concurrentMarkSweepGeneration.cpp revision 10200:9d41cca130a7
1/*
2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoaderData.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "classfile/systemDictionary.hpp"
30#include "code/codeCache.hpp"
31#include "gc/cms/cmsCollectorPolicy.hpp"
32#include "gc/cms/cmsOopClosures.inline.hpp"
33#include "gc/cms/compactibleFreeListSpace.hpp"
34#include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
35#include "gc/cms/concurrentMarkSweepThread.hpp"
36#include "gc/cms/parNewGeneration.hpp"
37#include "gc/cms/vmCMSOperations.hpp"
38#include "gc/serial/genMarkSweep.hpp"
39#include "gc/serial/tenuredGeneration.hpp"
40#include "gc/shared/adaptiveSizePolicy.hpp"
41#include "gc/shared/cardGeneration.inline.hpp"
42#include "gc/shared/cardTableRS.hpp"
43#include "gc/shared/collectedHeap.inline.hpp"
44#include "gc/shared/collectorCounters.hpp"
45#include "gc/shared/collectorPolicy.hpp"
46#include "gc/shared/gcLocker.inline.hpp"
47#include "gc/shared/gcPolicyCounters.hpp"
48#include "gc/shared/gcTimer.hpp"
49#include "gc/shared/gcTrace.hpp"
50#include "gc/shared/gcTraceTime.inline.hpp"
51#include "gc/shared/genCollectedHeap.hpp"
52#include "gc/shared/genOopClosures.inline.hpp"
53#include "gc/shared/isGCActiveMark.hpp"
54#include "gc/shared/referencePolicy.hpp"
55#include "gc/shared/strongRootsScope.hpp"
56#include "gc/shared/taskqueue.inline.hpp"
57#include "logging/log.hpp"
58#include "memory/allocation.hpp"
59#include "memory/iterator.inline.hpp"
60#include "memory/padded.hpp"
61#include "memory/resourceArea.hpp"
62#include "oops/oop.inline.hpp"
63#include "prims/jvmtiExport.hpp"
64#include "runtime/atomic.inline.hpp"
65#include "runtime/globals_extension.hpp"
66#include "runtime/handles.inline.hpp"
67#include "runtime/java.hpp"
68#include "runtime/orderAccess.inline.hpp"
69#include "runtime/timer.hpp"
70#include "runtime/vmThread.hpp"
71#include "services/memoryService.hpp"
72#include "services/runtimeService.hpp"
73#include "utilities/stack.inline.hpp"
74
75// statics
76CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
77bool CMSCollector::_full_gc_requested = false;
78GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
79
80//////////////////////////////////////////////////////////////////
81// In support of CMS/VM thread synchronization
82//////////////////////////////////////////////////////////////////
83// We split use of the CGC_lock into 2 "levels".
84// The low-level locking is of the usual CGC_lock monitor. We introduce
85// a higher level "token" (hereafter "CMS token") built on top of the
86// low level monitor (hereafter "CGC lock").
87// The token-passing protocol gives priority to the VM thread. The
88// CMS-lock doesn't provide any fairness guarantees, but clients
89// should ensure that it is only held for very short, bounded
90// durations.
91//
92// When either of the CMS thread or the VM thread is involved in
93// collection operations during which it does not want the other
94// thread to interfere, it obtains the CMS token.
95//
96// If either thread tries to get the token while the other has
97// it, that thread waits. However, if the VM thread and CMS thread
98// both want the token, then the VM thread gets priority while the
99// CMS thread waits. This ensures, for instance, that the "concurrent"
100// phases of the CMS thread's work do not block out the VM thread
101// for long periods of time as the CMS thread continues to hog
102// the token. (See bug 4616232).
103//
104// The baton-passing functions are, however, controlled by the
105// flags _foregroundGCShouldWait and _foregroundGCIsActive,
106// and here the low-level CMS lock, not the high level token,
107// ensures mutual exclusion.
108//
109// Two important conditions that we have to satisfy:
110// 1. if a thread does a low-level wait on the CMS lock, then it
111//    relinquishes the CMS token if it were holding that token
112//    when it acquired the low-level CMS lock.
113// 2. any low-level notifications on the low-level lock
114//    should only be sent when a thread has relinquished the token.
115//
116// In the absence of either property, we'd have potential deadlock.
117//
118// We protect each of the CMS (concurrent and sequential) phases
119// with the CMS _token_, not the CMS _lock_.
120//
121// The only code protected by CMS lock is the token acquisition code
122// itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
123// baton-passing code.
124//
125// Unfortunately, i couldn't come up with a good abstraction to factor and
126// hide the naked CGC_lock manipulation in the baton-passing code
127// further below. That's something we should try to do. Also, the proof
128// of correctness of this 2-level locking scheme is far from obvious,
129// and potentially quite slippery. We have an uneasy suspicion, for instance,
130// that there may be a theoretical possibility of delay/starvation in the
131// low-level lock/wait/notify scheme used for the baton-passing because of
132// potential interference with the priority scheme embodied in the
133// CMS-token-passing protocol. See related comments at a CGC_lock->wait()
134// invocation further below and marked with "XXX 20011219YSR".
135// Indeed, as we note elsewhere, this may become yet more slippery
136// in the presence of multiple CMS and/or multiple VM threads. XXX
137
138class CMSTokenSync: public StackObj {
139 private:
140  bool _is_cms_thread;
141 public:
142  CMSTokenSync(bool is_cms_thread):
143    _is_cms_thread(is_cms_thread) {
144    assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
145           "Incorrect argument to constructor");
146    ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
147  }
148
149  ~CMSTokenSync() {
150    assert(_is_cms_thread ?
151             ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
152             ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
153          "Incorrect state");
154    ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
155  }
156};
157
158// Convenience class that does a CMSTokenSync, and then acquires
159// upto three locks.
160class CMSTokenSyncWithLocks: public CMSTokenSync {
161 private:
162  // Note: locks are acquired in textual declaration order
163  // and released in the opposite order
164  MutexLockerEx _locker1, _locker2, _locker3;
165 public:
166  CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
167                        Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
168    CMSTokenSync(is_cms_thread),
169    _locker1(mutex1, Mutex::_no_safepoint_check_flag),
170    _locker2(mutex2, Mutex::_no_safepoint_check_flag),
171    _locker3(mutex3, Mutex::_no_safepoint_check_flag)
172  { }
173};
174
175
176//////////////////////////////////////////////////////////////////
177//  Concurrent Mark-Sweep Generation /////////////////////////////
178//////////////////////////////////////////////////////////////////
179
180NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
181
182// This struct contains per-thread things necessary to support parallel
183// young-gen collection.
184class CMSParGCThreadState: public CHeapObj<mtGC> {
185 public:
186  CompactibleFreeListSpaceLAB lab;
187  PromotionInfo promo;
188
189  // Constructor.
190  CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
191    promo.setSpace(cfls);
192  }
193};
194
195ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
196     ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
197  CardGeneration(rs, initial_byte_size, ct),
198  _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
199  _did_compact(false)
200{
201  HeapWord* bottom = (HeapWord*) _virtual_space.low();
202  HeapWord* end    = (HeapWord*) _virtual_space.high();
203
204  _direct_allocated_words = 0;
205  NOT_PRODUCT(
206    _numObjectsPromoted = 0;
207    _numWordsPromoted = 0;
208    _numObjectsAllocated = 0;
209    _numWordsAllocated = 0;
210  )
211
212  _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
213  NOT_PRODUCT(debug_cms_space = _cmsSpace;)
214  _cmsSpace->_old_gen = this;
215
216  _gc_stats = new CMSGCStats();
217
218  // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
219  // offsets match. The ability to tell free chunks from objects
220  // depends on this property.
221  debug_only(
222    FreeChunk* junk = NULL;
223    assert(UseCompressedClassPointers ||
224           junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
225           "Offset of FreeChunk::_prev within FreeChunk must match"
226           "  that of OopDesc::_klass within OopDesc");
227  )
228
229  _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
230  for (uint i = 0; i < ParallelGCThreads; i++) {
231    _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
232  }
233
234  _incremental_collection_failed = false;
235  // The "dilatation_factor" is the expansion that can occur on
236  // account of the fact that the minimum object size in the CMS
237  // generation may be larger than that in, say, a contiguous young
238  //  generation.
239  // Ideally, in the calculation below, we'd compute the dilatation
240  // factor as: MinChunkSize/(promoting_gen's min object size)
241  // Since we do not have such a general query interface for the
242  // promoting generation, we'll instead just use the minimum
243  // object size (which today is a header's worth of space);
244  // note that all arithmetic is in units of HeapWords.
245  assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
246  assert(_dilatation_factor >= 1.0, "from previous assert");
247}
248
249
250// The field "_initiating_occupancy" represents the occupancy percentage
251// at which we trigger a new collection cycle.  Unless explicitly specified
252// via CMSInitiatingOccupancyFraction (argument "io" below), it
253// is calculated by:
254//
255//   Let "f" be MinHeapFreeRatio in
256//
257//    _initiating_occupancy = 100-f +
258//                           f * (CMSTriggerRatio/100)
259//   where CMSTriggerRatio is the argument "tr" below.
260//
261// That is, if we assume the heap is at its desired maximum occupancy at the
262// end of a collection, we let CMSTriggerRatio of the (purported) free
263// space be allocated before initiating a new collection cycle.
264//
265void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
266  assert(io <= 100 && tr <= 100, "Check the arguments");
267  if (io >= 0) {
268    _initiating_occupancy = (double)io / 100.0;
269  } else {
270    _initiating_occupancy = ((100 - MinHeapFreeRatio) +
271                             (double)(tr * MinHeapFreeRatio) / 100.0)
272                            / 100.0;
273  }
274}
275
276void ConcurrentMarkSweepGeneration::ref_processor_init() {
277  assert(collector() != NULL, "no collector");
278  collector()->ref_processor_init();
279}
280
281void CMSCollector::ref_processor_init() {
282  if (_ref_processor == NULL) {
283    // Allocate and initialize a reference processor
284    _ref_processor =
285      new ReferenceProcessor(_span,                               // span
286                             (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
287                             ParallelGCThreads,                   // mt processing degree
288                             _cmsGen->refs_discovery_is_mt(),     // mt discovery
289                             MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
290                             _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
291                             &_is_alive_closure);                 // closure for liveness info
292    // Initialize the _ref_processor field of CMSGen
293    _cmsGen->set_ref_processor(_ref_processor);
294
295  }
296}
297
298AdaptiveSizePolicy* CMSCollector::size_policy() {
299  GenCollectedHeap* gch = GenCollectedHeap::heap();
300  return gch->gen_policy()->size_policy();
301}
302
303void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
304
305  const char* gen_name = "old";
306  GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
307  // Generation Counters - generation 1, 1 subspace
308  _gen_counters = new GenerationCounters(gen_name, 1, 1,
309      gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
310
311  _space_counters = new GSpaceCounters(gen_name, 0,
312                                       _virtual_space.reserved_size(),
313                                       this, _gen_counters);
314}
315
316CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
317  _cms_gen(cms_gen)
318{
319  assert(alpha <= 100, "bad value");
320  _saved_alpha = alpha;
321
322  // Initialize the alphas to the bootstrap value of 100.
323  _gc0_alpha = _cms_alpha = 100;
324
325  _cms_begin_time.update();
326  _cms_end_time.update();
327
328  _gc0_duration = 0.0;
329  _gc0_period = 0.0;
330  _gc0_promoted = 0;
331
332  _cms_duration = 0.0;
333  _cms_period = 0.0;
334  _cms_allocated = 0;
335
336  _cms_used_at_gc0_begin = 0;
337  _cms_used_at_gc0_end = 0;
338  _allow_duty_cycle_reduction = false;
339  _valid_bits = 0;
340}
341
342double CMSStats::cms_free_adjustment_factor(size_t free) const {
343  // TBD: CR 6909490
344  return 1.0;
345}
346
347void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
348}
349
350// If promotion failure handling is on use
351// the padded average size of the promotion for each
352// young generation collection.
353double CMSStats::time_until_cms_gen_full() const {
354  size_t cms_free = _cms_gen->cmsSpace()->free();
355  GenCollectedHeap* gch = GenCollectedHeap::heap();
356  size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
357                                   (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
358  if (cms_free > expected_promotion) {
359    // Start a cms collection if there isn't enough space to promote
360    // for the next young collection.  Use the padded average as
361    // a safety factor.
362    cms_free -= expected_promotion;
363
364    // Adjust by the safety factor.
365    double cms_free_dbl = (double)cms_free;
366    double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
367    // Apply a further correction factor which tries to adjust
368    // for recent occurance of concurrent mode failures.
369    cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
370    cms_free_dbl = cms_free_dbl * cms_adjustment;
371
372    log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
373                  cms_free, expected_promotion);
374    log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
375    // Add 1 in case the consumption rate goes to zero.
376    return cms_free_dbl / (cms_consumption_rate() + 1.0);
377  }
378  return 0.0;
379}
380
381// Compare the duration of the cms collection to the
382// time remaining before the cms generation is empty.
383// Note that the time from the start of the cms collection
384// to the start of the cms sweep (less than the total
385// duration of the cms collection) can be used.  This
386// has been tried and some applications experienced
387// promotion failures early in execution.  This was
388// possibly because the averages were not accurate
389// enough at the beginning.
390double CMSStats::time_until_cms_start() const {
391  // We add "gc0_period" to the "work" calculation
392  // below because this query is done (mostly) at the
393  // end of a scavenge, so we need to conservatively
394  // account for that much possible delay
395  // in the query so as to avoid concurrent mode failures
396  // due to starting the collection just a wee bit too
397  // late.
398  double work = cms_duration() + gc0_period();
399  double deadline = time_until_cms_gen_full();
400  // If a concurrent mode failure occurred recently, we want to be
401  // more conservative and halve our expected time_until_cms_gen_full()
402  if (work > deadline) {
403    log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
404                          cms_duration(), gc0_period(), time_until_cms_gen_full());
405    return 0.0;
406  }
407  return work - deadline;
408}
409
410#ifndef PRODUCT
411void CMSStats::print_on(outputStream *st) const {
412  st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
413  st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
414               gc0_duration(), gc0_period(), gc0_promoted());
415  st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
416            cms_duration(), cms_period(), cms_allocated());
417  st->print(",cms_since_beg=%g,cms_since_end=%g",
418            cms_time_since_begin(), cms_time_since_end());
419  st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
420            _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
421
422  if (valid()) {
423    st->print(",promo_rate=%g,cms_alloc_rate=%g",
424              promotion_rate(), cms_allocation_rate());
425    st->print(",cms_consumption_rate=%g,time_until_full=%g",
426              cms_consumption_rate(), time_until_cms_gen_full());
427  }
428  st->print(" ");
429}
430#endif // #ifndef PRODUCT
431
432CMSCollector::CollectorState CMSCollector::_collectorState =
433                             CMSCollector::Idling;
434bool CMSCollector::_foregroundGCIsActive = false;
435bool CMSCollector::_foregroundGCShouldWait = false;
436
437CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
438                           CardTableRS*                   ct,
439                           ConcurrentMarkSweepPolicy*     cp):
440  _cmsGen(cmsGen),
441  _ct(ct),
442  _ref_processor(NULL),    // will be set later
443  _conc_workers(NULL),     // may be set later
444  _abort_preclean(false),
445  _start_sampling(false),
446  _between_prologue_and_epilogue(false),
447  _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
448  _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
449                 -1 /* lock-free */, "No_lock" /* dummy */),
450  _modUnionClosurePar(&_modUnionTable),
451  // Adjust my span to cover old (cms) gen
452  _span(cmsGen->reserved()),
453  // Construct the is_alive_closure with _span & markBitMap
454  _is_alive_closure(_span, &_markBitMap),
455  _restart_addr(NULL),
456  _overflow_list(NULL),
457  _stats(cmsGen),
458  _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
459                             //verify that this lock should be acquired with safepoint check.
460                             Monitor::_safepoint_check_sometimes)),
461  _eden_chunk_array(NULL),     // may be set in ctor body
462  _eden_chunk_capacity(0),     // -- ditto --
463  _eden_chunk_index(0),        // -- ditto --
464  _survivor_plab_array(NULL),  // -- ditto --
465  _survivor_chunk_array(NULL), // -- ditto --
466  _survivor_chunk_capacity(0), // -- ditto --
467  _survivor_chunk_index(0),    // -- ditto --
468  _ser_pmc_preclean_ovflw(0),
469  _ser_kac_preclean_ovflw(0),
470  _ser_pmc_remark_ovflw(0),
471  _par_pmc_remark_ovflw(0),
472  _ser_kac_ovflw(0),
473  _par_kac_ovflw(0),
474#ifndef PRODUCT
475  _num_par_pushes(0),
476#endif
477  _collection_count_start(0),
478  _verifying(false),
479  _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
480  _completed_initialization(false),
481  _collector_policy(cp),
482  _should_unload_classes(CMSClassUnloadingEnabled),
483  _concurrent_cycles_since_last_unload(0),
484  _roots_scanning_options(GenCollectedHeap::SO_None),
485  _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
486  _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
487  _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
488  _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
489  _cms_start_registered(false)
490{
491  if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
492    ExplicitGCInvokesConcurrent = true;
493  }
494  // Now expand the span and allocate the collection support structures
495  // (MUT, marking bit map etc.) to cover both generations subject to
496  // collection.
497
498  // For use by dirty card to oop closures.
499  _cmsGen->cmsSpace()->set_collector(this);
500
501  // Allocate MUT and marking bit map
502  {
503    MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
504    if (!_markBitMap.allocate(_span)) {
505      warning("Failed to allocate CMS Bit Map");
506      return;
507    }
508    assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
509  }
510  {
511    _modUnionTable.allocate(_span);
512    assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
513  }
514
515  if (!_markStack.allocate(MarkStackSize)) {
516    warning("Failed to allocate CMS Marking Stack");
517    return;
518  }
519
520  // Support for multi-threaded concurrent phases
521  if (CMSConcurrentMTEnabled) {
522    if (FLAG_IS_DEFAULT(ConcGCThreads)) {
523      // just for now
524      FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
525    }
526    if (ConcGCThreads > 1) {
527      _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
528                                 ConcGCThreads, true);
529      if (_conc_workers == NULL) {
530        warning("GC/CMS: _conc_workers allocation failure: "
531              "forcing -CMSConcurrentMTEnabled");
532        CMSConcurrentMTEnabled = false;
533      } else {
534        _conc_workers->initialize_workers();
535      }
536    } else {
537      CMSConcurrentMTEnabled = false;
538    }
539  }
540  if (!CMSConcurrentMTEnabled) {
541    ConcGCThreads = 0;
542  } else {
543    // Turn off CMSCleanOnEnter optimization temporarily for
544    // the MT case where it's not fixed yet; see 6178663.
545    CMSCleanOnEnter = false;
546  }
547  assert((_conc_workers != NULL) == (ConcGCThreads > 1),
548         "Inconsistency");
549
550  // Parallel task queues; these are shared for the
551  // concurrent and stop-world phases of CMS, but
552  // are not shared with parallel scavenge (ParNew).
553  {
554    uint i;
555    uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
556
557    if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
558         || ParallelRefProcEnabled)
559        && num_queues > 0) {
560      _task_queues = new OopTaskQueueSet(num_queues);
561      if (_task_queues == NULL) {
562        warning("task_queues allocation failure.");
563        return;
564      }
565      _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
566      typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
567      for (i = 0; i < num_queues; i++) {
568        PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
569        if (q == NULL) {
570          warning("work_queue allocation failure.");
571          return;
572        }
573        _task_queues->register_queue(i, q);
574      }
575      for (i = 0; i < num_queues; i++) {
576        _task_queues->queue(i)->initialize();
577        _hash_seed[i] = 17;  // copied from ParNew
578      }
579    }
580  }
581
582  _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
583
584  // Clip CMSBootstrapOccupancy between 0 and 100.
585  _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
586
587  // Now tell CMS generations the identity of their collector
588  ConcurrentMarkSweepGeneration::set_collector(this);
589
590  // Create & start a CMS thread for this CMS collector
591  _cmsThread = ConcurrentMarkSweepThread::start(this);
592  assert(cmsThread() != NULL, "CMS Thread should have been created");
593  assert(cmsThread()->collector() == this,
594         "CMS Thread should refer to this gen");
595  assert(CGC_lock != NULL, "Where's the CGC_lock?");
596
597  // Support for parallelizing young gen rescan
598  GenCollectedHeap* gch = GenCollectedHeap::heap();
599  assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
600  _young_gen = (ParNewGeneration*)gch->young_gen();
601  if (gch->supports_inline_contig_alloc()) {
602    _top_addr = gch->top_addr();
603    _end_addr = gch->end_addr();
604    assert(_young_gen != NULL, "no _young_gen");
605    _eden_chunk_index = 0;
606    _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
607    _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
608  }
609
610  // Support for parallelizing survivor space rescan
611  if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
612    const size_t max_plab_samples =
613      _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
614
615    _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
616    _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
617    _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
618    _survivor_chunk_capacity = max_plab_samples;
619    for (uint i = 0; i < ParallelGCThreads; i++) {
620      HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
621      ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
622      assert(cur->end() == 0, "Should be 0");
623      assert(cur->array() == vec, "Should be vec");
624      assert(cur->capacity() == max_plab_samples, "Error");
625    }
626  }
627
628  NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
629  _gc_counters = new CollectorCounters("CMS", 1);
630  _completed_initialization = true;
631  _inter_sweep_timer.start();  // start of time
632}
633
634const char* ConcurrentMarkSweepGeneration::name() const {
635  return "concurrent mark-sweep generation";
636}
637void ConcurrentMarkSweepGeneration::update_counters() {
638  if (UsePerfData) {
639    _space_counters->update_all();
640    _gen_counters->update_all();
641  }
642}
643
644// this is an optimized version of update_counters(). it takes the
645// used value as a parameter rather than computing it.
646//
647void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
648  if (UsePerfData) {
649    _space_counters->update_used(used);
650    _space_counters->update_capacity();
651    _gen_counters->update_all();
652  }
653}
654
655void ConcurrentMarkSweepGeneration::print() const {
656  Generation::print();
657  cmsSpace()->print();
658}
659
660#ifndef PRODUCT
661void ConcurrentMarkSweepGeneration::print_statistics() {
662  cmsSpace()->printFLCensus(0);
663}
664#endif
665
666size_t
667ConcurrentMarkSweepGeneration::contiguous_available() const {
668  // dld proposes an improvement in precision here. If the committed
669  // part of the space ends in a free block we should add that to
670  // uncommitted size in the calculation below. Will make this
671  // change later, staying with the approximation below for the
672  // time being. -- ysr.
673  return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
674}
675
676size_t
677ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
678  return _cmsSpace->max_alloc_in_words() * HeapWordSize;
679}
680
681size_t ConcurrentMarkSweepGeneration::max_available() const {
682  return free() + _virtual_space.uncommitted_size();
683}
684
685bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
686  size_t available = max_available();
687  size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
688  bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
689  log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
690                           res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
691  return res;
692}
693
694// At a promotion failure dump information on block layout in heap
695// (cms old generation).
696void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
697  LogHandle(gc, promotion) log;
698  if (log.is_trace()) {
699    ResourceMark rm;
700    cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
701  }
702}
703
704void ConcurrentMarkSweepGeneration::reset_after_compaction() {
705  // Clear the promotion information.  These pointers can be adjusted
706  // along with all the other pointers into the heap but
707  // compaction is expected to be a rare event with
708  // a heap using cms so don't do it without seeing the need.
709  for (uint i = 0; i < ParallelGCThreads; i++) {
710    _par_gc_thread_states[i]->promo.reset();
711  }
712}
713
714void ConcurrentMarkSweepGeneration::compute_new_size() {
715  assert_locked_or_safepoint(Heap_lock);
716
717  // If incremental collection failed, we just want to expand
718  // to the limit.
719  if (incremental_collection_failed()) {
720    clear_incremental_collection_failed();
721    grow_to_reserved();
722    return;
723  }
724
725  // The heap has been compacted but not reset yet.
726  // Any metric such as free() or used() will be incorrect.
727
728  CardGeneration::compute_new_size();
729
730  // Reset again after a possible resizing
731  if (did_compact()) {
732    cmsSpace()->reset_after_compaction();
733  }
734}
735
736void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
737  assert_locked_or_safepoint(Heap_lock);
738
739  // If incremental collection failed, we just want to expand
740  // to the limit.
741  if (incremental_collection_failed()) {
742    clear_incremental_collection_failed();
743    grow_to_reserved();
744    return;
745  }
746
747  double free_percentage = ((double) free()) / capacity();
748  double desired_free_percentage = (double) MinHeapFreeRatio / 100;
749  double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
750
751  // compute expansion delta needed for reaching desired free percentage
752  if (free_percentage < desired_free_percentage) {
753    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
754    assert(desired_capacity >= capacity(), "invalid expansion size");
755    size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
756    LogHandle(gc) log;
757    if (log.is_trace()) {
758      size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
759      log.trace("From compute_new_size: ");
760      log.trace("  Free fraction %f", free_percentage);
761      log.trace("  Desired free fraction %f", desired_free_percentage);
762      log.trace("  Maximum free fraction %f", maximum_free_percentage);
763      log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
764      log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
765      GenCollectedHeap* gch = GenCollectedHeap::heap();
766      assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
767      size_t young_size = gch->young_gen()->capacity();
768      log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
769      log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
770      log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
771      log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
772    }
773    // safe if expansion fails
774    expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
775    log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
776  } else {
777    size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
778    assert(desired_capacity <= capacity(), "invalid expansion size");
779    size_t shrink_bytes = capacity() - desired_capacity;
780    // Don't shrink unless the delta is greater than the minimum shrink we want
781    if (shrink_bytes >= MinHeapDeltaBytes) {
782      shrink_free_list_by(shrink_bytes);
783    }
784  }
785}
786
787Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
788  return cmsSpace()->freelistLock();
789}
790
791HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
792  CMSSynchronousYieldRequest yr;
793  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
794  return have_lock_and_allocate(size, tlab);
795}
796
797HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
798                                                                bool   tlab /* ignored */) {
799  assert_lock_strong(freelistLock());
800  size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
801  HeapWord* res = cmsSpace()->allocate(adjustedSize);
802  // Allocate the object live (grey) if the background collector has
803  // started marking. This is necessary because the marker may
804  // have passed this address and consequently this object will
805  // not otherwise be greyed and would be incorrectly swept up.
806  // Note that if this object contains references, the writing
807  // of those references will dirty the card containing this object
808  // allowing the object to be blackened (and its references scanned)
809  // either during a preclean phase or at the final checkpoint.
810  if (res != NULL) {
811    // We may block here with an uninitialized object with
812    // its mark-bit or P-bits not yet set. Such objects need
813    // to be safely navigable by block_start().
814    assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
815    assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
816    collector()->direct_allocated(res, adjustedSize);
817    _direct_allocated_words += adjustedSize;
818    // allocation counters
819    NOT_PRODUCT(
820      _numObjectsAllocated++;
821      _numWordsAllocated += (int)adjustedSize;
822    )
823  }
824  return res;
825}
826
827// In the case of direct allocation by mutators in a generation that
828// is being concurrently collected, the object must be allocated
829// live (grey) if the background collector has started marking.
830// This is necessary because the marker may
831// have passed this address and consequently this object will
832// not otherwise be greyed and would be incorrectly swept up.
833// Note that if this object contains references, the writing
834// of those references will dirty the card containing this object
835// allowing the object to be blackened (and its references scanned)
836// either during a preclean phase or at the final checkpoint.
837void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
838  assert(_markBitMap.covers(start, size), "Out of bounds");
839  if (_collectorState >= Marking) {
840    MutexLockerEx y(_markBitMap.lock(),
841                    Mutex::_no_safepoint_check_flag);
842    // [see comments preceding SweepClosure::do_blk() below for details]
843    //
844    // Can the P-bits be deleted now?  JJJ
845    //
846    // 1. need to mark the object as live so it isn't collected
847    // 2. need to mark the 2nd bit to indicate the object may be uninitialized
848    // 3. need to mark the end of the object so marking, precleaning or sweeping
849    //    can skip over uninitialized or unparsable objects. An allocated
850    //    object is considered uninitialized for our purposes as long as
851    //    its klass word is NULL.  All old gen objects are parsable
852    //    as soon as they are initialized.)
853    _markBitMap.mark(start);          // object is live
854    _markBitMap.mark(start + 1);      // object is potentially uninitialized?
855    _markBitMap.mark(start + size - 1);
856                                      // mark end of object
857  }
858  // check that oop looks uninitialized
859  assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
860}
861
862void CMSCollector::promoted(bool par, HeapWord* start,
863                            bool is_obj_array, size_t obj_size) {
864  assert(_markBitMap.covers(start), "Out of bounds");
865  // See comment in direct_allocated() about when objects should
866  // be allocated live.
867  if (_collectorState >= Marking) {
868    // we already hold the marking bit map lock, taken in
869    // the prologue
870    if (par) {
871      _markBitMap.par_mark(start);
872    } else {
873      _markBitMap.mark(start);
874    }
875    // We don't need to mark the object as uninitialized (as
876    // in direct_allocated above) because this is being done with the
877    // world stopped and the object will be initialized by the
878    // time the marking, precleaning or sweeping get to look at it.
879    // But see the code for copying objects into the CMS generation,
880    // where we need to ensure that concurrent readers of the
881    // block offset table are able to safely navigate a block that
882    // is in flux from being free to being allocated (and in
883    // transition while being copied into) and subsequently
884    // becoming a bona-fide object when the copy/promotion is complete.
885    assert(SafepointSynchronize::is_at_safepoint(),
886           "expect promotion only at safepoints");
887
888    if (_collectorState < Sweeping) {
889      // Mark the appropriate cards in the modUnionTable, so that
890      // this object gets scanned before the sweep. If this is
891      // not done, CMS generation references in the object might
892      // not get marked.
893      // For the case of arrays, which are otherwise precisely
894      // marked, we need to dirty the entire array, not just its head.
895      if (is_obj_array) {
896        // The [par_]mark_range() method expects mr.end() below to
897        // be aligned to the granularity of a bit's representation
898        // in the heap. In the case of the MUT below, that's a
899        // card size.
900        MemRegion mr(start,
901                     (HeapWord*)round_to((intptr_t)(start + obj_size),
902                        CardTableModRefBS::card_size /* bytes */));
903        if (par) {
904          _modUnionTable.par_mark_range(mr);
905        } else {
906          _modUnionTable.mark_range(mr);
907        }
908      } else {  // not an obj array; we can just mark the head
909        if (par) {
910          _modUnionTable.par_mark(start);
911        } else {
912          _modUnionTable.mark(start);
913        }
914      }
915    }
916  }
917}
918
919oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
920  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
921  // allocate, copy and if necessary update promoinfo --
922  // delegate to underlying space.
923  assert_lock_strong(freelistLock());
924
925#ifndef PRODUCT
926  if (GenCollectedHeap::heap()->promotion_should_fail()) {
927    return NULL;
928  }
929#endif  // #ifndef PRODUCT
930
931  oop res = _cmsSpace->promote(obj, obj_size);
932  if (res == NULL) {
933    // expand and retry
934    size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
935    expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
936    // Since this is the old generation, we don't try to promote
937    // into a more senior generation.
938    res = _cmsSpace->promote(obj, obj_size);
939  }
940  if (res != NULL) {
941    // See comment in allocate() about when objects should
942    // be allocated live.
943    assert(obj->is_oop(), "Will dereference klass pointer below");
944    collector()->promoted(false,           // Not parallel
945                          (HeapWord*)res, obj->is_objArray(), obj_size);
946    // promotion counters
947    NOT_PRODUCT(
948      _numObjectsPromoted++;
949      _numWordsPromoted +=
950        (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
951    )
952  }
953  return res;
954}
955
956
957// IMPORTANT: Notes on object size recognition in CMS.
958// ---------------------------------------------------
959// A block of storage in the CMS generation is always in
960// one of three states. A free block (FREE), an allocated
961// object (OBJECT) whose size() method reports the correct size,
962// and an intermediate state (TRANSIENT) in which its size cannot
963// be accurately determined.
964// STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
965// -----------------------------------------------------
966// FREE:      klass_word & 1 == 1; mark_word holds block size
967//
968// OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
969//            obj->size() computes correct size
970//
971// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
972//
973// STATE IDENTIFICATION: (64 bit+COOPS)
974// ------------------------------------
975// FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
976//
977// OBJECT:    klass_word installed; klass_word != 0;
978//            obj->size() computes correct size
979//
980// TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
981//
982//
983// STATE TRANSITION DIAGRAM
984//
985//        mut / parnew                     mut  /  parnew
986// FREE --------------------> TRANSIENT ---------------------> OBJECT --|
987//  ^                                                                   |
988//  |------------------------ DEAD <------------------------------------|
989//         sweep                            mut
990//
991// While a block is in TRANSIENT state its size cannot be determined
992// so readers will either need to come back later or stall until
993// the size can be determined. Note that for the case of direct
994// allocation, P-bits, when available, may be used to determine the
995// size of an object that may not yet have been initialized.
996
997// Things to support parallel young-gen collection.
998oop
999ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1000                                           oop old, markOop m,
1001                                           size_t word_sz) {
1002#ifndef PRODUCT
1003  if (GenCollectedHeap::heap()->promotion_should_fail()) {
1004    return NULL;
1005  }
1006#endif  // #ifndef PRODUCT
1007
1008  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1009  PromotionInfo* promoInfo = &ps->promo;
1010  // if we are tracking promotions, then first ensure space for
1011  // promotion (including spooling space for saving header if necessary).
1012  // then allocate and copy, then track promoted info if needed.
1013  // When tracking (see PromotionInfo::track()), the mark word may
1014  // be displaced and in this case restoration of the mark word
1015  // occurs in the (oop_since_save_marks_)iterate phase.
1016  if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1017    // Out of space for allocating spooling buffers;
1018    // try expanding and allocating spooling buffers.
1019    if (!expand_and_ensure_spooling_space(promoInfo)) {
1020      return NULL;
1021    }
1022  }
1023  assert(promoInfo->has_spooling_space(), "Control point invariant");
1024  const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1025  HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1026  if (obj_ptr == NULL) {
1027     obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1028     if (obj_ptr == NULL) {
1029       return NULL;
1030     }
1031  }
1032  oop obj = oop(obj_ptr);
1033  OrderAccess::storestore();
1034  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1035  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1036  // IMPORTANT: See note on object initialization for CMS above.
1037  // Otherwise, copy the object.  Here we must be careful to insert the
1038  // klass pointer last, since this marks the block as an allocated object.
1039  // Except with compressed oops it's the mark word.
1040  HeapWord* old_ptr = (HeapWord*)old;
1041  // Restore the mark word copied above.
1042  obj->set_mark(m);
1043  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1044  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1045  OrderAccess::storestore();
1046
1047  if (UseCompressedClassPointers) {
1048    // Copy gap missed by (aligned) header size calculation below
1049    obj->set_klass_gap(old->klass_gap());
1050  }
1051  if (word_sz > (size_t)oopDesc::header_size()) {
1052    Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1053                                 obj_ptr + oopDesc::header_size(),
1054                                 word_sz - oopDesc::header_size());
1055  }
1056
1057  // Now we can track the promoted object, if necessary.  We take care
1058  // to delay the transition from uninitialized to full object
1059  // (i.e., insertion of klass pointer) until after, so that it
1060  // atomically becomes a promoted object.
1061  if (promoInfo->tracking()) {
1062    promoInfo->track((PromotedObject*)obj, old->klass());
1063  }
1064  assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1065  assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1066  assert(old->is_oop(), "Will use and dereference old klass ptr below");
1067
1068  // Finally, install the klass pointer (this should be volatile).
1069  OrderAccess::storestore();
1070  obj->set_klass(old->klass());
1071  // We should now be able to calculate the right size for this object
1072  assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1073
1074  collector()->promoted(true,          // parallel
1075                        obj_ptr, old->is_objArray(), word_sz);
1076
1077  NOT_PRODUCT(
1078    Atomic::inc_ptr(&_numObjectsPromoted);
1079    Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1080  )
1081
1082  return obj;
1083}
1084
1085void
1086ConcurrentMarkSweepGeneration::
1087par_promote_alloc_done(int thread_num) {
1088  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1089  ps->lab.retire(thread_num);
1090}
1091
1092void
1093ConcurrentMarkSweepGeneration::
1094par_oop_since_save_marks_iterate_done(int thread_num) {
1095  CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1096  ParScanWithoutBarrierClosure* dummy_cl = NULL;
1097  ps->promo.promoted_oops_iterate_nv(dummy_cl);
1098}
1099
1100bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1101                                                   size_t size,
1102                                                   bool   tlab)
1103{
1104  // We allow a STW collection only if a full
1105  // collection was requested.
1106  return full || should_allocate(size, tlab); // FIX ME !!!
1107  // This and promotion failure handling are connected at the
1108  // hip and should be fixed by untying them.
1109}
1110
1111bool CMSCollector::shouldConcurrentCollect() {
1112  if (_full_gc_requested) {
1113    log_trace(gc)("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1114    return true;
1115  }
1116
1117  FreelistLocker x(this);
1118  // ------------------------------------------------------------------
1119  // Print out lots of information which affects the initiation of
1120  // a collection.
1121  LogHandle(gc) log;
1122  if (log.is_trace() && stats().valid()) {
1123    log.trace("CMSCollector shouldConcurrentCollect: ");
1124    ResourceMark rm;
1125    stats().print_on(log.debug_stream());
1126    log.trace("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1127    log.trace("free=" SIZE_FORMAT, _cmsGen->free());
1128    log.trace("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1129    log.trace("promotion_rate=%g", stats().promotion_rate());
1130    log.trace("cms_allocation_rate=%g", stats().cms_allocation_rate());
1131    log.trace("occupancy=%3.7f", _cmsGen->occupancy());
1132    log.trace("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1133    log.trace("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1134    log.trace("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1135    log.trace("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1136  }
1137  // ------------------------------------------------------------------
1138
1139  // If the estimated time to complete a cms collection (cms_duration())
1140  // is less than the estimated time remaining until the cms generation
1141  // is full, start a collection.
1142  if (!UseCMSInitiatingOccupancyOnly) {
1143    if (stats().valid()) {
1144      if (stats().time_until_cms_start() == 0.0) {
1145        return true;
1146      }
1147    } else {
1148      // We want to conservatively collect somewhat early in order
1149      // to try and "bootstrap" our CMS/promotion statistics;
1150      // this branch will not fire after the first successful CMS
1151      // collection because the stats should then be valid.
1152      if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1153        log_trace(gc)(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1154                      _cmsGen->occupancy(), _bootstrap_occupancy);
1155        return true;
1156      }
1157    }
1158  }
1159
1160  // Otherwise, we start a collection cycle if
1161  // old gen want a collection cycle started. Each may use
1162  // an appropriate criterion for making this decision.
1163  // XXX We need to make sure that the gen expansion
1164  // criterion dovetails well with this. XXX NEED TO FIX THIS
1165  if (_cmsGen->should_concurrent_collect()) {
1166    log_trace(gc)("CMS old gen initiated");
1167    return true;
1168  }
1169
1170  // We start a collection if we believe an incremental collection may fail;
1171  // this is not likely to be productive in practice because it's probably too
1172  // late anyway.
1173  GenCollectedHeap* gch = GenCollectedHeap::heap();
1174  assert(gch->collector_policy()->is_generation_policy(),
1175         "You may want to check the correctness of the following");
1176  if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1177    log_trace(gc)("CMSCollector: collect because incremental collection will fail ");
1178    return true;
1179  }
1180
1181  if (MetaspaceGC::should_concurrent_collect()) {
1182    log_trace(gc)("CMSCollector: collect for metadata allocation ");
1183    return true;
1184  }
1185
1186  // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1187  if (CMSTriggerInterval >= 0) {
1188    if (CMSTriggerInterval == 0) {
1189      // Trigger always
1190      return true;
1191    }
1192
1193    // Check the CMS time since begin (we do not check the stats validity
1194    // as we want to be able to trigger the first CMS cycle as well)
1195    if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1196      if (stats().valid()) {
1197        log_trace(gc)("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1198                      stats().cms_time_since_begin());
1199      } else {
1200        log_trace(gc)("CMSCollector: collect because of trigger interval (first collection)");
1201      }
1202      return true;
1203    }
1204  }
1205
1206  return false;
1207}
1208
1209void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1210
1211// Clear _expansion_cause fields of constituent generations
1212void CMSCollector::clear_expansion_cause() {
1213  _cmsGen->clear_expansion_cause();
1214}
1215
1216// We should be conservative in starting a collection cycle.  To
1217// start too eagerly runs the risk of collecting too often in the
1218// extreme.  To collect too rarely falls back on full collections,
1219// which works, even if not optimum in terms of concurrent work.
1220// As a work around for too eagerly collecting, use the flag
1221// UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1222// giving the user an easily understandable way of controlling the
1223// collections.
1224// We want to start a new collection cycle if any of the following
1225// conditions hold:
1226// . our current occupancy exceeds the configured initiating occupancy
1227//   for this generation, or
1228// . we recently needed to expand this space and have not, since that
1229//   expansion, done a collection of this generation, or
1230// . the underlying space believes that it may be a good idea to initiate
1231//   a concurrent collection (this may be based on criteria such as the
1232//   following: the space uses linear allocation and linear allocation is
1233//   going to fail, or there is believed to be excessive fragmentation in
1234//   the generation, etc... or ...
1235// [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1236//   the case of the old generation; see CR 6543076):
1237//   we may be approaching a point at which allocation requests may fail because
1238//   we will be out of sufficient free space given allocation rate estimates.]
1239bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1240
1241  assert_lock_strong(freelistLock());
1242  if (occupancy() > initiating_occupancy()) {
1243    log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1244                  short_name(), occupancy(), initiating_occupancy());
1245    return true;
1246  }
1247  if (UseCMSInitiatingOccupancyOnly) {
1248    return false;
1249  }
1250  if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1251    log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1252    return true;
1253  }
1254  return false;
1255}
1256
1257void ConcurrentMarkSweepGeneration::collect(bool   full,
1258                                            bool   clear_all_soft_refs,
1259                                            size_t size,
1260                                            bool   tlab)
1261{
1262  collector()->collect(full, clear_all_soft_refs, size, tlab);
1263}
1264
1265void CMSCollector::collect(bool   full,
1266                           bool   clear_all_soft_refs,
1267                           size_t size,
1268                           bool   tlab)
1269{
1270  // The following "if" branch is present for defensive reasons.
1271  // In the current uses of this interface, it can be replaced with:
1272  // assert(!GCLocker.is_active(), "Can't be called otherwise");
1273  // But I am not placing that assert here to allow future
1274  // generality in invoking this interface.
1275  if (GCLocker::is_active()) {
1276    // A consistency test for GCLocker
1277    assert(GCLocker::needs_gc(), "Should have been set already");
1278    // Skip this foreground collection, instead
1279    // expanding the heap if necessary.
1280    // Need the free list locks for the call to free() in compute_new_size()
1281    compute_new_size();
1282    return;
1283  }
1284  acquire_control_and_collect(full, clear_all_soft_refs);
1285}
1286
1287void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1288  GenCollectedHeap* gch = GenCollectedHeap::heap();
1289  unsigned int gc_count = gch->total_full_collections();
1290  if (gc_count == full_gc_count) {
1291    MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1292    _full_gc_requested = true;
1293    _full_gc_cause = cause;
1294    CGC_lock->notify();   // nudge CMS thread
1295  } else {
1296    assert(gc_count > full_gc_count, "Error: causal loop");
1297  }
1298}
1299
1300bool CMSCollector::is_external_interruption() {
1301  GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1302  return GCCause::is_user_requested_gc(cause) ||
1303         GCCause::is_serviceability_requested_gc(cause);
1304}
1305
1306void CMSCollector::report_concurrent_mode_interruption() {
1307  if (is_external_interruption()) {
1308    log_debug(gc)("Concurrent mode interrupted");
1309  } else {
1310    log_debug(gc)("Concurrent mode failure");
1311    _gc_tracer_cm->report_concurrent_mode_failure();
1312  }
1313}
1314
1315
1316// The foreground and background collectors need to coordinate in order
1317// to make sure that they do not mutually interfere with CMS collections.
1318// When a background collection is active,
1319// the foreground collector may need to take over (preempt) and
1320// synchronously complete an ongoing collection. Depending on the
1321// frequency of the background collections and the heap usage
1322// of the application, this preemption can be seldom or frequent.
1323// There are only certain
1324// points in the background collection that the "collection-baton"
1325// can be passed to the foreground collector.
1326//
1327// The foreground collector will wait for the baton before
1328// starting any part of the collection.  The foreground collector
1329// will only wait at one location.
1330//
1331// The background collector will yield the baton before starting a new
1332// phase of the collection (e.g., before initial marking, marking from roots,
1333// precleaning, final re-mark, sweep etc.)  This is normally done at the head
1334// of the loop which switches the phases. The background collector does some
1335// of the phases (initial mark, final re-mark) with the world stopped.
1336// Because of locking involved in stopping the world,
1337// the foreground collector should not block waiting for the background
1338// collector when it is doing a stop-the-world phase.  The background
1339// collector will yield the baton at an additional point just before
1340// it enters a stop-the-world phase.  Once the world is stopped, the
1341// background collector checks the phase of the collection.  If the
1342// phase has not changed, it proceeds with the collection.  If the
1343// phase has changed, it skips that phase of the collection.  See
1344// the comments on the use of the Heap_lock in collect_in_background().
1345//
1346// Variable used in baton passing.
1347//   _foregroundGCIsActive - Set to true by the foreground collector when
1348//      it wants the baton.  The foreground clears it when it has finished
1349//      the collection.
1350//   _foregroundGCShouldWait - Set to true by the background collector
1351//        when it is running.  The foreground collector waits while
1352//      _foregroundGCShouldWait is true.
1353//  CGC_lock - monitor used to protect access to the above variables
1354//      and to notify the foreground and background collectors.
1355//  _collectorState - current state of the CMS collection.
1356//
1357// The foreground collector
1358//   acquires the CGC_lock
1359//   sets _foregroundGCIsActive
1360//   waits on the CGC_lock for _foregroundGCShouldWait to be false
1361//     various locks acquired in preparation for the collection
1362//     are released so as not to block the background collector
1363//     that is in the midst of a collection
1364//   proceeds with the collection
1365//   clears _foregroundGCIsActive
1366//   returns
1367//
1368// The background collector in a loop iterating on the phases of the
1369//      collection
1370//   acquires the CGC_lock
1371//   sets _foregroundGCShouldWait
1372//   if _foregroundGCIsActive is set
1373//     clears _foregroundGCShouldWait, notifies _CGC_lock
1374//     waits on _CGC_lock for _foregroundGCIsActive to become false
1375//     and exits the loop.
1376//   otherwise
1377//     proceed with that phase of the collection
1378//     if the phase is a stop-the-world phase,
1379//       yield the baton once more just before enqueueing
1380//       the stop-world CMS operation (executed by the VM thread).
1381//   returns after all phases of the collection are done
1382//
1383
1384void CMSCollector::acquire_control_and_collect(bool full,
1385        bool clear_all_soft_refs) {
1386  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1387  assert(!Thread::current()->is_ConcurrentGC_thread(),
1388         "shouldn't try to acquire control from self!");
1389
1390  // Start the protocol for acquiring control of the
1391  // collection from the background collector (aka CMS thread).
1392  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1393         "VM thread should have CMS token");
1394  // Remember the possibly interrupted state of an ongoing
1395  // concurrent collection
1396  CollectorState first_state = _collectorState;
1397
1398  // Signal to a possibly ongoing concurrent collection that
1399  // we want to do a foreground collection.
1400  _foregroundGCIsActive = true;
1401
1402  // release locks and wait for a notify from the background collector
1403  // releasing the locks in only necessary for phases which
1404  // do yields to improve the granularity of the collection.
1405  assert_lock_strong(bitMapLock());
1406  // We need to lock the Free list lock for the space that we are
1407  // currently collecting.
1408  assert(haveFreelistLocks(), "Must be holding free list locks");
1409  bitMapLock()->unlock();
1410  releaseFreelistLocks();
1411  {
1412    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1413    if (_foregroundGCShouldWait) {
1414      // We are going to be waiting for action for the CMS thread;
1415      // it had better not be gone (for instance at shutdown)!
1416      assert(ConcurrentMarkSweepThread::cmst() != NULL,
1417             "CMS thread must be running");
1418      // Wait here until the background collector gives us the go-ahead
1419      ConcurrentMarkSweepThread::clear_CMS_flag(
1420        ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1421      // Get a possibly blocked CMS thread going:
1422      //   Note that we set _foregroundGCIsActive true above,
1423      //   without protection of the CGC_lock.
1424      CGC_lock->notify();
1425      assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1426             "Possible deadlock");
1427      while (_foregroundGCShouldWait) {
1428        // wait for notification
1429        CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1430        // Possibility of delay/starvation here, since CMS token does
1431        // not know to give priority to VM thread? Actually, i think
1432        // there wouldn't be any delay/starvation, but the proof of
1433        // that "fact" (?) appears non-trivial. XXX 20011219YSR
1434      }
1435      ConcurrentMarkSweepThread::set_CMS_flag(
1436        ConcurrentMarkSweepThread::CMS_vm_has_token);
1437    }
1438  }
1439  // The CMS_token is already held.  Get back the other locks.
1440  assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1441         "VM thread should have CMS token");
1442  getFreelistLocks();
1443  bitMapLock()->lock_without_safepoint_check();
1444  log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1445                       p2i(Thread::current()), first_state);
1446  log_debug(gc, state)("    gets control with state %d", _collectorState);
1447
1448  // Inform cms gen if this was due to partial collection failing.
1449  // The CMS gen may use this fact to determine its expansion policy.
1450  GenCollectedHeap* gch = GenCollectedHeap::heap();
1451  if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1452    assert(!_cmsGen->incremental_collection_failed(),
1453           "Should have been noticed, reacted to and cleared");
1454    _cmsGen->set_incremental_collection_failed();
1455  }
1456
1457  if (first_state > Idling) {
1458    report_concurrent_mode_interruption();
1459  }
1460
1461  set_did_compact(true);
1462
1463  // If the collection is being acquired from the background
1464  // collector, there may be references on the discovered
1465  // references lists.  Abandon those references, since some
1466  // of them may have become unreachable after concurrent
1467  // discovery; the STW compacting collector will redo discovery
1468  // more precisely, without being subject to floating garbage.
1469  // Leaving otherwise unreachable references in the discovered
1470  // lists would require special handling.
1471  ref_processor()->disable_discovery();
1472  ref_processor()->abandon_partial_discovery();
1473  ref_processor()->verify_no_references_recorded();
1474
1475  if (first_state > Idling) {
1476    save_heap_summary();
1477  }
1478
1479  do_compaction_work(clear_all_soft_refs);
1480
1481  // Has the GC time limit been exceeded?
1482  size_t max_eden_size = _young_gen->max_eden_size();
1483  GCCause::Cause gc_cause = gch->gc_cause();
1484  size_policy()->check_gc_overhead_limit(_young_gen->used(),
1485                                         _young_gen->eden()->used(),
1486                                         _cmsGen->max_capacity(),
1487                                         max_eden_size,
1488                                         full,
1489                                         gc_cause,
1490                                         gch->collector_policy());
1491
1492  // Reset the expansion cause, now that we just completed
1493  // a collection cycle.
1494  clear_expansion_cause();
1495  _foregroundGCIsActive = false;
1496  return;
1497}
1498
1499// Resize the tenured generation
1500// after obtaining the free list locks for the
1501// two generations.
1502void CMSCollector::compute_new_size() {
1503  assert_locked_or_safepoint(Heap_lock);
1504  FreelistLocker z(this);
1505  MetaspaceGC::compute_new_size();
1506  _cmsGen->compute_new_size_free_list();
1507}
1508
1509// A work method used by the foreground collector to do
1510// a mark-sweep-compact.
1511void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1512  GenCollectedHeap* gch = GenCollectedHeap::heap();
1513
1514  STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1515  gc_timer->register_gc_start();
1516
1517  SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1518  gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1519
1520  gch->pre_full_gc_dump(gc_timer);
1521
1522  GCTraceTime(Trace, gc) t("CMS:MSC");
1523
1524  // Temporarily widen the span of the weak reference processing to
1525  // the entire heap.
1526  MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1527  ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1528  // Temporarily, clear the "is_alive_non_header" field of the
1529  // reference processor.
1530  ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1531  // Temporarily make reference _processing_ single threaded (non-MT).
1532  ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1533  // Temporarily make refs discovery atomic
1534  ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1535  // Temporarily make reference _discovery_ single threaded (non-MT)
1536  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1537
1538  ref_processor()->set_enqueuing_is_done(false);
1539  ref_processor()->enable_discovery();
1540  ref_processor()->setup_policy(clear_all_soft_refs);
1541  // If an asynchronous collection finishes, the _modUnionTable is
1542  // all clear.  If we are assuming the collection from an asynchronous
1543  // collection, clear the _modUnionTable.
1544  assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1545    "_modUnionTable should be clear if the baton was not passed");
1546  _modUnionTable.clear_all();
1547  assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1548    "mod union for klasses should be clear if the baton was passed");
1549  _ct->klass_rem_set()->clear_mod_union();
1550
1551  // We must adjust the allocation statistics being maintained
1552  // in the free list space. We do so by reading and clearing
1553  // the sweep timer and updating the block flux rate estimates below.
1554  assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1555  if (_inter_sweep_timer.is_active()) {
1556    _inter_sweep_timer.stop();
1557    // Note that we do not use this sample to update the _inter_sweep_estimate.
1558    _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1559                                            _inter_sweep_estimate.padded_average(),
1560                                            _intra_sweep_estimate.padded_average());
1561  }
1562
1563  GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1564  #ifdef ASSERT
1565    CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1566    size_t free_size = cms_space->free();
1567    assert(free_size ==
1568           pointer_delta(cms_space->end(), cms_space->compaction_top())
1569           * HeapWordSize,
1570      "All the free space should be compacted into one chunk at top");
1571    assert(cms_space->dictionary()->total_chunk_size(
1572                                      debug_only(cms_space->freelistLock())) == 0 ||
1573           cms_space->totalSizeInIndexedFreeLists() == 0,
1574      "All the free space should be in a single chunk");
1575    size_t num = cms_space->totalCount();
1576    assert((free_size == 0 && num == 0) ||
1577           (free_size > 0  && (num == 1 || num == 2)),
1578         "There should be at most 2 free chunks after compaction");
1579  #endif // ASSERT
1580  _collectorState = Resetting;
1581  assert(_restart_addr == NULL,
1582         "Should have been NULL'd before baton was passed");
1583  reset_stw();
1584  _cmsGen->reset_after_compaction();
1585  _concurrent_cycles_since_last_unload = 0;
1586
1587  // Clear any data recorded in the PLAB chunk arrays.
1588  if (_survivor_plab_array != NULL) {
1589    reset_survivor_plab_arrays();
1590  }
1591
1592  // Adjust the per-size allocation stats for the next epoch.
1593  _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1594  // Restart the "inter sweep timer" for the next epoch.
1595  _inter_sweep_timer.reset();
1596  _inter_sweep_timer.start();
1597
1598  gch->post_full_gc_dump(gc_timer);
1599
1600  gc_timer->register_gc_end();
1601
1602  gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1603
1604  // For a mark-sweep-compact, compute_new_size() will be called
1605  // in the heap's do_collection() method.
1606}
1607
1608void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1609  LogHandle(gc, heap) log;
1610  if (!log.is_trace()) {
1611    return;
1612  }
1613
1614  ContiguousSpace* eden_space = _young_gen->eden();
1615  ContiguousSpace* from_space = _young_gen->from();
1616  ContiguousSpace* to_space   = _young_gen->to();
1617  // Eden
1618  if (_eden_chunk_array != NULL) {
1619    log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1620              p2i(eden_space->bottom()), p2i(eden_space->top()),
1621              p2i(eden_space->end()), eden_space->capacity());
1622    log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1623              _eden_chunk_index, _eden_chunk_capacity);
1624    for (size_t i = 0; i < _eden_chunk_index; i++) {
1625      log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1626    }
1627  }
1628  // Survivor
1629  if (_survivor_chunk_array != NULL) {
1630    log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1631              p2i(from_space->bottom()), p2i(from_space->top()),
1632              p2i(from_space->end()), from_space->capacity());
1633    log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1634              _survivor_chunk_index, _survivor_chunk_capacity);
1635    for (size_t i = 0; i < _survivor_chunk_index; i++) {
1636      log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1637    }
1638  }
1639}
1640
1641void CMSCollector::getFreelistLocks() const {
1642  // Get locks for all free lists in all generations that this
1643  // collector is responsible for
1644  _cmsGen->freelistLock()->lock_without_safepoint_check();
1645}
1646
1647void CMSCollector::releaseFreelistLocks() const {
1648  // Release locks for all free lists in all generations that this
1649  // collector is responsible for
1650  _cmsGen->freelistLock()->unlock();
1651}
1652
1653bool CMSCollector::haveFreelistLocks() const {
1654  // Check locks for all free lists in all generations that this
1655  // collector is responsible for
1656  assert_lock_strong(_cmsGen->freelistLock());
1657  PRODUCT_ONLY(ShouldNotReachHere());
1658  return true;
1659}
1660
1661// A utility class that is used by the CMS collector to
1662// temporarily "release" the foreground collector from its
1663// usual obligation to wait for the background collector to
1664// complete an ongoing phase before proceeding.
1665class ReleaseForegroundGC: public StackObj {
1666 private:
1667  CMSCollector* _c;
1668 public:
1669  ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1670    assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1671    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1672    // allow a potentially blocked foreground collector to proceed
1673    _c->_foregroundGCShouldWait = false;
1674    if (_c->_foregroundGCIsActive) {
1675      CGC_lock->notify();
1676    }
1677    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1678           "Possible deadlock");
1679  }
1680
1681  ~ReleaseForegroundGC() {
1682    assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1683    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1684    _c->_foregroundGCShouldWait = true;
1685  }
1686};
1687
1688void CMSCollector::collect_in_background(GCCause::Cause cause) {
1689  assert(Thread::current()->is_ConcurrentGC_thread(),
1690    "A CMS asynchronous collection is only allowed on a CMS thread.");
1691
1692  GenCollectedHeap* gch = GenCollectedHeap::heap();
1693  {
1694    bool safepoint_check = Mutex::_no_safepoint_check_flag;
1695    MutexLockerEx hl(Heap_lock, safepoint_check);
1696    FreelistLocker fll(this);
1697    MutexLockerEx x(CGC_lock, safepoint_check);
1698    if (_foregroundGCIsActive) {
1699      // The foreground collector is. Skip this
1700      // background collection.
1701      assert(!_foregroundGCShouldWait, "Should be clear");
1702      return;
1703    } else {
1704      assert(_collectorState == Idling, "Should be idling before start.");
1705      _collectorState = InitialMarking;
1706      register_gc_start(cause);
1707      // Reset the expansion cause, now that we are about to begin
1708      // a new cycle.
1709      clear_expansion_cause();
1710
1711      // Clear the MetaspaceGC flag since a concurrent collection
1712      // is starting but also clear it after the collection.
1713      MetaspaceGC::set_should_concurrent_collect(false);
1714    }
1715    // Decide if we want to enable class unloading as part of the
1716    // ensuing concurrent GC cycle.
1717    update_should_unload_classes();
1718    _full_gc_requested = false;           // acks all outstanding full gc requests
1719    _full_gc_cause = GCCause::_no_gc;
1720    // Signal that we are about to start a collection
1721    gch->increment_total_full_collections();  // ... starting a collection cycle
1722    _collection_count_start = gch->total_full_collections();
1723  }
1724
1725  size_t prev_used = _cmsGen->used();
1726
1727  // The change of the collection state is normally done at this level;
1728  // the exceptions are phases that are executed while the world is
1729  // stopped.  For those phases the change of state is done while the
1730  // world is stopped.  For baton passing purposes this allows the
1731  // background collector to finish the phase and change state atomically.
1732  // The foreground collector cannot wait on a phase that is done
1733  // while the world is stopped because the foreground collector already
1734  // has the world stopped and would deadlock.
1735  while (_collectorState != Idling) {
1736    log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1737                         p2i(Thread::current()), _collectorState);
1738    // The foreground collector
1739    //   holds the Heap_lock throughout its collection.
1740    //   holds the CMS token (but not the lock)
1741    //     except while it is waiting for the background collector to yield.
1742    //
1743    // The foreground collector should be blocked (not for long)
1744    //   if the background collector is about to start a phase
1745    //   executed with world stopped.  If the background
1746    //   collector has already started such a phase, the
1747    //   foreground collector is blocked waiting for the
1748    //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1749    //   are executed in the VM thread.
1750    //
1751    // The locking order is
1752    //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1753    //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1754    //   CMS token  (claimed in
1755    //                stop_world_and_do() -->
1756    //                  safepoint_synchronize() -->
1757    //                    CMSThread::synchronize())
1758
1759    {
1760      // Check if the FG collector wants us to yield.
1761      CMSTokenSync x(true); // is cms thread
1762      if (waitForForegroundGC()) {
1763        // We yielded to a foreground GC, nothing more to be
1764        // done this round.
1765        assert(_foregroundGCShouldWait == false, "We set it to false in "
1766               "waitForForegroundGC()");
1767        log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1768                             p2i(Thread::current()), _collectorState);
1769        return;
1770      } else {
1771        // The background collector can run but check to see if the
1772        // foreground collector has done a collection while the
1773        // background collector was waiting to get the CGC_lock
1774        // above.  If yes, break so that _foregroundGCShouldWait
1775        // is cleared before returning.
1776        if (_collectorState == Idling) {
1777          break;
1778        }
1779      }
1780    }
1781
1782    assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1783      "should be waiting");
1784
1785    switch (_collectorState) {
1786      case InitialMarking:
1787        {
1788          ReleaseForegroundGC x(this);
1789          stats().record_cms_begin();
1790          VM_CMS_Initial_Mark initial_mark_op(this);
1791          VMThread::execute(&initial_mark_op);
1792        }
1793        // The collector state may be any legal state at this point
1794        // since the background collector may have yielded to the
1795        // foreground collector.
1796        break;
1797      case Marking:
1798        // initial marking in checkpointRootsInitialWork has been completed
1799        if (markFromRoots()) { // we were successful
1800          assert(_collectorState == Precleaning, "Collector state should "
1801            "have changed");
1802        } else {
1803          assert(_foregroundGCIsActive, "Internal state inconsistency");
1804        }
1805        break;
1806      case Precleaning:
1807        // marking from roots in markFromRoots has been completed
1808        preclean();
1809        assert(_collectorState == AbortablePreclean ||
1810               _collectorState == FinalMarking,
1811               "Collector state should have changed");
1812        break;
1813      case AbortablePreclean:
1814        abortable_preclean();
1815        assert(_collectorState == FinalMarking, "Collector state should "
1816          "have changed");
1817        break;
1818      case FinalMarking:
1819        {
1820          ReleaseForegroundGC x(this);
1821
1822          VM_CMS_Final_Remark final_remark_op(this);
1823          VMThread::execute(&final_remark_op);
1824        }
1825        assert(_foregroundGCShouldWait, "block post-condition");
1826        break;
1827      case Sweeping:
1828        // final marking in checkpointRootsFinal has been completed
1829        sweep();
1830        assert(_collectorState == Resizing, "Collector state change "
1831          "to Resizing must be done under the free_list_lock");
1832
1833      case Resizing: {
1834        // Sweeping has been completed...
1835        // At this point the background collection has completed.
1836        // Don't move the call to compute_new_size() down
1837        // into code that might be executed if the background
1838        // collection was preempted.
1839        {
1840          ReleaseForegroundGC x(this);   // unblock FG collection
1841          MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1842          CMSTokenSync        z(true);   // not strictly needed.
1843          if (_collectorState == Resizing) {
1844            compute_new_size();
1845            save_heap_summary();
1846            _collectorState = Resetting;
1847          } else {
1848            assert(_collectorState == Idling, "The state should only change"
1849                   " because the foreground collector has finished the collection");
1850          }
1851        }
1852        break;
1853      }
1854      case Resetting:
1855        // CMS heap resizing has been completed
1856        reset_concurrent();
1857        assert(_collectorState == Idling, "Collector state should "
1858          "have changed");
1859
1860        MetaspaceGC::set_should_concurrent_collect(false);
1861
1862        stats().record_cms_end();
1863        // Don't move the concurrent_phases_end() and compute_new_size()
1864        // calls to here because a preempted background collection
1865        // has it's state set to "Resetting".
1866        break;
1867      case Idling:
1868      default:
1869        ShouldNotReachHere();
1870        break;
1871    }
1872    log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1873                         p2i(Thread::current()), _collectorState);
1874    assert(_foregroundGCShouldWait, "block post-condition");
1875  }
1876
1877  // Should this be in gc_epilogue?
1878  collector_policy()->counters()->update_counters();
1879
1880  {
1881    // Clear _foregroundGCShouldWait and, in the event that the
1882    // foreground collector is waiting, notify it, before
1883    // returning.
1884    MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1885    _foregroundGCShouldWait = false;
1886    if (_foregroundGCIsActive) {
1887      CGC_lock->notify();
1888    }
1889    assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1890           "Possible deadlock");
1891  }
1892  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1893                       p2i(Thread::current()), _collectorState);
1894  log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1895                     prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1896}
1897
1898void CMSCollector::register_gc_start(GCCause::Cause cause) {
1899  _cms_start_registered = true;
1900  _gc_timer_cm->register_gc_start();
1901  _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1902}
1903
1904void CMSCollector::register_gc_end() {
1905  if (_cms_start_registered) {
1906    report_heap_summary(GCWhen::AfterGC);
1907
1908    _gc_timer_cm->register_gc_end();
1909    _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1910    _cms_start_registered = false;
1911  }
1912}
1913
1914void CMSCollector::save_heap_summary() {
1915  GenCollectedHeap* gch = GenCollectedHeap::heap();
1916  _last_heap_summary = gch->create_heap_summary();
1917  _last_metaspace_summary = gch->create_metaspace_summary();
1918}
1919
1920void CMSCollector::report_heap_summary(GCWhen::Type when) {
1921  _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1922  _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1923}
1924
1925bool CMSCollector::waitForForegroundGC() {
1926  bool res = false;
1927  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1928         "CMS thread should have CMS token");
1929  // Block the foreground collector until the
1930  // background collectors decides whether to
1931  // yield.
1932  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1933  _foregroundGCShouldWait = true;
1934  if (_foregroundGCIsActive) {
1935    // The background collector yields to the
1936    // foreground collector and returns a value
1937    // indicating that it has yielded.  The foreground
1938    // collector can proceed.
1939    res = true;
1940    _foregroundGCShouldWait = false;
1941    ConcurrentMarkSweepThread::clear_CMS_flag(
1942      ConcurrentMarkSweepThread::CMS_cms_has_token);
1943    ConcurrentMarkSweepThread::set_CMS_flag(
1944      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1945    // Get a possibly blocked foreground thread going
1946    CGC_lock->notify();
1947    log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1948                         p2i(Thread::current()), _collectorState);
1949    while (_foregroundGCIsActive) {
1950      CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1951    }
1952    ConcurrentMarkSweepThread::set_CMS_flag(
1953      ConcurrentMarkSweepThread::CMS_cms_has_token);
1954    ConcurrentMarkSweepThread::clear_CMS_flag(
1955      ConcurrentMarkSweepThread::CMS_cms_wants_token);
1956  }
1957  log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1958                       p2i(Thread::current()), _collectorState);
1959  return res;
1960}
1961
1962// Because of the need to lock the free lists and other structures in
1963// the collector, common to all the generations that the collector is
1964// collecting, we need the gc_prologues of individual CMS generations
1965// delegate to their collector. It may have been simpler had the
1966// current infrastructure allowed one to call a prologue on a
1967// collector. In the absence of that we have the generation's
1968// prologue delegate to the collector, which delegates back
1969// some "local" work to a worker method in the individual generations
1970// that it's responsible for collecting, while itself doing any
1971// work common to all generations it's responsible for. A similar
1972// comment applies to the  gc_epilogue()'s.
1973// The role of the variable _between_prologue_and_epilogue is to
1974// enforce the invocation protocol.
1975void CMSCollector::gc_prologue(bool full) {
1976  // Call gc_prologue_work() for the CMSGen
1977  // we are responsible for.
1978
1979  // The following locking discipline assumes that we are only called
1980  // when the world is stopped.
1981  assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1982
1983  // The CMSCollector prologue must call the gc_prologues for the
1984  // "generations" that it's responsible
1985  // for.
1986
1987  assert(   Thread::current()->is_VM_thread()
1988         || (   CMSScavengeBeforeRemark
1989             && Thread::current()->is_ConcurrentGC_thread()),
1990         "Incorrect thread type for prologue execution");
1991
1992  if (_between_prologue_and_epilogue) {
1993    // We have already been invoked; this is a gc_prologue delegation
1994    // from yet another CMS generation that we are responsible for, just
1995    // ignore it since all relevant work has already been done.
1996    return;
1997  }
1998
1999  // set a bit saying prologue has been called; cleared in epilogue
2000  _between_prologue_and_epilogue = true;
2001  // Claim locks for common data structures, then call gc_prologue_work()
2002  // for each CMSGen.
2003
2004  getFreelistLocks();   // gets free list locks on constituent spaces
2005  bitMapLock()->lock_without_safepoint_check();
2006
2007  // Should call gc_prologue_work() for all cms gens we are responsible for
2008  bool duringMarking =    _collectorState >= Marking
2009                         && _collectorState < Sweeping;
2010
2011  // The young collections clear the modified oops state, which tells if
2012  // there are any modified oops in the class. The remark phase also needs
2013  // that information. Tell the young collection to save the union of all
2014  // modified klasses.
2015  if (duringMarking) {
2016    _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2017  }
2018
2019  bool registerClosure = duringMarking;
2020
2021  _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2022
2023  if (!full) {
2024    stats().record_gc0_begin();
2025  }
2026}
2027
2028void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2029
2030  _capacity_at_prologue = capacity();
2031  _used_at_prologue = used();
2032
2033  // Delegate to CMScollector which knows how to coordinate between
2034  // this and any other CMS generations that it is responsible for
2035  // collecting.
2036  collector()->gc_prologue(full);
2037}
2038
2039// This is a "private" interface for use by this generation's CMSCollector.
2040// Not to be called directly by any other entity (for instance,
2041// GenCollectedHeap, which calls the "public" gc_prologue method above).
2042void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2043  bool registerClosure, ModUnionClosure* modUnionClosure) {
2044  assert(!incremental_collection_failed(), "Shouldn't be set yet");
2045  assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2046    "Should be NULL");
2047  if (registerClosure) {
2048    cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2049  }
2050  cmsSpace()->gc_prologue();
2051  // Clear stat counters
2052  NOT_PRODUCT(
2053    assert(_numObjectsPromoted == 0, "check");
2054    assert(_numWordsPromoted   == 0, "check");
2055    log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2056                                 _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2057    _numObjectsAllocated = 0;
2058    _numWordsAllocated   = 0;
2059  )
2060}
2061
2062void CMSCollector::gc_epilogue(bool full) {
2063  // The following locking discipline assumes that we are only called
2064  // when the world is stopped.
2065  assert(SafepointSynchronize::is_at_safepoint(),
2066         "world is stopped assumption");
2067
2068  // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2069  // if linear allocation blocks need to be appropriately marked to allow the
2070  // the blocks to be parsable. We also check here whether we need to nudge the
2071  // CMS collector thread to start a new cycle (if it's not already active).
2072  assert(   Thread::current()->is_VM_thread()
2073         || (   CMSScavengeBeforeRemark
2074             && Thread::current()->is_ConcurrentGC_thread()),
2075         "Incorrect thread type for epilogue execution");
2076
2077  if (!_between_prologue_and_epilogue) {
2078    // We have already been invoked; this is a gc_epilogue delegation
2079    // from yet another CMS generation that we are responsible for, just
2080    // ignore it since all relevant work has already been done.
2081    return;
2082  }
2083  assert(haveFreelistLocks(), "must have freelist locks");
2084  assert_lock_strong(bitMapLock());
2085
2086  _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2087
2088  _cmsGen->gc_epilogue_work(full);
2089
2090  if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2091    // in case sampling was not already enabled, enable it
2092    _start_sampling = true;
2093  }
2094  // reset _eden_chunk_array so sampling starts afresh
2095  _eden_chunk_index = 0;
2096
2097  size_t cms_used   = _cmsGen->cmsSpace()->used();
2098
2099  // update performance counters - this uses a special version of
2100  // update_counters() that allows the utilization to be passed as a
2101  // parameter, avoiding multiple calls to used().
2102  //
2103  _cmsGen->update_counters(cms_used);
2104
2105  bitMapLock()->unlock();
2106  releaseFreelistLocks();
2107
2108  if (!CleanChunkPoolAsync) {
2109    Chunk::clean_chunk_pool();
2110  }
2111
2112  set_did_compact(false);
2113  _between_prologue_and_epilogue = false;  // ready for next cycle
2114}
2115
2116void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2117  collector()->gc_epilogue(full);
2118
2119  // Also reset promotion tracking in par gc thread states.
2120  for (uint i = 0; i < ParallelGCThreads; i++) {
2121    _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2122  }
2123}
2124
2125void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2126  assert(!incremental_collection_failed(), "Should have been cleared");
2127  cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2128  cmsSpace()->gc_epilogue();
2129    // Print stat counters
2130  NOT_PRODUCT(
2131    assert(_numObjectsAllocated == 0, "check");
2132    assert(_numWordsAllocated == 0, "check");
2133    log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2134                                     _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2135    _numObjectsPromoted = 0;
2136    _numWordsPromoted   = 0;
2137  )
2138
2139  // Call down the chain in contiguous_available needs the freelistLock
2140  // so print this out before releasing the freeListLock.
2141  log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2142}
2143
2144#ifndef PRODUCT
2145bool CMSCollector::have_cms_token() {
2146  Thread* thr = Thread::current();
2147  if (thr->is_VM_thread()) {
2148    return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2149  } else if (thr->is_ConcurrentGC_thread()) {
2150    return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2151  } else if (thr->is_GC_task_thread()) {
2152    return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2153           ParGCRareEvent_lock->owned_by_self();
2154  }
2155  return false;
2156}
2157
2158// Check reachability of the given heap address in CMS generation,
2159// treating all other generations as roots.
2160bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2161  // We could "guarantee" below, rather than assert, but I'll
2162  // leave these as "asserts" so that an adventurous debugger
2163  // could try this in the product build provided some subset of
2164  // the conditions were met, provided they were interested in the
2165  // results and knew that the computation below wouldn't interfere
2166  // with other concurrent computations mutating the structures
2167  // being read or written.
2168  assert(SafepointSynchronize::is_at_safepoint(),
2169         "Else mutations in object graph will make answer suspect");
2170  assert(have_cms_token(), "Should hold cms token");
2171  assert(haveFreelistLocks(), "must hold free list locks");
2172  assert_lock_strong(bitMapLock());
2173
2174  // Clear the marking bit map array before starting, but, just
2175  // for kicks, first report if the given address is already marked
2176  tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2177                _markBitMap.isMarked(addr) ? "" : " not");
2178
2179  if (verify_after_remark()) {
2180    MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2181    bool result = verification_mark_bm()->isMarked(addr);
2182    tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2183                  result ? "IS" : "is NOT");
2184    return result;
2185  } else {
2186    tty->print_cr("Could not compute result");
2187    return false;
2188  }
2189}
2190#endif
2191
2192void
2193CMSCollector::print_on_error(outputStream* st) {
2194  CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2195  if (collector != NULL) {
2196    CMSBitMap* bitmap = &collector->_markBitMap;
2197    st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2198    bitmap->print_on_error(st, " Bits: ");
2199
2200    st->cr();
2201
2202    CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2203    st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2204    mut_bitmap->print_on_error(st, " Bits: ");
2205  }
2206}
2207
2208////////////////////////////////////////////////////////
2209// CMS Verification Support
2210////////////////////////////////////////////////////////
2211// Following the remark phase, the following invariant
2212// should hold -- each object in the CMS heap which is
2213// marked in markBitMap() should be marked in the verification_mark_bm().
2214
2215class VerifyMarkedClosure: public BitMapClosure {
2216  CMSBitMap* _marks;
2217  bool       _failed;
2218
2219 public:
2220  VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2221
2222  bool do_bit(size_t offset) {
2223    HeapWord* addr = _marks->offsetToHeapWord(offset);
2224    if (!_marks->isMarked(addr)) {
2225      LogHandle(gc, verify) log;
2226      ResourceMark rm;
2227      oop(addr)->print_on(log.info_stream());
2228      log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2229      _failed = true;
2230    }
2231    return true;
2232  }
2233
2234  bool failed() { return _failed; }
2235};
2236
2237bool CMSCollector::verify_after_remark() {
2238  GCTraceTime(Info, gc, verify) tm("Verifying CMS Marking.");
2239  MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2240  static bool init = false;
2241
2242  assert(SafepointSynchronize::is_at_safepoint(),
2243         "Else mutations in object graph will make answer suspect");
2244  assert(have_cms_token(),
2245         "Else there may be mutual interference in use of "
2246         " verification data structures");
2247  assert(_collectorState > Marking && _collectorState <= Sweeping,
2248         "Else marking info checked here may be obsolete");
2249  assert(haveFreelistLocks(), "must hold free list locks");
2250  assert_lock_strong(bitMapLock());
2251
2252
2253  // Allocate marking bit map if not already allocated
2254  if (!init) { // first time
2255    if (!verification_mark_bm()->allocate(_span)) {
2256      return false;
2257    }
2258    init = true;
2259  }
2260
2261  assert(verification_mark_stack()->isEmpty(), "Should be empty");
2262
2263  // Turn off refs discovery -- so we will be tracing through refs.
2264  // This is as intended, because by this time
2265  // GC must already have cleared any refs that need to be cleared,
2266  // and traced those that need to be marked; moreover,
2267  // the marking done here is not going to interfere in any
2268  // way with the marking information used by GC.
2269  NoRefDiscovery no_discovery(ref_processor());
2270
2271#if defined(COMPILER2) || INCLUDE_JVMCI
2272  DerivedPointerTableDeactivate dpt_deact;
2273#endif
2274
2275  // Clear any marks from a previous round
2276  verification_mark_bm()->clear_all();
2277  assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2278  verify_work_stacks_empty();
2279
2280  GenCollectedHeap* gch = GenCollectedHeap::heap();
2281  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2282  // Update the saved marks which may affect the root scans.
2283  gch->save_marks();
2284
2285  if (CMSRemarkVerifyVariant == 1) {
2286    // In this first variant of verification, we complete
2287    // all marking, then check if the new marks-vector is
2288    // a subset of the CMS marks-vector.
2289    verify_after_remark_work_1();
2290  } else if (CMSRemarkVerifyVariant == 2) {
2291    // In this second variant of verification, we flag an error
2292    // (i.e. an object reachable in the new marks-vector not reachable
2293    // in the CMS marks-vector) immediately, also indicating the
2294    // identify of an object (A) that references the unmarked object (B) --
2295    // presumably, a mutation to A failed to be picked up by preclean/remark?
2296    verify_after_remark_work_2();
2297  } else {
2298    warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2299            CMSRemarkVerifyVariant);
2300  }
2301  return true;
2302}
2303
2304void CMSCollector::verify_after_remark_work_1() {
2305  ResourceMark rm;
2306  HandleMark  hm;
2307  GenCollectedHeap* gch = GenCollectedHeap::heap();
2308
2309  // Get a clear set of claim bits for the roots processing to work with.
2310  ClassLoaderDataGraph::clear_claimed_marks();
2311
2312  // Mark from roots one level into CMS
2313  MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2314  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2315
2316  {
2317    StrongRootsScope srs(1);
2318
2319    gch->gen_process_roots(&srs,
2320                           GenCollectedHeap::OldGen,
2321                           true,   // young gen as roots
2322                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2323                           should_unload_classes(),
2324                           &notOlder,
2325                           NULL,
2326                           NULL);
2327  }
2328
2329  // Now mark from the roots
2330  MarkFromRootsClosure markFromRootsClosure(this, _span,
2331    verification_mark_bm(), verification_mark_stack(),
2332    false /* don't yield */, true /* verifying */);
2333  assert(_restart_addr == NULL, "Expected pre-condition");
2334  verification_mark_bm()->iterate(&markFromRootsClosure);
2335  while (_restart_addr != NULL) {
2336    // Deal with stack overflow: by restarting at the indicated
2337    // address.
2338    HeapWord* ra = _restart_addr;
2339    markFromRootsClosure.reset(ra);
2340    _restart_addr = NULL;
2341    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2342  }
2343  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2344  verify_work_stacks_empty();
2345
2346  // Marking completed -- now verify that each bit marked in
2347  // verification_mark_bm() is also marked in markBitMap(); flag all
2348  // errors by printing corresponding objects.
2349  VerifyMarkedClosure vcl(markBitMap());
2350  verification_mark_bm()->iterate(&vcl);
2351  if (vcl.failed()) {
2352    LogHandle(gc, verify) log;
2353    log.info("Verification failed");
2354    ResourceMark rm;
2355    gch->print_on(log.info_stream());
2356    fatal("CMS: failed marking verification after remark");
2357  }
2358}
2359
2360class VerifyKlassOopsKlassClosure : public KlassClosure {
2361  class VerifyKlassOopsClosure : public OopClosure {
2362    CMSBitMap* _bitmap;
2363   public:
2364    VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2365    void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2366    void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2367  } _oop_closure;
2368 public:
2369  VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2370  void do_klass(Klass* k) {
2371    k->oops_do(&_oop_closure);
2372  }
2373};
2374
2375void CMSCollector::verify_after_remark_work_2() {
2376  ResourceMark rm;
2377  HandleMark  hm;
2378  GenCollectedHeap* gch = GenCollectedHeap::heap();
2379
2380  // Get a clear set of claim bits for the roots processing to work with.
2381  ClassLoaderDataGraph::clear_claimed_marks();
2382
2383  // Mark from roots one level into CMS
2384  MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2385                                     markBitMap());
2386  CLDToOopClosure cld_closure(&notOlder, true);
2387
2388  gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2389
2390  {
2391    StrongRootsScope srs(1);
2392
2393    gch->gen_process_roots(&srs,
2394                           GenCollectedHeap::OldGen,
2395                           true,   // young gen as roots
2396                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
2397                           should_unload_classes(),
2398                           &notOlder,
2399                           NULL,
2400                           &cld_closure);
2401  }
2402
2403  // Now mark from the roots
2404  MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2405    verification_mark_bm(), markBitMap(), verification_mark_stack());
2406  assert(_restart_addr == NULL, "Expected pre-condition");
2407  verification_mark_bm()->iterate(&markFromRootsClosure);
2408  while (_restart_addr != NULL) {
2409    // Deal with stack overflow: by restarting at the indicated
2410    // address.
2411    HeapWord* ra = _restart_addr;
2412    markFromRootsClosure.reset(ra);
2413    _restart_addr = NULL;
2414    verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2415  }
2416  assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2417  verify_work_stacks_empty();
2418
2419  VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2420  ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2421
2422  // Marking completed -- now verify that each bit marked in
2423  // verification_mark_bm() is also marked in markBitMap(); flag all
2424  // errors by printing corresponding objects.
2425  VerifyMarkedClosure vcl(markBitMap());
2426  verification_mark_bm()->iterate(&vcl);
2427  assert(!vcl.failed(), "Else verification above should not have succeeded");
2428}
2429
2430void ConcurrentMarkSweepGeneration::save_marks() {
2431  // delegate to CMS space
2432  cmsSpace()->save_marks();
2433  for (uint i = 0; i < ParallelGCThreads; i++) {
2434    _par_gc_thread_states[i]->promo.startTrackingPromotions();
2435  }
2436}
2437
2438bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2439  return cmsSpace()->no_allocs_since_save_marks();
2440}
2441
2442#define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2443                                                                \
2444void ConcurrentMarkSweepGeneration::                            \
2445oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2446  cl->set_generation(this);                                     \
2447  cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2448  cl->reset_generation();                                       \
2449  save_marks();                                                 \
2450}
2451
2452ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2453
2454void
2455ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2456  if (freelistLock()->owned_by_self()) {
2457    Generation::oop_iterate(cl);
2458  } else {
2459    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2460    Generation::oop_iterate(cl);
2461  }
2462}
2463
2464void
2465ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2466  if (freelistLock()->owned_by_self()) {
2467    Generation::object_iterate(cl);
2468  } else {
2469    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2470    Generation::object_iterate(cl);
2471  }
2472}
2473
2474void
2475ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2476  if (freelistLock()->owned_by_self()) {
2477    Generation::safe_object_iterate(cl);
2478  } else {
2479    MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2480    Generation::safe_object_iterate(cl);
2481  }
2482}
2483
2484void
2485ConcurrentMarkSweepGeneration::post_compact() {
2486}
2487
2488void
2489ConcurrentMarkSweepGeneration::prepare_for_verify() {
2490  // Fix the linear allocation blocks to look like free blocks.
2491
2492  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2493  // are not called when the heap is verified during universe initialization and
2494  // at vm shutdown.
2495  if (freelistLock()->owned_by_self()) {
2496    cmsSpace()->prepare_for_verify();
2497  } else {
2498    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2499    cmsSpace()->prepare_for_verify();
2500  }
2501}
2502
2503void
2504ConcurrentMarkSweepGeneration::verify() {
2505  // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2506  // are not called when the heap is verified during universe initialization and
2507  // at vm shutdown.
2508  if (freelistLock()->owned_by_self()) {
2509    cmsSpace()->verify();
2510  } else {
2511    MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2512    cmsSpace()->verify();
2513  }
2514}
2515
2516void CMSCollector::verify() {
2517  _cmsGen->verify();
2518}
2519
2520#ifndef PRODUCT
2521bool CMSCollector::overflow_list_is_empty() const {
2522  assert(_num_par_pushes >= 0, "Inconsistency");
2523  if (_overflow_list == NULL) {
2524    assert(_num_par_pushes == 0, "Inconsistency");
2525  }
2526  return _overflow_list == NULL;
2527}
2528
2529// The methods verify_work_stacks_empty() and verify_overflow_empty()
2530// merely consolidate assertion checks that appear to occur together frequently.
2531void CMSCollector::verify_work_stacks_empty() const {
2532  assert(_markStack.isEmpty(), "Marking stack should be empty");
2533  assert(overflow_list_is_empty(), "Overflow list should be empty");
2534}
2535
2536void CMSCollector::verify_overflow_empty() const {
2537  assert(overflow_list_is_empty(), "Overflow list should be empty");
2538  assert(no_preserved_marks(), "No preserved marks");
2539}
2540#endif // PRODUCT
2541
2542// Decide if we want to enable class unloading as part of the
2543// ensuing concurrent GC cycle. We will collect and
2544// unload classes if it's the case that:
2545// (1) an explicit gc request has been made and the flag
2546//     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2547// (2) (a) class unloading is enabled at the command line, and
2548//     (b) old gen is getting really full
2549// NOTE: Provided there is no change in the state of the heap between
2550// calls to this method, it should have idempotent results. Moreover,
2551// its results should be monotonically increasing (i.e. going from 0 to 1,
2552// but not 1 to 0) between successive calls between which the heap was
2553// not collected. For the implementation below, it must thus rely on
2554// the property that concurrent_cycles_since_last_unload()
2555// will not decrease unless a collection cycle happened and that
2556// _cmsGen->is_too_full() are
2557// themselves also monotonic in that sense. See check_monotonicity()
2558// below.
2559void CMSCollector::update_should_unload_classes() {
2560  _should_unload_classes = false;
2561  // Condition 1 above
2562  if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2563    _should_unload_classes = true;
2564  } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2565    // Disjuncts 2.b.(i,ii,iii) above
2566    _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2567                              CMSClassUnloadingMaxInterval)
2568                           || _cmsGen->is_too_full();
2569  }
2570}
2571
2572bool ConcurrentMarkSweepGeneration::is_too_full() const {
2573  bool res = should_concurrent_collect();
2574  res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2575  return res;
2576}
2577
2578void CMSCollector::setup_cms_unloading_and_verification_state() {
2579  const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2580                             || VerifyBeforeExit;
2581  const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2582
2583  // We set the proper root for this CMS cycle here.
2584  if (should_unload_classes()) {   // Should unload classes this cycle
2585    remove_root_scanning_option(rso);  // Shrink the root set appropriately
2586    set_verifying(should_verify);    // Set verification state for this cycle
2587    return;                            // Nothing else needs to be done at this time
2588  }
2589
2590  // Not unloading classes this cycle
2591  assert(!should_unload_classes(), "Inconsistency!");
2592
2593  // If we are not unloading classes then add SO_AllCodeCache to root
2594  // scanning options.
2595  add_root_scanning_option(rso);
2596
2597  if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2598    set_verifying(true);
2599  } else if (verifying() && !should_verify) {
2600    // We were verifying, but some verification flags got disabled.
2601    set_verifying(false);
2602    // Exclude symbols, strings and code cache elements from root scanning to
2603    // reduce IM and RM pauses.
2604    remove_root_scanning_option(rso);
2605  }
2606}
2607
2608
2609#ifndef PRODUCT
2610HeapWord* CMSCollector::block_start(const void* p) const {
2611  const HeapWord* addr = (HeapWord*)p;
2612  if (_span.contains(p)) {
2613    if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2614      return _cmsGen->cmsSpace()->block_start(p);
2615    }
2616  }
2617  return NULL;
2618}
2619#endif
2620
2621HeapWord*
2622ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2623                                                   bool   tlab,
2624                                                   bool   parallel) {
2625  CMSSynchronousYieldRequest yr;
2626  assert(!tlab, "Can't deal with TLAB allocation");
2627  MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2628  expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2629  if (GCExpandToAllocateDelayMillis > 0) {
2630    os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2631  }
2632  return have_lock_and_allocate(word_size, tlab);
2633}
2634
2635void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2636    size_t bytes,
2637    size_t expand_bytes,
2638    CMSExpansionCause::Cause cause)
2639{
2640
2641  bool success = expand(bytes, expand_bytes);
2642
2643  // remember why we expanded; this information is used
2644  // by shouldConcurrentCollect() when making decisions on whether to start
2645  // a new CMS cycle.
2646  if (success) {
2647    set_expansion_cause(cause);
2648    log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2649  }
2650}
2651
2652HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2653  HeapWord* res = NULL;
2654  MutexLocker x(ParGCRareEvent_lock);
2655  while (true) {
2656    // Expansion by some other thread might make alloc OK now:
2657    res = ps->lab.alloc(word_sz);
2658    if (res != NULL) return res;
2659    // If there's not enough expansion space available, give up.
2660    if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2661      return NULL;
2662    }
2663    // Otherwise, we try expansion.
2664    expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2665    // Now go around the loop and try alloc again;
2666    // A competing par_promote might beat us to the expansion space,
2667    // so we may go around the loop again if promotion fails again.
2668    if (GCExpandToAllocateDelayMillis > 0) {
2669      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2670    }
2671  }
2672}
2673
2674
2675bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2676  PromotionInfo* promo) {
2677  MutexLocker x(ParGCRareEvent_lock);
2678  size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2679  while (true) {
2680    // Expansion by some other thread might make alloc OK now:
2681    if (promo->ensure_spooling_space()) {
2682      assert(promo->has_spooling_space(),
2683             "Post-condition of successful ensure_spooling_space()");
2684      return true;
2685    }
2686    // If there's not enough expansion space available, give up.
2687    if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2688      return false;
2689    }
2690    // Otherwise, we try expansion.
2691    expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2692    // Now go around the loop and try alloc again;
2693    // A competing allocation might beat us to the expansion space,
2694    // so we may go around the loop again if allocation fails again.
2695    if (GCExpandToAllocateDelayMillis > 0) {
2696      os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2697    }
2698  }
2699}
2700
2701void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2702  // Only shrink if a compaction was done so that all the free space
2703  // in the generation is in a contiguous block at the end.
2704  if (did_compact()) {
2705    CardGeneration::shrink(bytes);
2706  }
2707}
2708
2709void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2710  assert_locked_or_safepoint(Heap_lock);
2711}
2712
2713void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2714  assert_locked_or_safepoint(Heap_lock);
2715  assert_lock_strong(freelistLock());
2716  log_trace(gc)("Shrinking of CMS not yet implemented");
2717  return;
2718}
2719
2720
2721// Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2722// phases.
2723class CMSPhaseAccounting: public StackObj {
2724 public:
2725  CMSPhaseAccounting(CMSCollector *collector,
2726                     const char *title);
2727  ~CMSPhaseAccounting();
2728
2729 private:
2730  CMSCollector *_collector;
2731  const char *_title;
2732  GCTraceConcTime(Info, gc) _trace_time;
2733
2734 public:
2735  // Not MT-safe; so do not pass around these StackObj's
2736  // where they may be accessed by other threads.
2737  double wallclock_millis() {
2738    return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2739  }
2740};
2741
2742CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2743                                       const char *title) :
2744  _collector(collector), _title(title), _trace_time(title) {
2745
2746  _collector->resetYields();
2747  _collector->resetTimer();
2748  _collector->startTimer();
2749  _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2750}
2751
2752CMSPhaseAccounting::~CMSPhaseAccounting() {
2753  _collector->gc_timer_cm()->register_gc_concurrent_end();
2754  _collector->stopTimer();
2755  log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2756  log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2757}
2758
2759// CMS work
2760
2761// The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2762class CMSParMarkTask : public AbstractGangTask {
2763 protected:
2764  CMSCollector*     _collector;
2765  uint              _n_workers;
2766  CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2767      AbstractGangTask(name),
2768      _collector(collector),
2769      _n_workers(n_workers) {}
2770  // Work method in support of parallel rescan ... of young gen spaces
2771  void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2772                             ContiguousSpace* space,
2773                             HeapWord** chunk_array, size_t chunk_top);
2774  void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2775};
2776
2777// Parallel initial mark task
2778class CMSParInitialMarkTask: public CMSParMarkTask {
2779  StrongRootsScope* _strong_roots_scope;
2780 public:
2781  CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2782      CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2783      _strong_roots_scope(strong_roots_scope) {}
2784  void work(uint worker_id);
2785};
2786
2787// Checkpoint the roots into this generation from outside
2788// this generation. [Note this initial checkpoint need only
2789// be approximate -- we'll do a catch up phase subsequently.]
2790void CMSCollector::checkpointRootsInitial() {
2791  assert(_collectorState == InitialMarking, "Wrong collector state");
2792  check_correct_thread_executing();
2793  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2794
2795  save_heap_summary();
2796  report_heap_summary(GCWhen::BeforeGC);
2797
2798  ReferenceProcessor* rp = ref_processor();
2799  assert(_restart_addr == NULL, "Control point invariant");
2800  {
2801    // acquire locks for subsequent manipulations
2802    MutexLockerEx x(bitMapLock(),
2803                    Mutex::_no_safepoint_check_flag);
2804    checkpointRootsInitialWork();
2805    // enable ("weak") refs discovery
2806    rp->enable_discovery();
2807    _collectorState = Marking;
2808  }
2809}
2810
2811void CMSCollector::checkpointRootsInitialWork() {
2812  assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2813  assert(_collectorState == InitialMarking, "just checking");
2814
2815  // Already have locks.
2816  assert_lock_strong(bitMapLock());
2817  assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2818
2819  // Setup the verification and class unloading state for this
2820  // CMS collection cycle.
2821  setup_cms_unloading_and_verification_state();
2822
2823  GCTraceTime(Trace, gc) ts("checkpointRootsInitialWork", _gc_timer_cm);
2824
2825  // Reset all the PLAB chunk arrays if necessary.
2826  if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2827    reset_survivor_plab_arrays();
2828  }
2829
2830  ResourceMark rm;
2831  HandleMark  hm;
2832
2833  MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2834  GenCollectedHeap* gch = GenCollectedHeap::heap();
2835
2836  verify_work_stacks_empty();
2837  verify_overflow_empty();
2838
2839  gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2840  // Update the saved marks which may affect the root scans.
2841  gch->save_marks();
2842
2843  // weak reference processing has not started yet.
2844  ref_processor()->set_enqueuing_is_done(false);
2845
2846  // Need to remember all newly created CLDs,
2847  // so that we can guarantee that the remark finds them.
2848  ClassLoaderDataGraph::remember_new_clds(true);
2849
2850  // Whenever a CLD is found, it will be claimed before proceeding to mark
2851  // the klasses. The claimed marks need to be cleared before marking starts.
2852  ClassLoaderDataGraph::clear_claimed_marks();
2853
2854  print_eden_and_survivor_chunk_arrays();
2855
2856  {
2857#if defined(COMPILER2) || INCLUDE_JVMCI
2858    DerivedPointerTableDeactivate dpt_deact;
2859#endif
2860    if (CMSParallelInitialMarkEnabled) {
2861      // The parallel version.
2862      WorkGang* workers = gch->workers();
2863      assert(workers != NULL, "Need parallel worker threads.");
2864      uint n_workers = workers->active_workers();
2865
2866      StrongRootsScope srs(n_workers);
2867
2868      CMSParInitialMarkTask tsk(this, &srs, n_workers);
2869      initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2870      if (n_workers > 1) {
2871        workers->run_task(&tsk);
2872      } else {
2873        tsk.work(0);
2874      }
2875    } else {
2876      // The serial version.
2877      CLDToOopClosure cld_closure(&notOlder, true);
2878      gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2879
2880      StrongRootsScope srs(1);
2881
2882      gch->gen_process_roots(&srs,
2883                             GenCollectedHeap::OldGen,
2884                             true,   // young gen as roots
2885                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
2886                             should_unload_classes(),
2887                             &notOlder,
2888                             NULL,
2889                             &cld_closure);
2890    }
2891  }
2892
2893  // Clear mod-union table; it will be dirtied in the prologue of
2894  // CMS generation per each young generation collection.
2895
2896  assert(_modUnionTable.isAllClear(),
2897       "Was cleared in most recent final checkpoint phase"
2898       " or no bits are set in the gc_prologue before the start of the next "
2899       "subsequent marking phase.");
2900
2901  assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2902
2903  // Save the end of the used_region of the constituent generations
2904  // to be used to limit the extent of sweep in each generation.
2905  save_sweep_limits();
2906  verify_overflow_empty();
2907}
2908
2909bool CMSCollector::markFromRoots() {
2910  // we might be tempted to assert that:
2911  // assert(!SafepointSynchronize::is_at_safepoint(),
2912  //        "inconsistent argument?");
2913  // However that wouldn't be right, because it's possible that
2914  // a safepoint is indeed in progress as a young generation
2915  // stop-the-world GC happens even as we mark in this generation.
2916  assert(_collectorState == Marking, "inconsistent state?");
2917  check_correct_thread_executing();
2918  verify_overflow_empty();
2919
2920  // Weak ref discovery note: We may be discovering weak
2921  // refs in this generation concurrent (but interleaved) with
2922  // weak ref discovery by the young generation collector.
2923
2924  CMSTokenSyncWithLocks ts(true, bitMapLock());
2925  GCTraceCPUTime tcpu;
2926  CMSPhaseAccounting pa(this, "Concrurrent Mark");
2927  bool res = markFromRootsWork();
2928  if (res) {
2929    _collectorState = Precleaning;
2930  } else { // We failed and a foreground collection wants to take over
2931    assert(_foregroundGCIsActive, "internal state inconsistency");
2932    assert(_restart_addr == NULL,  "foreground will restart from scratch");
2933    log_debug(gc)("bailing out to foreground collection");
2934  }
2935  verify_overflow_empty();
2936  return res;
2937}
2938
2939bool CMSCollector::markFromRootsWork() {
2940  // iterate over marked bits in bit map, doing a full scan and mark
2941  // from these roots using the following algorithm:
2942  // . if oop is to the right of the current scan pointer,
2943  //   mark corresponding bit (we'll process it later)
2944  // . else (oop is to left of current scan pointer)
2945  //   push oop on marking stack
2946  // . drain the marking stack
2947
2948  // Note that when we do a marking step we need to hold the
2949  // bit map lock -- recall that direct allocation (by mutators)
2950  // and promotion (by the young generation collector) is also
2951  // marking the bit map. [the so-called allocate live policy.]
2952  // Because the implementation of bit map marking is not
2953  // robust wrt simultaneous marking of bits in the same word,
2954  // we need to make sure that there is no such interference
2955  // between concurrent such updates.
2956
2957  // already have locks
2958  assert_lock_strong(bitMapLock());
2959
2960  verify_work_stacks_empty();
2961  verify_overflow_empty();
2962  bool result = false;
2963  if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2964    result = do_marking_mt();
2965  } else {
2966    result = do_marking_st();
2967  }
2968  return result;
2969}
2970
2971// Forward decl
2972class CMSConcMarkingTask;
2973
2974class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2975  CMSCollector*       _collector;
2976  CMSConcMarkingTask* _task;
2977 public:
2978  virtual void yield();
2979
2980  // "n_threads" is the number of threads to be terminated.
2981  // "queue_set" is a set of work queues of other threads.
2982  // "collector" is the CMS collector associated with this task terminator.
2983  // "yield" indicates whether we need the gang as a whole to yield.
2984  CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2985    ParallelTaskTerminator(n_threads, queue_set),
2986    _collector(collector) { }
2987
2988  void set_task(CMSConcMarkingTask* task) {
2989    _task = task;
2990  }
2991};
2992
2993class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
2994  CMSConcMarkingTask* _task;
2995 public:
2996  bool should_exit_termination();
2997  void set_task(CMSConcMarkingTask* task) {
2998    _task = task;
2999  }
3000};
3001
3002// MT Concurrent Marking Task
3003class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3004  CMSCollector* _collector;
3005  uint          _n_workers;       // requested/desired # workers
3006  bool          _result;
3007  CompactibleFreeListSpace*  _cms_space;
3008  char          _pad_front[64];   // padding to ...
3009  HeapWord*     _global_finger;   // ... avoid sharing cache line
3010  char          _pad_back[64];
3011  HeapWord*     _restart_addr;
3012
3013  //  Exposed here for yielding support
3014  Mutex* const _bit_map_lock;
3015
3016  // The per thread work queues, available here for stealing
3017  OopTaskQueueSet*  _task_queues;
3018
3019  // Termination (and yielding) support
3020  CMSConcMarkingTerminator _term;
3021  CMSConcMarkingTerminatorTerminator _term_term;
3022
3023 public:
3024  CMSConcMarkingTask(CMSCollector* collector,
3025                 CompactibleFreeListSpace* cms_space,
3026                 YieldingFlexibleWorkGang* workers,
3027                 OopTaskQueueSet* task_queues):
3028    YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3029    _collector(collector),
3030    _cms_space(cms_space),
3031    _n_workers(0), _result(true),
3032    _task_queues(task_queues),
3033    _term(_n_workers, task_queues, _collector),
3034    _bit_map_lock(collector->bitMapLock())
3035  {
3036    _requested_size = _n_workers;
3037    _term.set_task(this);
3038    _term_term.set_task(this);
3039    _restart_addr = _global_finger = _cms_space->bottom();
3040  }
3041
3042
3043  OopTaskQueueSet* task_queues()  { return _task_queues; }
3044
3045  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3046
3047  HeapWord** global_finger_addr() { return &_global_finger; }
3048
3049  CMSConcMarkingTerminator* terminator() { return &_term; }
3050
3051  virtual void set_for_termination(uint active_workers) {
3052    terminator()->reset_for_reuse(active_workers);
3053  }
3054
3055  void work(uint worker_id);
3056  bool should_yield() {
3057    return    ConcurrentMarkSweepThread::should_yield()
3058           && !_collector->foregroundGCIsActive();
3059  }
3060
3061  virtual void coordinator_yield();  // stuff done by coordinator
3062  bool result() { return _result; }
3063
3064  void reset(HeapWord* ra) {
3065    assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3066    _restart_addr = _global_finger = ra;
3067    _term.reset_for_reuse();
3068  }
3069
3070  static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3071                                           OopTaskQueue* work_q);
3072
3073 private:
3074  void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3075  void do_work_steal(int i);
3076  void bump_global_finger(HeapWord* f);
3077};
3078
3079bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3080  assert(_task != NULL, "Error");
3081  return _task->yielding();
3082  // Note that we do not need the disjunct || _task->should_yield() above
3083  // because we want terminating threads to yield only if the task
3084  // is already in the midst of yielding, which happens only after at least one
3085  // thread has yielded.
3086}
3087
3088void CMSConcMarkingTerminator::yield() {
3089  if (_task->should_yield()) {
3090    _task->yield();
3091  } else {
3092    ParallelTaskTerminator::yield();
3093  }
3094}
3095
3096////////////////////////////////////////////////////////////////
3097// Concurrent Marking Algorithm Sketch
3098////////////////////////////////////////////////////////////////
3099// Until all tasks exhausted (both spaces):
3100// -- claim next available chunk
3101// -- bump global finger via CAS
3102// -- find first object that starts in this chunk
3103//    and start scanning bitmap from that position
3104// -- scan marked objects for oops
3105// -- CAS-mark target, and if successful:
3106//    . if target oop is above global finger (volatile read)
3107//      nothing to do
3108//    . if target oop is in chunk and above local finger
3109//        then nothing to do
3110//    . else push on work-queue
3111// -- Deal with possible overflow issues:
3112//    . local work-queue overflow causes stuff to be pushed on
3113//      global (common) overflow queue
3114//    . always first empty local work queue
3115//    . then get a batch of oops from global work queue if any
3116//    . then do work stealing
3117// -- When all tasks claimed (both spaces)
3118//    and local work queue empty,
3119//    then in a loop do:
3120//    . check global overflow stack; steal a batch of oops and trace
3121//    . try to steal from other threads oif GOS is empty
3122//    . if neither is available, offer termination
3123// -- Terminate and return result
3124//
3125void CMSConcMarkingTask::work(uint worker_id) {
3126  elapsedTimer _timer;
3127  ResourceMark rm;
3128  HandleMark hm;
3129
3130  DEBUG_ONLY(_collector->verify_overflow_empty();)
3131
3132  // Before we begin work, our work queue should be empty
3133  assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3134  // Scan the bitmap covering _cms_space, tracing through grey objects.
3135  _timer.start();
3136  do_scan_and_mark(worker_id, _cms_space);
3137  _timer.stop();
3138  log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3139
3140  // ... do work stealing
3141  _timer.reset();
3142  _timer.start();
3143  do_work_steal(worker_id);
3144  _timer.stop();
3145  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3146  assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3147  assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3148  // Note that under the current task protocol, the
3149  // following assertion is true even of the spaces
3150  // expanded since the completion of the concurrent
3151  // marking. XXX This will likely change under a strict
3152  // ABORT semantics.
3153  // After perm removal the comparison was changed to
3154  // greater than or equal to from strictly greater than.
3155  // Before perm removal the highest address sweep would
3156  // have been at the end of perm gen but now is at the
3157  // end of the tenured gen.
3158  assert(_global_finger >=  _cms_space->end(),
3159         "All tasks have been completed");
3160  DEBUG_ONLY(_collector->verify_overflow_empty();)
3161}
3162
3163void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3164  HeapWord* read = _global_finger;
3165  HeapWord* cur  = read;
3166  while (f > read) {
3167    cur = read;
3168    read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3169    if (cur == read) {
3170      // our cas succeeded
3171      assert(_global_finger >= f, "protocol consistency");
3172      break;
3173    }
3174  }
3175}
3176
3177// This is really inefficient, and should be redone by
3178// using (not yet available) block-read and -write interfaces to the
3179// stack and the work_queue. XXX FIX ME !!!
3180bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3181                                                      OopTaskQueue* work_q) {
3182  // Fast lock-free check
3183  if (ovflw_stk->length() == 0) {
3184    return false;
3185  }
3186  assert(work_q->size() == 0, "Shouldn't steal");
3187  MutexLockerEx ml(ovflw_stk->par_lock(),
3188                   Mutex::_no_safepoint_check_flag);
3189  // Grab up to 1/4 the size of the work queue
3190  size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3191                    (size_t)ParGCDesiredObjsFromOverflowList);
3192  num = MIN2(num, ovflw_stk->length());
3193  for (int i = (int) num; i > 0; i--) {
3194    oop cur = ovflw_stk->pop();
3195    assert(cur != NULL, "Counted wrong?");
3196    work_q->push(cur);
3197  }
3198  return num > 0;
3199}
3200
3201void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3202  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3203  int n_tasks = pst->n_tasks();
3204  // We allow that there may be no tasks to do here because
3205  // we are restarting after a stack overflow.
3206  assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3207  uint nth_task = 0;
3208
3209  HeapWord* aligned_start = sp->bottom();
3210  if (sp->used_region().contains(_restart_addr)) {
3211    // Align down to a card boundary for the start of 0th task
3212    // for this space.
3213    aligned_start =
3214      (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3215                                 CardTableModRefBS::card_size);
3216  }
3217
3218  size_t chunk_size = sp->marking_task_size();
3219  while (!pst->is_task_claimed(/* reference */ nth_task)) {
3220    // Having claimed the nth task in this space,
3221    // compute the chunk that it corresponds to:
3222    MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3223                               aligned_start + (nth_task+1)*chunk_size);
3224    // Try and bump the global finger via a CAS;
3225    // note that we need to do the global finger bump
3226    // _before_ taking the intersection below, because
3227    // the task corresponding to that region will be
3228    // deemed done even if the used_region() expands
3229    // because of allocation -- as it almost certainly will
3230    // during start-up while the threads yield in the
3231    // closure below.
3232    HeapWord* finger = span.end();
3233    bump_global_finger(finger);   // atomically
3234    // There are null tasks here corresponding to chunks
3235    // beyond the "top" address of the space.
3236    span = span.intersection(sp->used_region());
3237    if (!span.is_empty()) {  // Non-null task
3238      HeapWord* prev_obj;
3239      assert(!span.contains(_restart_addr) || nth_task == 0,
3240             "Inconsistency");
3241      if (nth_task == 0) {
3242        // For the 0th task, we'll not need to compute a block_start.
3243        if (span.contains(_restart_addr)) {
3244          // In the case of a restart because of stack overflow,
3245          // we might additionally skip a chunk prefix.
3246          prev_obj = _restart_addr;
3247        } else {
3248          prev_obj = span.start();
3249        }
3250      } else {
3251        // We want to skip the first object because
3252        // the protocol is to scan any object in its entirety
3253        // that _starts_ in this span; a fortiori, any
3254        // object starting in an earlier span is scanned
3255        // as part of an earlier claimed task.
3256        // Below we use the "careful" version of block_start
3257        // so we do not try to navigate uninitialized objects.
3258        prev_obj = sp->block_start_careful(span.start());
3259        // Below we use a variant of block_size that uses the
3260        // Printezis bits to avoid waiting for allocated
3261        // objects to become initialized/parsable.
3262        while (prev_obj < span.start()) {
3263          size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3264          if (sz > 0) {
3265            prev_obj += sz;
3266          } else {
3267            // In this case we may end up doing a bit of redundant
3268            // scanning, but that appears unavoidable, short of
3269            // locking the free list locks; see bug 6324141.
3270            break;
3271          }
3272        }
3273      }
3274      if (prev_obj < span.end()) {
3275        MemRegion my_span = MemRegion(prev_obj, span.end());
3276        // Do the marking work within a non-empty span --
3277        // the last argument to the constructor indicates whether the
3278        // iteration should be incremental with periodic yields.
3279        ParMarkFromRootsClosure cl(this, _collector, my_span,
3280                                   &_collector->_markBitMap,
3281                                   work_queue(i),
3282                                   &_collector->_markStack);
3283        _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3284      } // else nothing to do for this task
3285    }   // else nothing to do for this task
3286  }
3287  // We'd be tempted to assert here that since there are no
3288  // more tasks left to claim in this space, the global_finger
3289  // must exceed space->top() and a fortiori space->end(). However,
3290  // that would not quite be correct because the bumping of
3291  // global_finger occurs strictly after the claiming of a task,
3292  // so by the time we reach here the global finger may not yet
3293  // have been bumped up by the thread that claimed the last
3294  // task.
3295  pst->all_tasks_completed();
3296}
3297
3298class ParConcMarkingClosure: public MetadataAwareOopClosure {
3299 private:
3300  CMSCollector* _collector;
3301  CMSConcMarkingTask* _task;
3302  MemRegion     _span;
3303  CMSBitMap*    _bit_map;
3304  CMSMarkStack* _overflow_stack;
3305  OopTaskQueue* _work_queue;
3306 protected:
3307  DO_OOP_WORK_DEFN
3308 public:
3309  ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3310                        CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3311    MetadataAwareOopClosure(collector->ref_processor()),
3312    _collector(collector),
3313    _task(task),
3314    _span(collector->_span),
3315    _work_queue(work_queue),
3316    _bit_map(bit_map),
3317    _overflow_stack(overflow_stack)
3318  { }
3319  virtual void do_oop(oop* p);
3320  virtual void do_oop(narrowOop* p);
3321
3322  void trim_queue(size_t max);
3323  void handle_stack_overflow(HeapWord* lost);
3324  void do_yield_check() {
3325    if (_task->should_yield()) {
3326      _task->yield();
3327    }
3328  }
3329};
3330
3331DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3332
3333// Grey object scanning during work stealing phase --
3334// the salient assumption here is that any references
3335// that are in these stolen objects being scanned must
3336// already have been initialized (else they would not have
3337// been published), so we do not need to check for
3338// uninitialized objects before pushing here.
3339void ParConcMarkingClosure::do_oop(oop obj) {
3340  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3341  HeapWord* addr = (HeapWord*)obj;
3342  // Check if oop points into the CMS generation
3343  // and is not marked
3344  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3345    // a white object ...
3346    // If we manage to "claim" the object, by being the
3347    // first thread to mark it, then we push it on our
3348    // marking stack
3349    if (_bit_map->par_mark(addr)) {     // ... now grey
3350      // push on work queue (grey set)
3351      bool simulate_overflow = false;
3352      NOT_PRODUCT(
3353        if (CMSMarkStackOverflowALot &&
3354            _collector->simulate_overflow()) {
3355          // simulate a stack overflow
3356          simulate_overflow = true;
3357        }
3358      )
3359      if (simulate_overflow ||
3360          !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3361        // stack overflow
3362        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3363        // We cannot assert that the overflow stack is full because
3364        // it may have been emptied since.
3365        assert(simulate_overflow ||
3366               _work_queue->size() == _work_queue->max_elems(),
3367              "Else push should have succeeded");
3368        handle_stack_overflow(addr);
3369      }
3370    } // Else, some other thread got there first
3371    do_yield_check();
3372  }
3373}
3374
3375void ParConcMarkingClosure::do_oop(oop* p)       { ParConcMarkingClosure::do_oop_work(p); }
3376void ParConcMarkingClosure::do_oop(narrowOop* p) { ParConcMarkingClosure::do_oop_work(p); }
3377
3378void ParConcMarkingClosure::trim_queue(size_t max) {
3379  while (_work_queue->size() > max) {
3380    oop new_oop;
3381    if (_work_queue->pop_local(new_oop)) {
3382      assert(new_oop->is_oop(), "Should be an oop");
3383      assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3384      assert(_span.contains((HeapWord*)new_oop), "Not in span");
3385      new_oop->oop_iterate(this);  // do_oop() above
3386      do_yield_check();
3387    }
3388  }
3389}
3390
3391// Upon stack overflow, we discard (part of) the stack,
3392// remembering the least address amongst those discarded
3393// in CMSCollector's _restart_address.
3394void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3395  // We need to do this under a mutex to prevent other
3396  // workers from interfering with the work done below.
3397  MutexLockerEx ml(_overflow_stack->par_lock(),
3398                   Mutex::_no_safepoint_check_flag);
3399  // Remember the least grey address discarded
3400  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3401  _collector->lower_restart_addr(ra);
3402  _overflow_stack->reset();  // discard stack contents
3403  _overflow_stack->expand(); // expand the stack if possible
3404}
3405
3406
3407void CMSConcMarkingTask::do_work_steal(int i) {
3408  OopTaskQueue* work_q = work_queue(i);
3409  oop obj_to_scan;
3410  CMSBitMap* bm = &(_collector->_markBitMap);
3411  CMSMarkStack* ovflw = &(_collector->_markStack);
3412  int* seed = _collector->hash_seed(i);
3413  ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3414  while (true) {
3415    cl.trim_queue(0);
3416    assert(work_q->size() == 0, "Should have been emptied above");
3417    if (get_work_from_overflow_stack(ovflw, work_q)) {
3418      // Can't assert below because the work obtained from the
3419      // overflow stack may already have been stolen from us.
3420      // assert(work_q->size() > 0, "Work from overflow stack");
3421      continue;
3422    } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3423      assert(obj_to_scan->is_oop(), "Should be an oop");
3424      assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3425      obj_to_scan->oop_iterate(&cl);
3426    } else if (terminator()->offer_termination(&_term_term)) {
3427      assert(work_q->size() == 0, "Impossible!");
3428      break;
3429    } else if (yielding() || should_yield()) {
3430      yield();
3431    }
3432  }
3433}
3434
3435// This is run by the CMS (coordinator) thread.
3436void CMSConcMarkingTask::coordinator_yield() {
3437  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3438         "CMS thread should hold CMS token");
3439  // First give up the locks, then yield, then re-lock
3440  // We should probably use a constructor/destructor idiom to
3441  // do this unlock/lock or modify the MutexUnlocker class to
3442  // serve our purpose. XXX
3443  assert_lock_strong(_bit_map_lock);
3444  _bit_map_lock->unlock();
3445  ConcurrentMarkSweepThread::desynchronize(true);
3446  _collector->stopTimer();
3447  _collector->incrementYields();
3448
3449  // It is possible for whichever thread initiated the yield request
3450  // not to get a chance to wake up and take the bitmap lock between
3451  // this thread releasing it and reacquiring it. So, while the
3452  // should_yield() flag is on, let's sleep for a bit to give the
3453  // other thread a chance to wake up. The limit imposed on the number
3454  // of iterations is defensive, to avoid any unforseen circumstances
3455  // putting us into an infinite loop. Since it's always been this
3456  // (coordinator_yield()) method that was observed to cause the
3457  // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3458  // which is by default non-zero. For the other seven methods that
3459  // also perform the yield operation, as are using a different
3460  // parameter (CMSYieldSleepCount) which is by default zero. This way we
3461  // can enable the sleeping for those methods too, if necessary.
3462  // See 6442774.
3463  //
3464  // We really need to reconsider the synchronization between the GC
3465  // thread and the yield-requesting threads in the future and we
3466  // should really use wait/notify, which is the recommended
3467  // way of doing this type of interaction. Additionally, we should
3468  // consolidate the eight methods that do the yield operation and they
3469  // are almost identical into one for better maintainability and
3470  // readability. See 6445193.
3471  //
3472  // Tony 2006.06.29
3473  for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3474                   ConcurrentMarkSweepThread::should_yield() &&
3475                   !CMSCollector::foregroundGCIsActive(); ++i) {
3476    os::sleep(Thread::current(), 1, false);
3477  }
3478
3479  ConcurrentMarkSweepThread::synchronize(true);
3480  _bit_map_lock->lock_without_safepoint_check();
3481  _collector->startTimer();
3482}
3483
3484bool CMSCollector::do_marking_mt() {
3485  assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3486  uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3487                                                                  conc_workers()->active_workers(),
3488                                                                  Threads::number_of_non_daemon_threads());
3489  conc_workers()->set_active_workers(num_workers);
3490
3491  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3492
3493  CMSConcMarkingTask tsk(this,
3494                         cms_space,
3495                         conc_workers(),
3496                         task_queues());
3497
3498  // Since the actual number of workers we get may be different
3499  // from the number we requested above, do we need to do anything different
3500  // below? In particular, may be we need to subclass the SequantialSubTasksDone
3501  // class?? XXX
3502  cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3503
3504  // Refs discovery is already non-atomic.
3505  assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3506  assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3507  conc_workers()->start_task(&tsk);
3508  while (tsk.yielded()) {
3509    tsk.coordinator_yield();
3510    conc_workers()->continue_task(&tsk);
3511  }
3512  // If the task was aborted, _restart_addr will be non-NULL
3513  assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3514  while (_restart_addr != NULL) {
3515    // XXX For now we do not make use of ABORTED state and have not
3516    // yet implemented the right abort semantics (even in the original
3517    // single-threaded CMS case). That needs some more investigation
3518    // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3519    assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3520    // If _restart_addr is non-NULL, a marking stack overflow
3521    // occurred; we need to do a fresh marking iteration from the
3522    // indicated restart address.
3523    if (_foregroundGCIsActive) {
3524      // We may be running into repeated stack overflows, having
3525      // reached the limit of the stack size, while making very
3526      // slow forward progress. It may be best to bail out and
3527      // let the foreground collector do its job.
3528      // Clear _restart_addr, so that foreground GC
3529      // works from scratch. This avoids the headache of
3530      // a "rescan" which would otherwise be needed because
3531      // of the dirty mod union table & card table.
3532      _restart_addr = NULL;
3533      return false;
3534    }
3535    // Adjust the task to restart from _restart_addr
3536    tsk.reset(_restart_addr);
3537    cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3538                  _restart_addr);
3539    _restart_addr = NULL;
3540    // Get the workers going again
3541    conc_workers()->start_task(&tsk);
3542    while (tsk.yielded()) {
3543      tsk.coordinator_yield();
3544      conc_workers()->continue_task(&tsk);
3545    }
3546  }
3547  assert(tsk.completed(), "Inconsistency");
3548  assert(tsk.result() == true, "Inconsistency");
3549  return true;
3550}
3551
3552bool CMSCollector::do_marking_st() {
3553  ResourceMark rm;
3554  HandleMark   hm;
3555
3556  // Temporarily make refs discovery single threaded (non-MT)
3557  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3558  MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3559    &_markStack, CMSYield);
3560  // the last argument to iterate indicates whether the iteration
3561  // should be incremental with periodic yields.
3562  _markBitMap.iterate(&markFromRootsClosure);
3563  // If _restart_addr is non-NULL, a marking stack overflow
3564  // occurred; we need to do a fresh iteration from the
3565  // indicated restart address.
3566  while (_restart_addr != NULL) {
3567    if (_foregroundGCIsActive) {
3568      // We may be running into repeated stack overflows, having
3569      // reached the limit of the stack size, while making very
3570      // slow forward progress. It may be best to bail out and
3571      // let the foreground collector do its job.
3572      // Clear _restart_addr, so that foreground GC
3573      // works from scratch. This avoids the headache of
3574      // a "rescan" which would otherwise be needed because
3575      // of the dirty mod union table & card table.
3576      _restart_addr = NULL;
3577      return false;  // indicating failure to complete marking
3578    }
3579    // Deal with stack overflow:
3580    // we restart marking from _restart_addr
3581    HeapWord* ra = _restart_addr;
3582    markFromRootsClosure.reset(ra);
3583    _restart_addr = NULL;
3584    _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3585  }
3586  return true;
3587}
3588
3589void CMSCollector::preclean() {
3590  check_correct_thread_executing();
3591  assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3592  verify_work_stacks_empty();
3593  verify_overflow_empty();
3594  _abort_preclean = false;
3595  if (CMSPrecleaningEnabled) {
3596    if (!CMSEdenChunksRecordAlways) {
3597      _eden_chunk_index = 0;
3598    }
3599    size_t used = get_eden_used();
3600    size_t capacity = get_eden_capacity();
3601    // Don't start sampling unless we will get sufficiently
3602    // many samples.
3603    if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3604                * CMSScheduleRemarkEdenPenetration)) {
3605      _start_sampling = true;
3606    } else {
3607      _start_sampling = false;
3608    }
3609    GCTraceCPUTime tcpu;
3610    CMSPhaseAccounting pa(this, "Concurrent Preclean");
3611    preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3612  }
3613  CMSTokenSync x(true); // is cms thread
3614  if (CMSPrecleaningEnabled) {
3615    sample_eden();
3616    _collectorState = AbortablePreclean;
3617  } else {
3618    _collectorState = FinalMarking;
3619  }
3620  verify_work_stacks_empty();
3621  verify_overflow_empty();
3622}
3623
3624// Try and schedule the remark such that young gen
3625// occupancy is CMSScheduleRemarkEdenPenetration %.
3626void CMSCollector::abortable_preclean() {
3627  check_correct_thread_executing();
3628  assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3629  assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3630
3631  // If Eden's current occupancy is below this threshold,
3632  // immediately schedule the remark; else preclean
3633  // past the next scavenge in an effort to
3634  // schedule the pause as described above. By choosing
3635  // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3636  // we will never do an actual abortable preclean cycle.
3637  if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3638    GCTraceCPUTime tcpu;
3639    CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3640    // We need more smarts in the abortable preclean
3641    // loop below to deal with cases where allocation
3642    // in young gen is very very slow, and our precleaning
3643    // is running a losing race against a horde of
3644    // mutators intent on flooding us with CMS updates
3645    // (dirty cards).
3646    // One, admittedly dumb, strategy is to give up
3647    // after a certain number of abortable precleaning loops
3648    // or after a certain maximum time. We want to make
3649    // this smarter in the next iteration.
3650    // XXX FIX ME!!! YSR
3651    size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3652    while (!(should_abort_preclean() ||
3653             ConcurrentMarkSweepThread::should_terminate())) {
3654      workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3655      cumworkdone += workdone;
3656      loops++;
3657      // Voluntarily terminate abortable preclean phase if we have
3658      // been at it for too long.
3659      if ((CMSMaxAbortablePrecleanLoops != 0) &&
3660          loops >= CMSMaxAbortablePrecleanLoops) {
3661        log_debug(gc)(" CMS: abort preclean due to loops ");
3662        break;
3663      }
3664      if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3665        log_debug(gc)(" CMS: abort preclean due to time ");
3666        break;
3667      }
3668      // If we are doing little work each iteration, we should
3669      // take a short break.
3670      if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3671        // Sleep for some time, waiting for work to accumulate
3672        stopTimer();
3673        cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3674        startTimer();
3675        waited++;
3676      }
3677    }
3678    log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3679                               loops, waited, cumworkdone);
3680  }
3681  CMSTokenSync x(true); // is cms thread
3682  if (_collectorState != Idling) {
3683    assert(_collectorState == AbortablePreclean,
3684           "Spontaneous state transition?");
3685    _collectorState = FinalMarking;
3686  } // Else, a foreground collection completed this CMS cycle.
3687  return;
3688}
3689
3690// Respond to an Eden sampling opportunity
3691void CMSCollector::sample_eden() {
3692  // Make sure a young gc cannot sneak in between our
3693  // reading and recording of a sample.
3694  assert(Thread::current()->is_ConcurrentGC_thread(),
3695         "Only the cms thread may collect Eden samples");
3696  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3697         "Should collect samples while holding CMS token");
3698  if (!_start_sampling) {
3699    return;
3700  }
3701  // When CMSEdenChunksRecordAlways is true, the eden chunk array
3702  // is populated by the young generation.
3703  if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3704    if (_eden_chunk_index < _eden_chunk_capacity) {
3705      _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3706      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3707             "Unexpected state of Eden");
3708      // We'd like to check that what we just sampled is an oop-start address;
3709      // however, we cannot do that here since the object may not yet have been
3710      // initialized. So we'll instead do the check when we _use_ this sample
3711      // later.
3712      if (_eden_chunk_index == 0 ||
3713          (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3714                         _eden_chunk_array[_eden_chunk_index-1])
3715           >= CMSSamplingGrain)) {
3716        _eden_chunk_index++;  // commit sample
3717      }
3718    }
3719  }
3720  if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3721    size_t used = get_eden_used();
3722    size_t capacity = get_eden_capacity();
3723    assert(used <= capacity, "Unexpected state of Eden");
3724    if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3725      _abort_preclean = true;
3726    }
3727  }
3728}
3729
3730
3731size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3732  assert(_collectorState == Precleaning ||
3733         _collectorState == AbortablePreclean, "incorrect state");
3734  ResourceMark rm;
3735  HandleMark   hm;
3736
3737  // Precleaning is currently not MT but the reference processor
3738  // may be set for MT.  Disable it temporarily here.
3739  ReferenceProcessor* rp = ref_processor();
3740  ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3741
3742  // Do one pass of scrubbing the discovered reference lists
3743  // to remove any reference objects with strongly-reachable
3744  // referents.
3745  if (clean_refs) {
3746    CMSPrecleanRefsYieldClosure yield_cl(this);
3747    assert(rp->span().equals(_span), "Spans should be equal");
3748    CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3749                                   &_markStack, true /* preclean */);
3750    CMSDrainMarkingStackClosure complete_trace(this,
3751                                   _span, &_markBitMap, &_markStack,
3752                                   &keep_alive, true /* preclean */);
3753
3754    // We don't want this step to interfere with a young
3755    // collection because we don't want to take CPU
3756    // or memory bandwidth away from the young GC threads
3757    // (which may be as many as there are CPUs).
3758    // Note that we don't need to protect ourselves from
3759    // interference with mutators because they can't
3760    // manipulate the discovered reference lists nor affect
3761    // the computed reachability of the referents, the
3762    // only properties manipulated by the precleaning
3763    // of these reference lists.
3764    stopTimer();
3765    CMSTokenSyncWithLocks x(true /* is cms thread */,
3766                            bitMapLock());
3767    startTimer();
3768    sample_eden();
3769
3770    // The following will yield to allow foreground
3771    // collection to proceed promptly. XXX YSR:
3772    // The code in this method may need further
3773    // tweaking for better performance and some restructuring
3774    // for cleaner interfaces.
3775    GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3776    rp->preclean_discovered_references(
3777          rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3778          gc_timer);
3779  }
3780
3781  if (clean_survivor) {  // preclean the active survivor space(s)
3782    PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3783                             &_markBitMap, &_modUnionTable,
3784                             &_markStack, true /* precleaning phase */);
3785    stopTimer();
3786    CMSTokenSyncWithLocks ts(true /* is cms thread */,
3787                             bitMapLock());
3788    startTimer();
3789    unsigned int before_count =
3790      GenCollectedHeap::heap()->total_collections();
3791    SurvivorSpacePrecleanClosure
3792      sss_cl(this, _span, &_markBitMap, &_markStack,
3793             &pam_cl, before_count, CMSYield);
3794    _young_gen->from()->object_iterate_careful(&sss_cl);
3795    _young_gen->to()->object_iterate_careful(&sss_cl);
3796  }
3797  MarkRefsIntoAndScanClosure
3798    mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3799             &_markStack, this, CMSYield,
3800             true /* precleaning phase */);
3801  // CAUTION: The following closure has persistent state that may need to
3802  // be reset upon a decrease in the sequence of addresses it
3803  // processes.
3804  ScanMarkedObjectsAgainCarefullyClosure
3805    smoac_cl(this, _span,
3806      &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3807
3808  // Preclean dirty cards in ModUnionTable and CardTable using
3809  // appropriate convergence criterion;
3810  // repeat CMSPrecleanIter times unless we find that
3811  // we are losing.
3812  assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3813  assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3814         "Bad convergence multiplier");
3815  assert(CMSPrecleanThreshold >= 100,
3816         "Unreasonably low CMSPrecleanThreshold");
3817
3818  size_t numIter, cumNumCards, lastNumCards, curNumCards;
3819  for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3820       numIter < CMSPrecleanIter;
3821       numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3822    curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3823    log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3824    // Either there are very few dirty cards, so re-mark
3825    // pause will be small anyway, or our pre-cleaning isn't
3826    // that much faster than the rate at which cards are being
3827    // dirtied, so we might as well stop and re-mark since
3828    // precleaning won't improve our re-mark time by much.
3829    if (curNumCards <= CMSPrecleanThreshold ||
3830        (numIter > 0 &&
3831         (curNumCards * CMSPrecleanDenominator >
3832         lastNumCards * CMSPrecleanNumerator))) {
3833      numIter++;
3834      cumNumCards += curNumCards;
3835      break;
3836    }
3837  }
3838
3839  preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3840
3841  curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3842  cumNumCards += curNumCards;
3843  log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3844                             curNumCards, cumNumCards, numIter);
3845  return cumNumCards;   // as a measure of useful work done
3846}
3847
3848// PRECLEANING NOTES:
3849// Precleaning involves:
3850// . reading the bits of the modUnionTable and clearing the set bits.
3851// . For the cards corresponding to the set bits, we scan the
3852//   objects on those cards. This means we need the free_list_lock
3853//   so that we can safely iterate over the CMS space when scanning
3854//   for oops.
3855// . When we scan the objects, we'll be both reading and setting
3856//   marks in the marking bit map, so we'll need the marking bit map.
3857// . For protecting _collector_state transitions, we take the CGC_lock.
3858//   Note that any races in the reading of of card table entries by the
3859//   CMS thread on the one hand and the clearing of those entries by the
3860//   VM thread or the setting of those entries by the mutator threads on the
3861//   other are quite benign. However, for efficiency it makes sense to keep
3862//   the VM thread from racing with the CMS thread while the latter is
3863//   dirty card info to the modUnionTable. We therefore also use the
3864//   CGC_lock to protect the reading of the card table and the mod union
3865//   table by the CM thread.
3866// . We run concurrently with mutator updates, so scanning
3867//   needs to be done carefully  -- we should not try to scan
3868//   potentially uninitialized objects.
3869//
3870// Locking strategy: While holding the CGC_lock, we scan over and
3871// reset a maximal dirty range of the mod union / card tables, then lock
3872// the free_list_lock and bitmap lock to do a full marking, then
3873// release these locks; and repeat the cycle. This allows for a
3874// certain amount of fairness in the sharing of these locks between
3875// the CMS collector on the one hand, and the VM thread and the
3876// mutators on the other.
3877
3878// NOTE: preclean_mod_union_table() and preclean_card_table()
3879// further below are largely identical; if you need to modify
3880// one of these methods, please check the other method too.
3881
3882size_t CMSCollector::preclean_mod_union_table(
3883  ConcurrentMarkSweepGeneration* old_gen,
3884  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3885  verify_work_stacks_empty();
3886  verify_overflow_empty();
3887
3888  // strategy: starting with the first card, accumulate contiguous
3889  // ranges of dirty cards; clear these cards, then scan the region
3890  // covered by these cards.
3891
3892  // Since all of the MUT is committed ahead, we can just use
3893  // that, in case the generations expand while we are precleaning.
3894  // It might also be fine to just use the committed part of the
3895  // generation, but we might potentially miss cards when the
3896  // generation is rapidly expanding while we are in the midst
3897  // of precleaning.
3898  HeapWord* startAddr = old_gen->reserved().start();
3899  HeapWord* endAddr   = old_gen->reserved().end();
3900
3901  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3902
3903  size_t numDirtyCards, cumNumDirtyCards;
3904  HeapWord *nextAddr, *lastAddr;
3905  for (cumNumDirtyCards = numDirtyCards = 0,
3906       nextAddr = lastAddr = startAddr;
3907       nextAddr < endAddr;
3908       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3909
3910    ResourceMark rm;
3911    HandleMark   hm;
3912
3913    MemRegion dirtyRegion;
3914    {
3915      stopTimer();
3916      // Potential yield point
3917      CMSTokenSync ts(true);
3918      startTimer();
3919      sample_eden();
3920      // Get dirty region starting at nextOffset (inclusive),
3921      // simultaneously clearing it.
3922      dirtyRegion =
3923        _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3924      assert(dirtyRegion.start() >= nextAddr,
3925             "returned region inconsistent?");
3926    }
3927    // Remember where the next search should begin.
3928    // The returned region (if non-empty) is a right open interval,
3929    // so lastOffset is obtained from the right end of that
3930    // interval.
3931    lastAddr = dirtyRegion.end();
3932    // Should do something more transparent and less hacky XXX
3933    numDirtyCards =
3934      _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3935
3936    // We'll scan the cards in the dirty region (with periodic
3937    // yields for foreground GC as needed).
3938    if (!dirtyRegion.is_empty()) {
3939      assert(numDirtyCards > 0, "consistency check");
3940      HeapWord* stop_point = NULL;
3941      stopTimer();
3942      // Potential yield point
3943      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3944                               bitMapLock());
3945      startTimer();
3946      {
3947        verify_work_stacks_empty();
3948        verify_overflow_empty();
3949        sample_eden();
3950        stop_point =
3951          old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3952      }
3953      if (stop_point != NULL) {
3954        // The careful iteration stopped early either because it found an
3955        // uninitialized object, or because we were in the midst of an
3956        // "abortable preclean", which should now be aborted. Redirty
3957        // the bits corresponding to the partially-scanned or unscanned
3958        // cards. We'll either restart at the next block boundary or
3959        // abort the preclean.
3960        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3961               "Should only be AbortablePreclean.");
3962        _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3963        if (should_abort_preclean()) {
3964          break; // out of preclean loop
3965        } else {
3966          // Compute the next address at which preclean should pick up;
3967          // might need bitMapLock in order to read P-bits.
3968          lastAddr = next_card_start_after_block(stop_point);
3969        }
3970      }
3971    } else {
3972      assert(lastAddr == endAddr, "consistency check");
3973      assert(numDirtyCards == 0, "consistency check");
3974      break;
3975    }
3976  }
3977  verify_work_stacks_empty();
3978  verify_overflow_empty();
3979  return cumNumDirtyCards;
3980}
3981
3982// NOTE: preclean_mod_union_table() above and preclean_card_table()
3983// below are largely identical; if you need to modify
3984// one of these methods, please check the other method too.
3985
3986size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3987  ScanMarkedObjectsAgainCarefullyClosure* cl) {
3988  // strategy: it's similar to precleamModUnionTable above, in that
3989  // we accumulate contiguous ranges of dirty cards, mark these cards
3990  // precleaned, then scan the region covered by these cards.
3991  HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3992  HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3993
3994  cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3995
3996  size_t numDirtyCards, cumNumDirtyCards;
3997  HeapWord *lastAddr, *nextAddr;
3998
3999  for (cumNumDirtyCards = numDirtyCards = 0,
4000       nextAddr = lastAddr = startAddr;
4001       nextAddr < endAddr;
4002       nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4003
4004    ResourceMark rm;
4005    HandleMark   hm;
4006
4007    MemRegion dirtyRegion;
4008    {
4009      // See comments in "Precleaning notes" above on why we
4010      // do this locking. XXX Could the locking overheads be
4011      // too high when dirty cards are sparse? [I don't think so.]
4012      stopTimer();
4013      CMSTokenSync x(true); // is cms thread
4014      startTimer();
4015      sample_eden();
4016      // Get and clear dirty region from card table
4017      dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4018                                    MemRegion(nextAddr, endAddr),
4019                                    true,
4020                                    CardTableModRefBS::precleaned_card_val());
4021
4022      assert(dirtyRegion.start() >= nextAddr,
4023             "returned region inconsistent?");
4024    }
4025    lastAddr = dirtyRegion.end();
4026    numDirtyCards =
4027      dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4028
4029    if (!dirtyRegion.is_empty()) {
4030      stopTimer();
4031      CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4032      startTimer();
4033      sample_eden();
4034      verify_work_stacks_empty();
4035      verify_overflow_empty();
4036      HeapWord* stop_point =
4037        old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4038      if (stop_point != NULL) {
4039        assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4040               "Should only be AbortablePreclean.");
4041        _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4042        if (should_abort_preclean()) {
4043          break; // out of preclean loop
4044        } else {
4045          // Compute the next address at which preclean should pick up.
4046          lastAddr = next_card_start_after_block(stop_point);
4047        }
4048      }
4049    } else {
4050      break;
4051    }
4052  }
4053  verify_work_stacks_empty();
4054  verify_overflow_empty();
4055  return cumNumDirtyCards;
4056}
4057
4058class PrecleanKlassClosure : public KlassClosure {
4059  KlassToOopClosure _cm_klass_closure;
4060 public:
4061  PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4062  void do_klass(Klass* k) {
4063    if (k->has_accumulated_modified_oops()) {
4064      k->clear_accumulated_modified_oops();
4065
4066      _cm_klass_closure.do_klass(k);
4067    }
4068  }
4069};
4070
4071// The freelist lock is needed to prevent asserts, is it really needed?
4072void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4073
4074  cl->set_freelistLock(freelistLock);
4075
4076  CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4077
4078  // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4079  // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4080  PrecleanKlassClosure preclean_klass_closure(cl);
4081  ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4082
4083  verify_work_stacks_empty();
4084  verify_overflow_empty();
4085}
4086
4087void CMSCollector::checkpointRootsFinal() {
4088  assert(_collectorState == FinalMarking, "incorrect state transition?");
4089  check_correct_thread_executing();
4090  // world is stopped at this checkpoint
4091  assert(SafepointSynchronize::is_at_safepoint(),
4092         "world should be stopped");
4093  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4094
4095  verify_work_stacks_empty();
4096  verify_overflow_empty();
4097
4098  log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4099                _young_gen->used() / K, _young_gen->capacity() / K);
4100  {
4101    if (CMSScavengeBeforeRemark) {
4102      GenCollectedHeap* gch = GenCollectedHeap::heap();
4103      // Temporarily set flag to false, GCH->do_collection will
4104      // expect it to be false and set to true
4105      FlagSetting fl(gch->_is_gc_active, false);
4106
4107      GCTraceTime(Trace, gc) tm("Pause Scavenge Before Remark", _gc_timer_cm);
4108
4109      gch->do_collection(true,                      // full (i.e. force, see below)
4110                         false,                     // !clear_all_soft_refs
4111                         0,                         // size
4112                         false,                     // is_tlab
4113                         GenCollectedHeap::YoungGen // type
4114        );
4115    }
4116    FreelistLocker x(this);
4117    MutexLockerEx y(bitMapLock(),
4118                    Mutex::_no_safepoint_check_flag);
4119    checkpointRootsFinalWork();
4120  }
4121  verify_work_stacks_empty();
4122  verify_overflow_empty();
4123}
4124
4125void CMSCollector::checkpointRootsFinalWork() {
4126  GCTraceTime(Trace, gc) tm("checkpointRootsFinalWork", _gc_timer_cm);
4127
4128  assert(haveFreelistLocks(), "must have free list locks");
4129  assert_lock_strong(bitMapLock());
4130
4131  ResourceMark rm;
4132  HandleMark   hm;
4133
4134  GenCollectedHeap* gch = GenCollectedHeap::heap();
4135
4136  if (should_unload_classes()) {
4137    CodeCache::gc_prologue();
4138  }
4139  assert(haveFreelistLocks(), "must have free list locks");
4140  assert_lock_strong(bitMapLock());
4141
4142  // We might assume that we need not fill TLAB's when
4143  // CMSScavengeBeforeRemark is set, because we may have just done
4144  // a scavenge which would have filled all TLAB's -- and besides
4145  // Eden would be empty. This however may not always be the case --
4146  // for instance although we asked for a scavenge, it may not have
4147  // happened because of a JNI critical section. We probably need
4148  // a policy for deciding whether we can in that case wait until
4149  // the critical section releases and then do the remark following
4150  // the scavenge, and skip it here. In the absence of that policy,
4151  // or of an indication of whether the scavenge did indeed occur,
4152  // we cannot rely on TLAB's having been filled and must do
4153  // so here just in case a scavenge did not happen.
4154  gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4155  // Update the saved marks which may affect the root scans.
4156  gch->save_marks();
4157
4158  print_eden_and_survivor_chunk_arrays();
4159
4160  {
4161#if defined(COMPILER2) || INCLUDE_JVMCI
4162    DerivedPointerTableDeactivate dpt_deact;
4163#endif
4164
4165    // Note on the role of the mod union table:
4166    // Since the marker in "markFromRoots" marks concurrently with
4167    // mutators, it is possible for some reachable objects not to have been
4168    // scanned. For instance, an only reference to an object A was
4169    // placed in object B after the marker scanned B. Unless B is rescanned,
4170    // A would be collected. Such updates to references in marked objects
4171    // are detected via the mod union table which is the set of all cards
4172    // dirtied since the first checkpoint in this GC cycle and prior to
4173    // the most recent young generation GC, minus those cleaned up by the
4174    // concurrent precleaning.
4175    if (CMSParallelRemarkEnabled) {
4176      GCTraceTime(Debug, gc) t("Rescan (parallel)", _gc_timer_cm);
4177      do_remark_parallel();
4178    } else {
4179      GCTraceTime(Debug, gc) t("Rescan (non-parallel)", _gc_timer_cm);
4180      do_remark_non_parallel();
4181    }
4182  }
4183  verify_work_stacks_empty();
4184  verify_overflow_empty();
4185
4186  {
4187    GCTraceTime(Trace, gc) ts("refProcessingWork", _gc_timer_cm);
4188    refProcessingWork();
4189  }
4190  verify_work_stacks_empty();
4191  verify_overflow_empty();
4192
4193  if (should_unload_classes()) {
4194    CodeCache::gc_epilogue();
4195  }
4196  JvmtiExport::gc_epilogue();
4197
4198  // If we encountered any (marking stack / work queue) overflow
4199  // events during the current CMS cycle, take appropriate
4200  // remedial measures, where possible, so as to try and avoid
4201  // recurrence of that condition.
4202  assert(_markStack.isEmpty(), "No grey objects");
4203  size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4204                     _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4205  if (ser_ovflw > 0) {
4206    log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4207                         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4208    _markStack.expand();
4209    _ser_pmc_remark_ovflw = 0;
4210    _ser_pmc_preclean_ovflw = 0;
4211    _ser_kac_preclean_ovflw = 0;
4212    _ser_kac_ovflw = 0;
4213  }
4214  if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4215     log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4216                          _par_pmc_remark_ovflw, _par_kac_ovflw);
4217     _par_pmc_remark_ovflw = 0;
4218    _par_kac_ovflw = 0;
4219  }
4220   if (_markStack._hit_limit > 0) {
4221     log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4222                          _markStack._hit_limit);
4223   }
4224   if (_markStack._failed_double > 0) {
4225     log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4226                          _markStack._failed_double, _markStack.capacity());
4227   }
4228  _markStack._hit_limit = 0;
4229  _markStack._failed_double = 0;
4230
4231  if ((VerifyAfterGC || VerifyDuringGC) &&
4232      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4233    verify_after_remark();
4234  }
4235
4236  _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4237
4238  // Change under the freelistLocks.
4239  _collectorState = Sweeping;
4240  // Call isAllClear() under bitMapLock
4241  assert(_modUnionTable.isAllClear(),
4242      "Should be clear by end of the final marking");
4243  assert(_ct->klass_rem_set()->mod_union_is_clear(),
4244      "Should be clear by end of the final marking");
4245}
4246
4247void CMSParInitialMarkTask::work(uint worker_id) {
4248  elapsedTimer _timer;
4249  ResourceMark rm;
4250  HandleMark   hm;
4251
4252  // ---------- scan from roots --------------
4253  _timer.start();
4254  GenCollectedHeap* gch = GenCollectedHeap::heap();
4255  ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4256
4257  // ---------- young gen roots --------------
4258  {
4259    work_on_young_gen_roots(worker_id, &par_mri_cl);
4260    _timer.stop();
4261    log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4262  }
4263
4264  // ---------- remaining roots --------------
4265  _timer.reset();
4266  _timer.start();
4267
4268  CLDToOopClosure cld_closure(&par_mri_cl, true);
4269
4270  gch->gen_process_roots(_strong_roots_scope,
4271                         GenCollectedHeap::OldGen,
4272                         false,     // yg was scanned above
4273                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4274                         _collector->should_unload_classes(),
4275                         &par_mri_cl,
4276                         NULL,
4277                         &cld_closure);
4278  assert(_collector->should_unload_classes()
4279         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4280         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4281  _timer.stop();
4282  log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4283}
4284
4285// Parallel remark task
4286class CMSParRemarkTask: public CMSParMarkTask {
4287  CompactibleFreeListSpace* _cms_space;
4288
4289  // The per-thread work queues, available here for stealing.
4290  OopTaskQueueSet*       _task_queues;
4291  ParallelTaskTerminator _term;
4292  StrongRootsScope*      _strong_roots_scope;
4293
4294 public:
4295  // A value of 0 passed to n_workers will cause the number of
4296  // workers to be taken from the active workers in the work gang.
4297  CMSParRemarkTask(CMSCollector* collector,
4298                   CompactibleFreeListSpace* cms_space,
4299                   uint n_workers, WorkGang* workers,
4300                   OopTaskQueueSet* task_queues,
4301                   StrongRootsScope* strong_roots_scope):
4302    CMSParMarkTask("Rescan roots and grey objects in parallel",
4303                   collector, n_workers),
4304    _cms_space(cms_space),
4305    _task_queues(task_queues),
4306    _term(n_workers, task_queues),
4307    _strong_roots_scope(strong_roots_scope) { }
4308
4309  OopTaskQueueSet* task_queues() { return _task_queues; }
4310
4311  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4312
4313  ParallelTaskTerminator* terminator() { return &_term; }
4314  uint n_workers() { return _n_workers; }
4315
4316  void work(uint worker_id);
4317
4318 private:
4319  // ... of  dirty cards in old space
4320  void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4321                                  ParMarkRefsIntoAndScanClosure* cl);
4322
4323  // ... work stealing for the above
4324  void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl, int* seed);
4325};
4326
4327class RemarkKlassClosure : public KlassClosure {
4328  KlassToOopClosure _cm_klass_closure;
4329 public:
4330  RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4331  void do_klass(Klass* k) {
4332    // Check if we have modified any oops in the Klass during the concurrent marking.
4333    if (k->has_accumulated_modified_oops()) {
4334      k->clear_accumulated_modified_oops();
4335
4336      // We could have transfered the current modified marks to the accumulated marks,
4337      // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4338    } else if (k->has_modified_oops()) {
4339      // Don't clear anything, this info is needed by the next young collection.
4340    } else {
4341      // No modified oops in the Klass.
4342      return;
4343    }
4344
4345    // The klass has modified fields, need to scan the klass.
4346    _cm_klass_closure.do_klass(k);
4347  }
4348};
4349
4350void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4351  ParNewGeneration* young_gen = _collector->_young_gen;
4352  ContiguousSpace* eden_space = young_gen->eden();
4353  ContiguousSpace* from_space = young_gen->from();
4354  ContiguousSpace* to_space   = young_gen->to();
4355
4356  HeapWord** eca = _collector->_eden_chunk_array;
4357  size_t     ect = _collector->_eden_chunk_index;
4358  HeapWord** sca = _collector->_survivor_chunk_array;
4359  size_t     sct = _collector->_survivor_chunk_index;
4360
4361  assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4362  assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4363
4364  do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4365  do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4366  do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4367}
4368
4369// work_queue(i) is passed to the closure
4370// ParMarkRefsIntoAndScanClosure.  The "i" parameter
4371// also is passed to do_dirty_card_rescan_tasks() and to
4372// do_work_steal() to select the i-th task_queue.
4373
4374void CMSParRemarkTask::work(uint worker_id) {
4375  elapsedTimer _timer;
4376  ResourceMark rm;
4377  HandleMark   hm;
4378
4379  // ---------- rescan from roots --------------
4380  _timer.start();
4381  GenCollectedHeap* gch = GenCollectedHeap::heap();
4382  ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4383    _collector->_span, _collector->ref_processor(),
4384    &(_collector->_markBitMap),
4385    work_queue(worker_id));
4386
4387  // Rescan young gen roots first since these are likely
4388  // coarsely partitioned and may, on that account, constitute
4389  // the critical path; thus, it's best to start off that
4390  // work first.
4391  // ---------- young gen roots --------------
4392  {
4393    work_on_young_gen_roots(worker_id, &par_mrias_cl);
4394    _timer.stop();
4395    log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4396  }
4397
4398  // ---------- remaining roots --------------
4399  _timer.reset();
4400  _timer.start();
4401  gch->gen_process_roots(_strong_roots_scope,
4402                         GenCollectedHeap::OldGen,
4403                         false,     // yg was scanned above
4404                         GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4405                         _collector->should_unload_classes(),
4406                         &par_mrias_cl,
4407                         NULL,
4408                         NULL);     // The dirty klasses will be handled below
4409
4410  assert(_collector->should_unload_classes()
4411         || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4412         "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4413  _timer.stop();
4414  log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4415
4416  // ---------- unhandled CLD scanning ----------
4417  if (worker_id == 0) { // Single threaded at the moment.
4418    _timer.reset();
4419    _timer.start();
4420
4421    // Scan all new class loader data objects and new dependencies that were
4422    // introduced during concurrent marking.
4423    ResourceMark rm;
4424    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4425    for (int i = 0; i < array->length(); i++) {
4426      par_mrias_cl.do_cld_nv(array->at(i));
4427    }
4428
4429    // We don't need to keep track of new CLDs anymore.
4430    ClassLoaderDataGraph::remember_new_clds(false);
4431
4432    _timer.stop();
4433    log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4434  }
4435
4436  // ---------- dirty klass scanning ----------
4437  if (worker_id == 0) { // Single threaded at the moment.
4438    _timer.reset();
4439    _timer.start();
4440
4441    // Scan all classes that was dirtied during the concurrent marking phase.
4442    RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4443    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4444
4445    _timer.stop();
4446    log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4447  }
4448
4449  // We might have added oops to ClassLoaderData::_handles during the
4450  // concurrent marking phase. These oops point to newly allocated objects
4451  // that are guaranteed to be kept alive. Either by the direct allocation
4452  // code, or when the young collector processes the roots. Hence,
4453  // we don't have to revisit the _handles block during the remark phase.
4454
4455  // ---------- rescan dirty cards ------------
4456  _timer.reset();
4457  _timer.start();
4458
4459  // Do the rescan tasks for each of the two spaces
4460  // (cms_space) in turn.
4461  // "worker_id" is passed to select the task_queue for "worker_id"
4462  do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4463  _timer.stop();
4464  log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4465
4466  // ---------- steal work from other threads ...
4467  // ---------- ... and drain overflow list.
4468  _timer.reset();
4469  _timer.start();
4470  do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4471  _timer.stop();
4472  log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4473}
4474
4475// Note that parameter "i" is not used.
4476void
4477CMSParMarkTask::do_young_space_rescan(uint worker_id,
4478  OopsInGenClosure* cl, ContiguousSpace* space,
4479  HeapWord** chunk_array, size_t chunk_top) {
4480  // Until all tasks completed:
4481  // . claim an unclaimed task
4482  // . compute region boundaries corresponding to task claimed
4483  //   using chunk_array
4484  // . par_oop_iterate(cl) over that region
4485
4486  ResourceMark rm;
4487  HandleMark   hm;
4488
4489  SequentialSubTasksDone* pst = space->par_seq_tasks();
4490
4491  uint nth_task = 0;
4492  uint n_tasks  = pst->n_tasks();
4493
4494  if (n_tasks > 0) {
4495    assert(pst->valid(), "Uninitialized use?");
4496    HeapWord *start, *end;
4497    while (!pst->is_task_claimed(/* reference */ nth_task)) {
4498      // We claimed task # nth_task; compute its boundaries.
4499      if (chunk_top == 0) {  // no samples were taken
4500        assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4501        start = space->bottom();
4502        end   = space->top();
4503      } else if (nth_task == 0) {
4504        start = space->bottom();
4505        end   = chunk_array[nth_task];
4506      } else if (nth_task < (uint)chunk_top) {
4507        assert(nth_task >= 1, "Control point invariant");
4508        start = chunk_array[nth_task - 1];
4509        end   = chunk_array[nth_task];
4510      } else {
4511        assert(nth_task == (uint)chunk_top, "Control point invariant");
4512        start = chunk_array[chunk_top - 1];
4513        end   = space->top();
4514      }
4515      MemRegion mr(start, end);
4516      // Verify that mr is in space
4517      assert(mr.is_empty() || space->used_region().contains(mr),
4518             "Should be in space");
4519      // Verify that "start" is an object boundary
4520      assert(mr.is_empty() || oop(mr.start())->is_oop(),
4521             "Should be an oop");
4522      space->par_oop_iterate(mr, cl);
4523    }
4524    pst->all_tasks_completed();
4525  }
4526}
4527
4528void
4529CMSParRemarkTask::do_dirty_card_rescan_tasks(
4530  CompactibleFreeListSpace* sp, int i,
4531  ParMarkRefsIntoAndScanClosure* cl) {
4532  // Until all tasks completed:
4533  // . claim an unclaimed task
4534  // . compute region boundaries corresponding to task claimed
4535  // . transfer dirty bits ct->mut for that region
4536  // . apply rescanclosure to dirty mut bits for that region
4537
4538  ResourceMark rm;
4539  HandleMark   hm;
4540
4541  OopTaskQueue* work_q = work_queue(i);
4542  ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4543  // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4544  // CAUTION: This closure has state that persists across calls to
4545  // the work method dirty_range_iterate_clear() in that it has
4546  // embedded in it a (subtype of) UpwardsObjectClosure. The
4547  // use of that state in the embedded UpwardsObjectClosure instance
4548  // assumes that the cards are always iterated (even if in parallel
4549  // by several threads) in monotonically increasing order per each
4550  // thread. This is true of the implementation below which picks
4551  // card ranges (chunks) in monotonically increasing order globally
4552  // and, a-fortiori, in monotonically increasing order per thread
4553  // (the latter order being a subsequence of the former).
4554  // If the work code below is ever reorganized into a more chaotic
4555  // work-partitioning form than the current "sequential tasks"
4556  // paradigm, the use of that persistent state will have to be
4557  // revisited and modified appropriately. See also related
4558  // bug 4756801 work on which should examine this code to make
4559  // sure that the changes there do not run counter to the
4560  // assumptions made here and necessary for correctness and
4561  // efficiency. Note also that this code might yield inefficient
4562  // behavior in the case of very large objects that span one or
4563  // more work chunks. Such objects would potentially be scanned
4564  // several times redundantly. Work on 4756801 should try and
4565  // address that performance anomaly if at all possible. XXX
4566  MemRegion  full_span  = _collector->_span;
4567  CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4568  MarkFromDirtyCardsClosure
4569    greyRescanClosure(_collector, full_span, // entire span of interest
4570                      sp, bm, work_q, cl);
4571
4572  SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4573  assert(pst->valid(), "Uninitialized use?");
4574  uint nth_task = 0;
4575  const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4576  MemRegion span = sp->used_region();
4577  HeapWord* start_addr = span.start();
4578  HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4579                                           alignment);
4580  const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4581  assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4582         start_addr, "Check alignment");
4583  assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4584         chunk_size, "Check alignment");
4585
4586  while (!pst->is_task_claimed(/* reference */ nth_task)) {
4587    // Having claimed the nth_task, compute corresponding mem-region,
4588    // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4589    // The alignment restriction ensures that we do not need any
4590    // synchronization with other gang-workers while setting or
4591    // clearing bits in thus chunk of the MUT.
4592    MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4593                                    start_addr + (nth_task+1)*chunk_size);
4594    // The last chunk's end might be way beyond end of the
4595    // used region. In that case pull back appropriately.
4596    if (this_span.end() > end_addr) {
4597      this_span.set_end(end_addr);
4598      assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4599    }
4600    // Iterate over the dirty cards covering this chunk, marking them
4601    // precleaned, and setting the corresponding bits in the mod union
4602    // table. Since we have been careful to partition at Card and MUT-word
4603    // boundaries no synchronization is needed between parallel threads.
4604    _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4605                                                 &modUnionClosure);
4606
4607    // Having transferred these marks into the modUnionTable,
4608    // rescan the marked objects on the dirty cards in the modUnionTable.
4609    // Even if this is at a synchronous collection, the initial marking
4610    // may have been done during an asynchronous collection so there
4611    // may be dirty bits in the mod-union table.
4612    _collector->_modUnionTable.dirty_range_iterate_clear(
4613                  this_span, &greyRescanClosure);
4614    _collector->_modUnionTable.verifyNoOneBitsInRange(
4615                                 this_span.start(),
4616                                 this_span.end());
4617  }
4618  pst->all_tasks_completed();  // declare that i am done
4619}
4620
4621// . see if we can share work_queues with ParNew? XXX
4622void
4623CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl,
4624                                int* seed) {
4625  OopTaskQueue* work_q = work_queue(i);
4626  NOT_PRODUCT(int num_steals = 0;)
4627  oop obj_to_scan;
4628  CMSBitMap* bm = &(_collector->_markBitMap);
4629
4630  while (true) {
4631    // Completely finish any left over work from (an) earlier round(s)
4632    cl->trim_queue(0);
4633    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4634                                         (size_t)ParGCDesiredObjsFromOverflowList);
4635    // Now check if there's any work in the overflow list
4636    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4637    // only affects the number of attempts made to get work from the
4638    // overflow list and does not affect the number of workers.  Just
4639    // pass ParallelGCThreads so this behavior is unchanged.
4640    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4641                                                work_q,
4642                                                ParallelGCThreads)) {
4643      // found something in global overflow list;
4644      // not yet ready to go stealing work from others.
4645      // We'd like to assert(work_q->size() != 0, ...)
4646      // because we just took work from the overflow list,
4647      // but of course we can't since all of that could have
4648      // been already stolen from us.
4649      // "He giveth and He taketh away."
4650      continue;
4651    }
4652    // Verify that we have no work before we resort to stealing
4653    assert(work_q->size() == 0, "Have work, shouldn't steal");
4654    // Try to steal from other queues that have work
4655    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4656      NOT_PRODUCT(num_steals++;)
4657      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4658      assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4659      // Do scanning work
4660      obj_to_scan->oop_iterate(cl);
4661      // Loop around, finish this work, and try to steal some more
4662    } else if (terminator()->offer_termination()) {
4663        break;  // nirvana from the infinite cycle
4664    }
4665  }
4666  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4667  assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4668         "Else our work is not yet done");
4669}
4670
4671// Record object boundaries in _eden_chunk_array by sampling the eden
4672// top in the slow-path eden object allocation code path and record
4673// the boundaries, if CMSEdenChunksRecordAlways is true. If
4674// CMSEdenChunksRecordAlways is false, we use the other asynchronous
4675// sampling in sample_eden() that activates during the part of the
4676// preclean phase.
4677void CMSCollector::sample_eden_chunk() {
4678  if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4679    if (_eden_chunk_lock->try_lock()) {
4680      // Record a sample. This is the critical section. The contents
4681      // of the _eden_chunk_array have to be non-decreasing in the
4682      // address order.
4683      _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4684      assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4685             "Unexpected state of Eden");
4686      if (_eden_chunk_index == 0 ||
4687          ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4688           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4689                          _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4690        _eden_chunk_index++;  // commit sample
4691      }
4692      _eden_chunk_lock->unlock();
4693    }
4694  }
4695}
4696
4697// Return a thread-local PLAB recording array, as appropriate.
4698void* CMSCollector::get_data_recorder(int thr_num) {
4699  if (_survivor_plab_array != NULL &&
4700      (CMSPLABRecordAlways ||
4701       (_collectorState > Marking && _collectorState < FinalMarking))) {
4702    assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4703    ChunkArray* ca = &_survivor_plab_array[thr_num];
4704    ca->reset();   // clear it so that fresh data is recorded
4705    return (void*) ca;
4706  } else {
4707    return NULL;
4708  }
4709}
4710
4711// Reset all the thread-local PLAB recording arrays
4712void CMSCollector::reset_survivor_plab_arrays() {
4713  for (uint i = 0; i < ParallelGCThreads; i++) {
4714    _survivor_plab_array[i].reset();
4715  }
4716}
4717
4718// Merge the per-thread plab arrays into the global survivor chunk
4719// array which will provide the partitioning of the survivor space
4720// for CMS initial scan and rescan.
4721void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4722                                              int no_of_gc_threads) {
4723  assert(_survivor_plab_array  != NULL, "Error");
4724  assert(_survivor_chunk_array != NULL, "Error");
4725  assert(_collectorState == FinalMarking ||
4726         (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4727  for (int j = 0; j < no_of_gc_threads; j++) {
4728    _cursor[j] = 0;
4729  }
4730  HeapWord* top = surv->top();
4731  size_t i;
4732  for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4733    HeapWord* min_val = top;          // Higher than any PLAB address
4734    uint      min_tid = 0;            // position of min_val this round
4735    for (int j = 0; j < no_of_gc_threads; j++) {
4736      ChunkArray* cur_sca = &_survivor_plab_array[j];
4737      if (_cursor[j] == cur_sca->end()) {
4738        continue;
4739      }
4740      assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4741      HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4742      assert(surv->used_region().contains(cur_val), "Out of bounds value");
4743      if (cur_val < min_val) {
4744        min_tid = j;
4745        min_val = cur_val;
4746      } else {
4747        assert(cur_val < top, "All recorded addresses should be less");
4748      }
4749    }
4750    // At this point min_val and min_tid are respectively
4751    // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4752    // and the thread (j) that witnesses that address.
4753    // We record this address in the _survivor_chunk_array[i]
4754    // and increment _cursor[min_tid] prior to the next round i.
4755    if (min_val == top) {
4756      break;
4757    }
4758    _survivor_chunk_array[i] = min_val;
4759    _cursor[min_tid]++;
4760  }
4761  // We are all done; record the size of the _survivor_chunk_array
4762  _survivor_chunk_index = i; // exclusive: [0, i)
4763  log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4764  // Verify that we used up all the recorded entries
4765  #ifdef ASSERT
4766    size_t total = 0;
4767    for (int j = 0; j < no_of_gc_threads; j++) {
4768      assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4769      total += _cursor[j];
4770    }
4771    assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4772    // Check that the merged array is in sorted order
4773    if (total > 0) {
4774      for (size_t i = 0; i < total - 1; i++) {
4775        log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4776                                     i, p2i(_survivor_chunk_array[i]));
4777        assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4778               "Not sorted");
4779      }
4780    }
4781  #endif // ASSERT
4782}
4783
4784// Set up the space's par_seq_tasks structure for work claiming
4785// for parallel initial scan and rescan of young gen.
4786// See ParRescanTask where this is currently used.
4787void
4788CMSCollector::
4789initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4790  assert(n_threads > 0, "Unexpected n_threads argument");
4791
4792  // Eden space
4793  if (!_young_gen->eden()->is_empty()) {
4794    SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4795    assert(!pst->valid(), "Clobbering existing data?");
4796    // Each valid entry in [0, _eden_chunk_index) represents a task.
4797    size_t n_tasks = _eden_chunk_index + 1;
4798    assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4799    // Sets the condition for completion of the subtask (how many threads
4800    // need to finish in order to be done).
4801    pst->set_n_threads(n_threads);
4802    pst->set_n_tasks((int)n_tasks);
4803  }
4804
4805  // Merge the survivor plab arrays into _survivor_chunk_array
4806  if (_survivor_plab_array != NULL) {
4807    merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4808  } else {
4809    assert(_survivor_chunk_index == 0, "Error");
4810  }
4811
4812  // To space
4813  {
4814    SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4815    assert(!pst->valid(), "Clobbering existing data?");
4816    // Sets the condition for completion of the subtask (how many threads
4817    // need to finish in order to be done).
4818    pst->set_n_threads(n_threads);
4819    pst->set_n_tasks(1);
4820    assert(pst->valid(), "Error");
4821  }
4822
4823  // From space
4824  {
4825    SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4826    assert(!pst->valid(), "Clobbering existing data?");
4827    size_t n_tasks = _survivor_chunk_index + 1;
4828    assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4829    // Sets the condition for completion of the subtask (how many threads
4830    // need to finish in order to be done).
4831    pst->set_n_threads(n_threads);
4832    pst->set_n_tasks((int)n_tasks);
4833    assert(pst->valid(), "Error");
4834  }
4835}
4836
4837// Parallel version of remark
4838void CMSCollector::do_remark_parallel() {
4839  GenCollectedHeap* gch = GenCollectedHeap::heap();
4840  WorkGang* workers = gch->workers();
4841  assert(workers != NULL, "Need parallel worker threads.");
4842  // Choose to use the number of GC workers most recently set
4843  // into "active_workers".
4844  uint n_workers = workers->active_workers();
4845
4846  CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4847
4848  StrongRootsScope srs(n_workers);
4849
4850  CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4851
4852  // We won't be iterating over the cards in the card table updating
4853  // the younger_gen cards, so we shouldn't call the following else
4854  // the verification code as well as subsequent younger_refs_iterate
4855  // code would get confused. XXX
4856  // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4857
4858  // The young gen rescan work will not be done as part of
4859  // process_roots (which currently doesn't know how to
4860  // parallelize such a scan), but rather will be broken up into
4861  // a set of parallel tasks (via the sampling that the [abortable]
4862  // preclean phase did of eden, plus the [two] tasks of
4863  // scanning the [two] survivor spaces. Further fine-grain
4864  // parallelization of the scanning of the survivor spaces
4865  // themselves, and of precleaning of the young gen itself
4866  // is deferred to the future.
4867  initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4868
4869  // The dirty card rescan work is broken up into a "sequence"
4870  // of parallel tasks (per constituent space) that are dynamically
4871  // claimed by the parallel threads.
4872  cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4873
4874  // It turns out that even when we're using 1 thread, doing the work in a
4875  // separate thread causes wide variance in run times.  We can't help this
4876  // in the multi-threaded case, but we special-case n=1 here to get
4877  // repeatable measurements of the 1-thread overhead of the parallel code.
4878  if (n_workers > 1) {
4879    // Make refs discovery MT-safe, if it isn't already: it may not
4880    // necessarily be so, since it's possible that we are doing
4881    // ST marking.
4882    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4883    workers->run_task(&tsk);
4884  } else {
4885    ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4886    tsk.work(0);
4887  }
4888
4889  // restore, single-threaded for now, any preserved marks
4890  // as a result of work_q overflow
4891  restore_preserved_marks_if_any();
4892}
4893
4894// Non-parallel version of remark
4895void CMSCollector::do_remark_non_parallel() {
4896  ResourceMark rm;
4897  HandleMark   hm;
4898  GenCollectedHeap* gch = GenCollectedHeap::heap();
4899  ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4900
4901  MarkRefsIntoAndScanClosure
4902    mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4903             &_markStack, this,
4904             false /* should_yield */, false /* not precleaning */);
4905  MarkFromDirtyCardsClosure
4906    markFromDirtyCardsClosure(this, _span,
4907                              NULL,  // space is set further below
4908                              &_markBitMap, &_markStack, &mrias_cl);
4909  {
4910    GCTraceTime(Trace, gc) t("Grey Object Rescan", _gc_timer_cm);
4911    // Iterate over the dirty cards, setting the corresponding bits in the
4912    // mod union table.
4913    {
4914      ModUnionClosure modUnionClosure(&_modUnionTable);
4915      _ct->ct_bs()->dirty_card_iterate(
4916                      _cmsGen->used_region(),
4917                      &modUnionClosure);
4918    }
4919    // Having transferred these marks into the modUnionTable, we just need
4920    // to rescan the marked objects on the dirty cards in the modUnionTable.
4921    // The initial marking may have been done during an asynchronous
4922    // collection so there may be dirty bits in the mod-union table.
4923    const int alignment =
4924      CardTableModRefBS::card_size * BitsPerWord;
4925    {
4926      // ... First handle dirty cards in CMS gen
4927      markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4928      MemRegion ur = _cmsGen->used_region();
4929      HeapWord* lb = ur.start();
4930      HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4931      MemRegion cms_span(lb, ub);
4932      _modUnionTable.dirty_range_iterate_clear(cms_span,
4933                                               &markFromDirtyCardsClosure);
4934      verify_work_stacks_empty();
4935      log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4936    }
4937  }
4938  if (VerifyDuringGC &&
4939      GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4940    HandleMark hm;  // Discard invalid handles created during verification
4941    Universe::verify();
4942  }
4943  {
4944    GCTraceTime(Trace, gc) t("Root Rescan", _gc_timer_cm);
4945
4946    verify_work_stacks_empty();
4947
4948    gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4949    StrongRootsScope srs(1);
4950
4951    gch->gen_process_roots(&srs,
4952                           GenCollectedHeap::OldGen,
4953                           true,  // young gen as roots
4954                           GenCollectedHeap::ScanningOption(roots_scanning_options()),
4955                           should_unload_classes(),
4956                           &mrias_cl,
4957                           NULL,
4958                           NULL); // The dirty klasses will be handled below
4959
4960    assert(should_unload_classes()
4961           || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4962           "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4963  }
4964
4965  {
4966    GCTraceTime(Trace, gc) t("Visit Unhandled CLDs", _gc_timer_cm);
4967
4968    verify_work_stacks_empty();
4969
4970    // Scan all class loader data objects that might have been introduced
4971    // during concurrent marking.
4972    ResourceMark rm;
4973    GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4974    for (int i = 0; i < array->length(); i++) {
4975      mrias_cl.do_cld_nv(array->at(i));
4976    }
4977
4978    // We don't need to keep track of new CLDs anymore.
4979    ClassLoaderDataGraph::remember_new_clds(false);
4980
4981    verify_work_stacks_empty();
4982  }
4983
4984  {
4985    GCTraceTime(Trace, gc) t("Dirty Klass Scan", _gc_timer_cm);
4986
4987    verify_work_stacks_empty();
4988
4989    RemarkKlassClosure remark_klass_closure(&mrias_cl);
4990    ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4991
4992    verify_work_stacks_empty();
4993  }
4994
4995  // We might have added oops to ClassLoaderData::_handles during the
4996  // concurrent marking phase. These oops point to newly allocated objects
4997  // that are guaranteed to be kept alive. Either by the direct allocation
4998  // code, or when the young collector processes the roots. Hence,
4999  // we don't have to revisit the _handles block during the remark phase.
5000
5001  verify_work_stacks_empty();
5002  // Restore evacuated mark words, if any, used for overflow list links
5003  restore_preserved_marks_if_any();
5004
5005  verify_overflow_empty();
5006}
5007
5008////////////////////////////////////////////////////////
5009// Parallel Reference Processing Task Proxy Class
5010////////////////////////////////////////////////////////
5011class AbstractGangTaskWOopQueues : public AbstractGangTask {
5012  OopTaskQueueSet*       _queues;
5013  ParallelTaskTerminator _terminator;
5014 public:
5015  AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5016    AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5017  ParallelTaskTerminator* terminator() { return &_terminator; }
5018  OopTaskQueueSet* queues() { return _queues; }
5019};
5020
5021class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5022  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5023  CMSCollector*          _collector;
5024  CMSBitMap*             _mark_bit_map;
5025  const MemRegion        _span;
5026  ProcessTask&           _task;
5027
5028public:
5029  CMSRefProcTaskProxy(ProcessTask&     task,
5030                      CMSCollector*    collector,
5031                      const MemRegion& span,
5032                      CMSBitMap*       mark_bit_map,
5033                      AbstractWorkGang* workers,
5034                      OopTaskQueueSet* task_queues):
5035    AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5036      task_queues,
5037      workers->active_workers()),
5038    _task(task),
5039    _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5040  {
5041    assert(_collector->_span.equals(_span) && !_span.is_empty(),
5042           "Inconsistency in _span");
5043  }
5044
5045  OopTaskQueueSet* task_queues() { return queues(); }
5046
5047  OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5048
5049  void do_work_steal(int i,
5050                     CMSParDrainMarkingStackClosure* drain,
5051                     CMSParKeepAliveClosure* keep_alive,
5052                     int* seed);
5053
5054  virtual void work(uint worker_id);
5055};
5056
5057void CMSRefProcTaskProxy::work(uint worker_id) {
5058  ResourceMark rm;
5059  HandleMark hm;
5060  assert(_collector->_span.equals(_span), "Inconsistency in _span");
5061  CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5062                                        _mark_bit_map,
5063                                        work_queue(worker_id));
5064  CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5065                                                 _mark_bit_map,
5066                                                 work_queue(worker_id));
5067  CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5068  _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5069  if (_task.marks_oops_alive()) {
5070    do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5071                  _collector->hash_seed(worker_id));
5072  }
5073  assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5074  assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5075}
5076
5077class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5078  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5079  EnqueueTask& _task;
5080
5081public:
5082  CMSRefEnqueueTaskProxy(EnqueueTask& task)
5083    : AbstractGangTask("Enqueue reference objects in parallel"),
5084      _task(task)
5085  { }
5086
5087  virtual void work(uint worker_id)
5088  {
5089    _task.work(worker_id);
5090  }
5091};
5092
5093CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5094  MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5095   _span(span),
5096   _bit_map(bit_map),
5097   _work_queue(work_queue),
5098   _mark_and_push(collector, span, bit_map, work_queue),
5099   _low_water_mark(MIN2((work_queue->max_elems()/4),
5100                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5101{ }
5102
5103// . see if we can share work_queues with ParNew? XXX
5104void CMSRefProcTaskProxy::do_work_steal(int i,
5105  CMSParDrainMarkingStackClosure* drain,
5106  CMSParKeepAliveClosure* keep_alive,
5107  int* seed) {
5108  OopTaskQueue* work_q = work_queue(i);
5109  NOT_PRODUCT(int num_steals = 0;)
5110  oop obj_to_scan;
5111
5112  while (true) {
5113    // Completely finish any left over work from (an) earlier round(s)
5114    drain->trim_queue(0);
5115    size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5116                                         (size_t)ParGCDesiredObjsFromOverflowList);
5117    // Now check if there's any work in the overflow list
5118    // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5119    // only affects the number of attempts made to get work from the
5120    // overflow list and does not affect the number of workers.  Just
5121    // pass ParallelGCThreads so this behavior is unchanged.
5122    if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5123                                                work_q,
5124                                                ParallelGCThreads)) {
5125      // Found something in global overflow list;
5126      // not yet ready to go stealing work from others.
5127      // We'd like to assert(work_q->size() != 0, ...)
5128      // because we just took work from the overflow list,
5129      // but of course we can't, since all of that might have
5130      // been already stolen from us.
5131      continue;
5132    }
5133    // Verify that we have no work before we resort to stealing
5134    assert(work_q->size() == 0, "Have work, shouldn't steal");
5135    // Try to steal from other queues that have work
5136    if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5137      NOT_PRODUCT(num_steals++;)
5138      assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5139      assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5140      // Do scanning work
5141      obj_to_scan->oop_iterate(keep_alive);
5142      // Loop around, finish this work, and try to steal some more
5143    } else if (terminator()->offer_termination()) {
5144      break;  // nirvana from the infinite cycle
5145    }
5146  }
5147  log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5148}
5149
5150void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5151{
5152  GenCollectedHeap* gch = GenCollectedHeap::heap();
5153  WorkGang* workers = gch->workers();
5154  assert(workers != NULL, "Need parallel worker threads.");
5155  CMSRefProcTaskProxy rp_task(task, &_collector,
5156                              _collector.ref_processor()->span(),
5157                              _collector.markBitMap(),
5158                              workers, _collector.task_queues());
5159  workers->run_task(&rp_task);
5160}
5161
5162void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5163{
5164
5165  GenCollectedHeap* gch = GenCollectedHeap::heap();
5166  WorkGang* workers = gch->workers();
5167  assert(workers != NULL, "Need parallel worker threads.");
5168  CMSRefEnqueueTaskProxy enq_task(task);
5169  workers->run_task(&enq_task);
5170}
5171
5172void CMSCollector::refProcessingWork() {
5173  ResourceMark rm;
5174  HandleMark   hm;
5175
5176  ReferenceProcessor* rp = ref_processor();
5177  assert(rp->span().equals(_span), "Spans should be equal");
5178  assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5179  // Process weak references.
5180  rp->setup_policy(false);
5181  verify_work_stacks_empty();
5182
5183  CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5184                                          &_markStack, false /* !preclean */);
5185  CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5186                                _span, &_markBitMap, &_markStack,
5187                                &cmsKeepAliveClosure, false /* !preclean */);
5188  {
5189    GCTraceTime(Debug, gc) t("Weak Refs Processing", _gc_timer_cm);
5190
5191    ReferenceProcessorStats stats;
5192    if (rp->processing_is_mt()) {
5193      // Set the degree of MT here.  If the discovery is done MT, there
5194      // may have been a different number of threads doing the discovery
5195      // and a different number of discovered lists may have Ref objects.
5196      // That is OK as long as the Reference lists are balanced (see
5197      // balance_all_queues() and balance_queues()).
5198      GenCollectedHeap* gch = GenCollectedHeap::heap();
5199      uint active_workers = ParallelGCThreads;
5200      WorkGang* workers = gch->workers();
5201      if (workers != NULL) {
5202        active_workers = workers->active_workers();
5203        // The expectation is that active_workers will have already
5204        // been set to a reasonable value.  If it has not been set,
5205        // investigate.
5206        assert(active_workers > 0, "Should have been set during scavenge");
5207      }
5208      rp->set_active_mt_degree(active_workers);
5209      CMSRefProcTaskExecutor task_executor(*this);
5210      stats = rp->process_discovered_references(&_is_alive_closure,
5211                                        &cmsKeepAliveClosure,
5212                                        &cmsDrainMarkingStackClosure,
5213                                        &task_executor,
5214                                        _gc_timer_cm);
5215    } else {
5216      stats = rp->process_discovered_references(&_is_alive_closure,
5217                                        &cmsKeepAliveClosure,
5218                                        &cmsDrainMarkingStackClosure,
5219                                        NULL,
5220                                        _gc_timer_cm);
5221    }
5222    _gc_tracer_cm->report_gc_reference_stats(stats);
5223
5224  }
5225
5226  // This is the point where the entire marking should have completed.
5227  verify_work_stacks_empty();
5228
5229  if (should_unload_classes()) {
5230    {
5231      GCTraceTime(Debug, gc) t("Class Unloading", _gc_timer_cm);
5232
5233      // Unload classes and purge the SystemDictionary.
5234      bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5235
5236      // Unload nmethods.
5237      CodeCache::do_unloading(&_is_alive_closure, purged_class);
5238
5239      // Prune dead klasses from subklass/sibling/implementor lists.
5240      Klass::clean_weak_klass_links(&_is_alive_closure);
5241    }
5242
5243    {
5244      GCTraceTime(Debug, gc) t("Scrub Symbol Table", _gc_timer_cm);
5245      // Clean up unreferenced symbols in symbol table.
5246      SymbolTable::unlink();
5247    }
5248
5249    {
5250      GCTraceTime(Debug, gc) t("Scrub String Table", _gc_timer_cm);
5251      // Delete entries for dead interned strings.
5252      StringTable::unlink(&_is_alive_closure);
5253    }
5254  }
5255
5256
5257  // Restore any preserved marks as a result of mark stack or
5258  // work queue overflow
5259  restore_preserved_marks_if_any();  // done single-threaded for now
5260
5261  rp->set_enqueuing_is_done(true);
5262  if (rp->processing_is_mt()) {
5263    rp->balance_all_queues();
5264    CMSRefProcTaskExecutor task_executor(*this);
5265    rp->enqueue_discovered_references(&task_executor);
5266  } else {
5267    rp->enqueue_discovered_references(NULL);
5268  }
5269  rp->verify_no_references_recorded();
5270  assert(!rp->discovery_enabled(), "should have been disabled");
5271}
5272
5273#ifndef PRODUCT
5274void CMSCollector::check_correct_thread_executing() {
5275  Thread* t = Thread::current();
5276  // Only the VM thread or the CMS thread should be here.
5277  assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5278         "Unexpected thread type");
5279  // If this is the vm thread, the foreground process
5280  // should not be waiting.  Note that _foregroundGCIsActive is
5281  // true while the foreground collector is waiting.
5282  if (_foregroundGCShouldWait) {
5283    // We cannot be the VM thread
5284    assert(t->is_ConcurrentGC_thread(),
5285           "Should be CMS thread");
5286  } else {
5287    // We can be the CMS thread only if we are in a stop-world
5288    // phase of CMS collection.
5289    if (t->is_ConcurrentGC_thread()) {
5290      assert(_collectorState == InitialMarking ||
5291             _collectorState == FinalMarking,
5292             "Should be a stop-world phase");
5293      // The CMS thread should be holding the CMS_token.
5294      assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5295             "Potential interference with concurrently "
5296             "executing VM thread");
5297    }
5298  }
5299}
5300#endif
5301
5302void CMSCollector::sweep() {
5303  assert(_collectorState == Sweeping, "just checking");
5304  check_correct_thread_executing();
5305  verify_work_stacks_empty();
5306  verify_overflow_empty();
5307  increment_sweep_count();
5308  TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5309
5310  _inter_sweep_timer.stop();
5311  _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5312
5313  assert(!_intra_sweep_timer.is_active(), "Should not be active");
5314  _intra_sweep_timer.reset();
5315  _intra_sweep_timer.start();
5316  {
5317    GCTraceCPUTime tcpu;
5318    CMSPhaseAccounting pa(this, "Concurrent Sweep");
5319    // First sweep the old gen
5320    {
5321      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5322                               bitMapLock());
5323      sweepWork(_cmsGen);
5324    }
5325
5326    // Update Universe::_heap_*_at_gc figures.
5327    // We need all the free list locks to make the abstract state
5328    // transition from Sweeping to Resetting. See detailed note
5329    // further below.
5330    {
5331      CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5332      // Update heap occupancy information which is used as
5333      // input to soft ref clearing policy at the next gc.
5334      Universe::update_heap_info_at_gc();
5335      _collectorState = Resizing;
5336    }
5337  }
5338  verify_work_stacks_empty();
5339  verify_overflow_empty();
5340
5341  if (should_unload_classes()) {
5342    // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5343    // requires that the virtual spaces are stable and not deleted.
5344    ClassLoaderDataGraph::set_should_purge(true);
5345  }
5346
5347  _intra_sweep_timer.stop();
5348  _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5349
5350  _inter_sweep_timer.reset();
5351  _inter_sweep_timer.start();
5352
5353  // We need to use a monotonically non-decreasing time in ms
5354  // or we will see time-warp warnings and os::javaTimeMillis()
5355  // does not guarantee monotonicity.
5356  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5357  update_time_of_last_gc(now);
5358
5359  // NOTE on abstract state transitions:
5360  // Mutators allocate-live and/or mark the mod-union table dirty
5361  // based on the state of the collection.  The former is done in
5362  // the interval [Marking, Sweeping] and the latter in the interval
5363  // [Marking, Sweeping).  Thus the transitions into the Marking state
5364  // and out of the Sweeping state must be synchronously visible
5365  // globally to the mutators.
5366  // The transition into the Marking state happens with the world
5367  // stopped so the mutators will globally see it.  Sweeping is
5368  // done asynchronously by the background collector so the transition
5369  // from the Sweeping state to the Resizing state must be done
5370  // under the freelistLock (as is the check for whether to
5371  // allocate-live and whether to dirty the mod-union table).
5372  assert(_collectorState == Resizing, "Change of collector state to"
5373    " Resizing must be done under the freelistLocks (plural)");
5374
5375  // Now that sweeping has been completed, we clear
5376  // the incremental_collection_failed flag,
5377  // thus inviting a younger gen collection to promote into
5378  // this generation. If such a promotion may still fail,
5379  // the flag will be set again when a young collection is
5380  // attempted.
5381  GenCollectedHeap* gch = GenCollectedHeap::heap();
5382  gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5383  gch->update_full_collections_completed(_collection_count_start);
5384}
5385
5386// FIX ME!!! Looks like this belongs in CFLSpace, with
5387// CMSGen merely delegating to it.
5388void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5389  double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5390  HeapWord*  minAddr        = _cmsSpace->bottom();
5391  HeapWord*  largestAddr    =
5392    (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5393  if (largestAddr == NULL) {
5394    // The dictionary appears to be empty.  In this case
5395    // try to coalesce at the end of the heap.
5396    largestAddr = _cmsSpace->end();
5397  }
5398  size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5399  size_t nearLargestOffset =
5400    (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5401  log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5402                          p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5403  _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5404}
5405
5406bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5407  return addr >= _cmsSpace->nearLargestChunk();
5408}
5409
5410FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5411  return _cmsSpace->find_chunk_at_end();
5412}
5413
5414void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5415                                                    bool full) {
5416  // If the young generation has been collected, gather any statistics
5417  // that are of interest at this point.
5418  bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5419  if (!full && current_is_young) {
5420    // Gather statistics on the young generation collection.
5421    collector()->stats().record_gc0_end(used());
5422  }
5423}
5424
5425void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5426  // We iterate over the space(s) underlying this generation,
5427  // checking the mark bit map to see if the bits corresponding
5428  // to specific blocks are marked or not. Blocks that are
5429  // marked are live and are not swept up. All remaining blocks
5430  // are swept up, with coalescing on-the-fly as we sweep up
5431  // contiguous free and/or garbage blocks:
5432  // We need to ensure that the sweeper synchronizes with allocators
5433  // and stop-the-world collectors. In particular, the following
5434  // locks are used:
5435  // . CMS token: if this is held, a stop the world collection cannot occur
5436  // . freelistLock: if this is held no allocation can occur from this
5437  //                 generation by another thread
5438  // . bitMapLock: if this is held, no other thread can access or update
5439  //
5440
5441  // Note that we need to hold the freelistLock if we use
5442  // block iterate below; else the iterator might go awry if
5443  // a mutator (or promotion) causes block contents to change
5444  // (for instance if the allocator divvies up a block).
5445  // If we hold the free list lock, for all practical purposes
5446  // young generation GC's can't occur (they'll usually need to
5447  // promote), so we might as well prevent all young generation
5448  // GC's while we do a sweeping step. For the same reason, we might
5449  // as well take the bit map lock for the entire duration
5450
5451  // check that we hold the requisite locks
5452  assert(have_cms_token(), "Should hold cms token");
5453  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5454  assert_lock_strong(old_gen->freelistLock());
5455  assert_lock_strong(bitMapLock());
5456
5457  assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5458  assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5459  old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5460                                          _inter_sweep_estimate.padded_average(),
5461                                          _intra_sweep_estimate.padded_average());
5462  old_gen->setNearLargestChunk();
5463
5464  {
5465    SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5466    old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5467    // We need to free-up/coalesce garbage/blocks from a
5468    // co-terminal free run. This is done in the SweepClosure
5469    // destructor; so, do not remove this scope, else the
5470    // end-of-sweep-census below will be off by a little bit.
5471  }
5472  old_gen->cmsSpace()->sweep_completed();
5473  old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5474  if (should_unload_classes()) {                // unloaded classes this cycle,
5475    _concurrent_cycles_since_last_unload = 0;   // ... reset count
5476  } else {                                      // did not unload classes,
5477    _concurrent_cycles_since_last_unload++;     // ... increment count
5478  }
5479}
5480
5481// Reset CMS data structures (for now just the marking bit map)
5482// preparatory for the next cycle.
5483void CMSCollector::reset_concurrent() {
5484  CMSTokenSyncWithLocks ts(true, bitMapLock());
5485
5486  // If the state is not "Resetting", the foreground  thread
5487  // has done a collection and the resetting.
5488  if (_collectorState != Resetting) {
5489    assert(_collectorState == Idling, "The state should only change"
5490      " because the foreground collector has finished the collection");
5491    return;
5492  }
5493
5494  {
5495    // Clear the mark bitmap (no grey objects to start with)
5496    // for the next cycle.
5497    GCTraceCPUTime tcpu;
5498    CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5499
5500    HeapWord* curAddr = _markBitMap.startWord();
5501    while (curAddr < _markBitMap.endWord()) {
5502      size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5503      MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5504      _markBitMap.clear_large_range(chunk);
5505      if (ConcurrentMarkSweepThread::should_yield() &&
5506          !foregroundGCIsActive() &&
5507          CMSYield) {
5508        assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5509               "CMS thread should hold CMS token");
5510        assert_lock_strong(bitMapLock());
5511        bitMapLock()->unlock();
5512        ConcurrentMarkSweepThread::desynchronize(true);
5513        stopTimer();
5514        incrementYields();
5515
5516        // See the comment in coordinator_yield()
5517        for (unsigned i = 0; i < CMSYieldSleepCount &&
5518                         ConcurrentMarkSweepThread::should_yield() &&
5519                         !CMSCollector::foregroundGCIsActive(); ++i) {
5520          os::sleep(Thread::current(), 1, false);
5521        }
5522
5523        ConcurrentMarkSweepThread::synchronize(true);
5524        bitMapLock()->lock_without_safepoint_check();
5525        startTimer();
5526      }
5527      curAddr = chunk.end();
5528    }
5529    // A successful mostly concurrent collection has been done.
5530    // Because only the full (i.e., concurrent mode failure) collections
5531    // are being measured for gc overhead limits, clean the "near" flag
5532    // and count.
5533    size_policy()->reset_gc_overhead_limit_count();
5534    _collectorState = Idling;
5535  }
5536
5537  register_gc_end();
5538}
5539
5540// Same as above but for STW paths
5541void CMSCollector::reset_stw() {
5542  // already have the lock
5543  assert(_collectorState == Resetting, "just checking");
5544  assert_lock_strong(bitMapLock());
5545  GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5546  _markBitMap.clear_all();
5547  _collectorState = Idling;
5548  register_gc_end();
5549}
5550
5551void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5552  GCTraceCPUTime tcpu;
5553  TraceCollectorStats tcs(counters());
5554
5555  switch (op) {
5556    case CMS_op_checkpointRootsInitial: {
5557      GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5558      SvcGCMarker sgcm(SvcGCMarker::OTHER);
5559      checkpointRootsInitial();
5560      break;
5561    }
5562    case CMS_op_checkpointRootsFinal: {
5563      GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5564      SvcGCMarker sgcm(SvcGCMarker::OTHER);
5565      checkpointRootsFinal();
5566      break;
5567    }
5568    default:
5569      fatal("No such CMS_op");
5570  }
5571}
5572
5573#ifndef PRODUCT
5574size_t const CMSCollector::skip_header_HeapWords() {
5575  return FreeChunk::header_size();
5576}
5577
5578// Try and collect here conditions that should hold when
5579// CMS thread is exiting. The idea is that the foreground GC
5580// thread should not be blocked if it wants to terminate
5581// the CMS thread and yet continue to run the VM for a while
5582// after that.
5583void CMSCollector::verify_ok_to_terminate() const {
5584  assert(Thread::current()->is_ConcurrentGC_thread(),
5585         "should be called by CMS thread");
5586  assert(!_foregroundGCShouldWait, "should be false");
5587  // We could check here that all the various low-level locks
5588  // are not held by the CMS thread, but that is overkill; see
5589  // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5590  // is checked.
5591}
5592#endif
5593
5594size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5595   assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5596          "missing Printezis mark?");
5597  HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5598  size_t size = pointer_delta(nextOneAddr + 1, addr);
5599  assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5600         "alignment problem");
5601  assert(size >= 3, "Necessary for Printezis marks to work");
5602  return size;
5603}
5604
5605// A variant of the above (block_size_using_printezis_bits()) except
5606// that we return 0 if the P-bits are not yet set.
5607size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5608  if (_markBitMap.isMarked(addr + 1)) {
5609    assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5610    HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5611    size_t size = pointer_delta(nextOneAddr + 1, addr);
5612    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5613           "alignment problem");
5614    assert(size >= 3, "Necessary for Printezis marks to work");
5615    return size;
5616  }
5617  return 0;
5618}
5619
5620HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5621  size_t sz = 0;
5622  oop p = (oop)addr;
5623  if (p->klass_or_null() != NULL) {
5624    sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5625  } else {
5626    sz = block_size_using_printezis_bits(addr);
5627  }
5628  assert(sz > 0, "size must be nonzero");
5629  HeapWord* next_block = addr + sz;
5630  HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5631                                             CardTableModRefBS::card_size);
5632  assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5633         round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5634         "must be different cards");
5635  return next_card;
5636}
5637
5638
5639// CMS Bit Map Wrapper /////////////////////////////////////////
5640
5641// Construct a CMS bit map infrastructure, but don't create the
5642// bit vector itself. That is done by a separate call CMSBitMap::allocate()
5643// further below.
5644CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5645  _bm(),
5646  _shifter(shifter),
5647  _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5648                                    Monitor::_safepoint_check_sometimes) : NULL)
5649{
5650  _bmStartWord = 0;
5651  _bmWordSize  = 0;
5652}
5653
5654bool CMSBitMap::allocate(MemRegion mr) {
5655  _bmStartWord = mr.start();
5656  _bmWordSize  = mr.word_size();
5657  ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5658                     (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5659  if (!brs.is_reserved()) {
5660    warning("CMS bit map allocation failure");
5661    return false;
5662  }
5663  // For now we'll just commit all of the bit map up front.
5664  // Later on we'll try to be more parsimonious with swap.
5665  if (!_virtual_space.initialize(brs, brs.size())) {
5666    warning("CMS bit map backing store failure");
5667    return false;
5668  }
5669  assert(_virtual_space.committed_size() == brs.size(),
5670         "didn't reserve backing store for all of CMS bit map?");
5671  _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5672  assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5673         _bmWordSize, "inconsistency in bit map sizing");
5674  _bm.set_size(_bmWordSize >> _shifter);
5675
5676  // bm.clear(); // can we rely on getting zero'd memory? verify below
5677  assert(isAllClear(),
5678         "Expected zero'd memory from ReservedSpace constructor");
5679  assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5680         "consistency check");
5681  return true;
5682}
5683
5684void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5685  HeapWord *next_addr, *end_addr, *last_addr;
5686  assert_locked();
5687  assert(covers(mr), "out-of-range error");
5688  // XXX assert that start and end are appropriately aligned
5689  for (next_addr = mr.start(), end_addr = mr.end();
5690       next_addr < end_addr; next_addr = last_addr) {
5691    MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5692    last_addr = dirty_region.end();
5693    if (!dirty_region.is_empty()) {
5694      cl->do_MemRegion(dirty_region);
5695    } else {
5696      assert(last_addr == end_addr, "program logic");
5697      return;
5698    }
5699  }
5700}
5701
5702void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5703  _bm.print_on_error(st, prefix);
5704}
5705
5706#ifndef PRODUCT
5707void CMSBitMap::assert_locked() const {
5708  CMSLockVerifier::assert_locked(lock());
5709}
5710
5711bool CMSBitMap::covers(MemRegion mr) const {
5712  // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5713  assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5714         "size inconsistency");
5715  return (mr.start() >= _bmStartWord) &&
5716         (mr.end()   <= endWord());
5717}
5718
5719bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5720    return (start >= _bmStartWord && (start + size) <= endWord());
5721}
5722
5723void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5724  // verify that there are no 1 bits in the interval [left, right)
5725  FalseBitMapClosure falseBitMapClosure;
5726  iterate(&falseBitMapClosure, left, right);
5727}
5728
5729void CMSBitMap::region_invariant(MemRegion mr)
5730{
5731  assert_locked();
5732  // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5733  assert(!mr.is_empty(), "unexpected empty region");
5734  assert(covers(mr), "mr should be covered by bit map");
5735  // convert address range into offset range
5736  size_t start_ofs = heapWordToOffset(mr.start());
5737  // Make sure that end() is appropriately aligned
5738  assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5739                        (1 << (_shifter+LogHeapWordSize))),
5740         "Misaligned mr.end()");
5741  size_t end_ofs   = heapWordToOffset(mr.end());
5742  assert(end_ofs > start_ofs, "Should mark at least one bit");
5743}
5744
5745#endif
5746
5747bool CMSMarkStack::allocate(size_t size) {
5748  // allocate a stack of the requisite depth
5749  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5750                   size * sizeof(oop)));
5751  if (!rs.is_reserved()) {
5752    warning("CMSMarkStack allocation failure");
5753    return false;
5754  }
5755  if (!_virtual_space.initialize(rs, rs.size())) {
5756    warning("CMSMarkStack backing store failure");
5757    return false;
5758  }
5759  assert(_virtual_space.committed_size() == rs.size(),
5760         "didn't reserve backing store for all of CMS stack?");
5761  _base = (oop*)(_virtual_space.low());
5762  _index = 0;
5763  _capacity = size;
5764  NOT_PRODUCT(_max_depth = 0);
5765  return true;
5766}
5767
5768// XXX FIX ME !!! In the MT case we come in here holding a
5769// leaf lock. For printing we need to take a further lock
5770// which has lower rank. We need to recalibrate the two
5771// lock-ranks involved in order to be able to print the
5772// messages below. (Or defer the printing to the caller.
5773// For now we take the expedient path of just disabling the
5774// messages for the problematic case.)
5775void CMSMarkStack::expand() {
5776  assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5777  if (_capacity == MarkStackSizeMax) {
5778    if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5779      // We print a warning message only once per CMS cycle.
5780      log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5781    }
5782    return;
5783  }
5784  // Double capacity if possible
5785  size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5786  // Do not give up existing stack until we have managed to
5787  // get the double capacity that we desired.
5788  ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5789                   new_capacity * sizeof(oop)));
5790  if (rs.is_reserved()) {
5791    // Release the backing store associated with old stack
5792    _virtual_space.release();
5793    // Reinitialize virtual space for new stack
5794    if (!_virtual_space.initialize(rs, rs.size())) {
5795      fatal("Not enough swap for expanded marking stack");
5796    }
5797    _base = (oop*)(_virtual_space.low());
5798    _index = 0;
5799    _capacity = new_capacity;
5800  } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5801    // Failed to double capacity, continue;
5802    // we print a detail message only once per CMS cycle.
5803    log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5804                        _capacity / K, new_capacity / K);
5805  }
5806}
5807
5808
5809// Closures
5810// XXX: there seems to be a lot of code  duplication here;
5811// should refactor and consolidate common code.
5812
5813// This closure is used to mark refs into the CMS generation in
5814// the CMS bit map. Called at the first checkpoint. This closure
5815// assumes that we do not need to re-mark dirty cards; if the CMS
5816// generation on which this is used is not an oldest
5817// generation then this will lose younger_gen cards!
5818
5819MarkRefsIntoClosure::MarkRefsIntoClosure(
5820  MemRegion span, CMSBitMap* bitMap):
5821    _span(span),
5822    _bitMap(bitMap)
5823{
5824  assert(ref_processor() == NULL, "deliberately left NULL");
5825  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5826}
5827
5828void MarkRefsIntoClosure::do_oop(oop obj) {
5829  // if p points into _span, then mark corresponding bit in _markBitMap
5830  assert(obj->is_oop(), "expected an oop");
5831  HeapWord* addr = (HeapWord*)obj;
5832  if (_span.contains(addr)) {
5833    // this should be made more efficient
5834    _bitMap->mark(addr);
5835  }
5836}
5837
5838void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5839void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5840
5841ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5842  MemRegion span, CMSBitMap* bitMap):
5843    _span(span),
5844    _bitMap(bitMap)
5845{
5846  assert(ref_processor() == NULL, "deliberately left NULL");
5847  assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5848}
5849
5850void ParMarkRefsIntoClosure::do_oop(oop obj) {
5851  // if p points into _span, then mark corresponding bit in _markBitMap
5852  assert(obj->is_oop(), "expected an oop");
5853  HeapWord* addr = (HeapWord*)obj;
5854  if (_span.contains(addr)) {
5855    // this should be made more efficient
5856    _bitMap->par_mark(addr);
5857  }
5858}
5859
5860void ParMarkRefsIntoClosure::do_oop(oop* p)       { ParMarkRefsIntoClosure::do_oop_work(p); }
5861void ParMarkRefsIntoClosure::do_oop(narrowOop* p) { ParMarkRefsIntoClosure::do_oop_work(p); }
5862
5863// A variant of the above, used for CMS marking verification.
5864MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5865  MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5866    _span(span),
5867    _verification_bm(verification_bm),
5868    _cms_bm(cms_bm)
5869{
5870  assert(ref_processor() == NULL, "deliberately left NULL");
5871  assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5872}
5873
5874void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5875  // if p points into _span, then mark corresponding bit in _markBitMap
5876  assert(obj->is_oop(), "expected an oop");
5877  HeapWord* addr = (HeapWord*)obj;
5878  if (_span.contains(addr)) {
5879    _verification_bm->mark(addr);
5880    if (!_cms_bm->isMarked(addr)) {
5881      LogHandle(gc, verify) log;
5882      ResourceMark rm;
5883      oop(addr)->print_on(log.info_stream());
5884      log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5885      fatal("... aborting");
5886    }
5887  }
5888}
5889
5890void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5891void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5892
5893//////////////////////////////////////////////////
5894// MarkRefsIntoAndScanClosure
5895//////////////////////////////////////////////////
5896
5897MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5898                                                       ReferenceProcessor* rp,
5899                                                       CMSBitMap* bit_map,
5900                                                       CMSBitMap* mod_union_table,
5901                                                       CMSMarkStack*  mark_stack,
5902                                                       CMSCollector* collector,
5903                                                       bool should_yield,
5904                                                       bool concurrent_precleaning):
5905  _collector(collector),
5906  _span(span),
5907  _bit_map(bit_map),
5908  _mark_stack(mark_stack),
5909  _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5910                      mark_stack, concurrent_precleaning),
5911  _yield(should_yield),
5912  _concurrent_precleaning(concurrent_precleaning),
5913  _freelistLock(NULL)
5914{
5915  // FIXME: Should initialize in base class constructor.
5916  assert(rp != NULL, "ref_processor shouldn't be NULL");
5917  set_ref_processor_internal(rp);
5918}
5919
5920// This closure is used to mark refs into the CMS generation at the
5921// second (final) checkpoint, and to scan and transitively follow
5922// the unmarked oops. It is also used during the concurrent precleaning
5923// phase while scanning objects on dirty cards in the CMS generation.
5924// The marks are made in the marking bit map and the marking stack is
5925// used for keeping the (newly) grey objects during the scan.
5926// The parallel version (Par_...) appears further below.
5927void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5928  if (obj != NULL) {
5929    assert(obj->is_oop(), "expected an oop");
5930    HeapWord* addr = (HeapWord*)obj;
5931    assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5932    assert(_collector->overflow_list_is_empty(),
5933           "overflow list should be empty");
5934    if (_span.contains(addr) &&
5935        !_bit_map->isMarked(addr)) {
5936      // mark bit map (object is now grey)
5937      _bit_map->mark(addr);
5938      // push on marking stack (stack should be empty), and drain the
5939      // stack by applying this closure to the oops in the oops popped
5940      // from the stack (i.e. blacken the grey objects)
5941      bool res = _mark_stack->push(obj);
5942      assert(res, "Should have space to push on empty stack");
5943      do {
5944        oop new_oop = _mark_stack->pop();
5945        assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5946        assert(_bit_map->isMarked((HeapWord*)new_oop),
5947               "only grey objects on this stack");
5948        // iterate over the oops in this oop, marking and pushing
5949        // the ones in CMS heap (i.e. in _span).
5950        new_oop->oop_iterate(&_pushAndMarkClosure);
5951        // check if it's time to yield
5952        do_yield_check();
5953      } while (!_mark_stack->isEmpty() ||
5954               (!_concurrent_precleaning && take_from_overflow_list()));
5955        // if marking stack is empty, and we are not doing this
5956        // during precleaning, then check the overflow list
5957    }
5958    assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5959    assert(_collector->overflow_list_is_empty(),
5960           "overflow list was drained above");
5961
5962    assert(_collector->no_preserved_marks(),
5963           "All preserved marks should have been restored above");
5964  }
5965}
5966
5967void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5968void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5969
5970void MarkRefsIntoAndScanClosure::do_yield_work() {
5971  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5972         "CMS thread should hold CMS token");
5973  assert_lock_strong(_freelistLock);
5974  assert_lock_strong(_bit_map->lock());
5975  // relinquish the free_list_lock and bitMaplock()
5976  _bit_map->lock()->unlock();
5977  _freelistLock->unlock();
5978  ConcurrentMarkSweepThread::desynchronize(true);
5979  _collector->stopTimer();
5980  _collector->incrementYields();
5981
5982  // See the comment in coordinator_yield()
5983  for (unsigned i = 0;
5984       i < CMSYieldSleepCount &&
5985       ConcurrentMarkSweepThread::should_yield() &&
5986       !CMSCollector::foregroundGCIsActive();
5987       ++i) {
5988    os::sleep(Thread::current(), 1, false);
5989  }
5990
5991  ConcurrentMarkSweepThread::synchronize(true);
5992  _freelistLock->lock_without_safepoint_check();
5993  _bit_map->lock()->lock_without_safepoint_check();
5994  _collector->startTimer();
5995}
5996
5997///////////////////////////////////////////////////////////
5998// ParMarkRefsIntoAndScanClosure: a parallel version of
5999//                                MarkRefsIntoAndScanClosure
6000///////////////////////////////////////////////////////////
6001ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
6002  CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6003  CMSBitMap* bit_map, OopTaskQueue* work_queue):
6004  _span(span),
6005  _bit_map(bit_map),
6006  _work_queue(work_queue),
6007  _low_water_mark(MIN2((work_queue->max_elems()/4),
6008                       ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6009  _parPushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6010{
6011  // FIXME: Should initialize in base class constructor.
6012  assert(rp != NULL, "ref_processor shouldn't be NULL");
6013  set_ref_processor_internal(rp);
6014}
6015
6016// This closure is used to mark refs into the CMS generation at the
6017// second (final) checkpoint, and to scan and transitively follow
6018// the unmarked oops. The marks are made in the marking bit map and
6019// the work_queue is used for keeping the (newly) grey objects during
6020// the scan phase whence they are also available for stealing by parallel
6021// threads. Since the marking bit map is shared, updates are
6022// synchronized (via CAS).
6023void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6024  if (obj != NULL) {
6025    // Ignore mark word because this could be an already marked oop
6026    // that may be chained at the end of the overflow list.
6027    assert(obj->is_oop(true), "expected an oop");
6028    HeapWord* addr = (HeapWord*)obj;
6029    if (_span.contains(addr) &&
6030        !_bit_map->isMarked(addr)) {
6031      // mark bit map (object will become grey):
6032      // It is possible for several threads to be
6033      // trying to "claim" this object concurrently;
6034      // the unique thread that succeeds in marking the
6035      // object first will do the subsequent push on
6036      // to the work queue (or overflow list).
6037      if (_bit_map->par_mark(addr)) {
6038        // push on work_queue (which may not be empty), and trim the
6039        // queue to an appropriate length by applying this closure to
6040        // the oops in the oops popped from the stack (i.e. blacken the
6041        // grey objects)
6042        bool res = _work_queue->push(obj);
6043        assert(res, "Low water mark should be less than capacity?");
6044        trim_queue(_low_water_mark);
6045      } // Else, another thread claimed the object
6046    }
6047  }
6048}
6049
6050void ParMarkRefsIntoAndScanClosure::do_oop(oop* p)       { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6051void ParMarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { ParMarkRefsIntoAndScanClosure::do_oop_work(p); }
6052
6053// This closure is used to rescan the marked objects on the dirty cards
6054// in the mod union table and the card table proper.
6055size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6056  oop p, MemRegion mr) {
6057
6058  size_t size = 0;
6059  HeapWord* addr = (HeapWord*)p;
6060  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6061  assert(_span.contains(addr), "we are scanning the CMS generation");
6062  // check if it's time to yield
6063  if (do_yield_check()) {
6064    // We yielded for some foreground stop-world work,
6065    // and we have been asked to abort this ongoing preclean cycle.
6066    return 0;
6067  }
6068  if (_bitMap->isMarked(addr)) {
6069    // it's marked; is it potentially uninitialized?
6070    if (p->klass_or_null() != NULL) {
6071        // an initialized object; ignore mark word in verification below
6072        // since we are running concurrent with mutators
6073        assert(p->is_oop(true), "should be an oop");
6074        if (p->is_objArray()) {
6075          // objArrays are precisely marked; restrict scanning
6076          // to dirty cards only.
6077          size = CompactibleFreeListSpace::adjustObjectSize(
6078                   p->oop_iterate_size(_scanningClosure, mr));
6079        } else {
6080          // A non-array may have been imprecisely marked; we need
6081          // to scan object in its entirety.
6082          size = CompactibleFreeListSpace::adjustObjectSize(
6083                   p->oop_iterate_size(_scanningClosure));
6084        }
6085        #ifdef ASSERT
6086          size_t direct_size =
6087            CompactibleFreeListSpace::adjustObjectSize(p->size());
6088          assert(size == direct_size, "Inconsistency in size");
6089          assert(size >= 3, "Necessary for Printezis marks to work");
6090          if (!_bitMap->isMarked(addr+1)) {
6091            _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6092          } else {
6093            _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6094            assert(_bitMap->isMarked(addr+size-1),
6095                   "inconsistent Printezis mark");
6096          }
6097        #endif // ASSERT
6098    } else {
6099      // An uninitialized object.
6100      assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6101      HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6102      size = pointer_delta(nextOneAddr + 1, addr);
6103      assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6104             "alignment problem");
6105      // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6106      // will dirty the card when the klass pointer is installed in the
6107      // object (signaling the completion of initialization).
6108    }
6109  } else {
6110    // Either a not yet marked object or an uninitialized object
6111    if (p->klass_or_null() == NULL) {
6112      // An uninitialized object, skip to the next card, since
6113      // we may not be able to read its P-bits yet.
6114      assert(size == 0, "Initial value");
6115    } else {
6116      // An object not (yet) reached by marking: we merely need to
6117      // compute its size so as to go look at the next block.
6118      assert(p->is_oop(true), "should be an oop");
6119      size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6120    }
6121  }
6122  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6123  return size;
6124}
6125
6126void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6127  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6128         "CMS thread should hold CMS token");
6129  assert_lock_strong(_freelistLock);
6130  assert_lock_strong(_bitMap->lock());
6131  // relinquish the free_list_lock and bitMaplock()
6132  _bitMap->lock()->unlock();
6133  _freelistLock->unlock();
6134  ConcurrentMarkSweepThread::desynchronize(true);
6135  _collector->stopTimer();
6136  _collector->incrementYields();
6137
6138  // See the comment in coordinator_yield()
6139  for (unsigned i = 0; i < CMSYieldSleepCount &&
6140                   ConcurrentMarkSweepThread::should_yield() &&
6141                   !CMSCollector::foregroundGCIsActive(); ++i) {
6142    os::sleep(Thread::current(), 1, false);
6143  }
6144
6145  ConcurrentMarkSweepThread::synchronize(true);
6146  _freelistLock->lock_without_safepoint_check();
6147  _bitMap->lock()->lock_without_safepoint_check();
6148  _collector->startTimer();
6149}
6150
6151
6152//////////////////////////////////////////////////////////////////
6153// SurvivorSpacePrecleanClosure
6154//////////////////////////////////////////////////////////////////
6155// This (single-threaded) closure is used to preclean the oops in
6156// the survivor spaces.
6157size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6158
6159  HeapWord* addr = (HeapWord*)p;
6160  DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6161  assert(!_span.contains(addr), "we are scanning the survivor spaces");
6162  assert(p->klass_or_null() != NULL, "object should be initialized");
6163  // an initialized object; ignore mark word in verification below
6164  // since we are running concurrent with mutators
6165  assert(p->is_oop(true), "should be an oop");
6166  // Note that we do not yield while we iterate over
6167  // the interior oops of p, pushing the relevant ones
6168  // on our marking stack.
6169  size_t size = p->oop_iterate_size(_scanning_closure);
6170  do_yield_check();
6171  // Observe that below, we do not abandon the preclean
6172  // phase as soon as we should; rather we empty the
6173  // marking stack before returning. This is to satisfy
6174  // some existing assertions. In general, it may be a
6175  // good idea to abort immediately and complete the marking
6176  // from the grey objects at a later time.
6177  while (!_mark_stack->isEmpty()) {
6178    oop new_oop = _mark_stack->pop();
6179    assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6180    assert(_bit_map->isMarked((HeapWord*)new_oop),
6181           "only grey objects on this stack");
6182    // iterate over the oops in this oop, marking and pushing
6183    // the ones in CMS heap (i.e. in _span).
6184    new_oop->oop_iterate(_scanning_closure);
6185    // check if it's time to yield
6186    do_yield_check();
6187  }
6188  unsigned int after_count =
6189    GenCollectedHeap::heap()->total_collections();
6190  bool abort = (_before_count != after_count) ||
6191               _collector->should_abort_preclean();
6192  return abort ? 0 : size;
6193}
6194
6195void SurvivorSpacePrecleanClosure::do_yield_work() {
6196  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6197         "CMS thread should hold CMS token");
6198  assert_lock_strong(_bit_map->lock());
6199  // Relinquish the bit map lock
6200  _bit_map->lock()->unlock();
6201  ConcurrentMarkSweepThread::desynchronize(true);
6202  _collector->stopTimer();
6203  _collector->incrementYields();
6204
6205  // See the comment in coordinator_yield()
6206  for (unsigned i = 0; i < CMSYieldSleepCount &&
6207                       ConcurrentMarkSweepThread::should_yield() &&
6208                       !CMSCollector::foregroundGCIsActive(); ++i) {
6209    os::sleep(Thread::current(), 1, false);
6210  }
6211
6212  ConcurrentMarkSweepThread::synchronize(true);
6213  _bit_map->lock()->lock_without_safepoint_check();
6214  _collector->startTimer();
6215}
6216
6217// This closure is used to rescan the marked objects on the dirty cards
6218// in the mod union table and the card table proper. In the parallel
6219// case, although the bitMap is shared, we do a single read so the
6220// isMarked() query is "safe".
6221bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6222  // Ignore mark word because we are running concurrent with mutators
6223  assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6224  HeapWord* addr = (HeapWord*)p;
6225  assert(_span.contains(addr), "we are scanning the CMS generation");
6226  bool is_obj_array = false;
6227  #ifdef ASSERT
6228    if (!_parallel) {
6229      assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6230      assert(_collector->overflow_list_is_empty(),
6231             "overflow list should be empty");
6232
6233    }
6234  #endif // ASSERT
6235  if (_bit_map->isMarked(addr)) {
6236    // Obj arrays are precisely marked, non-arrays are not;
6237    // so we scan objArrays precisely and non-arrays in their
6238    // entirety.
6239    if (p->is_objArray()) {
6240      is_obj_array = true;
6241      if (_parallel) {
6242        p->oop_iterate(_par_scan_closure, mr);
6243      } else {
6244        p->oop_iterate(_scan_closure, mr);
6245      }
6246    } else {
6247      if (_parallel) {
6248        p->oop_iterate(_par_scan_closure);
6249      } else {
6250        p->oop_iterate(_scan_closure);
6251      }
6252    }
6253  }
6254  #ifdef ASSERT
6255    if (!_parallel) {
6256      assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6257      assert(_collector->overflow_list_is_empty(),
6258             "overflow list should be empty");
6259
6260    }
6261  #endif // ASSERT
6262  return is_obj_array;
6263}
6264
6265MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6266                        MemRegion span,
6267                        CMSBitMap* bitMap, CMSMarkStack*  markStack,
6268                        bool should_yield, bool verifying):
6269  _collector(collector),
6270  _span(span),
6271  _bitMap(bitMap),
6272  _mut(&collector->_modUnionTable),
6273  _markStack(markStack),
6274  _yield(should_yield),
6275  _skipBits(0)
6276{
6277  assert(_markStack->isEmpty(), "stack should be empty");
6278  _finger = _bitMap->startWord();
6279  _threshold = _finger;
6280  assert(_collector->_restart_addr == NULL, "Sanity check");
6281  assert(_span.contains(_finger), "Out of bounds _finger?");
6282  DEBUG_ONLY(_verifying = verifying;)
6283}
6284
6285void MarkFromRootsClosure::reset(HeapWord* addr) {
6286  assert(_markStack->isEmpty(), "would cause duplicates on stack");
6287  assert(_span.contains(addr), "Out of bounds _finger?");
6288  _finger = addr;
6289  _threshold = (HeapWord*)round_to(
6290                 (intptr_t)_finger, CardTableModRefBS::card_size);
6291}
6292
6293// Should revisit to see if this should be restructured for
6294// greater efficiency.
6295bool MarkFromRootsClosure::do_bit(size_t offset) {
6296  if (_skipBits > 0) {
6297    _skipBits--;
6298    return true;
6299  }
6300  // convert offset into a HeapWord*
6301  HeapWord* addr = _bitMap->startWord() + offset;
6302  assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6303         "address out of range");
6304  assert(_bitMap->isMarked(addr), "tautology");
6305  if (_bitMap->isMarked(addr+1)) {
6306    // this is an allocated but not yet initialized object
6307    assert(_skipBits == 0, "tautology");
6308    _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6309    oop p = oop(addr);
6310    if (p->klass_or_null() == NULL) {
6311      DEBUG_ONLY(if (!_verifying) {)
6312        // We re-dirty the cards on which this object lies and increase
6313        // the _threshold so that we'll come back to scan this object
6314        // during the preclean or remark phase. (CMSCleanOnEnter)
6315        if (CMSCleanOnEnter) {
6316          size_t sz = _collector->block_size_using_printezis_bits(addr);
6317          HeapWord* end_card_addr   = (HeapWord*)round_to(
6318                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6319          MemRegion redirty_range = MemRegion(addr, end_card_addr);
6320          assert(!redirty_range.is_empty(), "Arithmetical tautology");
6321          // Bump _threshold to end_card_addr; note that
6322          // _threshold cannot possibly exceed end_card_addr, anyhow.
6323          // This prevents future clearing of the card as the scan proceeds
6324          // to the right.
6325          assert(_threshold <= end_card_addr,
6326                 "Because we are just scanning into this object");
6327          if (_threshold < end_card_addr) {
6328            _threshold = end_card_addr;
6329          }
6330          if (p->klass_or_null() != NULL) {
6331            // Redirty the range of cards...
6332            _mut->mark_range(redirty_range);
6333          } // ...else the setting of klass will dirty the card anyway.
6334        }
6335      DEBUG_ONLY(})
6336      return true;
6337    }
6338  }
6339  scanOopsInOop(addr);
6340  return true;
6341}
6342
6343// We take a break if we've been at this for a while,
6344// so as to avoid monopolizing the locks involved.
6345void MarkFromRootsClosure::do_yield_work() {
6346  // First give up the locks, then yield, then re-lock
6347  // We should probably use a constructor/destructor idiom to
6348  // do this unlock/lock or modify the MutexUnlocker class to
6349  // serve our purpose. XXX
6350  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6351         "CMS thread should hold CMS token");
6352  assert_lock_strong(_bitMap->lock());
6353  _bitMap->lock()->unlock();
6354  ConcurrentMarkSweepThread::desynchronize(true);
6355  _collector->stopTimer();
6356  _collector->incrementYields();
6357
6358  // See the comment in coordinator_yield()
6359  for (unsigned i = 0; i < CMSYieldSleepCount &&
6360                       ConcurrentMarkSweepThread::should_yield() &&
6361                       !CMSCollector::foregroundGCIsActive(); ++i) {
6362    os::sleep(Thread::current(), 1, false);
6363  }
6364
6365  ConcurrentMarkSweepThread::synchronize(true);
6366  _bitMap->lock()->lock_without_safepoint_check();
6367  _collector->startTimer();
6368}
6369
6370void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6371  assert(_bitMap->isMarked(ptr), "expected bit to be set");
6372  assert(_markStack->isEmpty(),
6373         "should drain stack to limit stack usage");
6374  // convert ptr to an oop preparatory to scanning
6375  oop obj = oop(ptr);
6376  // Ignore mark word in verification below, since we
6377  // may be running concurrent with mutators.
6378  assert(obj->is_oop(true), "should be an oop");
6379  assert(_finger <= ptr, "_finger runneth ahead");
6380  // advance the finger to right end of this object
6381  _finger = ptr + obj->size();
6382  assert(_finger > ptr, "we just incremented it above");
6383  // On large heaps, it may take us some time to get through
6384  // the marking phase. During
6385  // this time it's possible that a lot of mutations have
6386  // accumulated in the card table and the mod union table --
6387  // these mutation records are redundant until we have
6388  // actually traced into the corresponding card.
6389  // Here, we check whether advancing the finger would make
6390  // us cross into a new card, and if so clear corresponding
6391  // cards in the MUT (preclean them in the card-table in the
6392  // future).
6393
6394  DEBUG_ONLY(if (!_verifying) {)
6395    // The clean-on-enter optimization is disabled by default,
6396    // until we fix 6178663.
6397    if (CMSCleanOnEnter && (_finger > _threshold)) {
6398      // [_threshold, _finger) represents the interval
6399      // of cards to be cleared  in MUT (or precleaned in card table).
6400      // The set of cards to be cleared is all those that overlap
6401      // with the interval [_threshold, _finger); note that
6402      // _threshold is always kept card-aligned but _finger isn't
6403      // always card-aligned.
6404      HeapWord* old_threshold = _threshold;
6405      assert(old_threshold == (HeapWord*)round_to(
6406              (intptr_t)old_threshold, CardTableModRefBS::card_size),
6407             "_threshold should always be card-aligned");
6408      _threshold = (HeapWord*)round_to(
6409                     (intptr_t)_finger, CardTableModRefBS::card_size);
6410      MemRegion mr(old_threshold, _threshold);
6411      assert(!mr.is_empty(), "Control point invariant");
6412      assert(_span.contains(mr), "Should clear within span");
6413      _mut->clear_range(mr);
6414    }
6415  DEBUG_ONLY(})
6416  // Note: the finger doesn't advance while we drain
6417  // the stack below.
6418  PushOrMarkClosure pushOrMarkClosure(_collector,
6419                                      _span, _bitMap, _markStack,
6420                                      _finger, this);
6421  bool res = _markStack->push(obj);
6422  assert(res, "Empty non-zero size stack should have space for single push");
6423  while (!_markStack->isEmpty()) {
6424    oop new_oop = _markStack->pop();
6425    // Skip verifying header mark word below because we are
6426    // running concurrent with mutators.
6427    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6428    // now scan this oop's oops
6429    new_oop->oop_iterate(&pushOrMarkClosure);
6430    do_yield_check();
6431  }
6432  assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6433}
6434
6435ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6436                       CMSCollector* collector, MemRegion span,
6437                       CMSBitMap* bit_map,
6438                       OopTaskQueue* work_queue,
6439                       CMSMarkStack*  overflow_stack):
6440  _collector(collector),
6441  _whole_span(collector->_span),
6442  _span(span),
6443  _bit_map(bit_map),
6444  _mut(&collector->_modUnionTable),
6445  _work_queue(work_queue),
6446  _overflow_stack(overflow_stack),
6447  _skip_bits(0),
6448  _task(task)
6449{
6450  assert(_work_queue->size() == 0, "work_queue should be empty");
6451  _finger = span.start();
6452  _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6453  assert(_span.contains(_finger), "Out of bounds _finger?");
6454}
6455
6456// Should revisit to see if this should be restructured for
6457// greater efficiency.
6458bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6459  if (_skip_bits > 0) {
6460    _skip_bits--;
6461    return true;
6462  }
6463  // convert offset into a HeapWord*
6464  HeapWord* addr = _bit_map->startWord() + offset;
6465  assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6466         "address out of range");
6467  assert(_bit_map->isMarked(addr), "tautology");
6468  if (_bit_map->isMarked(addr+1)) {
6469    // this is an allocated object that might not yet be initialized
6470    assert(_skip_bits == 0, "tautology");
6471    _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6472    oop p = oop(addr);
6473    if (p->klass_or_null() == NULL) {
6474      // in the case of Clean-on-Enter optimization, redirty card
6475      // and avoid clearing card by increasing  the threshold.
6476      return true;
6477    }
6478  }
6479  scan_oops_in_oop(addr);
6480  return true;
6481}
6482
6483void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6484  assert(_bit_map->isMarked(ptr), "expected bit to be set");
6485  // Should we assert that our work queue is empty or
6486  // below some drain limit?
6487  assert(_work_queue->size() == 0,
6488         "should drain stack to limit stack usage");
6489  // convert ptr to an oop preparatory to scanning
6490  oop obj = oop(ptr);
6491  // Ignore mark word in verification below, since we
6492  // may be running concurrent with mutators.
6493  assert(obj->is_oop(true), "should be an oop");
6494  assert(_finger <= ptr, "_finger runneth ahead");
6495  // advance the finger to right end of this object
6496  _finger = ptr + obj->size();
6497  assert(_finger > ptr, "we just incremented it above");
6498  // On large heaps, it may take us some time to get through
6499  // the marking phase. During
6500  // this time it's possible that a lot of mutations have
6501  // accumulated in the card table and the mod union table --
6502  // these mutation records are redundant until we have
6503  // actually traced into the corresponding card.
6504  // Here, we check whether advancing the finger would make
6505  // us cross into a new card, and if so clear corresponding
6506  // cards in the MUT (preclean them in the card-table in the
6507  // future).
6508
6509  // The clean-on-enter optimization is disabled by default,
6510  // until we fix 6178663.
6511  if (CMSCleanOnEnter && (_finger > _threshold)) {
6512    // [_threshold, _finger) represents the interval
6513    // of cards to be cleared  in MUT (or precleaned in card table).
6514    // The set of cards to be cleared is all those that overlap
6515    // with the interval [_threshold, _finger); note that
6516    // _threshold is always kept card-aligned but _finger isn't
6517    // always card-aligned.
6518    HeapWord* old_threshold = _threshold;
6519    assert(old_threshold == (HeapWord*)round_to(
6520            (intptr_t)old_threshold, CardTableModRefBS::card_size),
6521           "_threshold should always be card-aligned");
6522    _threshold = (HeapWord*)round_to(
6523                   (intptr_t)_finger, CardTableModRefBS::card_size);
6524    MemRegion mr(old_threshold, _threshold);
6525    assert(!mr.is_empty(), "Control point invariant");
6526    assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6527    _mut->clear_range(mr);
6528  }
6529
6530  // Note: the local finger doesn't advance while we drain
6531  // the stack below, but the global finger sure can and will.
6532  HeapWord** gfa = _task->global_finger_addr();
6533  ParPushOrMarkClosure pushOrMarkClosure(_collector,
6534                                         _span, _bit_map,
6535                                         _work_queue,
6536                                         _overflow_stack,
6537                                         _finger,
6538                                         gfa, this);
6539  bool res = _work_queue->push(obj);   // overflow could occur here
6540  assert(res, "Will hold once we use workqueues");
6541  while (true) {
6542    oop new_oop;
6543    if (!_work_queue->pop_local(new_oop)) {
6544      // We emptied our work_queue; check if there's stuff that can
6545      // be gotten from the overflow stack.
6546      if (CMSConcMarkingTask::get_work_from_overflow_stack(
6547            _overflow_stack, _work_queue)) {
6548        do_yield_check();
6549        continue;
6550      } else {  // done
6551        break;
6552      }
6553    }
6554    // Skip verifying header mark word below because we are
6555    // running concurrent with mutators.
6556    assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6557    // now scan this oop's oops
6558    new_oop->oop_iterate(&pushOrMarkClosure);
6559    do_yield_check();
6560  }
6561  assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6562}
6563
6564// Yield in response to a request from VM Thread or
6565// from mutators.
6566void ParMarkFromRootsClosure::do_yield_work() {
6567  assert(_task != NULL, "sanity");
6568  _task->yield();
6569}
6570
6571// A variant of the above used for verifying CMS marking work.
6572MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6573                        MemRegion span,
6574                        CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6575                        CMSMarkStack*  mark_stack):
6576  _collector(collector),
6577  _span(span),
6578  _verification_bm(verification_bm),
6579  _cms_bm(cms_bm),
6580  _mark_stack(mark_stack),
6581  _pam_verify_closure(collector, span, verification_bm, cms_bm,
6582                      mark_stack)
6583{
6584  assert(_mark_stack->isEmpty(), "stack should be empty");
6585  _finger = _verification_bm->startWord();
6586  assert(_collector->_restart_addr == NULL, "Sanity check");
6587  assert(_span.contains(_finger), "Out of bounds _finger?");
6588}
6589
6590void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6591  assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6592  assert(_span.contains(addr), "Out of bounds _finger?");
6593  _finger = addr;
6594}
6595
6596// Should revisit to see if this should be restructured for
6597// greater efficiency.
6598bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6599  // convert offset into a HeapWord*
6600  HeapWord* addr = _verification_bm->startWord() + offset;
6601  assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6602         "address out of range");
6603  assert(_verification_bm->isMarked(addr), "tautology");
6604  assert(_cms_bm->isMarked(addr), "tautology");
6605
6606  assert(_mark_stack->isEmpty(),
6607         "should drain stack to limit stack usage");
6608  // convert addr to an oop preparatory to scanning
6609  oop obj = oop(addr);
6610  assert(obj->is_oop(), "should be an oop");
6611  assert(_finger <= addr, "_finger runneth ahead");
6612  // advance the finger to right end of this object
6613  _finger = addr + obj->size();
6614  assert(_finger > addr, "we just incremented it above");
6615  // Note: the finger doesn't advance while we drain
6616  // the stack below.
6617  bool res = _mark_stack->push(obj);
6618  assert(res, "Empty non-zero size stack should have space for single push");
6619  while (!_mark_stack->isEmpty()) {
6620    oop new_oop = _mark_stack->pop();
6621    assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6622    // now scan this oop's oops
6623    new_oop->oop_iterate(&_pam_verify_closure);
6624  }
6625  assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6626  return true;
6627}
6628
6629PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6630  CMSCollector* collector, MemRegion span,
6631  CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6632  CMSMarkStack*  mark_stack):
6633  MetadataAwareOopClosure(collector->ref_processor()),
6634  _collector(collector),
6635  _span(span),
6636  _verification_bm(verification_bm),
6637  _cms_bm(cms_bm),
6638  _mark_stack(mark_stack)
6639{ }
6640
6641void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6642void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6643
6644// Upon stack overflow, we discard (part of) the stack,
6645// remembering the least address amongst those discarded
6646// in CMSCollector's _restart_address.
6647void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6648  // Remember the least grey address discarded
6649  HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6650  _collector->lower_restart_addr(ra);
6651  _mark_stack->reset();  // discard stack contents
6652  _mark_stack->expand(); // expand the stack if possible
6653}
6654
6655void PushAndMarkVerifyClosure::do_oop(oop obj) {
6656  assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6657  HeapWord* addr = (HeapWord*)obj;
6658  if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6659    // Oop lies in _span and isn't yet grey or black
6660    _verification_bm->mark(addr);            // now grey
6661    if (!_cms_bm->isMarked(addr)) {
6662      LogHandle(gc, verify) log;
6663      ResourceMark rm;
6664      oop(addr)->print_on(log.info_stream());
6665      log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6666      fatal("... aborting");
6667    }
6668
6669    if (!_mark_stack->push(obj)) { // stack overflow
6670      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6671      assert(_mark_stack->isFull(), "Else push should have succeeded");
6672      handle_stack_overflow(addr);
6673    }
6674    // anything including and to the right of _finger
6675    // will be scanned as we iterate over the remainder of the
6676    // bit map
6677  }
6678}
6679
6680PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6681                     MemRegion span,
6682                     CMSBitMap* bitMap, CMSMarkStack*  markStack,
6683                     HeapWord* finger, MarkFromRootsClosure* parent) :
6684  MetadataAwareOopClosure(collector->ref_processor()),
6685  _collector(collector),
6686  _span(span),
6687  _bitMap(bitMap),
6688  _markStack(markStack),
6689  _finger(finger),
6690  _parent(parent)
6691{ }
6692
6693ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6694                                           MemRegion span,
6695                                           CMSBitMap* bit_map,
6696                                           OopTaskQueue* work_queue,
6697                                           CMSMarkStack*  overflow_stack,
6698                                           HeapWord* finger,
6699                                           HeapWord** global_finger_addr,
6700                                           ParMarkFromRootsClosure* parent) :
6701  MetadataAwareOopClosure(collector->ref_processor()),
6702  _collector(collector),
6703  _whole_span(collector->_span),
6704  _span(span),
6705  _bit_map(bit_map),
6706  _work_queue(work_queue),
6707  _overflow_stack(overflow_stack),
6708  _finger(finger),
6709  _global_finger_addr(global_finger_addr),
6710  _parent(parent)
6711{ }
6712
6713// Assumes thread-safe access by callers, who are
6714// responsible for mutual exclusion.
6715void CMSCollector::lower_restart_addr(HeapWord* low) {
6716  assert(_span.contains(low), "Out of bounds addr");
6717  if (_restart_addr == NULL) {
6718    _restart_addr = low;
6719  } else {
6720    _restart_addr = MIN2(_restart_addr, low);
6721  }
6722}
6723
6724// Upon stack overflow, we discard (part of) the stack,
6725// remembering the least address amongst those discarded
6726// in CMSCollector's _restart_address.
6727void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6728  // Remember the least grey address discarded
6729  HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6730  _collector->lower_restart_addr(ra);
6731  _markStack->reset();  // discard stack contents
6732  _markStack->expand(); // expand the stack if possible
6733}
6734
6735// Upon stack overflow, we discard (part of) the stack,
6736// remembering the least address amongst those discarded
6737// in CMSCollector's _restart_address.
6738void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6739  // We need to do this under a mutex to prevent other
6740  // workers from interfering with the work done below.
6741  MutexLockerEx ml(_overflow_stack->par_lock(),
6742                   Mutex::_no_safepoint_check_flag);
6743  // Remember the least grey address discarded
6744  HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6745  _collector->lower_restart_addr(ra);
6746  _overflow_stack->reset();  // discard stack contents
6747  _overflow_stack->expand(); // expand the stack if possible
6748}
6749
6750void PushOrMarkClosure::do_oop(oop obj) {
6751  // Ignore mark word because we are running concurrent with mutators.
6752  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6753  HeapWord* addr = (HeapWord*)obj;
6754  if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6755    // Oop lies in _span and isn't yet grey or black
6756    _bitMap->mark(addr);            // now grey
6757    if (addr < _finger) {
6758      // the bit map iteration has already either passed, or
6759      // sampled, this bit in the bit map; we'll need to
6760      // use the marking stack to scan this oop's oops.
6761      bool simulate_overflow = false;
6762      NOT_PRODUCT(
6763        if (CMSMarkStackOverflowALot &&
6764            _collector->simulate_overflow()) {
6765          // simulate a stack overflow
6766          simulate_overflow = true;
6767        }
6768      )
6769      if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6770        log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6771        assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6772        handle_stack_overflow(addr);
6773      }
6774    }
6775    // anything including and to the right of _finger
6776    // will be scanned as we iterate over the remainder of the
6777    // bit map
6778    do_yield_check();
6779  }
6780}
6781
6782void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6783void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6784
6785void ParPushOrMarkClosure::do_oop(oop obj) {
6786  // Ignore mark word because we are running concurrent with mutators.
6787  assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6788  HeapWord* addr = (HeapWord*)obj;
6789  if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6790    // Oop lies in _span and isn't yet grey or black
6791    // We read the global_finger (volatile read) strictly after marking oop
6792    bool res = _bit_map->par_mark(addr);    // now grey
6793    volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6794    // Should we push this marked oop on our stack?
6795    // -- if someone else marked it, nothing to do
6796    // -- if target oop is above global finger nothing to do
6797    // -- if target oop is in chunk and above local finger
6798    //      then nothing to do
6799    // -- else push on work queue
6800    if (   !res       // someone else marked it, they will deal with it
6801        || (addr >= *gfa)  // will be scanned in a later task
6802        || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6803      return;
6804    }
6805    // the bit map iteration has already either passed, or
6806    // sampled, this bit in the bit map; we'll need to
6807    // use the marking stack to scan this oop's oops.
6808    bool simulate_overflow = false;
6809    NOT_PRODUCT(
6810      if (CMSMarkStackOverflowALot &&
6811          _collector->simulate_overflow()) {
6812        // simulate a stack overflow
6813        simulate_overflow = true;
6814      }
6815    )
6816    if (simulate_overflow ||
6817        !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6818      // stack overflow
6819      log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6820      // We cannot assert that the overflow stack is full because
6821      // it may have been emptied since.
6822      assert(simulate_overflow ||
6823             _work_queue->size() == _work_queue->max_elems(),
6824            "Else push should have succeeded");
6825      handle_stack_overflow(addr);
6826    }
6827    do_yield_check();
6828  }
6829}
6830
6831void ParPushOrMarkClosure::do_oop(oop* p)       { ParPushOrMarkClosure::do_oop_work(p); }
6832void ParPushOrMarkClosure::do_oop(narrowOop* p) { ParPushOrMarkClosure::do_oop_work(p); }
6833
6834PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6835                                       MemRegion span,
6836                                       ReferenceProcessor* rp,
6837                                       CMSBitMap* bit_map,
6838                                       CMSBitMap* mod_union_table,
6839                                       CMSMarkStack*  mark_stack,
6840                                       bool           concurrent_precleaning):
6841  MetadataAwareOopClosure(rp),
6842  _collector(collector),
6843  _span(span),
6844  _bit_map(bit_map),
6845  _mod_union_table(mod_union_table),
6846  _mark_stack(mark_stack),
6847  _concurrent_precleaning(concurrent_precleaning)
6848{
6849  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6850}
6851
6852// Grey object rescan during pre-cleaning and second checkpoint phases --
6853// the non-parallel version (the parallel version appears further below.)
6854void PushAndMarkClosure::do_oop(oop obj) {
6855  // Ignore mark word verification. If during concurrent precleaning,
6856  // the object monitor may be locked. If during the checkpoint
6857  // phases, the object may already have been reached by a  different
6858  // path and may be at the end of the global overflow list (so
6859  // the mark word may be NULL).
6860  assert(obj->is_oop_or_null(true /* ignore mark word */),
6861         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6862  HeapWord* addr = (HeapWord*)obj;
6863  // Check if oop points into the CMS generation
6864  // and is not marked
6865  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6866    // a white object ...
6867    _bit_map->mark(addr);         // ... now grey
6868    // push on the marking stack (grey set)
6869    bool simulate_overflow = false;
6870    NOT_PRODUCT(
6871      if (CMSMarkStackOverflowALot &&
6872          _collector->simulate_overflow()) {
6873        // simulate a stack overflow
6874        simulate_overflow = true;
6875      }
6876    )
6877    if (simulate_overflow || !_mark_stack->push(obj)) {
6878      if (_concurrent_precleaning) {
6879         // During precleaning we can just dirty the appropriate card(s)
6880         // in the mod union table, thus ensuring that the object remains
6881         // in the grey set  and continue. In the case of object arrays
6882         // we need to dirty all of the cards that the object spans,
6883         // since the rescan of object arrays will be limited to the
6884         // dirty cards.
6885         // Note that no one can be interfering with us in this action
6886         // of dirtying the mod union table, so no locking or atomics
6887         // are required.
6888         if (obj->is_objArray()) {
6889           size_t sz = obj->size();
6890           HeapWord* end_card_addr = (HeapWord*)round_to(
6891                                        (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6892           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6893           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6894           _mod_union_table->mark_range(redirty_range);
6895         } else {
6896           _mod_union_table->mark(addr);
6897         }
6898         _collector->_ser_pmc_preclean_ovflw++;
6899      } else {
6900         // During the remark phase, we need to remember this oop
6901         // in the overflow list.
6902         _collector->push_on_overflow_list(obj);
6903         _collector->_ser_pmc_remark_ovflw++;
6904      }
6905    }
6906  }
6907}
6908
6909ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6910                                             MemRegion span,
6911                                             ReferenceProcessor* rp,
6912                                             CMSBitMap* bit_map,
6913                                             OopTaskQueue* work_queue):
6914  MetadataAwareOopClosure(rp),
6915  _collector(collector),
6916  _span(span),
6917  _bit_map(bit_map),
6918  _work_queue(work_queue)
6919{
6920  assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6921}
6922
6923void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6924void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6925
6926// Grey object rescan during second checkpoint phase --
6927// the parallel version.
6928void ParPushAndMarkClosure::do_oop(oop obj) {
6929  // In the assert below, we ignore the mark word because
6930  // this oop may point to an already visited object that is
6931  // on the overflow stack (in which case the mark word has
6932  // been hijacked for chaining into the overflow stack --
6933  // if this is the last object in the overflow stack then
6934  // its mark word will be NULL). Because this object may
6935  // have been subsequently popped off the global overflow
6936  // stack, and the mark word possibly restored to the prototypical
6937  // value, by the time we get to examined this failing assert in
6938  // the debugger, is_oop_or_null(false) may subsequently start
6939  // to hold.
6940  assert(obj->is_oop_or_null(true),
6941         "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6942  HeapWord* addr = (HeapWord*)obj;
6943  // Check if oop points into the CMS generation
6944  // and is not marked
6945  if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6946    // a white object ...
6947    // If we manage to "claim" the object, by being the
6948    // first thread to mark it, then we push it on our
6949    // marking stack
6950    if (_bit_map->par_mark(addr)) {     // ... now grey
6951      // push on work queue (grey set)
6952      bool simulate_overflow = false;
6953      NOT_PRODUCT(
6954        if (CMSMarkStackOverflowALot &&
6955            _collector->par_simulate_overflow()) {
6956          // simulate a stack overflow
6957          simulate_overflow = true;
6958        }
6959      )
6960      if (simulate_overflow || !_work_queue->push(obj)) {
6961        _collector->par_push_on_overflow_list(obj);
6962        _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6963      }
6964    } // Else, some other thread got there first
6965  }
6966}
6967
6968void ParPushAndMarkClosure::do_oop(oop* p)       { ParPushAndMarkClosure::do_oop_work(p); }
6969void ParPushAndMarkClosure::do_oop(narrowOop* p) { ParPushAndMarkClosure::do_oop_work(p); }
6970
6971void CMSPrecleanRefsYieldClosure::do_yield_work() {
6972  Mutex* bml = _collector->bitMapLock();
6973  assert_lock_strong(bml);
6974  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6975         "CMS thread should hold CMS token");
6976
6977  bml->unlock();
6978  ConcurrentMarkSweepThread::desynchronize(true);
6979
6980  _collector->stopTimer();
6981  _collector->incrementYields();
6982
6983  // See the comment in coordinator_yield()
6984  for (unsigned i = 0; i < CMSYieldSleepCount &&
6985                       ConcurrentMarkSweepThread::should_yield() &&
6986                       !CMSCollector::foregroundGCIsActive(); ++i) {
6987    os::sleep(Thread::current(), 1, false);
6988  }
6989
6990  ConcurrentMarkSweepThread::synchronize(true);
6991  bml->lock();
6992
6993  _collector->startTimer();
6994}
6995
6996bool CMSPrecleanRefsYieldClosure::should_return() {
6997  if (ConcurrentMarkSweepThread::should_yield()) {
6998    do_yield_work();
6999  }
7000  return _collector->foregroundGCIsActive();
7001}
7002
7003void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7004  assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7005         "mr should be aligned to start at a card boundary");
7006  // We'd like to assert:
7007  // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7008  //        "mr should be a range of cards");
7009  // However, that would be too strong in one case -- the last
7010  // partition ends at _unallocated_block which, in general, can be
7011  // an arbitrary boundary, not necessarily card aligned.
7012  _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7013  _space->object_iterate_mem(mr, &_scan_cl);
7014}
7015
7016SweepClosure::SweepClosure(CMSCollector* collector,
7017                           ConcurrentMarkSweepGeneration* g,
7018                           CMSBitMap* bitMap, bool should_yield) :
7019  _collector(collector),
7020  _g(g),
7021  _sp(g->cmsSpace()),
7022  _limit(_sp->sweep_limit()),
7023  _freelistLock(_sp->freelistLock()),
7024  _bitMap(bitMap),
7025  _yield(should_yield),
7026  _inFreeRange(false),           // No free range at beginning of sweep
7027  _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7028  _lastFreeRangeCoalesced(false),
7029  _freeFinger(g->used_region().start())
7030{
7031  NOT_PRODUCT(
7032    _numObjectsFreed = 0;
7033    _numWordsFreed   = 0;
7034    _numObjectsLive = 0;
7035    _numWordsLive = 0;
7036    _numObjectsAlreadyFree = 0;
7037    _numWordsAlreadyFree = 0;
7038    _last_fc = NULL;
7039
7040    _sp->initializeIndexedFreeListArrayReturnedBytes();
7041    _sp->dictionary()->initialize_dict_returned_bytes();
7042  )
7043  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7044         "sweep _limit out of bounds");
7045  log_develop_trace(gc, sweep)("====================");
7046  log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7047}
7048
7049void SweepClosure::print_on(outputStream* st) const {
7050  tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7051                p2i(_sp->bottom()), p2i(_sp->end()));
7052  tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7053  tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7054  NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7055  tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7056                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7057}
7058
7059#ifndef PRODUCT
7060// Assertion checking only:  no useful work in product mode --
7061// however, if any of the flags below become product flags,
7062// you may need to review this code to see if it needs to be
7063// enabled in product mode.
7064SweepClosure::~SweepClosure() {
7065  assert_lock_strong(_freelistLock);
7066  assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7067         "sweep _limit out of bounds");
7068  if (inFreeRange()) {
7069    warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7070    print();
7071    ShouldNotReachHere();
7072  }
7073
7074  if (log_is_enabled(Debug, gc, sweep)) {
7075    log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7076                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7077    log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7078                         _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7079    size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7080    log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7081  }
7082
7083  if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7084    size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7085    size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7086    size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7087    log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7088                         returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7089  }
7090  log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7091  log_develop_trace(gc, sweep)("================");
7092}
7093#endif  // PRODUCT
7094
7095void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7096    bool freeRangeInFreeLists) {
7097  log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7098                               p2i(freeFinger), freeRangeInFreeLists);
7099  assert(!inFreeRange(), "Trampling existing free range");
7100  set_inFreeRange(true);
7101  set_lastFreeRangeCoalesced(false);
7102
7103  set_freeFinger(freeFinger);
7104  set_freeRangeInFreeLists(freeRangeInFreeLists);
7105  if (CMSTestInFreeList) {
7106    if (freeRangeInFreeLists) {
7107      FreeChunk* fc = (FreeChunk*) freeFinger;
7108      assert(fc->is_free(), "A chunk on the free list should be free.");
7109      assert(fc->size() > 0, "Free range should have a size");
7110      assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7111    }
7112  }
7113}
7114
7115// Note that the sweeper runs concurrently with mutators. Thus,
7116// it is possible for direct allocation in this generation to happen
7117// in the middle of the sweep. Note that the sweeper also coalesces
7118// contiguous free blocks. Thus, unless the sweeper and the allocator
7119// synchronize appropriately freshly allocated blocks may get swept up.
7120// This is accomplished by the sweeper locking the free lists while
7121// it is sweeping. Thus blocks that are determined to be free are
7122// indeed free. There is however one additional complication:
7123// blocks that have been allocated since the final checkpoint and
7124// mark, will not have been marked and so would be treated as
7125// unreachable and swept up. To prevent this, the allocator marks
7126// the bit map when allocating during the sweep phase. This leads,
7127// however, to a further complication -- objects may have been allocated
7128// but not yet initialized -- in the sense that the header isn't yet
7129// installed. The sweeper can not then determine the size of the block
7130// in order to skip over it. To deal with this case, we use a technique
7131// (due to Printezis) to encode such uninitialized block sizes in the
7132// bit map. Since the bit map uses a bit per every HeapWord, but the
7133// CMS generation has a minimum object size of 3 HeapWords, it follows
7134// that "normal marks" won't be adjacent in the bit map (there will
7135// always be at least two 0 bits between successive 1 bits). We make use
7136// of these "unused" bits to represent uninitialized blocks -- the bit
7137// corresponding to the start of the uninitialized object and the next
7138// bit are both set. Finally, a 1 bit marks the end of the object that
7139// started with the two consecutive 1 bits to indicate its potentially
7140// uninitialized state.
7141
7142size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7143  FreeChunk* fc = (FreeChunk*)addr;
7144  size_t res;
7145
7146  // Check if we are done sweeping. Below we check "addr >= _limit" rather
7147  // than "addr == _limit" because although _limit was a block boundary when
7148  // we started the sweep, it may no longer be one because heap expansion
7149  // may have caused us to coalesce the block ending at the address _limit
7150  // with a newly expanded chunk (this happens when _limit was set to the
7151  // previous _end of the space), so we may have stepped past _limit:
7152  // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7153  if (addr >= _limit) { // we have swept up to or past the limit: finish up
7154    assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7155           "sweep _limit out of bounds");
7156    assert(addr < _sp->end(), "addr out of bounds");
7157    // Flush any free range we might be holding as a single
7158    // coalesced chunk to the appropriate free list.
7159    if (inFreeRange()) {
7160      assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7161             "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7162      flush_cur_free_chunk(freeFinger(),
7163                           pointer_delta(addr, freeFinger()));
7164      log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7165                                   p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7166                                   lastFreeRangeCoalesced() ? 1 : 0);
7167    }
7168
7169    // help the iterator loop finish
7170    return pointer_delta(_sp->end(), addr);
7171  }
7172
7173  assert(addr < _limit, "sweep invariant");
7174  // check if we should yield
7175  do_yield_check(addr);
7176  if (fc->is_free()) {
7177    // Chunk that is already free
7178    res = fc->size();
7179    do_already_free_chunk(fc);
7180    debug_only(_sp->verifyFreeLists());
7181    // If we flush the chunk at hand in lookahead_and_flush()
7182    // and it's coalesced with a preceding chunk, then the
7183    // process of "mangling" the payload of the coalesced block
7184    // will cause erasure of the size information from the
7185    // (erstwhile) header of all the coalesced blocks but the
7186    // first, so the first disjunct in the assert will not hold
7187    // in that specific case (in which case the second disjunct
7188    // will hold).
7189    assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7190           "Otherwise the size info doesn't change at this step");
7191    NOT_PRODUCT(
7192      _numObjectsAlreadyFree++;
7193      _numWordsAlreadyFree += res;
7194    )
7195    NOT_PRODUCT(_last_fc = fc;)
7196  } else if (!_bitMap->isMarked(addr)) {
7197    // Chunk is fresh garbage
7198    res = do_garbage_chunk(fc);
7199    debug_only(_sp->verifyFreeLists());
7200    NOT_PRODUCT(
7201      _numObjectsFreed++;
7202      _numWordsFreed += res;
7203    )
7204  } else {
7205    // Chunk that is alive.
7206    res = do_live_chunk(fc);
7207    debug_only(_sp->verifyFreeLists());
7208    NOT_PRODUCT(
7209        _numObjectsLive++;
7210        _numWordsLive += res;
7211    )
7212  }
7213  return res;
7214}
7215
7216// For the smart allocation, record following
7217//  split deaths - a free chunk is removed from its free list because
7218//      it is being split into two or more chunks.
7219//  split birth - a free chunk is being added to its free list because
7220//      a larger free chunk has been split and resulted in this free chunk.
7221//  coal death - a free chunk is being removed from its free list because
7222//      it is being coalesced into a large free chunk.
7223//  coal birth - a free chunk is being added to its free list because
7224//      it was created when two or more free chunks where coalesced into
7225//      this free chunk.
7226//
7227// These statistics are used to determine the desired number of free
7228// chunks of a given size.  The desired number is chosen to be relative
7229// to the end of a CMS sweep.  The desired number at the end of a sweep
7230// is the
7231//      count-at-end-of-previous-sweep (an amount that was enough)
7232//              - count-at-beginning-of-current-sweep  (the excess)
7233//              + split-births  (gains in this size during interval)
7234//              - split-deaths  (demands on this size during interval)
7235// where the interval is from the end of one sweep to the end of the
7236// next.
7237//
7238// When sweeping the sweeper maintains an accumulated chunk which is
7239// the chunk that is made up of chunks that have been coalesced.  That
7240// will be termed the left-hand chunk.  A new chunk of garbage that
7241// is being considered for coalescing will be referred to as the
7242// right-hand chunk.
7243//
7244// When making a decision on whether to coalesce a right-hand chunk with
7245// the current left-hand chunk, the current count vs. the desired count
7246// of the left-hand chunk is considered.  Also if the right-hand chunk
7247// is near the large chunk at the end of the heap (see
7248// ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7249// left-hand chunk is coalesced.
7250//
7251// When making a decision about whether to split a chunk, the desired count
7252// vs. the current count of the candidate to be split is also considered.
7253// If the candidate is underpopulated (currently fewer chunks than desired)
7254// a chunk of an overpopulated (currently more chunks than desired) size may
7255// be chosen.  The "hint" associated with a free list, if non-null, points
7256// to a free list which may be overpopulated.
7257//
7258
7259void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7260  const size_t size = fc->size();
7261  // Chunks that cannot be coalesced are not in the
7262  // free lists.
7263  if (CMSTestInFreeList && !fc->cantCoalesce()) {
7264    assert(_sp->verify_chunk_in_free_list(fc),
7265           "free chunk should be in free lists");
7266  }
7267  // a chunk that is already free, should not have been
7268  // marked in the bit map
7269  HeapWord* const addr = (HeapWord*) fc;
7270  assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7271  // Verify that the bit map has no bits marked between
7272  // addr and purported end of this block.
7273  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7274
7275  // Some chunks cannot be coalesced under any circumstances.
7276  // See the definition of cantCoalesce().
7277  if (!fc->cantCoalesce()) {
7278    // This chunk can potentially be coalesced.
7279    // All the work is done in
7280    do_post_free_or_garbage_chunk(fc, size);
7281    // Note that if the chunk is not coalescable (the else arm
7282    // below), we unconditionally flush, without needing to do
7283    // a "lookahead," as we do below.
7284    if (inFreeRange()) lookahead_and_flush(fc, size);
7285  } else {
7286    // Code path common to both original and adaptive free lists.
7287
7288    // cant coalesce with previous block; this should be treated
7289    // as the end of a free run if any
7290    if (inFreeRange()) {
7291      // we kicked some butt; time to pick up the garbage
7292      assert(freeFinger() < addr, "freeFinger points too high");
7293      flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7294    }
7295    // else, nothing to do, just continue
7296  }
7297}
7298
7299size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7300  // This is a chunk of garbage.  It is not in any free list.
7301  // Add it to a free list or let it possibly be coalesced into
7302  // a larger chunk.
7303  HeapWord* const addr = (HeapWord*) fc;
7304  const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7305
7306  // Verify that the bit map has no bits marked between
7307  // addr and purported end of just dead object.
7308  _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7309  do_post_free_or_garbage_chunk(fc, size);
7310
7311  assert(_limit >= addr + size,
7312         "A freshly garbage chunk can't possibly straddle over _limit");
7313  if (inFreeRange()) lookahead_and_flush(fc, size);
7314  return size;
7315}
7316
7317size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7318  HeapWord* addr = (HeapWord*) fc;
7319  // The sweeper has just found a live object. Return any accumulated
7320  // left hand chunk to the free lists.
7321  if (inFreeRange()) {
7322    assert(freeFinger() < addr, "freeFinger points too high");
7323    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7324  }
7325
7326  // This object is live: we'd normally expect this to be
7327  // an oop, and like to assert the following:
7328  // assert(oop(addr)->is_oop(), "live block should be an oop");
7329  // However, as we commented above, this may be an object whose
7330  // header hasn't yet been initialized.
7331  size_t size;
7332  assert(_bitMap->isMarked(addr), "Tautology for this control point");
7333  if (_bitMap->isMarked(addr + 1)) {
7334    // Determine the size from the bit map, rather than trying to
7335    // compute it from the object header.
7336    HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7337    size = pointer_delta(nextOneAddr + 1, addr);
7338    assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7339           "alignment problem");
7340
7341#ifdef ASSERT
7342      if (oop(addr)->klass_or_null() != NULL) {
7343        // Ignore mark word because we are running concurrent with mutators
7344        assert(oop(addr)->is_oop(true), "live block should be an oop");
7345        assert(size ==
7346               CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7347               "P-mark and computed size do not agree");
7348      }
7349#endif
7350
7351  } else {
7352    // This should be an initialized object that's alive.
7353    assert(oop(addr)->klass_or_null() != NULL,
7354           "Should be an initialized object");
7355    // Ignore mark word because we are running concurrent with mutators
7356    assert(oop(addr)->is_oop(true), "live block should be an oop");
7357    // Verify that the bit map has no bits marked between
7358    // addr and purported end of this block.
7359    size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7360    assert(size >= 3, "Necessary for Printezis marks to work");
7361    assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7362    DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7363  }
7364  return size;
7365}
7366
7367void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7368                                                 size_t chunkSize) {
7369  // do_post_free_or_garbage_chunk() should only be called in the case
7370  // of the adaptive free list allocator.
7371  const bool fcInFreeLists = fc->is_free();
7372  assert((HeapWord*)fc <= _limit, "sweep invariant");
7373  if (CMSTestInFreeList && fcInFreeLists) {
7374    assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7375  }
7376
7377  log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7378
7379  HeapWord* const fc_addr = (HeapWord*) fc;
7380
7381  bool coalesce = false;
7382  const size_t left  = pointer_delta(fc_addr, freeFinger());
7383  const size_t right = chunkSize;
7384  switch (FLSCoalescePolicy) {
7385    // numeric value forms a coalition aggressiveness metric
7386    case 0:  { // never coalesce
7387      coalesce = false;
7388      break;
7389    }
7390    case 1: { // coalesce if left & right chunks on overpopulated lists
7391      coalesce = _sp->coalOverPopulated(left) &&
7392                 _sp->coalOverPopulated(right);
7393      break;
7394    }
7395    case 2: { // coalesce if left chunk on overpopulated list (default)
7396      coalesce = _sp->coalOverPopulated(left);
7397      break;
7398    }
7399    case 3: { // coalesce if left OR right chunk on overpopulated list
7400      coalesce = _sp->coalOverPopulated(left) ||
7401                 _sp->coalOverPopulated(right);
7402      break;
7403    }
7404    case 4: { // always coalesce
7405      coalesce = true;
7406      break;
7407    }
7408    default:
7409     ShouldNotReachHere();
7410  }
7411
7412  // Should the current free range be coalesced?
7413  // If the chunk is in a free range and either we decided to coalesce above
7414  // or the chunk is near the large block at the end of the heap
7415  // (isNearLargestChunk() returns true), then coalesce this chunk.
7416  const bool doCoalesce = inFreeRange()
7417                          && (coalesce || _g->isNearLargestChunk(fc_addr));
7418  if (doCoalesce) {
7419    // Coalesce the current free range on the left with the new
7420    // chunk on the right.  If either is on a free list,
7421    // it must be removed from the list and stashed in the closure.
7422    if (freeRangeInFreeLists()) {
7423      FreeChunk* const ffc = (FreeChunk*)freeFinger();
7424      assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7425             "Size of free range is inconsistent with chunk size.");
7426      if (CMSTestInFreeList) {
7427        assert(_sp->verify_chunk_in_free_list(ffc),
7428               "Chunk is not in free lists");
7429      }
7430      _sp->coalDeath(ffc->size());
7431      _sp->removeFreeChunkFromFreeLists(ffc);
7432      set_freeRangeInFreeLists(false);
7433    }
7434    if (fcInFreeLists) {
7435      _sp->coalDeath(chunkSize);
7436      assert(fc->size() == chunkSize,
7437        "The chunk has the wrong size or is not in the free lists");
7438      _sp->removeFreeChunkFromFreeLists(fc);
7439    }
7440    set_lastFreeRangeCoalesced(true);
7441    print_free_block_coalesced(fc);
7442  } else {  // not in a free range and/or should not coalesce
7443    // Return the current free range and start a new one.
7444    if (inFreeRange()) {
7445      // In a free range but cannot coalesce with the right hand chunk.
7446      // Put the current free range into the free lists.
7447      flush_cur_free_chunk(freeFinger(),
7448                           pointer_delta(fc_addr, freeFinger()));
7449    }
7450    // Set up for new free range.  Pass along whether the right hand
7451    // chunk is in the free lists.
7452    initialize_free_range((HeapWord*)fc, fcInFreeLists);
7453  }
7454}
7455
7456// Lookahead flush:
7457// If we are tracking a free range, and this is the last chunk that
7458// we'll look at because its end crosses past _limit, we'll preemptively
7459// flush it along with any free range we may be holding on to. Note that
7460// this can be the case only for an already free or freshly garbage
7461// chunk. If this block is an object, it can never straddle
7462// over _limit. The "straddling" occurs when _limit is set at
7463// the previous end of the space when this cycle started, and
7464// a subsequent heap expansion caused the previously co-terminal
7465// free block to be coalesced with the newly expanded portion,
7466// thus rendering _limit a non-block-boundary making it dangerous
7467// for the sweeper to step over and examine.
7468void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7469  assert(inFreeRange(), "Should only be called if currently in a free range.");
7470  HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7471  assert(_sp->used_region().contains(eob - 1),
7472         "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7473         " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7474         " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7475         p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7476  if (eob >= _limit) {
7477    assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7478    log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7479                                 "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7480                                 "[" PTR_FORMAT "," PTR_FORMAT ")",
7481                                 p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7482    // Return the storage we are tracking back into the free lists.
7483    log_develop_trace(gc, sweep)("Flushing ... ");
7484    assert(freeFinger() < eob, "Error");
7485    flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7486  }
7487}
7488
7489void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7490  assert(inFreeRange(), "Should only be called if currently in a free range.");
7491  assert(size > 0,
7492    "A zero sized chunk cannot be added to the free lists.");
7493  if (!freeRangeInFreeLists()) {
7494    if (CMSTestInFreeList) {
7495      FreeChunk* fc = (FreeChunk*) chunk;
7496      fc->set_size(size);
7497      assert(!_sp->verify_chunk_in_free_list(fc),
7498             "chunk should not be in free lists yet");
7499    }
7500    log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7501    // A new free range is going to be starting.  The current
7502    // free range has not been added to the free lists yet or
7503    // was removed so add it back.
7504    // If the current free range was coalesced, then the death
7505    // of the free range was recorded.  Record a birth now.
7506    if (lastFreeRangeCoalesced()) {
7507      _sp->coalBirth(size);
7508    }
7509    _sp->addChunkAndRepairOffsetTable(chunk, size,
7510            lastFreeRangeCoalesced());
7511  } else {
7512    log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7513  }
7514  set_inFreeRange(false);
7515  set_freeRangeInFreeLists(false);
7516}
7517
7518// We take a break if we've been at this for a while,
7519// so as to avoid monopolizing the locks involved.
7520void SweepClosure::do_yield_work(HeapWord* addr) {
7521  // Return current free chunk being used for coalescing (if any)
7522  // to the appropriate freelist.  After yielding, the next
7523  // free block encountered will start a coalescing range of
7524  // free blocks.  If the next free block is adjacent to the
7525  // chunk just flushed, they will need to wait for the next
7526  // sweep to be coalesced.
7527  if (inFreeRange()) {
7528    flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7529  }
7530
7531  // First give up the locks, then yield, then re-lock.
7532  // We should probably use a constructor/destructor idiom to
7533  // do this unlock/lock or modify the MutexUnlocker class to
7534  // serve our purpose. XXX
7535  assert_lock_strong(_bitMap->lock());
7536  assert_lock_strong(_freelistLock);
7537  assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7538         "CMS thread should hold CMS token");
7539  _bitMap->lock()->unlock();
7540  _freelistLock->unlock();
7541  ConcurrentMarkSweepThread::desynchronize(true);
7542  _collector->stopTimer();
7543  _collector->incrementYields();
7544
7545  // See the comment in coordinator_yield()
7546  for (unsigned i = 0; i < CMSYieldSleepCount &&
7547                       ConcurrentMarkSweepThread::should_yield() &&
7548                       !CMSCollector::foregroundGCIsActive(); ++i) {
7549    os::sleep(Thread::current(), 1, false);
7550  }
7551
7552  ConcurrentMarkSweepThread::synchronize(true);
7553  _freelistLock->lock();
7554  _bitMap->lock()->lock_without_safepoint_check();
7555  _collector->startTimer();
7556}
7557
7558#ifndef PRODUCT
7559// This is actually very useful in a product build if it can
7560// be called from the debugger.  Compile it into the product
7561// as needed.
7562bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7563  return debug_cms_space->verify_chunk_in_free_list(fc);
7564}
7565#endif
7566
7567void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7568  log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7569                               p2i(fc), fc->size());
7570}
7571
7572// CMSIsAliveClosure
7573bool CMSIsAliveClosure::do_object_b(oop obj) {
7574  HeapWord* addr = (HeapWord*)obj;
7575  return addr != NULL &&
7576         (!_span.contains(addr) || _bit_map->isMarked(addr));
7577}
7578
7579
7580CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7581                      MemRegion span,
7582                      CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7583                      bool cpc):
7584  _collector(collector),
7585  _span(span),
7586  _bit_map(bit_map),
7587  _mark_stack(mark_stack),
7588  _concurrent_precleaning(cpc) {
7589  assert(!_span.is_empty(), "Empty span could spell trouble");
7590}
7591
7592
7593// CMSKeepAliveClosure: the serial version
7594void CMSKeepAliveClosure::do_oop(oop obj) {
7595  HeapWord* addr = (HeapWord*)obj;
7596  if (_span.contains(addr) &&
7597      !_bit_map->isMarked(addr)) {
7598    _bit_map->mark(addr);
7599    bool simulate_overflow = false;
7600    NOT_PRODUCT(
7601      if (CMSMarkStackOverflowALot &&
7602          _collector->simulate_overflow()) {
7603        // simulate a stack overflow
7604        simulate_overflow = true;
7605      }
7606    )
7607    if (simulate_overflow || !_mark_stack->push(obj)) {
7608      if (_concurrent_precleaning) {
7609        // We dirty the overflown object and let the remark
7610        // phase deal with it.
7611        assert(_collector->overflow_list_is_empty(), "Error");
7612        // In the case of object arrays, we need to dirty all of
7613        // the cards that the object spans. No locking or atomics
7614        // are needed since no one else can be mutating the mod union
7615        // table.
7616        if (obj->is_objArray()) {
7617          size_t sz = obj->size();
7618          HeapWord* end_card_addr =
7619            (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7620          MemRegion redirty_range = MemRegion(addr, end_card_addr);
7621          assert(!redirty_range.is_empty(), "Arithmetical tautology");
7622          _collector->_modUnionTable.mark_range(redirty_range);
7623        } else {
7624          _collector->_modUnionTable.mark(addr);
7625        }
7626        _collector->_ser_kac_preclean_ovflw++;
7627      } else {
7628        _collector->push_on_overflow_list(obj);
7629        _collector->_ser_kac_ovflw++;
7630      }
7631    }
7632  }
7633}
7634
7635void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7636void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7637
7638// CMSParKeepAliveClosure: a parallel version of the above.
7639// The work queues are private to each closure (thread),
7640// but (may be) available for stealing by other threads.
7641void CMSParKeepAliveClosure::do_oop(oop obj) {
7642  HeapWord* addr = (HeapWord*)obj;
7643  if (_span.contains(addr) &&
7644      !_bit_map->isMarked(addr)) {
7645    // In general, during recursive tracing, several threads
7646    // may be concurrently getting here; the first one to
7647    // "tag" it, claims it.
7648    if (_bit_map->par_mark(addr)) {
7649      bool res = _work_queue->push(obj);
7650      assert(res, "Low water mark should be much less than capacity");
7651      // Do a recursive trim in the hope that this will keep
7652      // stack usage lower, but leave some oops for potential stealers
7653      trim_queue(_low_water_mark);
7654    } // Else, another thread got there first
7655  }
7656}
7657
7658void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7659void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7660
7661void CMSParKeepAliveClosure::trim_queue(uint max) {
7662  while (_work_queue->size() > max) {
7663    oop new_oop;
7664    if (_work_queue->pop_local(new_oop)) {
7665      assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7666      assert(_bit_map->isMarked((HeapWord*)new_oop),
7667             "no white objects on this stack!");
7668      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7669      // iterate over the oops in this oop, marking and pushing
7670      // the ones in CMS heap (i.e. in _span).
7671      new_oop->oop_iterate(&_mark_and_push);
7672    }
7673  }
7674}
7675
7676CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7677                                CMSCollector* collector,
7678                                MemRegion span, CMSBitMap* bit_map,
7679                                OopTaskQueue* work_queue):
7680  _collector(collector),
7681  _span(span),
7682  _bit_map(bit_map),
7683  _work_queue(work_queue) { }
7684
7685void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7686  HeapWord* addr = (HeapWord*)obj;
7687  if (_span.contains(addr) &&
7688      !_bit_map->isMarked(addr)) {
7689    if (_bit_map->par_mark(addr)) {
7690      bool simulate_overflow = false;
7691      NOT_PRODUCT(
7692        if (CMSMarkStackOverflowALot &&
7693            _collector->par_simulate_overflow()) {
7694          // simulate a stack overflow
7695          simulate_overflow = true;
7696        }
7697      )
7698      if (simulate_overflow || !_work_queue->push(obj)) {
7699        _collector->par_push_on_overflow_list(obj);
7700        _collector->_par_kac_ovflw++;
7701      }
7702    } // Else another thread got there already
7703  }
7704}
7705
7706void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7707void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7708
7709//////////////////////////////////////////////////////////////////
7710//  CMSExpansionCause                /////////////////////////////
7711//////////////////////////////////////////////////////////////////
7712const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7713  switch (cause) {
7714    case _no_expansion:
7715      return "No expansion";
7716    case _satisfy_free_ratio:
7717      return "Free ratio";
7718    case _satisfy_promotion:
7719      return "Satisfy promotion";
7720    case _satisfy_allocation:
7721      return "allocation";
7722    case _allocate_par_lab:
7723      return "Par LAB";
7724    case _allocate_par_spooling_space:
7725      return "Par Spooling Space";
7726    case _adaptive_size_policy:
7727      return "Ergonomics";
7728    default:
7729      return "unknown";
7730  }
7731}
7732
7733void CMSDrainMarkingStackClosure::do_void() {
7734  // the max number to take from overflow list at a time
7735  const size_t num = _mark_stack->capacity()/4;
7736  assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7737         "Overflow list should be NULL during concurrent phases");
7738  while (!_mark_stack->isEmpty() ||
7739         // if stack is empty, check the overflow list
7740         _collector->take_from_overflow_list(num, _mark_stack)) {
7741    oop obj = _mark_stack->pop();
7742    HeapWord* addr = (HeapWord*)obj;
7743    assert(_span.contains(addr), "Should be within span");
7744    assert(_bit_map->isMarked(addr), "Should be marked");
7745    assert(obj->is_oop(), "Should be an oop");
7746    obj->oop_iterate(_keep_alive);
7747  }
7748}
7749
7750void CMSParDrainMarkingStackClosure::do_void() {
7751  // drain queue
7752  trim_queue(0);
7753}
7754
7755// Trim our work_queue so its length is below max at return
7756void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7757  while (_work_queue->size() > max) {
7758    oop new_oop;
7759    if (_work_queue->pop_local(new_oop)) {
7760      assert(new_oop->is_oop(), "Expected an oop");
7761      assert(_bit_map->isMarked((HeapWord*)new_oop),
7762             "no white objects on this stack!");
7763      assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7764      // iterate over the oops in this oop, marking and pushing
7765      // the ones in CMS heap (i.e. in _span).
7766      new_oop->oop_iterate(&_mark_and_push);
7767    }
7768  }
7769}
7770
7771////////////////////////////////////////////////////////////////////
7772// Support for Marking Stack Overflow list handling and related code
7773////////////////////////////////////////////////////////////////////
7774// Much of the following code is similar in shape and spirit to the
7775// code used in ParNewGC. We should try and share that code
7776// as much as possible in the future.
7777
7778#ifndef PRODUCT
7779// Debugging support for CMSStackOverflowALot
7780
7781// It's OK to call this multi-threaded;  the worst thing
7782// that can happen is that we'll get a bunch of closely
7783// spaced simulated overflows, but that's OK, in fact
7784// probably good as it would exercise the overflow code
7785// under contention.
7786bool CMSCollector::simulate_overflow() {
7787  if (_overflow_counter-- <= 0) { // just being defensive
7788    _overflow_counter = CMSMarkStackOverflowInterval;
7789    return true;
7790  } else {
7791    return false;
7792  }
7793}
7794
7795bool CMSCollector::par_simulate_overflow() {
7796  return simulate_overflow();
7797}
7798#endif
7799
7800// Single-threaded
7801bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7802  assert(stack->isEmpty(), "Expected precondition");
7803  assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7804  size_t i = num;
7805  oop  cur = _overflow_list;
7806  const markOop proto = markOopDesc::prototype();
7807  NOT_PRODUCT(ssize_t n = 0;)
7808  for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7809    next = oop(cur->mark());
7810    cur->set_mark(proto);   // until proven otherwise
7811    assert(cur->is_oop(), "Should be an oop");
7812    bool res = stack->push(cur);
7813    assert(res, "Bit off more than can chew?");
7814    NOT_PRODUCT(n++;)
7815  }
7816  _overflow_list = cur;
7817#ifndef PRODUCT
7818  assert(_num_par_pushes >= n, "Too many pops?");
7819  _num_par_pushes -=n;
7820#endif
7821  return !stack->isEmpty();
7822}
7823
7824#define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7825// (MT-safe) Get a prefix of at most "num" from the list.
7826// The overflow list is chained through the mark word of
7827// each object in the list. We fetch the entire list,
7828// break off a prefix of the right size and return the
7829// remainder. If other threads try to take objects from
7830// the overflow list at that time, they will wait for
7831// some time to see if data becomes available. If (and
7832// only if) another thread places one or more object(s)
7833// on the global list before we have returned the suffix
7834// to the global list, we will walk down our local list
7835// to find its end and append the global list to
7836// our suffix before returning it. This suffix walk can
7837// prove to be expensive (quadratic in the amount of traffic)
7838// when there are many objects in the overflow list and
7839// there is much producer-consumer contention on the list.
7840// *NOTE*: The overflow list manipulation code here and
7841// in ParNewGeneration:: are very similar in shape,
7842// except that in the ParNew case we use the old (from/eden)
7843// copy of the object to thread the list via its klass word.
7844// Because of the common code, if you make any changes in
7845// the code below, please check the ParNew version to see if
7846// similar changes might be needed.
7847// CR 6797058 has been filed to consolidate the common code.
7848bool CMSCollector::par_take_from_overflow_list(size_t num,
7849                                               OopTaskQueue* work_q,
7850                                               int no_of_gc_threads) {
7851  assert(work_q->size() == 0, "First empty local work queue");
7852  assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7853  if (_overflow_list == NULL) {
7854    return false;
7855  }
7856  // Grab the entire list; we'll put back a suffix
7857  oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7858  Thread* tid = Thread::current();
7859  // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7860  // set to ParallelGCThreads.
7861  size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7862  size_t sleep_time_millis = MAX2((size_t)1, num/100);
7863  // If the list is busy, we spin for a short while,
7864  // sleeping between attempts to get the list.
7865  for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7866    os::sleep(tid, sleep_time_millis, false);
7867    if (_overflow_list == NULL) {
7868      // Nothing left to take
7869      return false;
7870    } else if (_overflow_list != BUSY) {
7871      // Try and grab the prefix
7872      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7873    }
7874  }
7875  // If the list was found to be empty, or we spun long
7876  // enough, we give up and return empty-handed. If we leave
7877  // the list in the BUSY state below, it must be the case that
7878  // some other thread holds the overflow list and will set it
7879  // to a non-BUSY state in the future.
7880  if (prefix == NULL || prefix == BUSY) {
7881     // Nothing to take or waited long enough
7882     if (prefix == NULL) {
7883       // Write back the NULL in case we overwrote it with BUSY above
7884       // and it is still the same value.
7885       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7886     }
7887     return false;
7888  }
7889  assert(prefix != NULL && prefix != BUSY, "Error");
7890  size_t i = num;
7891  oop cur = prefix;
7892  // Walk down the first "num" objects, unless we reach the end.
7893  for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7894  if (cur->mark() == NULL) {
7895    // We have "num" or fewer elements in the list, so there
7896    // is nothing to return to the global list.
7897    // Write back the NULL in lieu of the BUSY we wrote
7898    // above, if it is still the same value.
7899    if (_overflow_list == BUSY) {
7900      (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7901    }
7902  } else {
7903    // Chop off the suffix and return it to the global list.
7904    assert(cur->mark() != BUSY, "Error");
7905    oop suffix_head = cur->mark(); // suffix will be put back on global list
7906    cur->set_mark(NULL);           // break off suffix
7907    // It's possible that the list is still in the empty(busy) state
7908    // we left it in a short while ago; in that case we may be
7909    // able to place back the suffix without incurring the cost
7910    // of a walk down the list.
7911    oop observed_overflow_list = _overflow_list;
7912    oop cur_overflow_list = observed_overflow_list;
7913    bool attached = false;
7914    while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7915      observed_overflow_list =
7916        (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7917      if (cur_overflow_list == observed_overflow_list) {
7918        attached = true;
7919        break;
7920      } else cur_overflow_list = observed_overflow_list;
7921    }
7922    if (!attached) {
7923      // Too bad, someone else sneaked in (at least) an element; we'll need
7924      // to do a splice. Find tail of suffix so we can prepend suffix to global
7925      // list.
7926      for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7927      oop suffix_tail = cur;
7928      assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7929             "Tautology");
7930      observed_overflow_list = _overflow_list;
7931      do {
7932        cur_overflow_list = observed_overflow_list;
7933        if (cur_overflow_list != BUSY) {
7934          // Do the splice ...
7935          suffix_tail->set_mark(markOop(cur_overflow_list));
7936        } else { // cur_overflow_list == BUSY
7937          suffix_tail->set_mark(NULL);
7938        }
7939        // ... and try to place spliced list back on overflow_list ...
7940        observed_overflow_list =
7941          (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7942      } while (cur_overflow_list != observed_overflow_list);
7943      // ... until we have succeeded in doing so.
7944    }
7945  }
7946
7947  // Push the prefix elements on work_q
7948  assert(prefix != NULL, "control point invariant");
7949  const markOop proto = markOopDesc::prototype();
7950  oop next;
7951  NOT_PRODUCT(ssize_t n = 0;)
7952  for (cur = prefix; cur != NULL; cur = next) {
7953    next = oop(cur->mark());
7954    cur->set_mark(proto);   // until proven otherwise
7955    assert(cur->is_oop(), "Should be an oop");
7956    bool res = work_q->push(cur);
7957    assert(res, "Bit off more than we can chew?");
7958    NOT_PRODUCT(n++;)
7959  }
7960#ifndef PRODUCT
7961  assert(_num_par_pushes >= n, "Too many pops?");
7962  Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7963#endif
7964  return true;
7965}
7966
7967// Single-threaded
7968void CMSCollector::push_on_overflow_list(oop p) {
7969  NOT_PRODUCT(_num_par_pushes++;)
7970  assert(p->is_oop(), "Not an oop");
7971  preserve_mark_if_necessary(p);
7972  p->set_mark((markOop)_overflow_list);
7973  _overflow_list = p;
7974}
7975
7976// Multi-threaded; use CAS to prepend to overflow list
7977void CMSCollector::par_push_on_overflow_list(oop p) {
7978  NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7979  assert(p->is_oop(), "Not an oop");
7980  par_preserve_mark_if_necessary(p);
7981  oop observed_overflow_list = _overflow_list;
7982  oop cur_overflow_list;
7983  do {
7984    cur_overflow_list = observed_overflow_list;
7985    if (cur_overflow_list != BUSY) {
7986      p->set_mark(markOop(cur_overflow_list));
7987    } else {
7988      p->set_mark(NULL);
7989    }
7990    observed_overflow_list =
7991      (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7992  } while (cur_overflow_list != observed_overflow_list);
7993}
7994#undef BUSY
7995
7996// Single threaded
7997// General Note on GrowableArray: pushes may silently fail
7998// because we are (temporarily) out of C-heap for expanding
7999// the stack. The problem is quite ubiquitous and affects
8000// a lot of code in the JVM. The prudent thing for GrowableArray
8001// to do (for now) is to exit with an error. However, that may
8002// be too draconian in some cases because the caller may be
8003// able to recover without much harm. For such cases, we
8004// should probably introduce a "soft_push" method which returns
8005// an indication of success or failure with the assumption that
8006// the caller may be able to recover from a failure; code in
8007// the VM can then be changed, incrementally, to deal with such
8008// failures where possible, thus, incrementally hardening the VM
8009// in such low resource situations.
8010void CMSCollector::preserve_mark_work(oop p, markOop m) {
8011  _preserved_oop_stack.push(p);
8012  _preserved_mark_stack.push(m);
8013  assert(m == p->mark(), "Mark word changed");
8014  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8015         "bijection");
8016}
8017
8018// Single threaded
8019void CMSCollector::preserve_mark_if_necessary(oop p) {
8020  markOop m = p->mark();
8021  if (m->must_be_preserved(p)) {
8022    preserve_mark_work(p, m);
8023  }
8024}
8025
8026void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8027  markOop m = p->mark();
8028  if (m->must_be_preserved(p)) {
8029    MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8030    // Even though we read the mark word without holding
8031    // the lock, we are assured that it will not change
8032    // because we "own" this oop, so no other thread can
8033    // be trying to push it on the overflow list; see
8034    // the assertion in preserve_mark_work() that checks
8035    // that m == p->mark().
8036    preserve_mark_work(p, m);
8037  }
8038}
8039
8040// We should be able to do this multi-threaded,
8041// a chunk of stack being a task (this is
8042// correct because each oop only ever appears
8043// once in the overflow list. However, it's
8044// not very easy to completely overlap this with
8045// other operations, so will generally not be done
8046// until all work's been completed. Because we
8047// expect the preserved oop stack (set) to be small,
8048// it's probably fine to do this single-threaded.
8049// We can explore cleverer concurrent/overlapped/parallel
8050// processing of preserved marks if we feel the
8051// need for this in the future. Stack overflow should
8052// be so rare in practice and, when it happens, its
8053// effect on performance so great that this will
8054// likely just be in the noise anyway.
8055void CMSCollector::restore_preserved_marks_if_any() {
8056  assert(SafepointSynchronize::is_at_safepoint(),
8057         "world should be stopped");
8058  assert(Thread::current()->is_ConcurrentGC_thread() ||
8059         Thread::current()->is_VM_thread(),
8060         "should be single-threaded");
8061  assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8062         "bijection");
8063
8064  while (!_preserved_oop_stack.is_empty()) {
8065    oop p = _preserved_oop_stack.pop();
8066    assert(p->is_oop(), "Should be an oop");
8067    assert(_span.contains(p), "oop should be in _span");
8068    assert(p->mark() == markOopDesc::prototype(),
8069           "Set when taken from overflow list");
8070    markOop m = _preserved_mark_stack.pop();
8071    p->set_mark(m);
8072  }
8073  assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8074         "stacks were cleared above");
8075}
8076
8077#ifndef PRODUCT
8078bool CMSCollector::no_preserved_marks() const {
8079  return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8080}
8081#endif
8082
8083// Transfer some number of overflown objects to usual marking
8084// stack. Return true if some objects were transferred.
8085bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8086  size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8087                    (size_t)ParGCDesiredObjsFromOverflowList);
8088
8089  bool res = _collector->take_from_overflow_list(num, _mark_stack);
8090  assert(_collector->overflow_list_is_empty() || res,
8091         "If list is not empty, we should have taken something");
8092  assert(!res || !_mark_stack->isEmpty(),
8093         "If we took something, it should now be on our stack");
8094  return res;
8095}
8096
8097size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8098  size_t res = _sp->block_size_no_stall(addr, _collector);
8099  if (_sp->block_is_obj(addr)) {
8100    if (_live_bit_map->isMarked(addr)) {
8101      // It can't have been dead in a previous cycle
8102      guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8103    } else {
8104      _dead_bit_map->mark(addr);      // mark the dead object
8105    }
8106  }
8107  // Could be 0, if the block size could not be computed without stalling.
8108  return res;
8109}
8110
8111TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8112
8113  switch (phase) {
8114    case CMSCollector::InitialMarking:
8115      initialize(true  /* fullGC */ ,
8116                 cause /* cause of the GC */,
8117                 true  /* recordGCBeginTime */,
8118                 true  /* recordPreGCUsage */,
8119                 false /* recordPeakUsage */,
8120                 false /* recordPostGCusage */,
8121                 true  /* recordAccumulatedGCTime */,
8122                 false /* recordGCEndTime */,
8123                 false /* countCollection */  );
8124      break;
8125
8126    case CMSCollector::FinalMarking:
8127      initialize(true  /* fullGC */ ,
8128                 cause /* cause of the GC */,
8129                 false /* recordGCBeginTime */,
8130                 false /* recordPreGCUsage */,
8131                 false /* recordPeakUsage */,
8132                 false /* recordPostGCusage */,
8133                 true  /* recordAccumulatedGCTime */,
8134                 false /* recordGCEndTime */,
8135                 false /* countCollection */  );
8136      break;
8137
8138    case CMSCollector::Sweeping:
8139      initialize(true  /* fullGC */ ,
8140                 cause /* cause of the GC */,
8141                 false /* recordGCBeginTime */,
8142                 false /* recordPreGCUsage */,
8143                 true  /* recordPeakUsage */,
8144                 true  /* recordPostGCusage */,
8145                 false /* recordAccumulatedGCTime */,
8146                 true  /* recordGCEndTime */,
8147                 true  /* countCollection */  );
8148      break;
8149
8150    default:
8151      ShouldNotReachHere();
8152  }
8153}
8154