3315    _bit_map(bit_map),
3316    _overflow_stack(overflow_stack)
3317  { }
3318  virtual void do_oop(oop* p);
3319  virtual void do_oop(narrowOop* p);
3320
3321  void trim_queue(size_t max);
3322  void handle_stack_overflow(HeapWord* lost);
3323  void do_yield_check() {
3324    if (_task->should_yield()) {
3325      _task->yield();
3326    }
3327  }
3328};
3329
3330DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3331
3332// Grey object scanning during work stealing phase --
3333// the salient assumption here is that any references
3334// that are in these stolen objects being scanned must
3335// already have been initialized (else they would not have
3336// been published), so we do not need to check for
3337// uninitialized objects before pushing here.
3338void ParConcMarkingClosure::do_oop(oop obj) {
3339  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3340  HeapWord* addr = (HeapWord*)obj;
3341  // Check if oop points into the CMS generation
3342  // and is not marked
3343  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3344    // a white object ...
3345    // If we manage to "claim" the object, by being the
3346    // first thread to mark it, then we push it on our
3347    // marking stack
3348    if (_bit_map->par_mark(addr)) {     // ... now grey
3349      // push on work queue (grey set)
3350      bool simulate_overflow = false;
3351      NOT_PRODUCT(
3352        if (CMSMarkStackOverflowALot &&
3353            _collector->simulate_overflow()) {
3354          // simulate a stack overflow
3355          simulate_overflow = true;
3356        }
3357      )
3358      if (simulate_overflow ||
3359          !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3360        // stack overflow
3361        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3362        // We cannot assert that the overflow stack is full because
3363        // it may have been emptied since.
3364        assert(simulate_overflow ||
3365               _work_queue->size() == _work_queue->max_elems(),
3366              "Else push should have succeeded");
3367        handle_stack_overflow(addr);
3368      }
3369    } // Else, some other thread got there first
3370    do_yield_check();
3371  }
3372}
3373
3374void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3375void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3376
3377void ParConcMarkingClosure::trim_queue(size_t max) {
3378  while (_work_queue->size() > max) {
3379    oop new_oop;
3380    if (_work_queue->pop_local(new_oop)) {
3381      assert(new_oop->is_oop(), "Should be an oop");
3382      assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3383      assert(_span.contains((HeapWord*)new_oop), "Not in span");
3384      new_oop->oop_iterate(this);  // do_oop() above
3385      do_yield_check();
3386    }
3387  }
3388}
3389
3390// Upon stack overflow, we discard (part of) the stack,
3391// remembering the least address amongst those discarded
3392// in CMSCollector's _restart_address.
3393void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3394  // We need to do this under a mutex to prevent other
3395  // workers from interfering with the work done below.
3396  MutexLockerEx ml(_overflow_stack->par_lock(),
3397                   Mutex::_no_safepoint_check_flag);
3398  // Remember the least grey address discarded
3399  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3400  _collector->lower_restart_addr(ra);
3401  _overflow_stack->reset();  // discard stack contents
3402  _overflow_stack->expand(); // expand the stack if possible
3403}
3404
3405
3406void CMSConcMarkingTask::do_work_steal(int i) {
3407  OopTaskQueue* work_q = work_queue(i);
3408  oop obj_to_scan;
3409  CMSBitMap* bm = &(_collector->_markBitMap);
3410  CMSMarkStack* ovflw = &(_collector->_markStack);
3411  int* seed = _collector->hash_seed(i);
3412  ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3413  while (true) {
3414    cl.trim_queue(0);
3415    assert(work_q->size() == 0, "Should have been emptied above");
3416    if (get_work_from_overflow_stack(ovflw, work_q)) {
3417      // Can't assert below because the work obtained from the
3418      // overflow stack may already have been stolen from us.
3419      // assert(work_q->size() > 0, "Work from overflow stack");
3420      continue;
3421    } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3422      assert(obj_to_scan->is_oop(), "Should be an oop");
3423      assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3424      obj_to_scan->oop_iterate(&cl);
3425    } else if (terminator()->offer_termination(&_term_term)) {
3426      assert(work_q->size() == 0, "Impossible!");
3427      break;
3428    } else if (yielding() || should_yield()) {
3429      yield();
3430    }
3431  }
3432}
3433
3434// This is run by the CMS (coordinator) thread.
3435void CMSConcMarkingTask::coordinator_yield() {
3436  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3437         "CMS thread should hold CMS token");
3438  // First give up the locks, then yield, then re-lock
3439  // We should probably use a constructor/destructor idiom to
3440  // do this unlock/lock or modify the MutexUnlocker class to
3441  // serve our purpose. XXX
3442  assert_lock_strong(_bit_map_lock);
3443  _bit_map_lock->unlock();
3444  ConcurrentMarkSweepThread::desynchronize(true);
3445  _collector->stopTimer();
3446  _collector->incrementYields();
3447
3448  // It is possible for whichever thread initiated the yield request
3449  // not to get a chance to wake up and take the bitmap lock between
3450  // this thread releasing it and reacquiring it. So, while the
3451  // should_yield() flag is on, let's sleep for a bit to give the
3452  // other thread a chance to wake up. The limit imposed on the number
3453  // of iterations is defensive, to avoid any unforseen circumstances
3454  // putting us into an infinite loop. Since it's always been this
3455  // (coordinator_yield()) method that was observed to cause the
3456  // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3457  // which is by default non-zero. For the other seven methods that
3458  // also perform the yield operation, as are using a different
3459  // parameter (CMSYieldSleepCount) which is by default zero. This way we
3460  // can enable the sleeping for those methods too, if necessary.
3461  // See 6442774.
3462  //
3463  // We really need to reconsider the synchronization between the GC
3464  // thread and the yield-requesting threads in the future and we
3465  // should really use wait/notify, which is the recommended
3466  // way of doing this type of interaction. Additionally, we should
3467  // consolidate the eight methods that do the yield operation and they
3468  // are almost identical into one for better maintainability and
3469  // readability. See 6445193.
3470  //
3471  // Tony 2006.06.29
3472  for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3473                   ConcurrentMarkSweepThread::should_yield() &&
3474                   !CMSCollector::foregroundGCIsActive(); ++i) {
3475    os::sleep(Thread::current(), 1, false);
3476  }
3477
3478  ConcurrentMarkSweepThread::synchronize(true);
3479  _bit_map_lock->lock_without_safepoint_check();
3480  _collector->startTimer();
3481}
3482
3483bool CMSCollector::do_marking_mt() {
3484  assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3485  uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3486                                                                  conc_workers()->active_workers(),
3487                                                                  Threads::number_of_non_daemon_threads());
3488  conc_workers()->set_active_workers(num_workers);
3489
3490  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3491
3492  CMSConcMarkingTask tsk(this,
3493                         cms_space,
3494                         conc_workers(),
3495                         task_queues());
3496
3497  // Since the actual number of workers we get may be different
3498  // from the number we requested above, do we need to do anything different
3499  // below? In particular, may be we need to subclass the SequantialSubTasksDone
3500  // class?? XXX
3501  cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3502
3503  // Refs discovery is already non-atomic.
3504  assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3505  assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3506  conc_workers()->start_task(&tsk);
3507  while (tsk.yielded()) {
3508    tsk.coordinator_yield();
3509    conc_workers()->continue_task(&tsk);
3510  }
3511  // If the task was aborted, _restart_addr will be non-NULL
3512  assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3513  while (_restart_addr != NULL) {
3514    // XXX For now we do not make use of ABORTED state and have not
3515    // yet implemented the right abort semantics (even in the original
3516    // single-threaded CMS case). That needs some more investigation
3517    // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3518    assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3519    // If _restart_addr is non-NULL, a marking stack overflow
3520    // occurred; we need to do a fresh marking iteration from the
3521    // indicated restart address.
3522    if (_foregroundGCIsActive) {
3523      // We may be running into repeated stack overflows, having
3524      // reached the limit of the stack size, while making very
3525      // slow forward progress. It may be best to bail out and
3526      // let the foreground collector do its job.
3527      // Clear _restart_addr, so that foreground GC
3528      // works from scratch. This avoids the headache of
3529      // a "rescan" which would otherwise be needed because
3530      // of the dirty mod union table & card table.
3531      _restart_addr = NULL;
3532      return false;
3533    }
3534    // Adjust the task to restart from _restart_addr
3535    tsk.reset(_restart_addr);
3536    cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3537                  _restart_addr);
3538    _restart_addr = NULL;
3539    // Get the workers going again
3540    conc_workers()->start_task(&tsk);
3541    while (tsk.yielded()) {
3542      tsk.coordinator_yield();
3543      conc_workers()->continue_task(&tsk);
3544    }
3545  }
3546  assert(tsk.completed(), "Inconsistency");
3547  assert(tsk.result() == true, "Inconsistency");
3548  return true;
3549}
3550
3551bool CMSCollector::do_marking_st() {
3552  ResourceMark rm;
3553  HandleMark   hm;
3554
3555  // Temporarily make refs discovery single threaded (non-MT)
3556  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3557  MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3558    &_markStack, CMSYield);
3559  // the last argument to iterate indicates whether the iteration
3560  // should be incremental with periodic yields.
3561  _markBitMap.iterate(&markFromRootsClosure);
3562  // If _restart_addr is non-NULL, a marking stack overflow
3563  // occurred; we need to do a fresh iteration from the
3564  // indicated restart address.
3565  while (_restart_addr != NULL) {
3566    if (_foregroundGCIsActive) {
3567      // We may be running into repeated stack overflows, having
3568      // reached the limit of the stack size, while making very
3569      // slow forward progress. It may be best to bail out and
3570      // let the foreground collector do its job.
3571      // Clear _restart_addr, so that foreground GC
3572      // works from scratch. This avoids the headache of
3573      // a "rescan" which would otherwise be needed because
3574      // of the dirty mod union table & card table.
3575      _restart_addr = NULL;
3576      return false;  // indicating failure to complete marking
3577    }
3578    // Deal with stack overflow:
3579    // we restart marking from _restart_addr
3580    HeapWord* ra = _restart_addr;
3581    markFromRootsClosure.reset(ra);
3582    _restart_addr = NULL;
3583    _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3584  }
3585  return true;
3586}
3587
3588void CMSCollector::preclean() {
3589  check_correct_thread_executing();
3590  assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3591  verify_work_stacks_empty();
3592  verify_overflow_empty();
3593  _abort_preclean = false;
3594  if (CMSPrecleaningEnabled) {
3595    if (!CMSEdenChunksRecordAlways) {
3596      _eden_chunk_index = 0;
3597    }
3598    size_t used = get_eden_used();
3599    size_t capacity = get_eden_capacity();
3600    // Don't start sampling unless we will get sufficiently
3601    // many samples.
3602    if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3603                * CMSScheduleRemarkEdenPenetration)) {
3604      _start_sampling = true;
3605    } else {
3606      _start_sampling = false;
3607    }
3608    GCTraceCPUTime tcpu;
3609    CMSPhaseAccounting pa(this, "Concurrent Preclean");
3610    preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3611  }
3612  CMSTokenSync x(true); // is cms thread
3613  if (CMSPrecleaningEnabled) {
3614    sample_eden();
3615    _collectorState = AbortablePreclean;
3616  } else {
3617    _collectorState = FinalMarking;
3618  }
3619  verify_work_stacks_empty();
3620  verify_overflow_empty();
3621}
3622
3623// Try and schedule the remark such that young gen
3624// occupancy is CMSScheduleRemarkEdenPenetration %.
3625void CMSCollector::abortable_preclean() {
3626  check_correct_thread_executing();
3627  assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3628  assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3629
3630  // If Eden's current occupancy is below this threshold,
3631  // immediately schedule the remark; else preclean
3632  // past the next scavenge in an effort to
3633  // schedule the pause as described above. By choosing
3634  // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3635  // we will never do an actual abortable preclean cycle.
3636  if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3637    GCTraceCPUTime tcpu;
3638    CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3639    // We need more smarts in the abortable preclean
3640    // loop below to deal with cases where allocation
3641    // in young gen is very very slow, and our precleaning
3642    // is running a losing race against a horde of
3643    // mutators intent on flooding us with CMS updates
3644    // (dirty cards).
3645    // One, admittedly dumb, strategy is to give up
3646    // after a certain number of abortable precleaning loops
3647    // or after a certain maximum time. We want to make
3648    // this smarter in the next iteration.
3649    // XXX FIX ME!!! YSR
3650    size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3651    while (!(should_abort_preclean() ||
3652             ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3653      workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3654      cumworkdone += workdone;
3655      loops++;
3656      // Voluntarily terminate abortable preclean phase if we have
3657      // been at it for too long.
3658      if ((CMSMaxAbortablePrecleanLoops != 0) &&
3659          loops >= CMSMaxAbortablePrecleanLoops) {
3660        log_debug(gc)(" CMS: abort preclean due to loops ");
3661        break;
3662      }
3663      if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3664        log_debug(gc)(" CMS: abort preclean due to time ");
3665        break;
3666      }
3667      // If we are doing little work each iteration, we should
3668      // take a short break.
3669      if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3670        // Sleep for some time, waiting for work to accumulate
3671        stopTimer();
3672        cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3673        startTimer();
3674        waited++;
3675      }
3676    }
3677    log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3678                               loops, waited, cumworkdone);
3679  }
3680  CMSTokenSync x(true); // is cms thread
3681  if (_collectorState != Idling) {
3682    assert(_collectorState == AbortablePreclean,
3683           "Spontaneous state transition?");
3684    _collectorState = FinalMarking;
3685  } // Else, a foreground collection completed this CMS cycle.
3686  return;
3687}
3688
3689// Respond to an Eden sampling opportunity
3690void CMSCollector::sample_eden() {
3691  // Make sure a young gc cannot sneak in between our
3692  // reading and recording of a sample.
3693  assert(Thread::current()->is_ConcurrentGC_thread(),
3694         "Only the cms thread may collect Eden samples");
3695  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3696         "Should collect samples while holding CMS token");
3697  if (!_start_sampling) {
3698    return;
3699  }
3700  // When CMSEdenChunksRecordAlways is true, the eden chunk array
3701  // is populated by the young generation.
3702  if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3703    if (_eden_chunk_index < _eden_chunk_capacity) {
3704      _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3705      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3706             "Unexpected state of Eden");
3707      // We'd like to check that what we just sampled is an oop-start address;
3708      // however, we cannot do that here since the object may not yet have been
3709      // initialized. So we'll instead do the check when we _use_ this sample
3710      // later.
3711      if (_eden_chunk_index == 0 ||
3712          (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3713                         _eden_chunk_array[_eden_chunk_index-1])
3714           >= CMSSamplingGrain)) {
3715        _eden_chunk_index++;  // commit sample
3716      }
3717    }
3718  }
3719  if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3720    size_t used = get_eden_used();
3721    size_t capacity = get_eden_capacity();
3722    assert(used <= capacity, "Unexpected state of Eden");
3723    if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3724      _abort_preclean = true;
3725    }
3726  }
3727}
3728
3729
3730size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3731  assert(_collectorState == Precleaning ||
3732         _collectorState == AbortablePreclean, "incorrect state");
3733  ResourceMark rm;
3734  HandleMark   hm;
3735
3736  // Precleaning is currently not MT but the reference processor
3737  // may be set for MT.  Disable it temporarily here.
3738  ReferenceProcessor* rp = ref_processor();
3739  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3740
3741  // Do one pass of scrubbing the discovered reference lists
3742  // to remove any reference objects with strongly-reachable
3743  // referents.
3744  if (clean_refs) {
3745    CMSPrecleanRefsYieldClosure yield_cl(this);
3746    assert(rp->span().equals(_span), "Spans should be equal");
3747    CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3748                                   &_markStack, true /* preclean */);
3749    CMSDrainMarkingStackClosure complete_trace(this,
3750                                   _span, &_markBitMap, &_markStack,
3751                                   &keep_alive, true /* preclean */);
3752
3753    // We don't want this step to interfere with a young
3754    // collection because we don't want to take CPU
3755    // or memory bandwidth away from the young GC threads
3756    // (which may be as many as there are CPUs).
3757    // Note that we don't need to protect ourselves from
3758    // interference with mutators because they can't
3759    // manipulate the discovered reference lists nor affect
3760    // the computed reachability of the referents, the
3761    // only properties manipulated by the precleaning
3762    // of these reference lists.
3763    stopTimer();
3764    CMSTokenSyncWithLocks x(true /* is cms thread */,
3765                            bitMapLock());
3766    startTimer();
3767    sample_eden();
3768
3769    // The following will yield to allow foreground
3770    // collection to proceed promptly. XXX YSR:
3771    // The code in this method may need further
3772    // tweaking for better performance and some restructuring
3773    // for cleaner interfaces.
3774    GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3775    rp->preclean_discovered_references(
3776          rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3777          gc_timer);
3778  }
3779
3780  if (clean_survivor) {  // preclean the active survivor space(s)
3781    PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3782                             &_markBitMap, &_modUnionTable,
3783                             &_markStack, true /* precleaning phase */);
3784    stopTimer();
3785    CMSTokenSyncWithLocks ts(true /* is cms thread */,
3786                             bitMapLock());
3787    startTimer();
3788    unsigned int before_count =
3789      GenCollectedHeap::heap()->total_collections();
3790    SurvivorSpacePrecleanClosure
3791      sss_cl(this, _span, &_markBitMap, &_markStack,
3792             &pam_cl, before_count, CMSYield);
3793    _young_gen->from()->object_iterate_careful(&sss_cl);
3794    _young_gen->to()->object_iterate_careful(&sss_cl);
3795  }
3796  MarkRefsIntoAndScanClosure
3797    mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3798             &_markStack, this, CMSYield,
3799             true /* precleaning phase */);
3800  // CAUTION: The following closure has persistent state that may need to
3801  // be reset upon a decrease in the sequence of addresses it
3802  // processes.
3803  ScanMarkedObjectsAgainCarefullyClosure
3804    smoac_cl(this, _span,
3805      &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3806
3807  // Preclean dirty cards in ModUnionTable and CardTable using
3808  // appropriate convergence criterion;
3809  // repeat CMSPrecleanIter times unless we find that
3810  // we are losing.
3811  assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3812  assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3813         "Bad convergence multiplier");
3814  assert(CMSPrecleanThreshold >= 100,
3815         "Unreasonably low CMSPrecleanThreshold");
3816
3817  size_t numIter, cumNumCards, lastNumCards, curNumCards;
3818  for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3819       numIter < CMSPrecleanIter;
3820       numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3821    curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3822    log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3823    // Either there are very few dirty cards, so re-mark
3824    // pause will be small anyway, or our pre-cleaning isn't
3825    // that much faster than the rate at which cards are being
3826    // dirtied, so we might as well stop and re-mark since
3827    // precleaning won't improve our re-mark time by much.
3828    if (curNumCards <= CMSPrecleanThreshold ||
3829        (numIter > 0 &&
3830         (curNumCards * CMSPrecleanDenominator >
3831         lastNumCards * CMSPrecleanNumerator))) {
3832      numIter++;
3833      cumNumCards += curNumCards;
3834      break;
3835    }
3836  }
3837
3838  preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3839
3840  curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3841  cumNumCards += curNumCards;
3842  log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3843                             curNumCards, cumNumCards, numIter);
3844  return cumNumCards;   // as a measure of useful work done
3845}
3846
3847// PRECLEANING NOTES:
3848// Precleaning involves:
3849// . reading the bits of the modUnionTable and clearing the set bits.
3850// . For the cards corresponding to the set bits, we scan the
3851//   objects on those cards. This means we need the free_list_lock
3852//   so that we can safely iterate over the CMS space when scanning
3853//   for oops.
3854// . When we scan the objects, we'll be both reading and setting
3855//   marks in the marking bit map, so we'll need the marking bit map.
3856// . For protecting _collector_state transitions, we take the CGC_lock.
3857//   Note that any races in the reading of of card table entries by the
3858//   CMS thread on the one hand and the clearing of those entries by the
3859//   VM thread or the setting of those entries by the mutator threads on the
3860//   other are quite benign. However, for efficiency it makes sense to keep
3861//   the VM thread from racing with the CMS thread while the latter is
3862//   dirty card info to the modUnionTable. We therefore also use the
3863//   CGC_lock to protect the reading of the card table and the mod union
3864//   table by the CM thread.
3865// . We run concurrently with mutator updates, so scanning
3866//   needs to be done carefully  -- we should not try to scan
3867//   potentially uninitialized objects.
3868//
3869// Locking strategy: While holding the CGC_lock, we scan over and
3870// reset a maximal dirty range of the mod union / card tables, then lock
3871// the free_list_lock and bitmap lock to do a full marking, then
3872// release these locks; and repeat the cycle. This allows for a
3873// certain amount of fairness in the sharing of these locks between
3874// the CMS collector on the one hand, and the VM thread and the
3875// mutators on the other.
3876
3877// NOTE: preclean_mod_union_table() and preclean_card_table()
3878// further below are largely identical; if you need to modify
3879// one of these methods, please check the other method too.
3880
3881size_t CMSCollector::preclean_mod_union_table(
3882  ConcurrentMarkSweepGeneration* old_gen,
3883  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3884  verify_work_stacks_empty();
3885  verify_overflow_empty();
3886
3887  // strategy: starting with the first card, accumulate contiguous
3888  // ranges of dirty cards; clear these cards, then scan the region
3889  // covered by these cards.
3890
3891  // Since all of the MUT is committed ahead, we can just use
3892  // that, in case the generations expand while we are precleaning.
3893  // It might also be fine to just use the committed part of the
3894  // generation, but we might potentially miss cards when the
3895  // generation is rapidly expanding while we are in the midst
3896  // of precleaning.
3897  HeapWord* startAddr = old_gen->reserved().start();
3898  HeapWord* endAddr   = old_gen->reserved().end();
3899
3900  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3901
3902  size_t numDirtyCards, cumNumDirtyCards;
3903  HeapWord *nextAddr, *lastAddr;
3904  for (cumNumDirtyCards = numDirtyCards = 0,
3905       nextAddr = lastAddr = startAddr;
3906       nextAddr < endAddr;
3907       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3908
3909    ResourceMark rm;
3910    HandleMark   hm;
3911
3912    MemRegion dirtyRegion;
3913    {
3914      stopTimer();
3915      // Potential yield point
3916      CMSTokenSync ts(true);
3917      startTimer();
3918      sample_eden();
3919      // Get dirty region starting at nextOffset (inclusive),
3920      // simultaneously clearing it.
3921      dirtyRegion =
3922        _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3923      assert(dirtyRegion.start() >= nextAddr,
3924             "returned region inconsistent?");
3925    }
3926    // Remember where the next search should begin.
3927    // The returned region (if non-empty) is a right open interval,
3928    // so lastOffset is obtained from the right end of that
3929    // interval.
3930    lastAddr = dirtyRegion.end();
3931    // Should do something more transparent and less hacky XXX
3932    numDirtyCards =
3933      _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3934
3935    // We'll scan the cards in the dirty region (with periodic
3936    // yields for foreground GC as needed).
3937    if (!dirtyRegion.is_empty()) {
3938      assert(numDirtyCards > 0, "consistency check");
3939      HeapWord* stop_point = NULL;
3940      stopTimer();
3941      // Potential yield point
3942      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3943                               bitMapLock());
3944      startTimer();
3945      {
3946        verify_work_stacks_empty();
3947        verify_overflow_empty();
3948        sample_eden();
3949        stop_point =
3950          old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3951      }
3952      if (stop_point != NULL) {
3953        // The careful iteration stopped early either because it found an
3954        // uninitialized object, or because we were in the midst of an
3955        // "abortable preclean", which should now be aborted. Redirty
3956        // the bits corresponding to the partially-scanned or unscanned
3957        // cards. We'll either restart at the next block boundary or
3958        // abort the preclean.
3959        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3960               "Should only be AbortablePreclean.");
3961        _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3962        if (should_abort_preclean()) {
3963          break; // out of preclean loop
3964        } else {
3965          // Compute the next address at which preclean should pick up;
3966          // might need bitMapLock in order to read P-bits.
3967          lastAddr = next_card_start_after_block(stop_point);
3968        }
3969      }
3970    } else {
3971      assert(lastAddr == endAddr, "consistency check");
3972      assert(numDirtyCards == 0, "consistency check");
3973      break;
3974    }
3975  }
3976  verify_work_stacks_empty();
3977  verify_overflow_empty();
3978  return cumNumDirtyCards;
3979}
3980
3981// NOTE: preclean_mod_union_table() above and preclean_card_table()
3982// below are largely identical; if you need to modify
3983// one of these methods, please check the other method too.
3984
3985size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3986  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3987  // strategy: it's similar to precleamModUnionTable above, in that
3988  // we accumulate contiguous ranges of dirty cards, mark these cards
3989  // precleaned, then scan the region covered by these cards.
3990  HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3991  HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3992
3993  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3994
3995  size_t numDirtyCards, cumNumDirtyCards;
3996  HeapWord *lastAddr, *nextAddr;
3997
3998  for (cumNumDirtyCards = numDirtyCards = 0,
3999       nextAddr = lastAddr = startAddr;
4000       nextAddr < endAddr;
4001       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4002
4003    ResourceMark rm;
4004    HandleMark   hm;
4005
4006    MemRegion dirtyRegion;
4007    {
4008      // See comments in "Precleaning notes" above on why we
4009      // do this locking. XXX Could the locking overheads be
4010      // too high when dirty cards are sparse? [I don't think so.]
4011      stopTimer();
4012      CMSTokenSync x(true); // is cms thread
4013      startTimer();
4014      sample_eden();
4015      // Get and clear dirty region from card table
4016      dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4017                                    MemRegion(nextAddr, endAddr),
4018                                    true,
4019                                    CardTableModRefBS::precleaned_card_val());
4020
4021      assert(dirtyRegion.start() >= nextAddr,
4022             "returned region inconsistent?");
4023    }
4024    lastAddr = dirtyRegion.end();
4025    numDirtyCards =
4026      dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4027
4028    if (!dirtyRegion.is_empty()) {
4029      stopTimer();
4030      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4031      startTimer();
4032      sample_eden();
4033      verify_work_stacks_empty();
4034      verify_overflow_empty();
4035      HeapWord* stop_point =
4036        old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4037      if (stop_point != NULL) {
4038        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4039               "Should only be AbortablePreclean.");
4040        _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4041        if (should_abort_preclean()) {
4042          break; // out of preclean loop
4043        } else {
4044          // Compute the next address at which preclean should pick up.
4045          lastAddr = next_card_start_after_block(stop_point);
4046        }
4047      }
4048    } else {
4049      break;
4050    }
4051  }
4052  verify_work_stacks_empty();
4053  verify_overflow_empty();
4054  return cumNumDirtyCards;
4055}
4056
4057class PrecleanKlassClosure : public KlassClosure {
4058  KlassToOopClosure _cm_klass_closure;
4059 public:
4060  PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4061  void do_klass(Klass* k) {
4062    if (k->has_accumulated_modified_oops()) {
4063      k->clear_accumulated_modified_oops();
4064
4065      _cm_klass_closure.do_klass(k);
4066    }
4067  }
4068};
4069
4070// The freelist lock is needed to prevent asserts, is it really needed?
4071void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4072
4073  cl->set_freelistLock(freelistLock);
4074
4075  CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4076
4077  // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4078  // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4079  PrecleanKlassClosure preclean_klass_closure(cl);
4080  ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4081
4082  verify_work_stacks_empty();
4083  verify_overflow_empty();
4084}
4085
4086void CMSCollector::checkpointRootsFinal() {
4087  assert(_collectorState == FinalMarking, "incorrect state transition?");
4088  check_correct_thread_executing();
4089  // world is stopped at this checkpoint
4090  assert(SafepointSynchronize::is_at_safepoint(),
4091         "world should be stopped");
4092  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4093
4094  verify_work_stacks_empty();
4095  verify_overflow_empty();
4096
4097  log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4098                _young_gen->used() / K, _young_gen->capacity() / K);
4099  {
4100    if (CMSScavengeBeforeRemark) {
4101      GenCollectedHeap* gch = GenCollectedHeap::heap();
4102      // Temporarily set flag to false, GCH->do_collection will
4103      // expect it to be false and set to true
4104      FlagSetting fl(gch->_is_gc_active, false);
4105
4106      gch->do_collection(true,                      // full (i.e. force, see below)
4107                         false,                     // !clear_all_soft_refs
4108                         0,                         // size
4109                         false,                     // is_tlab
4110                         GenCollectedHeap::YoungGen // type
4111        );
4112    }
4113    FreelistLocker x(this);
4114    MutexLockerEx y(bitMapLock(),
4115                    Mutex::_no_safepoint_check_flag);
4116    checkpointRootsFinalWork();
4117  }
4118  verify_work_stacks_empty();
4119  verify_overflow_empty();
4120}
4121
4122void CMSCollector::checkpointRootsFinalWork() {
4123  GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4124
4125  assert(haveFreelistLocks(), "must have free list locks");
4126  assert_lock_strong(bitMapLock());
4127
4128  ResourceMark rm;
4129  HandleMark   hm;
4130
4131  GenCollectedHeap* gch = GenCollectedHeap::heap();
4132
4133  if (should_unload_classes()) {
4134    CodeCache::gc_prologue();
4135  }
4136  assert(haveFreelistLocks(), "must have free list locks");
4137  assert_lock_strong(bitMapLock());
4138
4139  // We might assume that we need not fill TLAB's when
4140  // CMSScavengeBeforeRemark is set, because we may have just done
4141  // a scavenge which would have filled all TLAB's -- and besides
4142  // Eden would be empty. This however may not always be the case --
4143  // for instance although we asked for a scavenge, it may not have
4144  // happened because of a JNI critical section. We probably need
4145  // a policy for deciding whether we can in that case wait until
4146  // the critical section releases and then do the remark following
4147  // the scavenge, and skip it here. In the absence of that policy,
4148  // or of an indication of whether the scavenge did indeed occur,
4149  // we cannot rely on TLAB's having been filled and must do
4150  // so here just in case a scavenge did not happen.
4151  gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4152  // Update the saved marks which may affect the root scans.
4153  gch->save_marks();
4154
4155  print_eden_and_survivor_chunk_arrays();
4156
4157  {
4158#if defined(COMPILER2) || INCLUDE_JVMCI
4159    DerivedPointerTableDeactivate dpt_deact;
4160#endif
4161
4162    // Note on the role of the mod union table:
4163    // Since the marker in "markFromRoots" marks concurrently with
4164    // mutators, it is possible for some reachable objects not to have been
4165    // scanned. For instance, an only reference to an object A was
4166    // placed in object B after the marker scanned B. Unless B is rescanned,
4167    // A would be collected. Such updates to references in marked objects
4168    // are detected via the mod union table which is the set of all cards
4169    // dirtied since the first checkpoint in this GC cycle and prior to
4170    // the most recent young generation GC, minus those cleaned up by the
4171    // concurrent precleaning.
4172    if (CMSParallelRemarkEnabled) {
4173      GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4174      do_remark_parallel();
4175    } else {
4176      GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4177      do_remark_non_parallel();
4178    }
4179  }
4180  verify_work_stacks_empty();
4181  verify_overflow_empty();
4182
4183  {
4184    GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4185    refProcessingWork();
4186  }
4187  verify_work_stacks_empty();
4188  verify_overflow_empty();
4189
4190  if (should_unload_classes()) {
4191    CodeCache::gc_epilogue();
4192  }
4193  JvmtiExport::gc_epilogue();
4194
4195  // If we encountered any (marking stack / work queue) overflow
4196  // events during the current CMS cycle, take appropriate
4197  // remedial measures, where possible, so as to try and avoid
4198  // recurrence of that condition.
4199  assert(_markStack.isEmpty(), "No grey objects");
4200  size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4201                     _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4202  if (ser_ovflw > 0) {
4203    log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4204                         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4205    _markStack.expand();
4206    _ser_pmc_remark_ovflw = 0;
4207    _ser_pmc_preclean_ovflw = 0;
4208    _ser_kac_preclean_ovflw = 0;
4209    _ser_kac_ovflw = 0;
4210  }
4211  if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4212     log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4213                          _par_pmc_remark_ovflw, _par_kac_ovflw);
4214     _par_pmc_remark_ovflw = 0;
4215    _par_kac_ovflw = 0;
4216  }
4217   if (_markStack._hit_limit > 0) {
4218     log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4219                          _markStack._hit_limit);
4220   }
4221   if (_markStack._failed_double > 0) {
4222     log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4223                          _markStack._failed_double, _markStack.capacity());
4224   }
4225  _markStack._hit_limit = 0;
4226  _markStack._failed_double = 0;
4227
4228  if ((VerifyAfterGC || VerifyDuringGC) &&
4229      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4230    verify_after_remark();
4231  }
4232
4233  _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4234
4235  // Change under the freelistLocks.
4236  _collectorState = Sweeping;
4237  // Call isAllClear() under bitMapLock
4238  assert(_modUnionTable.isAllClear(),
4239      "Should be clear by end of the final marking");
4240  assert(_ct->klass_rem_set()->mod_union_is_clear(),
4241      "Should be clear by end of the final marking");
4242}
4243
4244void CMSParInitialMarkTask::work(uint worker_id) {
4245  elapsedTimer _timer;
4246  ResourceMark rm;
4247  HandleMark   hm;
4248
4249  // ---------- scan from roots --------------
4250  _timer.start();
4251  GenCollectedHeap* gch = GenCollectedHeap::heap();
4252  ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4253
4254  // ---------- young gen roots --------------
4255  {
4256    work_on_young_gen_roots(worker_id, &par_mri_cl);
4257    _timer.stop();
4258    log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4259  }
4260
4261  // ---------- remaining roots --------------
4262  _timer.reset();
4263  _timer.start();
4264
4265  CLDToOopClosure cld_closure(&par_mri_cl, true);
4266
4267  gch->gen_process_roots(_strong_roots_scope,
4268                         GenCollectedHeap::OldGen,
4269                         false,     // yg was scanned above
4270                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4271                         _collector->should_unload_classes(),
4272                         &par_mri_cl,
4273                         NULL,
4274                         &cld_closure);
4275  assert(_collector->should_unload_classes()
4276         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4277         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4278  _timer.stop();
4279  log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4280}
4281
4282// Parallel remark task
4283class CMSParRemarkTask: public CMSParMarkTask {
4284  CompactibleFreeListSpace* _cms_space;
4285
4286  // The per-thread work queues, available here for stealing.
4287  OopTaskQueueSet*       _task_queues;
4288  ParallelTaskTerminator _term;
4289  StrongRootsScope*      _strong_roots_scope;
4290
4291 public:
4292  // A value of 0 passed to n_workers will cause the number of
4293  // workers to be taken from the active workers in the work gang.
4294  CMSParRemarkTask(CMSCollector* collector,
4295                   CompactibleFreeListSpace* cms_space,
4296                   uint n_workers, WorkGang* workers,
4297                   OopTaskQueueSet* task_queues,
4298                   StrongRootsScope* strong_roots_scope):
4299    CMSParMarkTask("Rescan roots and grey objects in parallel",
4300                   collector, n_workers),
4301    _cms_space(cms_space),
4302    _task_queues(task_queues),
4303    _term(n_workers, task_queues),
4304    _strong_roots_scope(strong_roots_scope) { }
4305
4306  OopTaskQueueSet* task_queues() { return _task_queues; }
4307
4308  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4309
4310  ParallelTaskTerminator* terminator() { return &_term; }
4311  uint n_workers() { return _n_workers; }
4312
4313  void work(uint worker_id);
4314
4315 private:
4316  // ... of  dirty cards in old space
4317  void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4318                                  ParMarkRefsIntoAndScanClosure* cl);
4319
4320  // ... work stealing for the above
4321  void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4322};
4323
4324class RemarkKlassClosure : public KlassClosure {
4325  KlassToOopClosure _cm_klass_closure;
4326 public:
4327  RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4328  void do_klass(Klass* k) {
4329    // Check if we have modified any oops in the Klass during the concurrent marking.
4330    if (k->has_accumulated_modified_oops()) {
4331      k->clear_accumulated_modified_oops();
4332
4333      // We could have transfered the current modified marks to the accumulated marks,
4334      // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4335    } else if (k->has_modified_oops()) {
4336      // Don't clear anything, this info is needed by the next young collection.
4337    } else {
4338      // No modified oops in the Klass.
4339      return;
4340    }
4341
4342    // The klass has modified fields, need to scan the klass.
4343    _cm_klass_closure.do_klass(k);
4344  }
4345};
4346
4347void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4348  ParNewGeneration* young_gen = _collector->_young_gen;
4349  ContiguousSpace* eden_space = young_gen->eden();
4350  ContiguousSpace* from_space = young_gen->from();
4351  ContiguousSpace* to_space   = young_gen->to();
4352
4353  HeapWord** eca = _collector->_eden_chunk_array;
4354  size_t     ect = _collector->_eden_chunk_index;
4355  HeapWord** sca = _collector->_survivor_chunk_array;
4356  size_t     sct = _collector->_survivor_chunk_index;
4357
4358  assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4359  assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4360
4361  do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4362  do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4363  do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4364}
4365
4366// work_queue(i) is passed to the closure
4367// ParMarkRefsIntoAndScanClosure.  The "i" parameter
4368// also is passed to do_dirty_card_rescan_tasks() and to
4369// do_work_steal() to select the i-th task_queue.
4370
4371void CMSParRemarkTask::work(uint worker_id) {
4372  elapsedTimer _timer;
4373  ResourceMark rm;
4374  HandleMark   hm;
4375
4376  // ---------- rescan from roots --------------
4377  _timer.start();
4378  GenCollectedHeap* gch = GenCollectedHeap::heap();
4379  ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4380    _collector->_span, _collector->ref_processor(),
4381    &(_collector->_markBitMap),
4382    work_queue(worker_id));
4383
4384  // Rescan young gen roots first since these are likely
4385  // coarsely partitioned and may, on that account, constitute
4386  // the critical path; thus, it's best to start off that
4387  // work first.
4388  // ---------- young gen roots --------------
4389  {
4390    work_on_young_gen_roots(worker_id, &par_mrias_cl);
4391    _timer.stop();
4392    log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4393  }
4394
4395  // ---------- remaining roots --------------
4396  _timer.reset();
4397  _timer.start();
4398  gch->gen_process_roots(_strong_roots_scope,
4399                         GenCollectedHeap::OldGen,
4400                         false,     // yg was scanned above
4401                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4402                         _collector->should_unload_classes(),
4403                         &par_mrias_cl,
4404                         NULL,
4405                         NULL);     // The dirty klasses will be handled below
4406
4407  assert(_collector->should_unload_classes()
4408         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4409         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4410  _timer.stop();
4411  log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4412
4413  // ---------- unhandled CLD scanning ----------
4414  if (worker_id == 0) { // Single threaded at the moment.
4415    _timer.reset();
4416    _timer.start();
4417
4418    // Scan all new class loader data objects and new dependencies that were
4419    // introduced during concurrent marking.
4420    ResourceMark rm;
4421    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4422    for (int i = 0; i < array->length(); i++) {
4423      par_mrias_cl.do_cld_nv(array->at(i));
4424    }
4425
4426    // We don't need to keep track of new CLDs anymore.
4427    ClassLoaderDataGraph::remember_new_clds(false);
4428
4429    _timer.stop();
4430    log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4431  }
4432
4433  // ---------- dirty klass scanning ----------
4434  if (worker_id == 0) { // Single threaded at the moment.
4435    _timer.reset();
4436    _timer.start();
4437
4438    // Scan all classes that was dirtied during the concurrent marking phase.
4439    RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4440    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4441
4442    _timer.stop();
4443    log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4444  }
4445
4446  // We might have added oops to ClassLoaderData::_handles during the
4447  // concurrent marking phase. These oops point to newly allocated objects
4448  // that are guaranteed to be kept alive. Either by the direct allocation
4449  // code, or when the young collector processes the roots. Hence,
4450  // we don't have to revisit the _handles block during the remark phase.
4451
4452  // ---------- rescan dirty cards ------------
4453  _timer.reset();
4454  _timer.start();
4455
4456  // Do the rescan tasks for each of the two spaces
4457  // (cms_space) in turn.
4458  // "worker_id" is passed to select the task_queue for "worker_id"
4459  do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4460  _timer.stop();
4461  log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4462
4463  // ---------- steal work from other threads ...
4464  // ---------- ... and drain overflow list.
4465  _timer.reset();
4466  _timer.start();
4467  do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4468  _timer.stop();
4469  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4470}
4471
4472// Note that parameter "i" is not used.
4473void
4474CMSParMarkTask::do_young_space_rescan(uint worker_id,
4475  OopsInGenClosure* cl, ContiguousSpace* space,
4476  HeapWord** chunk_array, size_t chunk_top) {
4477  // Until all tasks completed:
4478  // . claim an unclaimed task
4479  // . compute region boundaries corresponding to task claimed
4480  //   using chunk_array
4481  // . par_oop_iterate(cl) over that region
4482
4483  ResourceMark rm;
4484  HandleMark   hm;
4485
4486  SequentialSubTasksDone* pst = space->par_seq_tasks();
4487
4488  uint nth_task = 0;
4489  uint n_tasks  = pst->n_tasks();
4490
4491  if (n_tasks > 0) {
4492    assert(pst->valid(), "Uninitialized use?");
4493    HeapWord *start, *end;
4494    while (!pst->is_task_claimed(/* reference */ nth_task)) {
4495      // We claimed task # nth_task; compute its boundaries.
4496      if (chunk_top == 0) {  // no samples were taken
4497        assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4498        start = space->bottom();
4499        end   = space->top();
4500      } else if (nth_task == 0) {
4501        start = space->bottom();
4502        end   = chunk_array[nth_task];
4503      } else if (nth_task < (uint)chunk_top) {
4504        assert(nth_task >= 1, "Control point invariant");
4505        start = chunk_array[nth_task - 1];
4506        end   = chunk_array[nth_task];
4507      } else {
4508        assert(nth_task == (uint)chunk_top, "Control point invariant");
4509        start = chunk_array[chunk_top - 1];
4510        end   = space->top();
4511      }
4512      MemRegion mr(start, end);
4513      // Verify that mr is in space
4514      assert(mr.is_empty() || space->used_region().contains(mr),
4515             "Should be in space");
4516      // Verify that "start" is an object boundary
4517      assert(mr.is_empty() || oop(mr.start())->is_oop(),
4518             "Should be an oop");
4519      space->par_oop_iterate(mr, cl);
4520    }
4521    pst->all_tasks_completed();
4522  }
4523}
4524
4525void
4526CMSParRemarkTask::do_dirty_card_rescan_tasks(
4527  CompactibleFreeListSpace* sp, int i,
4528  ParMarkRefsIntoAndScanClosure* cl) {
4529  // Until all tasks completed:
4530  // . claim an unclaimed task
4531  // . compute region boundaries corresponding to task claimed
4532  // . transfer dirty bits ct->mut for that region
4533  // . apply rescanclosure to dirty mut bits for that region
4534
4535  ResourceMark rm;
4536  HandleMark   hm;
4537
4538  OopTaskQueue* work_q = work_queue(i);
4539  ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4540  // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4541  // CAUTION: This closure has state that persists across calls to
4542  // the work method dirty_range_iterate_clear() in that it has
4543  // embedded in it a (subtype of) UpwardsObjectClosure. The
4544  // use of that state in the embedded UpwardsObjectClosure instance
4545  // assumes that the cards are always iterated (even if in parallel
4546  // by several threads) in monotonically increasing order per each
4547  // thread. This is true of the implementation below which picks
4548  // card ranges (chunks) in monotonically increasing order globally
4549  // and, a-fortiori, in monotonically increasing order per thread
4550  // (the latter order being a subsequence of the former).
4551  // If the work code below is ever reorganized into a more chaotic
4552  // work-partitioning form than the current "sequential tasks"
4553  // paradigm, the use of that persistent state will have to be
4554  // revisited and modified appropriately. See also related
4555  // bug 4756801 work on which should examine this code to make
4556  // sure that the changes there do not run counter to the
4557  // assumptions made here and necessary for correctness and
4558  // efficiency. Note also that this code might yield inefficient
4559  // behavior in the case of very large objects that span one or
4560  // more work chunks. Such objects would potentially be scanned
4561  // several times redundantly. Work on 4756801 should try and
4562  // address that performance anomaly if at all possible. XXX
4563  MemRegion  full_span  = _collector->_span;
4564  CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4565  MarkFromDirtyCardsClosure
4566    greyRescanClosure(_collector, full_span, // entire span of interest
4567                      sp, bm, work_q, cl);
4568
4569  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4570  assert(pst->valid(), "Uninitialized use?");
4571  uint nth_task = 0;
4572  const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4573  MemRegion span = sp->used_region();
4574  HeapWord* start_addr = span.start();
4575  HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4576                                           alignment);
4577  const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4578  assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4579         start_addr, "Check alignment");
4580  assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4581         chunk_size, "Check alignment");
4582
4583  while (!pst->is_task_claimed(/* reference */ nth_task)) {
4584    // Having claimed the nth_task, compute corresponding mem-region,
4585    // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4586    // The alignment restriction ensures that we do not need any
4587    // synchronization with other gang-workers while setting or
4588    // clearing bits in thus chunk of the MUT.
4589    MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4590                                    start_addr + (nth_task+1)*chunk_size);
4591    // The last chunk's end might be way beyond end of the
4592    // used region. In that case pull back appropriately.
4593    if (this_span.end() > end_addr) {
4594      this_span.set_end(end_addr);
4595      assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4596    }
4597    // Iterate over the dirty cards covering this chunk, marking them
4598    // precleaned, and setting the corresponding bits in the mod union
4599    // table. Since we have been careful to partition at Card and MUT-word
4600    // boundaries no synchronization is needed between parallel threads.
4601    _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4602                                                 &modUnionClosure);
4603
4604    // Having transferred these marks into the modUnionTable,
4605    // rescan the marked objects on the dirty cards in the modUnionTable.
4606    // Even if this is at a synchronous collection, the initial marking
4607    // may have been done during an asynchronous collection so there
4608    // may be dirty bits in the mod-union table.
4609    _collector->_modUnionTable.dirty_range_iterate_clear(
4610                  this_span, &greyRescanClosure);
4611    _collector->_modUnionTable.verifyNoOneBitsInRange(
4612                                 this_span.start(),
4613                                 this_span.end());
4614  }
4615  pst->all_tasks_completed();  // declare that i am done
4616}
4617
4618// . see if we can share work_queues with ParNew? XXX
4619void
4620CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4621                                int* seed) {
4622  OopTaskQueue* work_q = work_queue(i);
4623  NOT_PRODUCT(int num_steals = 0;)
4624  oop obj_to_scan;
4625  CMSBitMap* bm = &(_collector->_markBitMap);
4626
4627  while (true) {
4628    // Completely finish any left over work from (an) earlier round(s)
4629    cl->trim_queue(0);
4630    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4631                                         (size_t)ParGCDesiredObjsFromOverflowList);
4632    // Now check if there's any work in the overflow list
4633    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4634    // only affects the number of attempts made to get work from the
4635    // overflow list and does not affect the number of workers.  Just
4636    // pass ParallelGCThreads so this behavior is unchanged.
4637    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4638                                                work_q,
4639                                                ParallelGCThreads)) {
4640      // found something in global overflow list;
4641      // not yet ready to go stealing work from others.
4642      // We'd like to assert(work_q->size() != 0, ...)
4643      // because we just took work from the overflow list,
4644      // but of course we can't since all of that could have
4645      // been already stolen from us.
4646      // "He giveth and He taketh away."
4647      continue;
4648    }
4649    // Verify that we have no work before we resort to stealing
4650    assert(work_q->size() == 0, "Have work, shouldn't steal");
4651    // Try to steal from other queues that have work
4652    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4653      NOT_PRODUCT(num_steals++;)
4654      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4655      assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4656      // Do scanning work
4657      obj_to_scan->oop_iterate(cl);
4658      // Loop around, finish this work, and try to steal some more
4659    } else if (terminator()->offer_termination()) {
4660        break;  // nirvana from the infinite cycle
4661    }
4662  }
4663  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4664  assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4665         "Else our work is not yet done");
4666}
4667
4668// Record object boundaries in _eden_chunk_array by sampling the eden
4669// top in the slow-path eden object allocation code path and record
4670// the boundaries, if CMSEdenChunksRecordAlways is true. If
4671// CMSEdenChunksRecordAlways is false, we use the other asynchronous
4672// sampling in sample_eden() that activates during the part of the
4673// preclean phase.
4674void CMSCollector::sample_eden_chunk() {
4675  if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4676    if (_eden_chunk_lock->try_lock()) {
4677      // Record a sample. This is the critical section. The contents
4678      // of the _eden_chunk_array have to be non-decreasing in the
4679      // address order.
4680      _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4681      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4682             "Unexpected state of Eden");
4683      if (_eden_chunk_index == 0 ||
4684          ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4685           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4686                          _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4687        _eden_chunk_index++;  // commit sample
4688      }
4689      _eden_chunk_lock->unlock();
4690    }
4691  }
4692}
4693
4694// Return a thread-local PLAB recording array, as appropriate.
4695void* CMSCollector::get_data_recorder(int thr_num) {
4696  if (_survivor_plab_array != NULL &&
4697      (CMSPLABRecordAlways ||
4698       (_collectorState > Marking && _collectorState < FinalMarking))) {
4699    assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4700    ChunkArray* ca = &_survivor_plab_array[thr_num];
4701    ca->reset();   // clear it so that fresh data is recorded
4702    return (void*) ca;
4703  } else {
4704    return NULL;
4705  }
4706}
4707
4708// Reset all the thread-local PLAB recording arrays
4709void CMSCollector::reset_survivor_plab_arrays() {
4710  for (uint i = 0; i < ParallelGCThreads; i++) {
4711    _survivor_plab_array[i].reset();
4712  }
4713}
4714
4715// Merge the per-thread plab arrays into the global survivor chunk
4716// array which will provide the partitioning of the survivor space
4717// for CMS initial scan and rescan.
4718void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4719                                              int no_of_gc_threads) {
4720  assert(_survivor_plab_array  != NULL, "Error");
4721  assert(_survivor_chunk_array != NULL, "Error");
4722  assert(_collectorState == FinalMarking ||
4723         (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4724  for (int j = 0; j < no_of_gc_threads; j++) {
4725    _cursor[j] = 0;
4726  }
4727  HeapWord* top = surv->top();
4728  size_t i;
4729  for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4730    HeapWord* min_val = top;          // Higher than any PLAB address
4731    uint      min_tid = 0;            // position of min_val this round
4732    for (int j = 0; j < no_of_gc_threads; j++) {
4733      ChunkArray* cur_sca = &_survivor_plab_array[j];
4734      if (_cursor[j] == cur_sca->end()) {
4735        continue;
4736      }
4737      assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4738      HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4739      assert(surv->used_region().contains(cur_val), "Out of bounds value");
4740      if (cur_val < min_val) {
4741        min_tid = j;
4742        min_val = cur_val;
4743      } else {
4744        assert(cur_val < top, "All recorded addresses should be less");
4745      }
4746    }
4747    // At this point min_val and min_tid are respectively
4748    // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4749    // and the thread (j) that witnesses that address.
4750    // We record this address in the _survivor_chunk_array[i]
4751    // and increment _cursor[min_tid] prior to the next round i.
4752    if (min_val == top) {
4753      break;
4754    }
4755    _survivor_chunk_array[i] = min_val;
4756    _cursor[min_tid]++;
4757  }
4758  // We are all done; record the size of the _survivor_chunk_array
4759  _survivor_chunk_index = i; // exclusive: [0, i)
4760  log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4761  // Verify that we used up all the recorded entries
4762  #ifdef ASSERT
4763    size_t total = 0;
4764    for (int j = 0; j < no_of_gc_threads; j++) {
4765      assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4766      total += _cursor[j];
4767    }
4768    assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4769    // Check that the merged array is in sorted order
4770    if (total > 0) {
4771      for (size_t i = 0; i < total - 1; i++) {
4772        log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4773                                     i, p2i(_survivor_chunk_array[i]));
4774        assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4775               "Not sorted");
4776      }
4777    }
4778  #endif // ASSERT
4779}
4780
4781// Set up the space's par_seq_tasks structure for work claiming
4782// for parallel initial scan and rescan of young gen.
4783// See ParRescanTask where this is currently used.
4784void
4785CMSCollector::
4786initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4787  assert(n_threads > 0, "Unexpected n_threads argument");
4788
4789  // Eden space
4790  if (!_young_gen->eden()->is_empty()) {
4791    SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4792    assert(!pst->valid(), "Clobbering existing data?");
4793    // Each valid entry in [0, _eden_chunk_index) represents a task.
4794    size_t n_tasks = _eden_chunk_index + 1;
4795    assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4796    // Sets the condition for completion of the subtask (how many threads
4797    // need to finish in order to be done).
4798    pst->set_n_threads(n_threads);
4799    pst->set_n_tasks((int)n_tasks);
4800  }
4801
4802  // Merge the survivor plab arrays into _survivor_chunk_array
4803  if (_survivor_plab_array != NULL) {
4804    merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4805  } else {
4806    assert(_survivor_chunk_index == 0, "Error");
4807  }
4808
4809  // To space
4810  {
4811    SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4812    assert(!pst->valid(), "Clobbering existing data?");
4813    // Sets the condition for completion of the subtask (how many threads
4814    // need to finish in order to be done).
4815    pst->set_n_threads(n_threads);
4816    pst->set_n_tasks(1);
4817    assert(pst->valid(), "Error");
4818  }
4819
4820  // From space
4821  {
4822    SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4823    assert(!pst->valid(), "Clobbering existing data?");
4824    size_t n_tasks = _survivor_chunk_index + 1;
4825    assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4826    // Sets the condition for completion of the subtask (how many threads
4827    // need to finish in order to be done).
4828    pst->set_n_threads(n_threads);
4829    pst->set_n_tasks((int)n_tasks);
4830    assert(pst->valid(), "Error");
4831  }
4832}
4833
4834// Parallel version of remark
4835void CMSCollector::do_remark_parallel() {
4836  GenCollectedHeap* gch = GenCollectedHeap::heap();
4837  WorkGang* workers = gch->workers();
4838  assert(workers != NULL, "Need parallel worker threads.");
4839  // Choose to use the number of GC workers most recently set
4840  // into "active_workers".
4841  uint n_workers = workers->active_workers();
4842
4843  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4844
4845  StrongRootsScope srs(n_workers);
4846
4847  CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4848
4849  // We won't be iterating over the cards in the card table updating
4850  // the younger_gen cards, so we shouldn't call the following else
4851  // the verification code as well as subsequent younger_refs_iterate
4852  // code would get confused. XXX
4853  // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4854
4855  // The young gen rescan work will not be done as part of
4856  // process_roots (which currently doesn't know how to
4857  // parallelize such a scan), but rather will be broken up into
4858  // a set of parallel tasks (via the sampling that the [abortable]
4859  // preclean phase did of eden, plus the [two] tasks of
4860  // scanning the [two] survivor spaces. Further fine-grain
4861  // parallelization of the scanning of the survivor spaces
4862  // themselves, and of precleaning of the young gen itself
4863  // is deferred to the future.
4864  initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4865
4866  // The dirty card rescan work is broken up into a "sequence"
4867  // of parallel tasks (per constituent space) that are dynamically
4868  // claimed by the parallel threads.
4869  cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4870
4871  // It turns out that even when we're using 1 thread, doing the work in a
4872  // separate thread causes wide variance in run times.  We can't help this
4873  // in the multi-threaded case, but we special-case n=1 here to get
4874  // repeatable measurements of the 1-thread overhead of the parallel code.
4875  if (n_workers > 1) {
4876    // Make refs discovery MT-safe, if it isn't already: it may not
4877    // necessarily be so, since it's possible that we are doing
4878    // ST marking.
4879    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4880    workers->run_task(&tsk);
4881  } else {
4882    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4883    tsk.work(0);
4884  }
4885
4886  // restore, single-threaded for now, any preserved marks
4887  // as a result of work_q overflow
4888  restore_preserved_marks_if_any();
4889}
4890
4891// Non-parallel version of remark
4892void CMSCollector::do_remark_non_parallel() {
4893  ResourceMark rm;
4894  HandleMark   hm;
4895  GenCollectedHeap* gch = GenCollectedHeap::heap();
4896  ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4897
4898  MarkRefsIntoAndScanClosure
4899    mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4900             &_markStack, this,
4901             false /* should_yield */, false /* not precleaning */);
4902  MarkFromDirtyCardsClosure
4903    markFromDirtyCardsClosure(this, _span,
4904                              NULL,  // space is set further below
4905                              &_markBitMap, &_markStack, &mrias_cl);
4906  {
4907    GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4908    // Iterate over the dirty cards, setting the corresponding bits in the
4909    // mod union table.
4910    {
4911      ModUnionClosure modUnionClosure(&_modUnionTable);
4912      _ct->ct_bs()->dirty_card_iterate(
4913                      _cmsGen->used_region(),
4914                      &modUnionClosure);
4915    }
4916    // Having transferred these marks into the modUnionTable, we just need
4917    // to rescan the marked objects on the dirty cards in the modUnionTable.
4918    // The initial marking may have been done during an asynchronous
4919    // collection so there may be dirty bits in the mod-union table.
4920    const int alignment =
4921      CardTableModRefBS::card_size * BitsPerWord;
4922    {
4923      // ... First handle dirty cards in CMS gen
4924      markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4925      MemRegion ur = _cmsGen->used_region();
4926      HeapWord* lb = ur.start();
4927      HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4928      MemRegion cms_span(lb, ub);
4929      _modUnionTable.dirty_range_iterate_clear(cms_span,
4930                                               &markFromDirtyCardsClosure);
4931      verify_work_stacks_empty();
4932      log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4933    }
4934  }
4935  if (VerifyDuringGC &&
4936      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4937    HandleMark hm;  // Discard invalid handles created during verification
4938    Universe::verify();
4939  }
4940  {
4941    GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4942
4943    verify_work_stacks_empty();
4944
4945    gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4946    StrongRootsScope srs(1);
4947
4948    gch->gen_process_roots(&srs,
4949                           GenCollectedHeap::OldGen,
4950                           true,  // young gen as roots
4951                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
4952                           should_unload_classes(),
4953                           &mrias_cl,
4954                           NULL,
4955                           NULL); // The dirty klasses will be handled below
4956
4957    assert(should_unload_classes()
4958           || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4959           "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4960  }
4961
4962  {
4963    GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4964
4965    verify_work_stacks_empty();
4966
4967    // Scan all class loader data objects that might have been introduced
4968    // during concurrent marking.
4969    ResourceMark rm;
4970    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4971    for (int i = 0; i < array->length(); i++) {
4972      mrias_cl.do_cld_nv(array->at(i));
4973    }
4974
4975    // We don't need to keep track of new CLDs anymore.
4976    ClassLoaderDataGraph::remember_new_clds(false);
4977
4978    verify_work_stacks_empty();
4979  }
4980
4981  {
4982    GCTraceTime(Trace, gc, phases) t("Dirty Klass Scan", _gc_timer_cm);
4983
4984    verify_work_stacks_empty();
4985
4986    RemarkKlassClosure remark_klass_closure(&mrias_cl);
4987    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4988
4989    verify_work_stacks_empty();
4990  }
4991
4992  // We might have added oops to ClassLoaderData::_handles during the
4993  // concurrent marking phase. These oops point to newly allocated objects
4994  // that are guaranteed to be kept alive. Either by the direct allocation
4995  // code, or when the young collector processes the roots. Hence,
4996  // we don't have to revisit the _handles block during the remark phase.
4997
4998  verify_work_stacks_empty();
4999  // Restore evacuated mark words, if any, used for overflow list links
5000  restore_preserved_marks_if_any();
5001
5002  verify_overflow_empty();
5003}
5004
5005////////////////////////////////////////////////////////
5006// Parallel Reference Processing Task Proxy Class
5007////////////////////////////////////////////////////////
5008class AbstractGangTaskWOopQueues : public AbstractGangTask {
5009  OopTaskQueueSet*       _queues;
5010  ParallelTaskTerminator _terminator;
5011 public:
5012  AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5013    AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5014  ParallelTaskTerminator* terminator() { return &_terminator; }
5015  OopTaskQueueSet* queues() { return _queues; }
5016};
5017
5018class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5019  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5020  CMSCollector*          _collector;
5021  CMSBitMap*             _mark_bit_map;
5022  const MemRegion        _span;
5023  ProcessTask&           _task;
5024
5025public:
5026  CMSRefProcTaskProxy(ProcessTask&     task,
5027                      CMSCollector*    collector,
5028                      const MemRegion& span,
5029                      CMSBitMap*       mark_bit_map,
5030                      AbstractWorkGang* workers,
5031                      OopTaskQueueSet* task_queues):
5032    AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5033      task_queues,
5034      workers->active_workers()),
5035    _task(task),
5036    _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5037  {
5038    assert(_collector->_span.equals(_span) && !_span.is_empty(),
5039           "Inconsistency in _span");
5040  }
5041
5042  OopTaskQueueSet* task_queues() { return queues(); }
5043
5044  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5045
5046  void do_work_steal(int i,
5047                     CMSParDrainMarkingStackClosure* drain,
5048                     CMSParKeepAliveClosure* keep_alive,
5049                     int* seed);
5050
5051  virtual void work(uint worker_id);
5052};
5053
5054void CMSRefProcTaskProxy::work(uint worker_id) {
5055  ResourceMark rm;
5056  HandleMark hm;
5057  assert(_collector->_span.equals(_span), "Inconsistency in _span");
5058  CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5059                                        _mark_bit_map,
5060                                        work_queue(worker_id));
5061  CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5062                                                 _mark_bit_map,
5063                                                 work_queue(worker_id));
5064  CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5065  _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5066  if (_task.marks_oops_alive()) {
5067    do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5068                  _collector->hash_seed(worker_id));
5069  }
5070  assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5071  assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5072}
5073
5074class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5075  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5076  EnqueueTask& _task;
5077
5078public:
5079  CMSRefEnqueueTaskProxy(EnqueueTask& task)
5080    : AbstractGangTask("Enqueue reference objects in parallel"),
5081      _task(task)
5082  { }
5083
5084  virtual void work(uint worker_id)
5085  {
5086    _task.work(worker_id);
5087  }
5088};
5089
5090CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5091  MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5092   _span(span),
5093   _bit_map(bit_map),
5094   _work_queue(work_queue),
5095   _mark_and_push(collector, span, bit_map, work_queue),
5096   _low_water_mark(MIN2((work_queue->max_elems()/4),
5097                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5098{ }
5099
5100// . see if we can share work_queues with ParNew? XXX
5101void CMSRefProcTaskProxy::do_work_steal(int i,
5102  CMSParDrainMarkingStackClosure* drain,
5103  CMSParKeepAliveClosure* keep_alive,
5104  int* seed) {
5105  OopTaskQueue* work_q = work_queue(i);
5106  NOT_PRODUCT(int num_steals = 0;)
5107  oop obj_to_scan;
5108
5109  while (true) {
5110    // Completely finish any left over work from (an) earlier round(s)
5111    drain->trim_queue(0);
5112    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5113                                         (size_t)ParGCDesiredObjsFromOverflowList);
5114    // Now check if there's any work in the overflow list
5115    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5116    // only affects the number of attempts made to get work from the
5117    // overflow list and does not affect the number of workers.  Just
5118    // pass ParallelGCThreads so this behavior is unchanged.
5119    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5120                                                work_q,
5121                                                ParallelGCThreads)) {
5122      // Found something in global overflow list;
5123      // not yet ready to go stealing work from others.
5124      // We'd like to assert(work_q->size() != 0, ...)
5125      // because we just took work from the overflow list,
5126      // but of course we can't, since all of that might have
5127      // been already stolen from us.
5128      continue;
5129    }
5130    // Verify that we have no work before we resort to stealing
5131    assert(work_q->size() == 0, "Have work, shouldn't steal");
5132    // Try to steal from other queues that have work
5133    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5134      NOT_PRODUCT(num_steals++;)
5135      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5136      assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5137      // Do scanning work
5138      obj_to_scan->oop_iterate(keep_alive);
5139      // Loop around, finish this work, and try to steal some more
5140    } else if (terminator()->offer_termination()) {
5141      break;  // nirvana from the infinite cycle
5142    }
5143  }
5144  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5145}
5146
5147void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5148{
5149  GenCollectedHeap* gch = GenCollectedHeap::heap();
5150  WorkGang* workers = gch->workers();
5151  assert(workers != NULL, "Need parallel worker threads.");
5152  CMSRefProcTaskProxy rp_task(task, &_collector,
5153                              _collector.ref_processor()->span(),
5154                              _collector.markBitMap(),
5155                              workers, _collector.task_queues());
5156  workers->run_task(&rp_task);
5157}
5158
5159void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5160{
5161
5162  GenCollectedHeap* gch = GenCollectedHeap::heap();
5163  WorkGang* workers = gch->workers();
5164  assert(workers != NULL, "Need parallel worker threads.");
5165  CMSRefEnqueueTaskProxy enq_task(task);
5166  workers->run_task(&enq_task);
5167}
5168
5169void CMSCollector::refProcessingWork() {
5170  ResourceMark rm;
5171  HandleMark   hm;
5172
5173  ReferenceProcessor* rp = ref_processor();
5174  assert(rp->span().equals(_span), "Spans should be equal");
5175  assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5176  // Process weak references.
5177  rp->setup_policy(false);
5178  verify_work_stacks_empty();
5179
5180  CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5181                                          &_markStack, false /* !preclean */);
5182  CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5183                                _span, &_markBitMap, &_markStack,
5184                                &cmsKeepAliveClosure, false /* !preclean */);
5185  {
5186    GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5187
5188    ReferenceProcessorStats stats;
5189    if (rp->processing_is_mt()) {
5190      // Set the degree of MT here.  If the discovery is done MT, there
5191      // may have been a different number of threads doing the discovery
5192      // and a different number of discovered lists may have Ref objects.
5193      // That is OK as long as the Reference lists are balanced (see
5194      // balance_all_queues() and balance_queues()).
5195      GenCollectedHeap* gch = GenCollectedHeap::heap();
5196      uint active_workers = ParallelGCThreads;
5197      WorkGang* workers = gch->workers();
5198      if (workers != NULL) {
5199        active_workers = workers->active_workers();
5200        // The expectation is that active_workers will have already
5201        // been set to a reasonable value.  If it has not been set,
5202        // investigate.
5203        assert(active_workers > 0, "Should have been set during scavenge");
5204      }
5205      rp->set_active_mt_degree(active_workers);
5206      CMSRefProcTaskExecutor task_executor(*this);
5207      stats = rp->process_discovered_references(&_is_alive_closure,
5208                                        &cmsKeepAliveClosure,
5209                                        &cmsDrainMarkingStackClosure,
5210                                        &task_executor,
5211                                        _gc_timer_cm);
5212    } else {
5213      stats = rp->process_discovered_references(&_is_alive_closure,
5214                                        &cmsKeepAliveClosure,
5215                                        &cmsDrainMarkingStackClosure,
5216                                        NULL,
5217                                        _gc_timer_cm);
5218    }
5219    _gc_tracer_cm->report_gc_reference_stats(stats);
5220
5221  }
5222
5223  // This is the point where the entire marking should have completed.
5224  verify_work_stacks_empty();
5225
5226  if (should_unload_classes()) {
5227    {
5228      GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5229
5230      // Unload classes and purge the SystemDictionary.
5231      bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5232
5233      // Unload nmethods.
5234      CodeCache::do_unloading(&_is_alive_closure, purged_class);
5235
5236      // Prune dead klasses from subklass/sibling/implementor lists.
5237      Klass::clean_weak_klass_links(&_is_alive_closure);
5238    }
5239
5240    {
5241      GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5242      // Clean up unreferenced symbols in symbol table.
5243      SymbolTable::unlink();
5244    }
5245
5246    {
5247      GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5248      // Delete entries for dead interned strings.
5249      StringTable::unlink(&_is_alive_closure);
5250    }
5251  }
5252
5253
5254  // Restore any preserved marks as a result of mark stack or
5255  // work queue overflow
5256  restore_preserved_marks_if_any();  // done single-threaded for now
5257
5258  rp->set_enqueuing_is_done(true);
5259  if (rp->processing_is_mt()) {
5260    rp->balance_all_queues();
5261    CMSRefProcTaskExecutor task_executor(*this);
5262    rp->enqueue_discovered_references(&task_executor);
5263  } else {
5264    rp->enqueue_discovered_references(NULL);
5265  }
5266  rp->verify_no_references_recorded();
5267  assert(!rp->discovery_enabled(), "should have been disabled");
5268}
5269
5270#ifndef PRODUCT
5271void CMSCollector::check_correct_thread_executing() {
5272  Thread* t = Thread::current();
5273  // Only the VM thread or the CMS thread should be here.
5274  assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5275         "Unexpected thread type");
5276  // If this is the vm thread, the foreground process
5277  // should not be waiting.  Note that _foregroundGCIsActive is
5278  // true while the foreground collector is waiting.
5279  if (_foregroundGCShouldWait) {
5280    // We cannot be the VM thread
5281    assert(t->is_ConcurrentGC_thread(),
5282           "Should be CMS thread");
5283  } else {
5284    // We can be the CMS thread only if we are in a stop-world
5285    // phase of CMS collection.
5286    if (t->is_ConcurrentGC_thread()) {
5287      assert(_collectorState == InitialMarking ||
5288             _collectorState == FinalMarking,
5289             "Should be a stop-world phase");
5290      // The CMS thread should be holding the CMS_token.
5291      assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5292             "Potential interference with concurrently "
5293             "executing VM thread");
5294    }
5295  }
5296}
5297#endif
5298
5299void CMSCollector::sweep() {
5300  assert(_collectorState == Sweeping, "just checking");
5301  check_correct_thread_executing();
5302  verify_work_stacks_empty();
5303  verify_overflow_empty();
5304  increment_sweep_count();
5305  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5306
5307  _inter_sweep_timer.stop();
5308  _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5309
5310  assert(!_intra_sweep_timer.is_active(), "Should not be active");
5311  _intra_sweep_timer.reset();
5312  _intra_sweep_timer.start();
5313  {
5314    GCTraceCPUTime tcpu;
5315    CMSPhaseAccounting pa(this, "Concurrent Sweep");
5316    // First sweep the old gen
5317    {
5318      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5319                               bitMapLock());
5320      sweepWork(_cmsGen);
5321    }
5322
5323    // Update Universe::_heap_*_at_gc figures.
5324    // We need all the free list locks to make the abstract state
5325    // transition from Sweeping to Resetting. See detailed note
5326    // further below.
5327    {
5328      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5329      // Update heap occupancy information which is used as
5330      // input to soft ref clearing policy at the next gc.
5331      Universe::update_heap_info_at_gc();
5332      _collectorState = Resizing;
5333    }
5334  }
5335  verify_work_stacks_empty();
5336  verify_overflow_empty();
5337
5338  if (should_unload_classes()) {
5339    // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5340    // requires that the virtual spaces are stable and not deleted.
5341    ClassLoaderDataGraph::set_should_purge(true);
5342  }
5343
5344  _intra_sweep_timer.stop();
5345  _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5346
5347  _inter_sweep_timer.reset();
5348  _inter_sweep_timer.start();
5349
5350  // We need to use a monotonically non-decreasing time in ms
5351  // or we will see time-warp warnings and os::javaTimeMillis()
5352  // does not guarantee monotonicity.
5353  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5354  update_time_of_last_gc(now);
5355
5356  // NOTE on abstract state transitions:
5357  // Mutators allocate-live and/or mark the mod-union table dirty
5358  // based on the state of the collection.  The former is done in
5359  // the interval [Marking, Sweeping] and the latter in the interval
5360  // [Marking, Sweeping).  Thus the transitions into the Marking state
5361  // and out of the Sweeping state must be synchronously visible
5362  // globally to the mutators.
5363  // The transition into the Marking state happens with the world
5364  // stopped so the mutators will globally see it.  Sweeping is
5365  // done asynchronously by the background collector so the transition
5366  // from the Sweeping state to the Resizing state must be done
5367  // under the freelistLock (as is the check for whether to
5368  // allocate-live and whether to dirty the mod-union table).
5369  assert(_collectorState == Resizing, "Change of collector state to"
5370    " Resizing must be done under the freelistLocks (plural)");
5371
5372  // Now that sweeping has been completed, we clear
5373  // the incremental_collection_failed flag,
5374  // thus inviting a younger gen collection to promote into
5375  // this generation. If such a promotion may still fail,
5376  // the flag will be set again when a young collection is
5377  // attempted.
5378  GenCollectedHeap* gch = GenCollectedHeap::heap();
5379  gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5380  gch->update_full_collections_completed(_collection_count_start);
5381}
5382
5383// FIX ME!!! Looks like this belongs in CFLSpace, with
5384// CMSGen merely delegating to it.
5385void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5386  double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5387  HeapWord*  minAddr        = _cmsSpace->bottom();
5388  HeapWord*  largestAddr    =
5389    (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5390  if (largestAddr == NULL) {
5391    // The dictionary appears to be empty.  In this case
5392    // try to coalesce at the end of the heap.
5393    largestAddr = _cmsSpace->end();
5394  }
5395  size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5396  size_t nearLargestOffset =
5397    (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5398  log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5399                          p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5400  _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5401}
5402
5403bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5404  return addr >= _cmsSpace->nearLargestChunk();
5405}
5406
5407FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5408  return _cmsSpace->find_chunk_at_end();
5409}
5410
5411void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5412                                                    bool full) {
5413  // If the young generation has been collected, gather any statistics
5414  // that are of interest at this point.
5415  bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5416  if (!full && current_is_young) {
5417    // Gather statistics on the young generation collection.
5418    collector()->stats().record_gc0_end(used());
5419  }
5420}
5421
5422void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5423  // We iterate over the space(s) underlying this generation,
5424  // checking the mark bit map to see if the bits corresponding
5425  // to specific blocks are marked or not. Blocks that are
5426  // marked are live and are not swept up. All remaining blocks
5427  // are swept up, with coalescing on-the-fly as we sweep up
5428  // contiguous free and/or garbage blocks:
5429  // We need to ensure that the sweeper synchronizes with allocators
5430  // and stop-the-world collectors. In particular, the following
5431  // locks are used:
5432  // . CMS token: if this is held, a stop the world collection cannot occur
5433  // . freelistLock: if this is held no allocation can occur from this
5434  //                 generation by another thread
5435  // . bitMapLock: if this is held, no other thread can access or update
5436  //
5437
5438  // Note that we need to hold the freelistLock if we use
5439  // block iterate below; else the iterator might go awry if
5440  // a mutator (or promotion) causes block contents to change
5441  // (for instance if the allocator divvies up a block).
5442  // If we hold the free list lock, for all practical purposes
5443  // young generation GC's can't occur (they'll usually need to
5444  // promote), so we might as well prevent all young generation
5445  // GC's while we do a sweeping step. For the same reason, we might
5446  // as well take the bit map lock for the entire duration
5447
5448  // check that we hold the requisite locks
5449  assert(have_cms_token(), "Should hold cms token");
5450  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5451  assert_lock_strong(old_gen->freelistLock());
5452  assert_lock_strong(bitMapLock());
5453
5454  assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5455  assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5456  old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5457                                          _inter_sweep_estimate.padded_average(),
5458                                          _intra_sweep_estimate.padded_average());
5459  old_gen->setNearLargestChunk();
5460
5461  {
5462    SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5463    old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5464    // We need to free-up/coalesce garbage/blocks from a
5465    // co-terminal free run. This is done in the SweepClosure
5466    // destructor; so, do not remove this scope, else the
5467    // end-of-sweep-census below will be off by a little bit.
5468  }
5469  old_gen->cmsSpace()->sweep_completed();
5470  old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5471  if (should_unload_classes()) {                // unloaded classes this cycle,
5472    _concurrent_cycles_since_last_unload = 0;   // ... reset count
5473  } else {                                      // did not unload classes,
5474    _concurrent_cycles_since_last_unload++;     // ... increment count
5475  }
5476}
5477
5478// Reset CMS data structures (for now just the marking bit map)
5479// preparatory for the next cycle.
5480void CMSCollector::reset_concurrent() {
5481  CMSTokenSyncWithLocks ts(true, bitMapLock());
5482
5483  // If the state is not "Resetting", the foreground  thread
5484  // has done a collection and the resetting.
5485  if (_collectorState != Resetting) {
5486    assert(_collectorState == Idling, "The state should only change"
5487      " because the foreground collector has finished the collection");
5488    return;
5489  }
5490
5491  {
5492    // Clear the mark bitmap (no grey objects to start with)
5493    // for the next cycle.
5494    GCTraceCPUTime tcpu;
5495    CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5496
5497    HeapWord* curAddr = _markBitMap.startWord();
5498    while (curAddr < _markBitMap.endWord()) {
5499      size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5500      MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5501      _markBitMap.clear_large_range(chunk);
5502      if (ConcurrentMarkSweepThread::should_yield() &&
5503          !foregroundGCIsActive() &&
5504          CMSYield) {
5505        assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5506               "CMS thread should hold CMS token");
5507        assert_lock_strong(bitMapLock());
5508        bitMapLock()->unlock();
5509        ConcurrentMarkSweepThread::desynchronize(true);
5510        stopTimer();
5511        incrementYields();
5512
5513        // See the comment in coordinator_yield()
5514        for (unsigned i = 0; i < CMSYieldSleepCount &&
5515                         ConcurrentMarkSweepThread::should_yield() &&
5516                         !CMSCollector::foregroundGCIsActive(); ++i) {
5517          os::sleep(Thread::current(), 1, false);
5518        }
5519
5520        ConcurrentMarkSweepThread::synchronize(true);
5521        bitMapLock()->lock_without_safepoint_check();
5522        startTimer();
5523      }
5524      curAddr = chunk.end();
5525    }
5526    // A successful mostly concurrent collection has been done.
5527    // Because only the full (i.e., concurrent mode failure) collections
5528    // are being measured for gc overhead limits, clean the "near" flag
5529    // and count.
5530    size_policy()->reset_gc_overhead_limit_count();
5531    _collectorState = Idling;
5532  }
5533
5534  register_gc_end();
5535}
5536
5537// Same as above but for STW paths
5538void CMSCollector::reset_stw() {
5539  // already have the lock
5540  assert(_collectorState == Resetting, "just checking");
5541  assert_lock_strong(bitMapLock());
5542  GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5543  _markBitMap.clear_all();
5544  _collectorState = Idling;
5545  register_gc_end();
5546}
5547
5548void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5549  GCTraceCPUTime tcpu;
5550  TraceCollectorStats tcs(cgc_counters());
5551
5552  switch (op) {
5553    case CMS_op_checkpointRootsInitial: {
5554      GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5555      SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5556      checkpointRootsInitial();
5557      break;
5558    }
5559    case CMS_op_checkpointRootsFinal: {
5560      GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5561      SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5562      checkpointRootsFinal();
5563      break;
5564    }
5565    default:
5566      fatal("No such CMS_op");
5567  }
5568}
5569
5570#ifndef PRODUCT
5571size_t const CMSCollector::skip_header_HeapWords() {
5572  return FreeChunk::header_size();
5573}
5574
5575// Try and collect here conditions that should hold when
5576// CMS thread is exiting. The idea is that the foreground GC
5577// thread should not be blocked if it wants to terminate
5578// the CMS thread and yet continue to run the VM for a while
5579// after that.
5580void CMSCollector::verify_ok_to_terminate() const {
5581  assert(Thread::current()->is_ConcurrentGC_thread(),
5582         "should be called by CMS thread");
5583  assert(!_foregroundGCShouldWait, "should be false");
5584  // We could check here that all the various low-level locks
5585  // are not held by the CMS thread, but that is overkill; see
5586  // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5587  // is checked.
5588}
5589#endif
5590
5591size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5592   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5593          "missing Printezis mark?");
5594  HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5595  size_t size = pointer_delta(nextOneAddr + 1, addr);
5596  assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5597         "alignment problem");
5598  assert(size >= 3, "Necessary for Printezis marks to work");
5599  return size;
5600}
5601
5602// A variant of the above (block_size_using_printezis_bits()) except
5603// that we return 0 if the P-bits are not yet set.
5604size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5605  if (_markBitMap.isMarked(addr + 1)) {
5606    assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5607    HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5608    size_t size = pointer_delta(nextOneAddr + 1, addr);
5609    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5610           "alignment problem");
5611    assert(size >= 3, "Necessary for Printezis marks to work");
5612    return size;
5613  }
5614  return 0;
5615}
5616
5617HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5618  size_t sz = 0;
5619  oop p = (oop)addr;
5620  if (p->klass_or_null() != NULL) {
5621    sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5622  } else {
5623    sz = block_size_using_printezis_bits(addr);
5624  }
5625  assert(sz > 0, "size must be nonzero");
5626  HeapWord* next_block = addr + sz;
5627  HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5628                                             CardTableModRefBS::card_size);
5629  assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5630         round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5631         "must be different cards");
5632  return next_card;
5633}
5634
5635
5636// CMS Bit Map Wrapper /////////////////////////////////////////
5637
5638// Construct a CMS bit map infrastructure, but don't create the
5639// bit vector itself. That is done by a separate call CMSBitMap::allocate()
5640// further below.
5641CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5642  _bm(),
5643  _shifter(shifter),
5644  _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5645                                    Monitor::_safepoint_check_sometimes) : NULL)
5646{
5647  _bmStartWord = 0;
5648  _bmWordSize  = 0;
5649}
5650
5651bool CMSBitMap::allocate(MemRegion mr) {
5652  _bmStartWord = mr.start();
5653  _bmWordSize  = mr.word_size();
5654  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5655                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5656  if (!brs.is_reserved()) {
5657    log_warning(gc)("CMS bit map allocation failure");
5658    return false;
5659  }
5660  // For now we'll just commit all of the bit map up front.
5661  // Later on we'll try to be more parsimonious with swap.
5662  if (!_virtual_space.initialize(brs, brs.size())) {
5663    log_warning(gc)("CMS bit map backing store failure");
5664    return false;
5665  }
5666  assert(_virtual_space.committed_size() == brs.size(),
5667         "didn't reserve backing store for all of CMS bit map?");
5668  _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5669  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5670         _bmWordSize, "inconsistency in bit map sizing");
5671  _bm.set_size(_bmWordSize >> _shifter);
5672
5673  // bm.clear(); // can we rely on getting zero'd memory? verify below
5674  assert(isAllClear(),
5675         "Expected zero'd memory from ReservedSpace constructor");
5676  assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5677         "consistency check");
5678  return true;
5679}
5680
5681void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5682  HeapWord *next_addr, *end_addr, *last_addr;
5683  assert_locked();
5684  assert(covers(mr), "out-of-range error");
5685  // XXX assert that start and end are appropriately aligned
5686  for (next_addr = mr.start(), end_addr = mr.end();
5687       next_addr < end_addr; next_addr = last_addr) {
5688    MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5689    last_addr = dirty_region.end();
5690    if (!dirty_region.is_empty()) {
5691      cl->do_MemRegion(dirty_region);
5692    } else {
5693      assert(last_addr == end_addr, "program logic");
5694      return;
5695    }
5696  }
5697}
5698
5699void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5700  _bm.print_on_error(st, prefix);
5701}
5702
5703#ifndef PRODUCT
5704void CMSBitMap::assert_locked() const {
5705  CMSLockVerifier::assert_locked(lock());
5706}
5707
5708bool CMSBitMap::covers(MemRegion mr) const {
5709  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5710  assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5711         "size inconsistency");
5712  return (mr.start() >= _bmStartWord) &&
5713         (mr.end()   <= endWord());
5714}
5715
5716bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5717    return (start >= _bmStartWord && (start + size) <= endWord());
5718}
5719
5720void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5721  // verify that there are no 1 bits in the interval [left, right)
5722  FalseBitMapClosure falseBitMapClosure;
5723  iterate(&falseBitMapClosure, left, right);
5724}
5725
5726void CMSBitMap::region_invariant(MemRegion mr)
5727{
5728  assert_locked();
5729  // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5730  assert(!mr.is_empty(), "unexpected empty region");
5731  assert(covers(mr), "mr should be covered by bit map");
5732  // convert address range into offset range
5733  size_t start_ofs = heapWordToOffset(mr.start());
5734  // Make sure that end() is appropriately aligned
5735  assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5736                        (1 << (_shifter+LogHeapWordSize))),
5737         "Misaligned mr.end()");
5738  size_t end_ofs   = heapWordToOffset(mr.end());
5739  assert(end_ofs > start_ofs, "Should mark at least one bit");
5740}
5741
5742#endif
5743
5744bool CMSMarkStack::allocate(size_t size) {
5745  // allocate a stack of the requisite depth
5746  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5747                   size * sizeof(oop)));
5748  if (!rs.is_reserved()) {
5749    log_warning(gc)("CMSMarkStack allocation failure");
5750    return false;
5751  }
5752  if (!_virtual_space.initialize(rs, rs.size())) {
5753    log_warning(gc)("CMSMarkStack backing store failure");
5754    return false;
5755  }
5756  assert(_virtual_space.committed_size() == rs.size(),
5757         "didn't reserve backing store for all of CMS stack?");
5758  _base = (oop*)(_virtual_space.low());
5759  _index = 0;
5760  _capacity = size;
5761  NOT_PRODUCT(_max_depth = 0);
5762  return true;
5763}
5764
5765// XXX FIX ME !!! In the MT case we come in here holding a
5766// leaf lock. For printing we need to take a further lock
5767// which has lower rank. We need to recalibrate the two
5768// lock-ranks involved in order to be able to print the
5769// messages below. (Or defer the printing to the caller.
5770// For now we take the expedient path of just disabling the
5771// messages for the problematic case.)
5772void CMSMarkStack::expand() {
5773  assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5774  if (_capacity == MarkStackSizeMax) {
5775    if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5776      // We print a warning message only once per CMS cycle.
5777      log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5778    }
5779    return;
5780  }
5781  // Double capacity if possible
5782  size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5783  // Do not give up existing stack until we have managed to
5784  // get the double capacity that we desired.
5785  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5786                   new_capacity * sizeof(oop)));
5787  if (rs.is_reserved()) {
5788    // Release the backing store associated with old stack
5789    _virtual_space.release();
5790    // Reinitialize virtual space for new stack
5791    if (!_virtual_space.initialize(rs, rs.size())) {
5792      fatal("Not enough swap for expanded marking stack");
5793    }
5794    _base = (oop*)(_virtual_space.low());
5795    _index = 0;
5796    _capacity = new_capacity;
5797  } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5798    // Failed to double capacity, continue;
5799    // we print a detail message only once per CMS cycle.
5800    log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5801                        _capacity / K, new_capacity / K);
5802  }
5803}
5804
5805
5806// Closures
5807// XXX: there seems to be a lot of code  duplication here;
5808// should refactor and consolidate common code.
5809
5810// This closure is used to mark refs into the CMS generation in
5811// the CMS bit map. Called at the first checkpoint. This closure
5812// assumes that we do not need to re-mark dirty cards; if the CMS
5813// generation on which this is used is not an oldest
5814// generation then this will lose younger_gen cards!
5815
5816MarkRefsIntoClosure::MarkRefsIntoClosure(
5817  MemRegion span, CMSBitMap* bitMap):
5818    _span(span),
5819    _bitMap(bitMap)
5820{
5821  assert(ref_processor() == NULL, "deliberately left NULL");
5822  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5823}
5824
5825void MarkRefsIntoClosure::do_oop(oop obj) {
5826  // if p points into _span, then mark corresponding bit in _markBitMap
5827  assert(obj->is_oop(), "expected an oop");
5828  HeapWord* addr = (HeapWord*)obj;
5829  if (_span.contains(addr)) {
5830    // this should be made more efficient
5831    _bitMap->mark(addr);
5832  }
5833}
5834
5835void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5836void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5837
5838ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5839  MemRegion span, CMSBitMap* bitMap):
5840    _span(span),
5841    _bitMap(bitMap)
5842{
5843  assert(ref_processor() == NULL, "deliberately left NULL");
5844  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5845}
5846
5847void ParMarkRefsIntoClosure::do_oop(oop obj) {
5848  // if p points into _span, then mark corresponding bit in _markBitMap
5849  assert(obj->is_oop(), "expected an oop");
5850  HeapWord* addr = (HeapWord*)obj;
5851  if (_span.contains(addr)) {
5852    // this should be made more efficient
5853    _bitMap->par_mark(addr);
5854  }
5855}
5856
5857void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5858void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5859
5860// A variant of the above, used for CMS marking verification.
5861MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5862  MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5863    _span(span),
5864    _verification_bm(verification_bm),
5865    _cms_bm(cms_bm)
5866{
5867  assert(ref_processor() == NULL, "deliberately left NULL");
5868  assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5869}
5870
5871void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5872  // if p points into _span, then mark corresponding bit in _markBitMap
5873  assert(obj->is_oop(), "expected an oop");
5874  HeapWord* addr = (HeapWord*)obj;
5875  if (_span.contains(addr)) {
5876    _verification_bm->mark(addr);
5877    if (!_cms_bm->isMarked(addr)) {
5878      LogHandle(gc, verify) log;
5879      ResourceMark rm;
5880      oop(addr)->print_on(log.error_stream());
5881      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5882      fatal("... aborting");
5883    }
5884  }
5885}
5886
5887void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5888void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5889
5890//////////////////////////////////////////////////
5891// MarkRefsIntoAndScanClosure
5892//////////////////////////////////////////////////
5893
5894MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5895                                                       ReferenceProcessor* rp,
5896                                                       CMSBitMap* bit_map,
5897                                                       CMSBitMap* mod_union_table,
5898                                                       CMSMarkStack*  mark_stack,
5899                                                       CMSCollector* collector,
5900                                                       bool should_yield,
5901                                                       bool concurrent_precleaning):
5902  _collector(collector),
5903  _span(span),
5904  _bit_map(bit_map),
5905  _mark_stack(mark_stack),
5906  _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5907                      mark_stack, concurrent_precleaning),
5908  _yield(should_yield),
5909  _concurrent_precleaning(concurrent_precleaning),
5910  _freelistLock(NULL)
5911{
5912  // FIXME: Should initialize in base class constructor.
5913  assert(rp != NULL, "ref_processor shouldn't be NULL");
5914  set_ref_processor_internal(rp);
5915}
5916
5917// This closure is used to mark refs into the CMS generation at the
5918// second (final) checkpoint, and to scan and transitively follow
5919// the unmarked oops. It is also used during the concurrent precleaning
5920// phase while scanning objects on dirty cards in the CMS generation.
5921// The marks are made in the marking bit map and the marking stack is
5922// used for keeping the (newly) grey objects during the scan.
5923// The parallel version (Par_...) appears further below.
5924void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5925  if (obj != NULL) {
5926    assert(obj->is_oop(), "expected an oop");
5927    HeapWord* addr = (HeapWord*)obj;
5928    assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5929    assert(_collector->overflow_list_is_empty(),
5930           "overflow list should be empty");
5931    if (_span.contains(addr) &&
5932        !_bit_map->isMarked(addr)) {
5933      // mark bit map (object is now grey)
5934      _bit_map->mark(addr);
5935      // push on marking stack (stack should be empty), and drain the
5936      // stack by applying this closure to the oops in the oops popped
5937      // from the stack (i.e. blacken the grey objects)
5938      bool res = _mark_stack->push(obj);
5939      assert(res, "Should have space to push on empty stack");
5940      do {
5941        oop new_oop = _mark_stack->pop();
5942        assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5943        assert(_bit_map->isMarked((HeapWord*)new_oop),
5944               "only grey objects on this stack");
5945        // iterate over the oops in this oop, marking and pushing
5946        // the ones in CMS heap (i.e. in _span).
5947        new_oop->oop_iterate(&_pushAndMarkClosure);
5948        // check if it's time to yield
5949        do_yield_check();
5950      } while (!_mark_stack->isEmpty() ||
5951               (!_concurrent_precleaning && take_from_overflow_list()));
5952        // if marking stack is empty, and we are not doing this
5953        // during precleaning, then check the overflow list
5954    }
5955    assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5956    assert(_collector->overflow_list_is_empty(),
5957           "overflow list was drained above");
5958
5959    assert(_collector->no_preserved_marks(),
5960           "All preserved marks should have been restored above");
5961  }
5962}
5963
5964void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5965void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5966
5967void MarkRefsIntoAndScanClosure::do_yield_work() {
5968  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5969         "CMS thread should hold CMS token");
5970  assert_lock_strong(_freelistLock);
5971  assert_lock_strong(_bit_map->lock());
5972  // relinquish the free_list_lock and bitMaplock()
5973  _bit_map->lock()->unlock();
5974  _freelistLock->unlock();
5975  ConcurrentMarkSweepThread::desynchronize(true);
5976  _collector->stopTimer();
5977  _collector->incrementYields();
5978
5979  // See the comment in coordinator_yield()
5980  for (unsigned i = 0;
5981       i < CMSYieldSleepCount &&
5982       ConcurrentMarkSweepThread::should_yield() &&
5983       !CMSCollector::foregroundGCIsActive();
5984       ++i) {
5985    os::sleep(Thread::current(), 1, false);
5986  }
5987
5988  ConcurrentMarkSweepThread::synchronize(true);
5989  _freelistLock->lock_without_safepoint_check();
5990  _bit_map->lock()->lock_without_safepoint_check();
5991  _collector->startTimer();
5992}
5993
5994///////////////////////////////////////////////////////////
5995// ParMarkRefsIntoAndScanClosure: a parallel version of
5996//                                MarkRefsIntoAndScanClosure
5997///////////////////////////////////////////////////////////
5998ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
5999  CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6000  CMSBitMap* bit_map, OopTaskQueue* work_queue):
6001  _span(span),
6002  _bit_map(bit_map),
6003  _work_queue(work_queue),
6004  _low_water_mark(MIN2((work_queue->max_elems()/4),
6005                       ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6006  _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6007{
6008  // FIXME: Should initialize in base class constructor.
6009  assert(rp != NULL, "ref_processor shouldn't be NULL");
6010  set_ref_processor_internal(rp);
6011}
6012
6013// This closure is used to mark refs into the CMS generation at the
6014// second (final) checkpoint, and to scan and transitively follow
6015// the unmarked oops. The marks are made in the marking bit map and
6016// the work_queue is used for keeping the (newly) grey objects during
6017// the scan phase whence they are also available for stealing by parallel
6018// threads. Since the marking bit map is shared, updates are
6019// synchronized (via CAS).
6020void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6021  if (obj != NULL) {
6022    // Ignore mark word because this could be an already marked oop
6023    // that may be chained at the end of the overflow list.
6024    assert(obj->is_oop(true), "expected an oop");
6025    HeapWord* addr = (HeapWord*)obj;
6026    if (_span.contains(addr) &&
6027        !_bit_map->isMarked(addr)) {
6028      // mark bit map (object will become grey):
6029      // It is possible for several threads to be
6030      // trying to "claim" this object concurrently;
6031      // the unique thread that succeeds in marking the
6032      // object first will do the subsequent push on
6033      // to the work queue (or overflow list).
6034      if (_bit_map->par_mark(addr)) {
6035        // push on work_queue (which may not be empty), and trim the
6036        // queue to an appropriate length by applying this closure to
6037        // the oops in the oops popped from the stack (i.e. blacken the
6038        // grey objects)
6039        bool res = _work_queue->push(obj);
6040        assert(res, "Low water mark should be less than capacity?");
6041        trim_queue(_low_water_mark);
6042      } // Else, another thread claimed the object
6043    }
6044  }
6045}
6046
6047void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6048void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6049
6050// This closure is used to rescan the marked objects on the dirty cards
6051// in the mod union table and the card table proper.
6052size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6053  oop p, MemRegion mr) {
6054
6055  size_t size = 0;
6056  HeapWord* addr = (HeapWord*)p;
6057  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6058  assert(_span.contains(addr), "we are scanning the CMS generation");
6059  // check if it's time to yield
6060  if (do_yield_check()) {
6061    // We yielded for some foreground stop-world work,
6062    // and we have been asked to abort this ongoing preclean cycle.
6063    return 0;
6064  }
6065  if (_bitMap->isMarked(addr)) {
6066    // it's marked; is it potentially uninitialized?
6067    if (p->klass_or_null() != NULL) {
6068        // an initialized object; ignore mark word in verification below
6069        // since we are running concurrent with mutators
6070        assert(p->is_oop(true), "should be an oop");
6071        if (p->is_objArray()) {
6072          // objArrays are precisely marked; restrict scanning
6073          // to dirty cards only.
6074          size = CompactibleFreeListSpace::adjustObjectSize(
6075                   p->oop_iterate_size(_scanningClosure, mr));
6076        } else {
6077          // A non-array may have been imprecisely marked; we need
6078          // to scan object in its entirety.
6079          size = CompactibleFreeListSpace::adjustObjectSize(
6080                   p->oop_iterate_size(_scanningClosure));
6081        }
6082        #ifdef ASSERT
6083          size_t direct_size =
6084            CompactibleFreeListSpace::adjustObjectSize(p->size());
6085          assert(size == direct_size, "Inconsistency in size");
6086          assert(size >= 3, "Necessary for Printezis marks to work");
6087          if (!_bitMap->isMarked(addr+1)) {
6088            _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6089          } else {
6090            _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6091            assert(_bitMap->isMarked(addr+size-1),
6092                   "inconsistent Printezis mark");
6093          }
6094        #endif // ASSERT
6095    } else {
6096      // An uninitialized object.
6097      assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6098      HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6099      size = pointer_delta(nextOneAddr + 1, addr);
6100      assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6101             "alignment problem");
6102      // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6103      // will dirty the card when the klass pointer is installed in the
6104      // object (signaling the completion of initialization).
6105    }
6106  } else {
6107    // Either a not yet marked object or an uninitialized object
6108    if (p->klass_or_null() == NULL) {
6109      // An uninitialized object, skip to the next card, since
6110      // we may not be able to read its P-bits yet.
6111      assert(size == 0, "Initial value");
6112    } else {
6113      // An object not (yet) reached by marking: we merely need to
6114      // compute its size so as to go look at the next block.
6115      assert(p->is_oop(true), "should be an oop");
6116      size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6117    }
6118  }
6119  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6120  return size;
6121}
6122
6123void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6124  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6125         "CMS thread should hold CMS token");
6126  assert_lock_strong(_freelistLock);
6127  assert_lock_strong(_bitMap->lock());
6128  // relinquish the free_list_lock and bitMaplock()
6129  _bitMap->lock()->unlock();
6130  _freelistLock->unlock();
6131  ConcurrentMarkSweepThread::desynchronize(true);
6132  _collector->stopTimer();
6133  _collector->incrementYields();
6134
6135  // See the comment in coordinator_yield()
6136  for (unsigned i = 0; i < CMSYieldSleepCount &&
6137                   ConcurrentMarkSweepThread::should_yield() &&
6138                   !CMSCollector::foregroundGCIsActive(); ++i) {
6139    os::sleep(Thread::current(), 1, false);
6140  }
6141
6142  ConcurrentMarkSweepThread::synchronize(true);
6143  _freelistLock->lock_without_safepoint_check();
6144  _bitMap->lock()->lock_without_safepoint_check();
6145  _collector->startTimer();
6146}
6147
6148
6149//////////////////////////////////////////////////////////////////
6150// SurvivorSpacePrecleanClosure
6151//////////////////////////////////////////////////////////////////
6152// This (single-threaded) closure is used to preclean the oops in
6153// the survivor spaces.
6154size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6155
6156  HeapWord* addr = (HeapWord*)p;
6157  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6158  assert(!_span.contains(addr), "we are scanning the survivor spaces");
6159  assert(p->klass_or_null() != NULL, "object should be initialized");
6160  // an initialized object; ignore mark word in verification below
6161  // since we are running concurrent with mutators
6162  assert(p->is_oop(true), "should be an oop");
6163  // Note that we do not yield while we iterate over
6164  // the interior oops of p, pushing the relevant ones
6165  // on our marking stack.
6166  size_t size = p->oop_iterate_size(_scanning_closure);
6167  do_yield_check();
6168  // Observe that below, we do not abandon the preclean
6169  // phase as soon as we should; rather we empty the
6170  // marking stack before returning. This is to satisfy
6171  // some existing assertions. In general, it may be a
6172  // good idea to abort immediately and complete the marking
6173  // from the grey objects at a later time.
6174  while (!_mark_stack->isEmpty()) {
6175    oop new_oop = _mark_stack->pop();
6176    assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6177    assert(_bit_map->isMarked((HeapWord*)new_oop),
6178           "only grey objects on this stack");
6179    // iterate over the oops in this oop, marking and pushing
6180    // the ones in CMS heap (i.e. in _span).
6181    new_oop->oop_iterate(_scanning_closure);
6182    // check if it's time to yield
6183    do_yield_check();
6184  }
6185  unsigned int after_count =
6186    GenCollectedHeap::heap()->total_collections();
6187  bool abort = (_before_count != after_count) ||
6188               _collector->should_abort_preclean();
6189  return abort ? 0 : size;
6190}
6191
6192void SurvivorSpacePrecleanClosure::do_yield_work() {
6193  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6194         "CMS thread should hold CMS token");
6195  assert_lock_strong(_bit_map->lock());
6196  // Relinquish the bit map lock
6197  _bit_map->lock()->unlock();
6198  ConcurrentMarkSweepThread::desynchronize(true);
6199  _collector->stopTimer();
6200  _collector->incrementYields();
6201
6202  // See the comment in coordinator_yield()
6203  for (unsigned i = 0; i < CMSYieldSleepCount &&
6204                       ConcurrentMarkSweepThread::should_yield() &&
6205                       !CMSCollector::foregroundGCIsActive(); ++i) {
6206    os::sleep(Thread::current(), 1, false);
6207  }
6208
6209  ConcurrentMarkSweepThread::synchronize(true);
6210  _bit_map->lock()->lock_without_safepoint_check();
6211  _collector->startTimer();
6212}
6213
6214// This closure is used to rescan the marked objects on the dirty cards
6215// in the mod union table and the card table proper. In the parallel
6216// case, although the bitMap is shared, we do a single read so the
6217// isMarked() query is "safe".
6218bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6219  // Ignore mark word because we are running concurrent with mutators
6220  assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6221  HeapWord* addr = (HeapWord*)p;
6222  assert(_span.contains(addr), "we are scanning the CMS generation");
6223  bool is_obj_array = false;
6224  #ifdef ASSERT
6225    if (!_parallel) {
6226      assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6227      assert(_collector->overflow_list_is_empty(),
6228             "overflow list should be empty");
6229
6230    }
6231  #endif // ASSERT
6232  if (_bit_map->isMarked(addr)) {
6233    // Obj arrays are precisely marked, non-arrays are not;
6234    // so we scan objArrays precisely and non-arrays in their
6235    // entirety.
6236    if (p->is_objArray()) {
6237      is_obj_array = true;
6238      if (_parallel) {
6239        p->oop_iterate(_par_scan_closure, mr);
6240      } else {
6241        p->oop_iterate(_scan_closure, mr);
6242      }
6243    } else {
6244      if (_parallel) {
6245        p->oop_iterate(_par_scan_closure);
6246      } else {
6247        p->oop_iterate(_scan_closure);
6248      }
6249    }
6250  }
6251  #ifdef ASSERT
6252    if (!_parallel) {
6253      assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6254      assert(_collector->overflow_list_is_empty(),
6255             "overflow list should be empty");
6256
6257    }
6258  #endif // ASSERT
6259  return is_obj_array;
6260}
6261
6262MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6263                        MemRegion span,
6264                        CMSBitMap* bitMap, CMSMarkStack*  markStack,
6265                        bool should_yield, bool verifying):
6266  _collector(collector),
6267  _span(span),
6268  _bitMap(bitMap),
6269  _mut(&collector->_modUnionTable),
6270  _markStack(markStack),
6271  _yield(should_yield),
6272  _skipBits(0)
6273{
6274  assert(_markStack->isEmpty(), "stack should be empty");
6275  _finger = _bitMap->startWord();
6276  _threshold = _finger;
6277  assert(_collector->_restart_addr == NULL, "Sanity check");
6278  assert(_span.contains(_finger), "Out of bounds _finger?");
6279  DEBUG_ONLY(_verifying = verifying;)
6280}
6281
6282void MarkFromRootsClosure::reset(HeapWord* addr) {
6283  assert(_markStack->isEmpty(), "would cause duplicates on stack");
6284  assert(_span.contains(addr), "Out of bounds _finger?");
6285  _finger = addr;
6286  _threshold = (HeapWord*)round_to(
6287                 (intptr_t)_finger, CardTableModRefBS::card_size);
6288}
6289
6290// Should revisit to see if this should be restructured for
6291// greater efficiency.
6292bool MarkFromRootsClosure::do_bit(size_t offset) {
6293  if (_skipBits > 0) {
6294    _skipBits--;
6295    return true;
6296  }
6297  // convert offset into a HeapWord*
6298  HeapWord* addr = _bitMap->startWord() + offset;
6299  assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6300         "address out of range");
6301  assert(_bitMap->isMarked(addr), "tautology");
6302  if (_bitMap->isMarked(addr+1)) {
6303    // this is an allocated but not yet initialized object
6304    assert(_skipBits == 0, "tautology");
6305    _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6306    oop p = oop(addr);
6307    if (p->klass_or_null() == NULL) {
6308      DEBUG_ONLY(if (!_verifying) {)
6309        // We re-dirty the cards on which this object lies and increase
6310        // the _threshold so that we'll come back to scan this object
6311        // during the preclean or remark phase. (CMSCleanOnEnter)
6312        if (CMSCleanOnEnter) {
6313          size_t sz = _collector->block_size_using_printezis_bits(addr);
6314          HeapWord* end_card_addr   = (HeapWord*)round_to(
6315                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6316          MemRegion redirty_range = MemRegion(addr, end_card_addr);
6317          assert(!redirty_range.is_empty(), "Arithmetical tautology");
6318          // Bump _threshold to end_card_addr; note that
6319          // _threshold cannot possibly exceed end_card_addr, anyhow.
6320          // This prevents future clearing of the card as the scan proceeds
6321          // to the right.
6322          assert(_threshold <= end_card_addr,
6323                 "Because we are just scanning into this object");
6324          if (_threshold < end_card_addr) {
6325            _threshold = end_card_addr;
6326          }
6327          if (p->klass_or_null() != NULL) {
6328            // Redirty the range of cards...
6329            _mut->mark_range(redirty_range);
6330          } // ...else the setting of klass will dirty the card anyway.
6331        }
6332      DEBUG_ONLY(})
6333      return true;
6334    }
6335  }
6336  scanOopsInOop(addr);
6337  return true;
6338}
6339
6340// We take a break if we've been at this for a while,
6341// so as to avoid monopolizing the locks involved.
6342void MarkFromRootsClosure::do_yield_work() {
6343  // First give up the locks, then yield, then re-lock
6344  // We should probably use a constructor/destructor idiom to
6345  // do this unlock/lock or modify the MutexUnlocker class to
6346  // serve our purpose. XXX
6347  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6348         "CMS thread should hold CMS token");
6349  assert_lock_strong(_bitMap->lock());
6350  _bitMap->lock()->unlock();
6351  ConcurrentMarkSweepThread::desynchronize(true);
6352  _collector->stopTimer();
6353  _collector->incrementYields();
6354
6355  // See the comment in coordinator_yield()
6356  for (unsigned i = 0; i < CMSYieldSleepCount &&
6357                       ConcurrentMarkSweepThread::should_yield() &&
6358                       !CMSCollector::foregroundGCIsActive(); ++i) {
6359    os::sleep(Thread::current(), 1, false);
6360  }
6361
6362  ConcurrentMarkSweepThread::synchronize(true);
6363  _bitMap->lock()->lock_without_safepoint_check();
6364  _collector->startTimer();
6365}
6366
6367void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6368  assert(_bitMap->isMarked(ptr), "expected bit to be set");
6369  assert(_markStack->isEmpty(),
6370         "should drain stack to limit stack usage");
6371  // convert ptr to an oop preparatory to scanning
6372  oop obj = oop(ptr);
6373  // Ignore mark word in verification below, since we
6374  // may be running concurrent with mutators.
6375  assert(obj->is_oop(true), "should be an oop");
6376  assert(_finger <= ptr, "_finger runneth ahead");
6377  // advance the finger to right end of this object
6378  _finger = ptr + obj->size();
6379  assert(_finger > ptr, "we just incremented it above");
6380  // On large heaps, it may take us some time to get through
6381  // the marking phase. During
6382  // this time it's possible that a lot of mutations have
6383  // accumulated in the card table and the mod union table --
6384  // these mutation records are redundant until we have
6385  // actually traced into the corresponding card.
6386  // Here, we check whether advancing the finger would make
6387  // us cross into a new card, and if so clear corresponding
6388  // cards in the MUT (preclean them in the card-table in the
6389  // future).
6390
6391  DEBUG_ONLY(if (!_verifying) {)
6392    // The clean-on-enter optimization is disabled by default,
6393    // until we fix 6178663.
6394    if (CMSCleanOnEnter && (_finger > _threshold)) {
6395      // [_threshold, _finger) represents the interval
6396      // of cards to be cleared  in MUT (or precleaned in card table).
6397      // The set of cards to be cleared is all those that overlap
6398      // with the interval [_threshold, _finger); note that
6399      // _threshold is always kept card-aligned but _finger isn't
6400      // always card-aligned.
6401      HeapWord* old_threshold = _threshold;
6402      assert(old_threshold == (HeapWord*)round_to(
6403              (intptr_t)old_threshold, CardTableModRefBS::card_size),
6404             "_threshold should always be card-aligned");
6405      _threshold = (HeapWord*)round_to(
6406                     (intptr_t)_finger, CardTableModRefBS::card_size);
6407      MemRegion mr(old_threshold, _threshold);
6408      assert(!mr.is_empty(), "Control point invariant");
6409      assert(_span.contains(mr), "Should clear within span");
6410      _mut->clear_range(mr);
6411    }
6412  DEBUG_ONLY(})
6413  // Note: the finger doesn't advance while we drain
6414  // the stack below.
6415  PushOrMarkClosure pushOrMarkClosure(_collector,
6416                                      _span, _bitMap, _markStack,
6417                                      _finger, this);
6418  bool res = _markStack->push(obj);
6419  assert(res, "Empty non-zero size stack should have space for single push");
6420  while (!_markStack->isEmpty()) {
6421    oop new_oop = _markStack->pop();
6422    // Skip verifying header mark word below because we are
6423    // running concurrent with mutators.
6424    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6425    // now scan this oop's oops
6426    new_oop->oop_iterate(&pushOrMarkClosure);
6427    do_yield_check();
6428  }
6429  assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6430}
6431
6432ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6433                       CMSCollector* collector, MemRegion span,
6434                       CMSBitMap* bit_map,
6435                       OopTaskQueue* work_queue,
6436                       CMSMarkStack*  overflow_stack):
6437  _collector(collector),
6438  _whole_span(collector->_span),
6439  _span(span),
6440  _bit_map(bit_map),
6441  _mut(&collector->_modUnionTable),
6442  _work_queue(work_queue),
6443  _overflow_stack(overflow_stack),
6444  _skip_bits(0),
6445  _task(task)
6446{
6447  assert(_work_queue->size() == 0, "work_queue should be empty");
6448  _finger = span.start();
6449  _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6450  assert(_span.contains(_finger), "Out of bounds _finger?");
6451}
6452
6453// Should revisit to see if this should be restructured for
6454// greater efficiency.
6455bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6456  if (_skip_bits > 0) {
6457    _skip_bits--;
6458    return true;
6459  }
6460  // convert offset into a HeapWord*
6461  HeapWord* addr = _bit_map->startWord() + offset;
6462  assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6463         "address out of range");
6464  assert(_bit_map->isMarked(addr), "tautology");
6465  if (_bit_map->isMarked(addr+1)) {
6466    // this is an allocated object that might not yet be initialized
6467    assert(_skip_bits == 0, "tautology");
6468    _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6469    oop p = oop(addr);
6470    if (p->klass_or_null() == NULL) {
6471      // in the case of Clean-on-Enter optimization, redirty card
6472      // and avoid clearing card by increasing  the threshold.
6473      return true;
6474    }
6475  }
6476  scan_oops_in_oop(addr);
6477  return true;
6478}
6479
6480void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6481  assert(_bit_map->isMarked(ptr), "expected bit to be set");
6482  // Should we assert that our work queue is empty or
6483  // below some drain limit?
6484  assert(_work_queue->size() == 0,
6485         "should drain stack to limit stack usage");
6486  // convert ptr to an oop preparatory to scanning
6487  oop obj = oop(ptr);
6488  // Ignore mark word in verification below, since we
6489  // may be running concurrent with mutators.
6490  assert(obj->is_oop(true), "should be an oop");
6491  assert(_finger <= ptr, "_finger runneth ahead");
6492  // advance the finger to right end of this object
6493  _finger = ptr + obj->size();
6494  assert(_finger > ptr, "we just incremented it above");
6495  // On large heaps, it may take us some time to get through
6496  // the marking phase. During
6497  // this time it's possible that a lot of mutations have
6498  // accumulated in the card table and the mod union table --
6499  // these mutation records are redundant until we have
6500  // actually traced into the corresponding card.
6501  // Here, we check whether advancing the finger would make
6502  // us cross into a new card, and if so clear corresponding
6503  // cards in the MUT (preclean them in the card-table in the
6504  // future).
6505
6506  // The clean-on-enter optimization is disabled by default,
6507  // until we fix 6178663.
6508  if (CMSCleanOnEnter && (_finger > _threshold)) {
6509    // [_threshold, _finger) represents the interval
6510    // of cards to be cleared  in MUT (or precleaned in card table).
6511    // The set of cards to be cleared is all those that overlap
6512    // with the interval [_threshold, _finger); note that
6513    // _threshold is always kept card-aligned but _finger isn't
6514    // always card-aligned.
6515    HeapWord* old_threshold = _threshold;
6516    assert(old_threshold == (HeapWord*)round_to(
6517            (intptr_t)old_threshold, CardTableModRefBS::card_size),
6518           "_threshold should always be card-aligned");
6519    _threshold = (HeapWord*)round_to(
6520                   (intptr_t)_finger, CardTableModRefBS::card_size);
6521    MemRegion mr(old_threshold, _threshold);
6522    assert(!mr.is_empty(), "Control point invariant");
6523    assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6524    _mut->clear_range(mr);
6525  }
6526
6527  // Note: the local finger doesn't advance while we drain
6528  // the stack below, but the global finger sure can and will.
6529  HeapWord** gfa = _task->global_finger_addr();
6530  ParPushOrMarkClosure pushOrMarkClosure(_collector,
6531                                         _span, _bit_map,
6532                                         _work_queue,
6533                                         _overflow_stack,
6534                                         _finger,
6535                                         gfa, this);
6536  bool res = _work_queue->push(obj);   // overflow could occur here
6537  assert(res, "Will hold once we use workqueues");
6538  while (true) {
6539    oop new_oop;
6540    if (!_work_queue->pop_local(new_oop)) {
6541      // We emptied our work_queue; check if there's stuff that can
6542      // be gotten from the overflow stack.
6543      if (CMSConcMarkingTask::get_work_from_overflow_stack(
6544            _overflow_stack, _work_queue)) {
6545        do_yield_check();
6546        continue;
6547      } else {  // done
6548        break;
6549      }
6550    }
6551    // Skip verifying header mark word below because we are
6552    // running concurrent with mutators.
6553    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6554    // now scan this oop's oops
6555    new_oop->oop_iterate(&pushOrMarkClosure);
6556    do_yield_check();
6557  }
6558  assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6559}
6560
6561// Yield in response to a request from VM Thread or
6562// from mutators.
6563void ParMarkFromRootsClosure::do_yield_work() {
6564  assert(_task != NULL, "sanity");
6565  _task->yield();
6566}
6567
6568// A variant of the above used for verifying CMS marking work.
6569MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6570                        MemRegion span,
6571                        CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6572                        CMSMarkStack*  mark_stack):
6573  _collector(collector),
6574  _span(span),
6575  _verification_bm(verification_bm),
6576  _cms_bm(cms_bm),
6577  _mark_stack(mark_stack),
6578  _pam_verify_closure(collector, span, verification_bm, cms_bm,
6579                      mark_stack)
6580{
6581  assert(_mark_stack->isEmpty(), "stack should be empty");
6582  _finger = _verification_bm->startWord();
6583  assert(_collector->_restart_addr == NULL, "Sanity check");
6584  assert(_span.contains(_finger), "Out of bounds _finger?");
6585}
6586
6587void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6588  assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6589  assert(_span.contains(addr), "Out of bounds _finger?");
6590  _finger = addr;
6591}
6592
6593// Should revisit to see if this should be restructured for
6594// greater efficiency.
6595bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6596  // convert offset into a HeapWord*
6597  HeapWord* addr = _verification_bm->startWord() + offset;
6598  assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6599         "address out of range");
6600  assert(_verification_bm->isMarked(addr), "tautology");
6601  assert(_cms_bm->isMarked(addr), "tautology");
6602
6603  assert(_mark_stack->isEmpty(),
6604         "should drain stack to limit stack usage");
6605  // convert addr to an oop preparatory to scanning
6606  oop obj = oop(addr);
6607  assert(obj->is_oop(), "should be an oop");
6608  assert(_finger <= addr, "_finger runneth ahead");
6609  // advance the finger to right end of this object
6610  _finger = addr + obj->size();
6611  assert(_finger > addr, "we just incremented it above");
6612  // Note: the finger doesn't advance while we drain
6613  // the stack below.
6614  bool res = _mark_stack->push(obj);
6615  assert(res, "Empty non-zero size stack should have space for single push");
6616  while (!_mark_stack->isEmpty()) {
6617    oop new_oop = _mark_stack->pop();
6618    assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6619    // now scan this oop's oops
6620    new_oop->oop_iterate(&_pam_verify_closure);
6621  }
6622  assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6623  return true;
6624}
6625
6626PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6627  CMSCollector* collector, MemRegion span,
6628  CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6629  CMSMarkStack*  mark_stack):
6630  MetadataAwareOopClosure(collector->ref_processor()),
6631  _collector(collector),
6632  _span(span),
6633  _verification_bm(verification_bm),
6634  _cms_bm(cms_bm),
6635  _mark_stack(mark_stack)
6636{ }
6637
6638void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6639void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6640
6641// Upon stack overflow, we discard (part of) the stack,
6642// remembering the least address amongst those discarded
6643// in CMSCollector's _restart_address.
6644void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6645  // Remember the least grey address discarded
6646  HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6647  _collector->lower_restart_addr(ra);
6648  _mark_stack->reset();  // discard stack contents
6649  _mark_stack->expand(); // expand the stack if possible
6650}
6651
6652void PushAndMarkVerifyClosure::do_oop(oop obj) {
6653  assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6654  HeapWord* addr = (HeapWord*)obj;
6655  if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6656    // Oop lies in _span and isn't yet grey or black
6657    _verification_bm->mark(addr);            // now grey
6658    if (!_cms_bm->isMarked(addr)) {
6659      LogHandle(gc, verify) log;
6660      ResourceMark rm;
6661      oop(addr)->print_on(log.error_stream());
6662      log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6663      fatal("... aborting");
6664    }
6665
6666    if (!_mark_stack->push(obj)) { // stack overflow
6667      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6668      assert(_mark_stack->isFull(), "Else push should have succeeded");
6669      handle_stack_overflow(addr);
6670    }
6671    // anything including and to the right of _finger
6672    // will be scanned as we iterate over the remainder of the
6673    // bit map
6674  }
6675}
6676
6677PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6678                     MemRegion span,
6679                     CMSBitMap* bitMap, CMSMarkStack*  markStack,
6680                     HeapWord* finger, MarkFromRootsClosure* parent) :
6681  MetadataAwareOopClosure(collector->ref_processor()),
6682  _collector(collector),
6683  _span(span),
6684  _bitMap(bitMap),
6685  _markStack(markStack),
6686  _finger(finger),
6687  _parent(parent)
6688{ }
6689
6690ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6691                                           MemRegion span,
6692                                           CMSBitMap* bit_map,
6693                                           OopTaskQueue* work_queue,
6694                                           CMSMarkStack*  overflow_stack,
6695                                           HeapWord* finger,
6696                                           HeapWord** global_finger_addr,
6697                                           ParMarkFromRootsClosure* parent) :
6698  MetadataAwareOopClosure(collector->ref_processor()),
6699  _collector(collector),
6700  _whole_span(collector->_span),
6701  _span(span),
6702  _bit_map(bit_map),
6703  _work_queue(work_queue),
6704  _overflow_stack(overflow_stack),
6705  _finger(finger),
6706  _global_finger_addr(global_finger_addr),
6707  _parent(parent)
6708{ }
6709
6710// Assumes thread-safe access by callers, who are
6711// responsible for mutual exclusion.
6712void CMSCollector::lower_restart_addr(HeapWord* low) {
6713  assert(_span.contains(low), "Out of bounds addr");
6714  if (_restart_addr == NULL) {
6715    _restart_addr = low;
6716  } else {
6717    _restart_addr = MIN2(_restart_addr, low);
6718  }
6719}
6720
6721// Upon stack overflow, we discard (part of) the stack,
6722// remembering the least address amongst those discarded
6723// in CMSCollector's _restart_address.
6724void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6725  // Remember the least grey address discarded
6726  HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6727  _collector->lower_restart_addr(ra);
6728  _markStack->reset();  // discard stack contents
6729  _markStack->expand(); // expand the stack if possible
6730}
6731
6732// Upon stack overflow, we discard (part of) the stack,
6733// remembering the least address amongst those discarded
6734// in CMSCollector's _restart_address.
6735void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6736  // We need to do this under a mutex to prevent other
6737  // workers from interfering with the work done below.
6738  MutexLockerEx ml(_overflow_stack->par_lock(),
6739                   Mutex::_no_safepoint_check_flag);
6740  // Remember the least grey address discarded
6741  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6742  _collector->lower_restart_addr(ra);
6743  _overflow_stack->reset();  // discard stack contents
6744  _overflow_stack->expand(); // expand the stack if possible
6745}
6746
6747void PushOrMarkClosure::do_oop(oop obj) {
6748  // Ignore mark word because we are running concurrent with mutators.
6749  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6750  HeapWord* addr = (HeapWord*)obj;
6751  if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6752    // Oop lies in _span and isn't yet grey or black
6753    _bitMap->mark(addr);            // now grey
6754    if (addr < _finger) {
6755      // the bit map iteration has already either passed, or
6756      // sampled, this bit in the bit map; we'll need to
6757      // use the marking stack to scan this oop's oops.
6758      bool simulate_overflow = false;
6759      NOT_PRODUCT(
6760        if (CMSMarkStackOverflowALot &&
6761            _collector->simulate_overflow()) {
6762          // simulate a stack overflow
6763          simulate_overflow = true;
6764        }
6765      )
6766      if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6767        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6768        assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6769        handle_stack_overflow(addr);
6770      }
6771    }
6772    // anything including and to the right of _finger
6773    // will be scanned as we iterate over the remainder of the
6774    // bit map
6775    do_yield_check();
6776  }
6777}
6778
6779void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6780void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6781
6782void ParPushOrMarkClosure::do_oop(oop obj) {
6783  // Ignore mark word because we are running concurrent with mutators.
6784  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6785  HeapWord* addr = (HeapWord*)obj;
6786  if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6787    // Oop lies in _span and isn't yet grey or black
6788    // We read the global_finger (volatile read) strictly after marking oop
6789    bool res = _bit_map->par_mark(addr);    // now grey
6790    volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6791    // Should we push this marked oop on our stack?
6792    // -- if someone else marked it, nothing to do
6793    // -- if target oop is above global finger nothing to do
6794    // -- if target oop is in chunk and above local finger
6795    //      then nothing to do
6796    // -- else push on work queue
6797    if (   !res       // someone else marked it, they will deal with it
6798        || (addr >= *gfa)  // will be scanned in a later task
6799        || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6800      return;
6801    }
6802    // the bit map iteration has already either passed, or
6803    // sampled, this bit in the bit map; we'll need to
6804    // use the marking stack to scan this oop's oops.
6805    bool simulate_overflow = false;
6806    NOT_PRODUCT(
6807      if (CMSMarkStackOverflowALot &&
6808          _collector->simulate_overflow()) {
6809        // simulate a stack overflow
6810        simulate_overflow = true;
6811      }
6812    )
6813    if (simulate_overflow ||
6814        !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6815      // stack overflow
6816      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6817      // We cannot assert that the overflow stack is full because
6818      // it may have been emptied since.
6819      assert(simulate_overflow ||
6820             _work_queue->size() == _work_queue->max_elems(),
6821            "Else push should have succeeded");
6822      handle_stack_overflow(addr);
6823    }
6824    do_yield_check();
6825  }
6826}
6827
6828void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6829void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6830
6831PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6832                                       MemRegion span,
6833                                       ReferenceProcessor* rp,
6834                                       CMSBitMap* bit_map,
6835                                       CMSBitMap* mod_union_table,
6836                                       CMSMarkStack*  mark_stack,
6837                                       bool           concurrent_precleaning):
6838  MetadataAwareOopClosure(rp),
6839  _collector(collector),
6840  _span(span),
6841  _bit_map(bit_map),
6842  _mod_union_table(mod_union_table),
6843  _mark_stack(mark_stack),
6844  _concurrent_precleaning(concurrent_precleaning)
6845{
6846  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6847}
6848
6849// Grey object rescan during pre-cleaning and second checkpoint phases --
6850// the non-parallel version (the parallel version appears further below.)
6851void PushAndMarkClosure::do_oop(oop obj) {
6852  // Ignore mark word verification. If during concurrent precleaning,
6853  // the object monitor may be locked. If during the checkpoint
6854  // phases, the object may already have been reached by a  different
6855  // path and may be at the end of the global overflow list (so
6856  // the mark word may be NULL).
6857  assert(obj->is_oop_or_null(true /* ignore mark word */),
6858         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6859  HeapWord* addr = (HeapWord*)obj;
6860  // Check if oop points into the CMS generation
6861  // and is not marked
6862  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6863    // a white object ...
6864    _bit_map->mark(addr);         // ... now grey
6865    // push on the marking stack (grey set)
6866    bool simulate_overflow = false;
6867    NOT_PRODUCT(
6868      if (CMSMarkStackOverflowALot &&
6869          _collector->simulate_overflow()) {
6870        // simulate a stack overflow
6871        simulate_overflow = true;
6872      }
6873    )
6874    if (simulate_overflow || !_mark_stack->push(obj)) {
6875      if (_concurrent_precleaning) {
6876         // During precleaning we can just dirty the appropriate card(s)
6877         // in the mod union table, thus ensuring that the object remains
6878         // in the grey set  and continue. In the case of object arrays
6879         // we need to dirty all of the cards that the object spans,
6880         // since the rescan of object arrays will be limited to the
6881         // dirty cards.
6882         // Note that no one can be interfering with us in this action
6883         // of dirtying the mod union table, so no locking or atomics
6884         // are required.
6885         if (obj->is_objArray()) {
6886           size_t sz = obj->size();
6887           HeapWord* end_card_addr = (HeapWord*)round_to(
6888                                        (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6889           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6890           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6891           _mod_union_table->mark_range(redirty_range);
6892         } else {
6893           _mod_union_table->mark(addr);
6894         }
6895         _collector->_ser_pmc_preclean_ovflw++;
6896      } else {
6897         // During the remark phase, we need to remember this oop
6898         // in the overflow list.
6899         _collector->push_on_overflow_list(obj);
6900         _collector->_ser_pmc_remark_ovflw++;
6901      }
6902    }
6903  }
6904}
6905
6906ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6907                                             MemRegion span,
6908                                             ReferenceProcessor* rp,
6909                                             CMSBitMap* bit_map,
6910                                             OopTaskQueue* work_queue):
6911  MetadataAwareOopClosure(rp),
6912  _collector(collector),
6913  _span(span),
6914  _bit_map(bit_map),
6915  _work_queue(work_queue)
6916{
6917  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6918}
6919
6920void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6921void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6922
6923// Grey object rescan during second checkpoint phase --
6924// the parallel version.
6925void ParPushAndMarkClosure::do_oop(oop obj) {
6926  // In the assert below, we ignore the mark word because
6927  // this oop may point to an already visited object that is
6928  // on the overflow stack (in which case the mark word has
6929  // been hijacked for chaining into the overflow stack --
6930  // if this is the last object in the overflow stack then
6931  // its mark word will be NULL). Because this object may
6932  // have been subsequently popped off the global overflow
6933  // stack, and the mark word possibly restored to the prototypical
6934  // value, by the time we get to examined this failing assert in
6935  // the debugger, is_oop_or_null(false) may subsequently start
6936  // to hold.
6937  assert(obj->is_oop_or_null(true),
6938         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6939  HeapWord* addr = (HeapWord*)obj;
6940  // Check if oop points into the CMS generation
6941  // and is not marked
6942  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6943    // a white object ...
6944    // If we manage to "claim" the object, by being the
6945    // first thread to mark it, then we push it on our
6946    // marking stack
6947    if (_bit_map->par_mark(addr)) {     // ... now grey
6948      // push on work queue (grey set)
6949      bool simulate_overflow = false;
6950      NOT_PRODUCT(
6951        if (CMSMarkStackOverflowALot &&
6952            _collector->par_simulate_overflow()) {
6953          // simulate a stack overflow
6954          simulate_overflow = true;
6955        }
6956      )
6957      if (simulate_overflow || !_work_queue->push(obj)) {
6958        _collector->par_push_on_overflow_list(obj);
6959        _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6960      }
6961    } // Else, some other thread got there first
6962  }
6963}
6964
6965void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6966void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6967
6968void CMSPrecleanRefsYieldClosure::do_yield_work() {
6969  Mutex* bml = _collector->bitMapLock();
6970  assert_lock_strong(bml);
6971  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6972         "CMS thread should hold CMS token");
6973
6974  bml->unlock();
6975  ConcurrentMarkSweepThread::desynchronize(true);
6976
6977  _collector->stopTimer();
6978  _collector->incrementYields();
6979
6980  // See the comment in coordinator_yield()
6981  for (unsigned i = 0; i < CMSYieldSleepCount &&
6982                       ConcurrentMarkSweepThread::should_yield() &&
6983                       !CMSCollector::foregroundGCIsActive(); ++i) {
6984    os::sleep(Thread::current(), 1, false);
6985  }
6986
6987  ConcurrentMarkSweepThread::synchronize(true);
6988  bml->lock();
6989
6990  _collector->startTimer();
6991}
6992
6993bool CMSPrecleanRefsYieldClosure::should_return() {
6994  if (ConcurrentMarkSweepThread::should_yield()) {
6995    do_yield_work();
6996  }
6997  return _collector->foregroundGCIsActive();
6998}
6999
7000void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7001  assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7002         "mr should be aligned to start at a card boundary");
7003  // We'd like to assert:
7004  // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7005  //        "mr should be a range of cards");
7006  // However, that would be too strong in one case -- the last
7007  // partition ends at _unallocated_block which, in general, can be
7008  // an arbitrary boundary, not necessarily card aligned.
7009  _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7010  _space->object_iterate_mem(mr, &_scan_cl);
7011}
7012
7013SweepClosure::SweepClosure(CMSCollector* collector,
7014                           ConcurrentMarkSweepGeneration* g,
7015                           CMSBitMap* bitMap, bool should_yield) :
7016  _collector(collector),
7017  _g(g),
7018  _sp(g->cmsSpace()),
7019  _limit(_sp->sweep_limit()),
7020  _freelistLock(_sp->freelistLock()),
7021  _bitMap(bitMap),
7022  _yield(should_yield),
7023  _inFreeRange(false),           // No free range at beginning of sweep
7024  _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7025  _lastFreeRangeCoalesced(false),
7026  _freeFinger(g->used_region().start())
7027{
7028  NOT_PRODUCT(
7029    _numObjectsFreed = 0;
7030    _numWordsFreed   = 0;
7031    _numObjectsLive = 0;
7032    _numWordsLive = 0;
7033    _numObjectsAlreadyFree = 0;
7034    _numWordsAlreadyFree = 0;
7035    _last_fc = NULL;
7036
7037    _sp->initializeIndexedFreeListArrayReturnedBytes();
7038    _sp->dictionary()->initialize_dict_returned_bytes();
7039  )
7040  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7041         "sweep _limit out of bounds");
7042  log_develop_trace(gc, sweep)("====================");
7043  log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7044}
7045
7046void SweepClosure::print_on(outputStream* st) const {
7047  st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7048               p2i(_sp->bottom()), p2i(_sp->end()));
7049  st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7050  st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7051  NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7052  st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7053               _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7054}
7055
7056#ifndef PRODUCT
7057// Assertion checking only:  no useful work in product mode --
7058// however, if any of the flags below become product flags,
7059// you may need to review this code to see if it needs to be
7060// enabled in product mode.
7061SweepClosure::~SweepClosure() {
7062  assert_lock_strong(_freelistLock);
7063  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7064         "sweep _limit out of bounds");
7065  if (inFreeRange()) {
7066    LogHandle(gc, sweep) log;
7067    log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7068    ResourceMark rm;
7069    print_on(log.error_stream());
7070    ShouldNotReachHere();
7071  }
7072
7073  if (log_is_enabled(Debug, gc, sweep)) {
7074    log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7075                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7076    log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7077                         _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7078    size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7079    log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7080  }
7081
7082  if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7083    size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7084    size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7085    size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7086    log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7087                         returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7088  }
7089  log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7090  log_develop_trace(gc, sweep)("================");
7091}
7092#endif  // PRODUCT
7093
7094void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7095    bool freeRangeInFreeLists) {
7096  log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7097                               p2i(freeFinger), freeRangeInFreeLists);
7098  assert(!inFreeRange(), "Trampling existing free range");
7099  set_inFreeRange(true);
7100  set_lastFreeRangeCoalesced(false);
7101
7102  set_freeFinger(freeFinger);
7103  set_freeRangeInFreeLists(freeRangeInFreeLists);
7104  if (CMSTestInFreeList) {
7105    if (freeRangeInFreeLists) {
7106      FreeChunk* fc = (FreeChunk*) freeFinger;
7107      assert(fc->is_free(), "A chunk on the free list should be free.");
7108      assert(fc->size() > 0, "Free range should have a size");
7109      assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7110    }
7111  }
7112}
7113
7114// Note that the sweeper runs concurrently with mutators. Thus,
7115// it is possible for direct allocation in this generation to happen
7116// in the middle of the sweep. Note that the sweeper also coalesces
7117// contiguous free blocks. Thus, unless the sweeper and the allocator
7118// synchronize appropriately freshly allocated blocks may get swept up.
7119// This is accomplished by the sweeper locking the free lists while
7120// it is sweeping. Thus blocks that are determined to be free are
7121// indeed free. There is however one additional complication:
7122// blocks that have been allocated since the final checkpoint and
7123// mark, will not have been marked and so would be treated as
7124// unreachable and swept up. To prevent this, the allocator marks
7125// the bit map when allocating during the sweep phase. This leads,
7126// however, to a further complication -- objects may have been allocated
7127// but not yet initialized -- in the sense that the header isn't yet
7128// installed. The sweeper can not then determine the size of the block
7129// in order to skip over it. To deal with this case, we use a technique
7130// (due to Printezis) to encode such uninitialized block sizes in the
7131// bit map. Since the bit map uses a bit per every HeapWord, but the
7132// CMS generation has a minimum object size of 3 HeapWords, it follows
7133// that "normal marks" won't be adjacent in the bit map (there will
7134// always be at least two 0 bits between successive 1 bits). We make use
7135// of these "unused" bits to represent uninitialized blocks -- the bit
7136// corresponding to the start of the uninitialized object and the next
7137// bit are both set. Finally, a 1 bit marks the end of the object that
7138// started with the two consecutive 1 bits to indicate its potentially
7139// uninitialized state.
7140
7141size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7142  FreeChunk* fc = (FreeChunk*)addr;
7143  size_t res;
7144
7145  // Check if we are done sweeping. Below we check "addr >= _limit" rather
7146  // than "addr == _limit" because although _limit was a block boundary when
7147  // we started the sweep, it may no longer be one because heap expansion
7148  // may have caused us to coalesce the block ending at the address _limit
7149  // with a newly expanded chunk (this happens when _limit was set to the
7150  // previous _end of the space), so we may have stepped past _limit:
7151  // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7152  if (addr >= _limit) { // we have swept up to or past the limit: finish up
7153    assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7154           "sweep _limit out of bounds");
7155    assert(addr < _sp->end(), "addr out of bounds");
7156    // Flush any free range we might be holding as a single
7157    // coalesced chunk to the appropriate free list.
7158    if (inFreeRange()) {
7159      assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7160             "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7161      flush_cur_free_chunk(freeFinger(),
7162                           pointer_delta(addr, freeFinger()));
7163      log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7164                                   p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7165                                   lastFreeRangeCoalesced() ? 1 : 0);
7166    }
7167
7168    // help the iterator loop finish
7169    return pointer_delta(_sp->end(), addr);
7170  }
7171
7172  assert(addr < _limit, "sweep invariant");
7173  // check if we should yield
7174  do_yield_check(addr);
7175  if (fc->is_free()) {
7176    // Chunk that is already free
7177    res = fc->size();
7178    do_already_free_chunk(fc);
7179    debug_only(_sp->verifyFreeLists());
7180    // If we flush the chunk at hand in lookahead_and_flush()
7181    // and it's coalesced with a preceding chunk, then the
7182    // process of "mangling" the payload of the coalesced block
7183    // will cause erasure of the size information from the
7184    // (erstwhile) header of all the coalesced blocks but the
7185    // first, so the first disjunct in the assert will not hold
7186    // in that specific case (in which case the second disjunct
7187    // will hold).
7188    assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7189           "Otherwise the size info doesn't change at this step");
7190    NOT_PRODUCT(
7191      _numObjectsAlreadyFree++;
7192      _numWordsAlreadyFree += res;
7193    )
7194    NOT_PRODUCT(_last_fc = fc;)
7195  } else if (!_bitMap->isMarked(addr)) {
7196    // Chunk is fresh garbage
7197    res = do_garbage_chunk(fc);
7198    debug_only(_sp->verifyFreeLists());
7199    NOT_PRODUCT(
7200      _numObjectsFreed++;
7201      _numWordsFreed += res;
7202    )
7203  } else {
7204    // Chunk that is alive.
7205    res = do_live_chunk(fc);
7206    debug_only(_sp->verifyFreeLists());
7207    NOT_PRODUCT(
7208        _numObjectsLive++;
7209        _numWordsLive += res;
7210    )
7211  }
7212  return res;
7213}
7214
7215// For the smart allocation, record following
7216//  split deaths - a free chunk is removed from its free list because
7217//      it is being split into two or more chunks.
7218//  split birth - a free chunk is being added to its free list because
7219//      a larger free chunk has been split and resulted in this free chunk.
7220//  coal death - a free chunk is being removed from its free list because
7221//      it is being coalesced into a large free chunk.
7222//  coal birth - a free chunk is being added to its free list because
7223//      it was created when two or more free chunks where coalesced into
7224//      this free chunk.
7225//
7226// These statistics are used to determine the desired number of free
7227// chunks of a given size.  The desired number is chosen to be relative
7228// to the end of a CMS sweep.  The desired number at the end of a sweep
7229// is the
7230//      count-at-end-of-previous-sweep (an amount that was enough)
7231//              - count-at-beginning-of-current-sweep  (the excess)
7232//              + split-births  (gains in this size during interval)
7233//              - split-deaths  (demands on this size during interval)
7234// where the interval is from the end of one sweep to the end of the
7235// next.
7236//
7237// When sweeping the sweeper maintains an accumulated chunk which is
7238// the chunk that is made up of chunks that have been coalesced.  That
7239// will be termed the left-hand chunk.  A new chunk of garbage that
7240// is being considered for coalescing will be referred to as the
7241// right-hand chunk.
7242//
7243// When making a decision on whether to coalesce a right-hand chunk with
7244// the current left-hand chunk, the current count vs. the desired count
7245// of the left-hand chunk is considered.  Also if the right-hand chunk
7246// is near the large chunk at the end of the heap (see
7247// ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7248// left-hand chunk is coalesced.
7249//
7250// When making a decision about whether to split a chunk, the desired count
7251// vs. the current count of the candidate to be split is also considered.
7252// If the candidate is underpopulated (currently fewer chunks than desired)
7253// a chunk of an overpopulated (currently more chunks than desired) size may
7254// be chosen.  The "hint" associated with a free list, if non-null, points
7255// to a free list which may be overpopulated.
7256//
7257
7258void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7259  const size_t size = fc->size();
7260  // Chunks that cannot be coalesced are not in the
7261  // free lists.
7262  if (CMSTestInFreeList && !fc->cantCoalesce()) {
7263    assert(_sp->verify_chunk_in_free_list(fc),
7264           "free chunk should be in free lists");
7265  }
7266  // a chunk that is already free, should not have been
7267  // marked in the bit map
7268  HeapWord* const addr = (HeapWord*) fc;
7269  assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7270  // Verify that the bit map has no bits marked between
7271  // addr and purported end of this block.
7272  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7273
7274  // Some chunks cannot be coalesced under any circumstances.
7275  // See the definition of cantCoalesce().
7276  if (!fc->cantCoalesce()) {
7277    // This chunk can potentially be coalesced.
7278    // All the work is done in
7279    do_post_free_or_garbage_chunk(fc, size);
7280    // Note that if the chunk is not coalescable (the else arm
7281    // below), we unconditionally flush, without needing to do
7282    // a "lookahead," as we do below.
7283    if (inFreeRange()) lookahead_and_flush(fc, size);
7284  } else {
7285    // Code path common to both original and adaptive free lists.
7286
7287    // cant coalesce with previous block; this should be treated
7288    // as the end of a free run if any
7289    if (inFreeRange()) {
7290      // we kicked some butt; time to pick up the garbage
7291      assert(freeFinger() < addr, "freeFinger points too high");
7292      flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7293    }
7294    // else, nothing to do, just continue
7295  }
7296}
7297
7298size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7299  // This is a chunk of garbage.  It is not in any free list.
7300  // Add it to a free list or let it possibly be coalesced into
7301  // a larger chunk.
7302  HeapWord* const addr = (HeapWord*) fc;
7303  const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7304
7305  // Verify that the bit map has no bits marked between
7306  // addr and purported end of just dead object.
7307  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7308  do_post_free_or_garbage_chunk(fc, size);
7309
7310  assert(_limit >= addr + size,
7311         "A freshly garbage chunk can't possibly straddle over _limit");
7312  if (inFreeRange()) lookahead_and_flush(fc, size);
7313  return size;
7314}
7315
7316size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7317  HeapWord* addr = (HeapWord*) fc;
7318  // The sweeper has just found a live object. Return any accumulated
7319  // left hand chunk to the free lists.
7320  if (inFreeRange()) {
7321    assert(freeFinger() < addr, "freeFinger points too high");
7322    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7323  }
7324
7325  // This object is live: we'd normally expect this to be
7326  // an oop, and like to assert the following:
7327  // assert(oop(addr)->is_oop(), "live block should be an oop");
7328  // However, as we commented above, this may be an object whose
7329  // header hasn't yet been initialized.
7330  size_t size;
7331  assert(_bitMap->isMarked(addr), "Tautology for this control point");
7332  if (_bitMap->isMarked(addr + 1)) {
7333    // Determine the size from the bit map, rather than trying to
7334    // compute it from the object header.
7335    HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7336    size = pointer_delta(nextOneAddr + 1, addr);
7337    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7338           "alignment problem");
7339
7340#ifdef ASSERT
7341      if (oop(addr)->klass_or_null() != NULL) {
7342        // Ignore mark word because we are running concurrent with mutators
7343        assert(oop(addr)->is_oop(true), "live block should be an oop");
7344        assert(size ==
7345               CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7346               "P-mark and computed size do not agree");
7347      }
7348#endif
7349
7350  } else {
7351    // This should be an initialized object that's alive.
7352    assert(oop(addr)->klass_or_null() != NULL,
7353           "Should be an initialized object");
7354    // Ignore mark word because we are running concurrent with mutators
7355    assert(oop(addr)->is_oop(true), "live block should be an oop");
7356    // Verify that the bit map has no bits marked between
7357    // addr and purported end of this block.
7358    size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7359    assert(size >= 3, "Necessary for Printezis marks to work");
7360    assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7361    DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7362  }
7363  return size;
7364}
7365
7366void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7367                                                 size_t chunkSize) {
7368  // do_post_free_or_garbage_chunk() should only be called in the case
7369  // of the adaptive free list allocator.
7370  const bool fcInFreeLists = fc->is_free();
7371  assert((HeapWord*)fc <= _limit, "sweep invariant");
7372  if (CMSTestInFreeList && fcInFreeLists) {
7373    assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7374  }
7375
7376  log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7377
7378  HeapWord* const fc_addr = (HeapWord*) fc;
7379
7380  bool coalesce = false;
7381  const size_t left  = pointer_delta(fc_addr, freeFinger());
7382  const size_t right = chunkSize;
7383  switch (FLSCoalescePolicy) {
7384    // numeric value forms a coalition aggressiveness metric
7385    case 0:  { // never coalesce
7386      coalesce = false;
7387      break;
7388    }
7389    case 1: { // coalesce if left & right chunks on overpopulated lists
7390      coalesce = _sp->coalOverPopulated(left) &&
7391                 _sp->coalOverPopulated(right);
7392      break;
7393    }
7394    case 2: { // coalesce if left chunk on overpopulated list (default)
7395      coalesce = _sp->coalOverPopulated(left);
7396      break;
7397    }
7398    case 3: { // coalesce if left OR right chunk on overpopulated list
7399      coalesce = _sp->coalOverPopulated(left) ||
7400                 _sp->coalOverPopulated(right);
7401      break;
7402    }
7403    case 4: { // always coalesce
7404      coalesce = true;
7405      break;
7406    }
7407    default:
7408     ShouldNotReachHere();
7409  }
7410
7411  // Should the current free range be coalesced?
7412  // If the chunk is in a free range and either we decided to coalesce above
7413  // or the chunk is near the large block at the end of the heap
7414  // (isNearLargestChunk() returns true), then coalesce this chunk.
7415  const bool doCoalesce = inFreeRange()
7416                          && (coalesce || _g->isNearLargestChunk(fc_addr));
7417  if (doCoalesce) {
7418    // Coalesce the current free range on the left with the new
7419    // chunk on the right.  If either is on a free list,
7420    // it must be removed from the list and stashed in the closure.
7421    if (freeRangeInFreeLists()) {
7422      FreeChunk* const ffc = (FreeChunk*)freeFinger();
7423      assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7424             "Size of free range is inconsistent with chunk size.");
7425      if (CMSTestInFreeList) {
7426        assert(_sp->verify_chunk_in_free_list(ffc),
7427               "Chunk is not in free lists");
7428      }
7429      _sp->coalDeath(ffc->size());
7430      _sp->removeFreeChunkFromFreeLists(ffc);
7431      set_freeRangeInFreeLists(false);
7432    }
7433    if (fcInFreeLists) {
7434      _sp->coalDeath(chunkSize);
7435      assert(fc->size() == chunkSize,
7436        "The chunk has the wrong size or is not in the free lists");
7437      _sp->removeFreeChunkFromFreeLists(fc);
7438    }
7439    set_lastFreeRangeCoalesced(true);
7440    print_free_block_coalesced(fc);
7441  } else {  // not in a free range and/or should not coalesce
7442    // Return the current free range and start a new one.
7443    if (inFreeRange()) {
7444      // In a free range but cannot coalesce with the right hand chunk.
7445      // Put the current free range into the free lists.
7446      flush_cur_free_chunk(freeFinger(),
7447                           pointer_delta(fc_addr, freeFinger()));
7448    }
7449    // Set up for new free range.  Pass along whether the right hand
7450    // chunk is in the free lists.
7451    initialize_free_range((HeapWord*)fc, fcInFreeLists);
7452  }
7453}
7454
7455// Lookahead flush:
7456// If we are tracking a free range, and this is the last chunk that
7457// we'll look at because its end crosses past _limit, we'll preemptively
7458// flush it along with any free range we may be holding on to. Note that
7459// this can be the case only for an already free or freshly garbage
7460// chunk. If this block is an object, it can never straddle
7461// over _limit. The "straddling" occurs when _limit is set at
7462// the previous end of the space when this cycle started, and
7463// a subsequent heap expansion caused the previously co-terminal
7464// free block to be coalesced with the newly expanded portion,
7465// thus rendering _limit a non-block-boundary making it dangerous
7466// for the sweeper to step over and examine.
7467void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7468  assert(inFreeRange(), "Should only be called if currently in a free range.");
7469  HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7470  assert(_sp->used_region().contains(eob - 1),
7471         "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7472         " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7473         " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7474         p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7475  if (eob >= _limit) {
7476    assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7477    log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7478                                 "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7479                                 "[" PTR_FORMAT "," PTR_FORMAT ")",
7480                                 p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7481    // Return the storage we are tracking back into the free lists.
7482    log_develop_trace(gc, sweep)("Flushing ... ");
7483    assert(freeFinger() < eob, "Error");
7484    flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7485  }
7486}
7487
7488void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7489  assert(inFreeRange(), "Should only be called if currently in a free range.");
7490  assert(size > 0,
7491    "A zero sized chunk cannot be added to the free lists.");
7492  if (!freeRangeInFreeLists()) {
7493    if (CMSTestInFreeList) {
7494      FreeChunk* fc = (FreeChunk*) chunk;
7495      fc->set_size(size);
7496      assert(!_sp->verify_chunk_in_free_list(fc),
7497             "chunk should not be in free lists yet");
7498    }
7499    log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7500    // A new free range is going to be starting.  The current
7501    // free range has not been added to the free lists yet or
7502    // was removed so add it back.
7503    // If the current free range was coalesced, then the death
7504    // of the free range was recorded.  Record a birth now.
7505    if (lastFreeRangeCoalesced()) {
7506      _sp->coalBirth(size);
7507    }
7508    _sp->addChunkAndRepairOffsetTable(chunk, size,
7509            lastFreeRangeCoalesced());
7510  } else {
7511    log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7512  }
7513  set_inFreeRange(false);
7514  set_freeRangeInFreeLists(false);
7515}
7516
7517// We take a break if we've been at this for a while,
7518// so as to avoid monopolizing the locks involved.
7519void SweepClosure::do_yield_work(HeapWord* addr) {
7520  // Return current free chunk being used for coalescing (if any)
7521  // to the appropriate freelist.  After yielding, the next
7522  // free block encountered will start a coalescing range of
7523  // free blocks.  If the next free block is adjacent to the
7524  // chunk just flushed, they will need to wait for the next
7525  // sweep to be coalesced.
7526  if (inFreeRange()) {
7527    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7528  }
7529
7530  // First give up the locks, then yield, then re-lock.
7531  // We should probably use a constructor/destructor idiom to
7532  // do this unlock/lock or modify the MutexUnlocker class to
7533  // serve our purpose. XXX
7534  assert_lock_strong(_bitMap->lock());
7535  assert_lock_strong(_freelistLock);
7536  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7537         "CMS thread should hold CMS token");
7538  _bitMap->lock()->unlock();
7539  _freelistLock->unlock();
7540  ConcurrentMarkSweepThread::desynchronize(true);
7541  _collector->stopTimer();
7542  _collector->incrementYields();
7543
7544  // See the comment in coordinator_yield()
7545  for (unsigned i = 0; i < CMSYieldSleepCount &&
7546                       ConcurrentMarkSweepThread::should_yield() &&
7547                       !CMSCollector::foregroundGCIsActive(); ++i) {
7548    os::sleep(Thread::current(), 1, false);
7549  }
7550
7551  ConcurrentMarkSweepThread::synchronize(true);
7552  _freelistLock->lock();
7553  _bitMap->lock()->lock_without_safepoint_check();
7554  _collector->startTimer();
7555}
7556
7557#ifndef PRODUCT
7558// This is actually very useful in a product build if it can
7559// be called from the debugger.  Compile it into the product
7560// as needed.
7561bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7562  return debug_cms_space->verify_chunk_in_free_list(fc);
7563}
7564#endif
7565
7566void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7567  log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7568                               p2i(fc), fc->size());
7569}
7570
7571// CMSIsAliveClosure
7572bool CMSIsAliveClosure::do_object_b(oop obj) {
7573  HeapWord* addr = (HeapWord*)obj;
7574  return addr != NULL &&
7575         (!_span.contains(addr) || _bit_map->isMarked(addr));
7576}
7577
7578
7579CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7580                      MemRegion span,
7581                      CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7582                      bool cpc):
7583  _collector(collector),
7584  _span(span),
7585  _bit_map(bit_map),
7586  _mark_stack(mark_stack),
7587  _concurrent_precleaning(cpc) {
7588  assert(!_span.is_empty(), "Empty span could spell trouble");
7589}
7590
7591
7592// CMSKeepAliveClosure: the serial version
7593void CMSKeepAliveClosure::do_oop(oop obj) {
7594  HeapWord* addr = (HeapWord*)obj;
7595  if (_span.contains(addr) &&
7596      !_bit_map->isMarked(addr)) {
7597    _bit_map->mark(addr);
7598    bool simulate_overflow = false;
7599    NOT_PRODUCT(
7600      if (CMSMarkStackOverflowALot &&
7601          _collector->simulate_overflow()) {
7602        // simulate a stack overflow
7603        simulate_overflow = true;
7604      }
7605    )
7606    if (simulate_overflow || !_mark_stack->push(obj)) {
7607      if (_concurrent_precleaning) {
7608        // We dirty the overflown object and let the remark
7609        // phase deal with it.
7610        assert(_collector->overflow_list_is_empty(), "Error");
7611        // In the case of object arrays, we need to dirty all of
7612        // the cards that the object spans. No locking or atomics
7613        // are needed since no one else can be mutating the mod union
7614        // table.
7615        if (obj->is_objArray()) {
7616          size_t sz = obj->size();
7617          HeapWord* end_card_addr =
7618            (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7619          MemRegion redirty_range = MemRegion(addr, end_card_addr);
7620          assert(!redirty_range.is_empty(), "Arithmetical tautology");
7621          _collector->_modUnionTable.mark_range(redirty_range);
7622        } else {
7623          _collector->_modUnionTable.mark(addr);
7624        }
7625        _collector->_ser_kac_preclean_ovflw++;
7626      } else {
7627        _collector->push_on_overflow_list(obj);
7628        _collector->_ser_kac_ovflw++;
7629      }
7630    }
7631  }
7632}
7633
7634void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7635void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7636
7637// CMSParKeepAliveClosure: a parallel version of the above.
7638// The work queues are private to each closure (thread),
7639// but (may be) available for stealing by other threads.
7640void CMSParKeepAliveClosure::do_oop(oop obj) {
7641  HeapWord* addr = (HeapWord*)obj;
7642  if (_span.contains(addr) &&
7643      !_bit_map->isMarked(addr)) {
7644    // In general, during recursive tracing, several threads
7645    // may be concurrently getting here; the first one to
7646    // "tag" it, claims it.
7647    if (_bit_map->par_mark(addr)) {
7648      bool res = _work_queue->push(obj);
7649      assert(res, "Low water mark should be much less than capacity");
7650      // Do a recursive trim in the hope that this will keep
7651      // stack usage lower, but leave some oops for potential stealers
7652      trim_queue(_low_water_mark);
7653    } // Else, another thread got there first
7654  }
7655}
7656
7657void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7658void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7659
7660void CMSParKeepAliveClosure::trim_queue(uint max) {
7661  while (_work_queue->size() > max) {
7662    oop new_oop;
7663    if (_work_queue->pop_local(new_oop)) {
7664      assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7665      assert(_bit_map->isMarked((HeapWord*)new_oop),
7666             "no white objects on this stack!");
7667      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7668      // iterate over the oops in this oop, marking and pushing
7669      // the ones in CMS heap (i.e. in _span).
7670      new_oop->oop_iterate(&_mark_and_push);
7671    }
7672  }
7673}
7674
7675CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7676                                CMSCollector* collector,
7677                                MemRegion span, CMSBitMap* bit_map,
7678                                OopTaskQueue* work_queue):
7679  _collector(collector),
7680  _span(span),
7681  _bit_map(bit_map),
7682  _work_queue(work_queue) { }
7683
7684void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7685  HeapWord* addr = (HeapWord*)obj;
7686  if (_span.contains(addr) &&
7687      !_bit_map->isMarked(addr)) {
7688    if (_bit_map->par_mark(addr)) {
7689      bool simulate_overflow = false;
7690      NOT_PRODUCT(
7691        if (CMSMarkStackOverflowALot &&
7692            _collector->par_simulate_overflow()) {
7693          // simulate a stack overflow
7694          simulate_overflow = true;
7695        }
7696      )
7697      if (simulate_overflow || !_work_queue->push(obj)) {
7698        _collector->par_push_on_overflow_list(obj);
7699        _collector->_par_kac_ovflw++;
7700      }
7701    } // Else another thread got there already
7702  }
7703}
7704
7705void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7706void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7707
7708//////////////////////////////////////////////////////////////////
7709//  CMSExpansionCause                /////////////////////////////
7710//////////////////////////////////////////////////////////////////
7711const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7712  switch (cause) {
7713    case _no_expansion:
7714      return "No expansion";
7715    case _satisfy_free_ratio:
7716      return "Free ratio";
7717    case _satisfy_promotion:
7718      return "Satisfy promotion";
7719    case _satisfy_allocation:
7720      return "allocation";
7721    case _allocate_par_lab:
7722      return "Par LAB";
7723    case _allocate_par_spooling_space:
7724      return "Par Spooling Space";
7725    case _adaptive_size_policy:
7726      return "Ergonomics";
7727    default:
7728      return "unknown";
7729  }
7730}
7731
7732void CMSDrainMarkingStackClosure::do_void() {
7733  // the max number to take from overflow list at a time
7734  const size_t num = _mark_stack->capacity()/4;
7735  assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7736         "Overflow list should be NULL during concurrent phases");
7737  while (!_mark_stack->isEmpty() ||
7738         // if stack is empty, check the overflow list
7739         _collector->take_from_overflow_list(num, _mark_stack)) {
7740    oop obj = _mark_stack->pop();
7741    HeapWord* addr = (HeapWord*)obj;
7742    assert(_span.contains(addr), "Should be within span");
7743    assert(_bit_map->isMarked(addr), "Should be marked");
7744    assert(obj->is_oop(), "Should be an oop");
7745    obj->oop_iterate(_keep_alive);
7746  }
7747}
7748
7749void CMSParDrainMarkingStackClosure::do_void() {
7750  // drain queue
7751  trim_queue(0);
7752}
7753
7754// Trim our work_queue so its length is below max at return
7755void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7756  while (_work_queue->size() > max) {
7757    oop new_oop;
7758    if (_work_queue->pop_local(new_oop)) {
7759      assert(new_oop->is_oop(), "Expected an oop");
7760      assert(_bit_map->isMarked((HeapWord*)new_oop),
7761             "no white objects on this stack!");
7762      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7763      // iterate over the oops in this oop, marking and pushing
7764      // the ones in CMS heap (i.e. in _span).
7765      new_oop->oop_iterate(&_mark_and_push);
7766    }
7767  }
7768}
7769
7770////////////////////////////////////////////////////////////////////
7771// Support for Marking Stack Overflow list handling and related code
7772////////////////////////////////////////////////////////////////////
7773// Much of the following code is similar in shape and spirit to the
7774// code used in ParNewGC. We should try and share that code
7775// as much as possible in the future.
7776
7777#ifndef PRODUCT
7778// Debugging support for CMSStackOverflowALot
7779
7780// It's OK to call this multi-threaded;  the worst thing
7781// that can happen is that we'll get a bunch of closely
7782// spaced simulated overflows, but that's OK, in fact
7783// probably good as it would exercise the overflow code
7784// under contention.
7785bool CMSCollector::simulate_overflow() {
7786  if (_overflow_counter-- <= 0) { // just being defensive
7787    _overflow_counter = CMSMarkStackOverflowInterval;
7788    return true;
7789  } else {
7790    return false;
7791  }
7792}
7793
7794bool CMSCollector::par_simulate_overflow() {
7795  return simulate_overflow();
7796}
7797#endif
7798
7799// Single-threaded
7800bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7801  assert(stack->isEmpty(), "Expected precondition");
7802  assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7803  size_t i = num;
7804  oop  cur = _overflow_list;
7805  const markOop proto = markOopDesc::prototype();
7806  NOT_PRODUCT(ssize_t n = 0;)
7807  for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7808    next = oop(cur->mark());
7809    cur->set_mark(proto);   // until proven otherwise
7810    assert(cur->is_oop(), "Should be an oop");
7811    bool res = stack->push(cur);
7812    assert(res, "Bit off more than can chew?");
7813    NOT_PRODUCT(n++;)
7814  }
7815  _overflow_list = cur;
7816#ifndef PRODUCT
7817  assert(_num_par_pushes >= n, "Too many pops?");
7818  _num_par_pushes -=n;
7819#endif
7820  return !stack->isEmpty();
7821}
7822
7823#define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7824// (MT-safe) Get a prefix of at most "num" from the list.
7825// The overflow list is chained through the mark word of
7826// each object in the list. We fetch the entire list,
7827// break off a prefix of the right size and return the
7828// remainder. If other threads try to take objects from
7829// the overflow list at that time, they will wait for
7830// some time to see if data becomes available. If (and
7831// only if) another thread places one or more object(s)
7832// on the global list before we have returned the suffix
7833// to the global list, we will walk down our local list
7834// to find its end and append the global list to
7835// our suffix before returning it. This suffix walk can
7836// prove to be expensive (quadratic in the amount of traffic)
7837// when there are many objects in the overflow list and
7838// there is much producer-consumer contention on the list.
7839// *NOTE*: The overflow list manipulation code here and
7840// in ParNewGeneration:: are very similar in shape,
7841// except that in the ParNew case we use the old (from/eden)
7842// copy of the object to thread the list via its klass word.
7843// Because of the common code, if you make any changes in
7844// the code below, please check the ParNew version to see if
7845// similar changes might be needed.
7846// CR 6797058 has been filed to consolidate the common code.
7847bool CMSCollector::par_take_from_overflow_list(size_t num,
7848                                               OopTaskQueue* work_q,
7849                                               int no_of_gc_threads) {
7850  assert(work_q->size() == 0, "First empty local work queue");
7851  assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7852  if (_overflow_list == NULL) {
7853    return false;
7854  }
7855  // Grab the entire list; we'll put back a suffix
7856  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7857  Thread* tid = Thread::current();
7858  // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7859  // set to ParallelGCThreads.
7860  size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7861  size_t sleep_time_millis = MAX2((size_t)1, num/100);
7862  // If the list is busy, we spin for a short while,
7863  // sleeping between attempts to get the list.
7864  for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7865    os::sleep(tid, sleep_time_millis, false);
7866    if (_overflow_list == NULL) {
7867      // Nothing left to take
7868      return false;
7869    } else if (_overflow_list != BUSY) {
7870      // Try and grab the prefix
7871      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7872    }
7873  }
7874  // If the list was found to be empty, or we spun long
7875  // enough, we give up and return empty-handed. If we leave
7876  // the list in the BUSY state below, it must be the case that
7877  // some other thread holds the overflow list and will set it
7878  // to a non-BUSY state in the future.
7879  if (prefix == NULL || prefix == BUSY) {
7880     // Nothing to take or waited long enough
7881     if (prefix == NULL) {
7882       // Write back the NULL in case we overwrote it with BUSY above
7883       // and it is still the same value.
7884       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7885     }
7886     return false;
7887  }
7888  assert(prefix != NULL && prefix != BUSY, "Error");
7889  size_t i = num;
7890  oop cur = prefix;
7891  // Walk down the first "num" objects, unless we reach the end.
7892  for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7893  if (cur->mark() == NULL) {
7894    // We have "num" or fewer elements in the list, so there
7895    // is nothing to return to the global list.
7896    // Write back the NULL in lieu of the BUSY we wrote
7897    // above, if it is still the same value.
7898    if (_overflow_list == BUSY) {
7899      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7900    }
7901  } else {
7902    // Chop off the suffix and return it to the global list.
7903    assert(cur->mark() != BUSY, "Error");
7904    oop suffix_head = cur->mark(); // suffix will be put back on global list
7905    cur->set_mark(NULL);           // break off suffix
7906    // It's possible that the list is still in the empty(busy) state
7907    // we left it in a short while ago; in that case we may be
7908    // able to place back the suffix without incurring the cost
7909    // of a walk down the list.
7910    oop observed_overflow_list = _overflow_list;
7911    oop cur_overflow_list = observed_overflow_list;
7912    bool attached = false;
7913    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7914      observed_overflow_list =
7915        (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7916      if (cur_overflow_list == observed_overflow_list) {
7917        attached = true;
7918        break;
7919      } else cur_overflow_list = observed_overflow_list;
7920    }
7921    if (!attached) {
7922      // Too bad, someone else sneaked in (at least) an element; we'll need
7923      // to do a splice. Find tail of suffix so we can prepend suffix to global
7924      // list.
7925      for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7926      oop suffix_tail = cur;
7927      assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7928             "Tautology");
7929      observed_overflow_list = _overflow_list;
7930      do {
7931        cur_overflow_list = observed_overflow_list;
7932        if (cur_overflow_list != BUSY) {
7933          // Do the splice ...
7934          suffix_tail->set_mark(markOop(cur_overflow_list));
7935        } else { // cur_overflow_list == BUSY
7936          suffix_tail->set_mark(NULL);
7937        }
7938        // ... and try to place spliced list back on overflow_list ...
7939        observed_overflow_list =
7940          (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7941      } while (cur_overflow_list != observed_overflow_list);
7942      // ... until we have succeeded in doing so.
7943    }
7944  }
7945
7946  // Push the prefix elements on work_q
7947  assert(prefix != NULL, "control point invariant");
7948  const markOop proto = markOopDesc::prototype();
7949  oop next;
7950  NOT_PRODUCT(ssize_t n = 0;)
7951  for (cur = prefix; cur != NULL; cur = next) {
7952    next = oop(cur->mark());
7953    cur->set_mark(proto);   // until proven otherwise
7954    assert(cur->is_oop(), "Should be an oop");
7955    bool res = work_q->push(cur);
7956    assert(res, "Bit off more than we can chew?");
7957    NOT_PRODUCT(n++;)
7958  }
7959#ifndef PRODUCT
7960  assert(_num_par_pushes >= n, "Too many pops?");
7961  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7962#endif
7963  return true;
7964}
7965
7966// Single-threaded
7967void CMSCollector::push_on_overflow_list(oop p) {
7968  NOT_PRODUCT(_num_par_pushes++;)
7969  assert(p->is_oop(), "Not an oop");
7970  preserve_mark_if_necessary(p);
7971  p->set_mark((markOop)_overflow_list);
7972  _overflow_list = p;
7973}
7974
7975// Multi-threaded; use CAS to prepend to overflow list
7976void CMSCollector::par_push_on_overflow_list(oop p) {
7977  NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7978  assert(p->is_oop(), "Not an oop");
7979  par_preserve_mark_if_necessary(p);
7980  oop observed_overflow_list = _overflow_list;
7981  oop cur_overflow_list;
7982  do {
7983    cur_overflow_list = observed_overflow_list;
7984    if (cur_overflow_list != BUSY) {
7985      p->set_mark(markOop(cur_overflow_list));
7986    } else {
7987      p->set_mark(NULL);
7988    }
7989    observed_overflow_list =
7990      (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7991  } while (cur_overflow_list != observed_overflow_list);
7992}
7993#undef BUSY
7994
7995// Single threaded
7996// General Note on GrowableArray: pushes may silently fail
7997// because we are (temporarily) out of C-heap for expanding
7998// the stack. The problem is quite ubiquitous and affects
7999// a lot of code in the JVM. The prudent thing for GrowableArray
8000// to do (for now) is to exit with an error. However, that may
8001// be too draconian in some cases because the caller may be
8002// able to recover without much harm. For such cases, we
8003// should probably introduce a "soft_push" method which returns
8004// an indication of success or failure with the assumption that
8005// the caller may be able to recover from a failure; code in
8006// the VM can then be changed, incrementally, to deal with such
8007// failures where possible, thus, incrementally hardening the VM
8008// in such low resource situations.
8009void CMSCollector::preserve_mark_work(oop p, markOop m) {
8010  _preserved_oop_stack.push(p);
8011  _preserved_mark_stack.push(m);
8012  assert(m == p->mark(), "Mark word changed");
8013  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8014         "bijection");
8015}
8016
8017// Single threaded
8018void CMSCollector::preserve_mark_if_necessary(oop p) {
8019  markOop m = p->mark();
8020  if (m->must_be_preserved(p)) {
8021    preserve_mark_work(p, m);
8022  }
8023}
8024
8025void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8026  markOop m = p->mark();
8027  if (m->must_be_preserved(p)) {
8028    MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8029    // Even though we read the mark word without holding
8030    // the lock, we are assured that it will not change
8031    // because we "own" this oop, so no other thread can
8032    // be trying to push it on the overflow list; see
8033    // the assertion in preserve_mark_work() that checks
8034    // that m == p->mark().
8035    preserve_mark_work(p, m);
8036  }
8037}
8038
8039// We should be able to do this multi-threaded,
8040// a chunk of stack being a task (this is
8041// correct because each oop only ever appears
8042// once in the overflow list. However, it's
8043// not very easy to completely overlap this with
8044// other operations, so will generally not be done
8045// until all work's been completed. Because we
8046// expect the preserved oop stack (set) to be small,
8047// it's probably fine to do this single-threaded.
8048// We can explore cleverer concurrent/overlapped/parallel
8049// processing of preserved marks if we feel the
8050// need for this in the future. Stack overflow should
8051// be so rare in practice and, when it happens, its
8052// effect on performance so great that this will
8053// likely just be in the noise anyway.
8054void CMSCollector::restore_preserved_marks_if_any() {
8055  assert(SafepointSynchronize::is_at_safepoint(),
8056         "world should be stopped");
8057  assert(Thread::current()->is_ConcurrentGC_thread() ||
8058         Thread::current()->is_VM_thread(),
8059         "should be single-threaded");
8060  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8061         "bijection");
8062
8063  while (!_preserved_oop_stack.is_empty()) {
8064    oop p = _preserved_oop_stack.pop();
8065    assert(p->is_oop(), "Should be an oop");
8066    assert(_span.contains(p), "oop should be in _span");
8067    assert(p->mark() == markOopDesc::prototype(),
8068           "Set when taken from overflow list");
8069    markOop m = _preserved_mark_stack.pop();
8070    p->set_mark(m);
8071  }
8072  assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8073         "stacks were cleared above");
8074}
8075
8076#ifndef PRODUCT
8077bool CMSCollector::no_preserved_marks() const {
8078  return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8079}
8080#endif
8081
8082// Transfer some number of overflown objects to usual marking
8083// stack. Return true if some objects were transferred.
8084bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8085  size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8086                    (size_t)ParGCDesiredObjsFromOverflowList);
8087
8088  bool res = _collector->take_from_overflow_list(num, _mark_stack);
8089  assert(_collector->overflow_list_is_empty() || res,
8090         "If list is not empty, we should have taken something");
8091  assert(!res || !_mark_stack->isEmpty(),
8092         "If we took something, it should now be on our stack");
8093  return res;
8094}
8095
8096size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8097  size_t res = _sp->block_size_no_stall(addr, _collector);
8098  if (_sp->block_is_obj(addr)) {
8099    if (_live_bit_map->isMarked(addr)) {
8100      // It can't have been dead in a previous cycle
8101      guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8102    } else {
8103      _dead_bit_map->mark(addr);      // mark the dead object
8104    }
8105  }
8106  // Could be 0, if the block size could not be computed without stalling.
8107  return res;
8108}
8109
8110TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8111
8112  switch (phase) {
8113    case CMSCollector::InitialMarking:
8114      initialize(true  /* fullGC */ ,
8115                 cause /* cause of the GC */,
8116                 true  /* recordGCBeginTime */,
8117                 true  /* recordPreGCUsage */,
8118                 false /* recordPeakUsage */,
8119                 false /* recordPostGCusage */,
8120                 true  /* recordAccumulatedGCTime */,
8121                 false /* recordGCEndTime */,
8122                 false /* countCollection */  );
8123      break;
8124
8125    case CMSCollector::FinalMarking:
8126      initialize(true  /* fullGC */ ,
8127                 cause /* cause of the GC */,
8128                 false /* recordGCBeginTime */,
8129                 false /* recordPreGCUsage */,
8130                 false /* recordPeakUsage */,
8131                 false /* recordPostGCusage */,
8132                 true  /* recordAccumulatedGCTime */,
8133                 false /* recordGCEndTime */,
8134                 false /* countCollection */  );
8135      break;
8136
8137    case CMSCollector::Sweeping:
8138      initialize(true  /* fullGC */ ,
8139                 cause /* cause of the GC */,
8140                 false /* recordGCBeginTime */,
8141                 false /* recordPreGCUsage */,
8142                 true  /* recordPeakUsage */,
8143                 true  /* recordPostGCusage */,
8144                 false /* recordAccumulatedGCTime */,
8145                 true  /* recordGCEndTime */,
8146                 true  /* countCollection */  );
8147      break;
8148
8149    default:
8150      ShouldNotReachHere();
8151  }
8152}
8153