relocInfo.cpp revision 2273:1d1603768966
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "code/compiledIC.hpp"
27#include "code/nmethod.hpp"
28#include "code/relocInfo.hpp"
29#include "memory/resourceArea.hpp"
30#include "runtime/stubCodeGenerator.hpp"
31#include "utilities/copy.hpp"
32#ifdef TARGET_ARCH_x86
33# include "assembler_x86.inline.hpp"
34# include "nativeInst_x86.hpp"
35#endif
36#ifdef TARGET_ARCH_sparc
37# include "assembler_sparc.inline.hpp"
38# include "nativeInst_sparc.hpp"
39#endif
40#ifdef TARGET_ARCH_zero
41# include "assembler_zero.inline.hpp"
42# include "nativeInst_zero.hpp"
43#endif
44#ifdef TARGET_ARCH_arm
45# include "assembler_arm.inline.hpp"
46# include "nativeInst_arm.hpp"
47#endif
48#ifdef TARGET_ARCH_ppc
49# include "assembler_ppc.inline.hpp"
50# include "nativeInst_ppc.hpp"
51#endif
52
53
54const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
55
56
57// Implementation of relocInfo
58
59#ifdef ASSERT
60relocInfo::relocInfo(relocType t, int off, int f) {
61  assert(t != data_prefix_tag, "cannot build a prefix this way");
62  assert((t & type_mask) == t, "wrong type");
63  assert((f & format_mask) == f, "wrong format");
64  assert(off >= 0 && off < offset_limit(), "offset out off bounds");
65  assert((off & (offset_unit-1)) == 0, "misaligned offset");
66  (*this) = relocInfo(t, RAW_BITS, off, f);
67}
68#endif
69
70void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
71  relocInfo* data = this+1;  // here's where the data might go
72  dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
73  reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
74  relocInfo* data_limit = dest->locs_end();
75  if (data_limit > data) {
76    relocInfo suffix = (*this);
77    data_limit = this->finish_prefix((short*) data_limit);
78    // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
79    *data_limit = suffix;
80    dest->set_locs_end(data_limit+1);
81  }
82}
83
84relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
85  assert(sizeof(relocInfo) == sizeof(short), "change this code");
86  short* p = (short*)(this+1);
87  assert(prefix_limit >= p, "must be a valid span of data");
88  int plen = prefix_limit - p;
89  if (plen == 0) {
90    debug_only(_value = 0xFFFF);
91    return this;                         // no data: remove self completely
92  }
93  if (plen == 1 && fits_into_immediate(p[0])) {
94    (*this) = immediate_relocInfo(p[0]); // move data inside self
95    return this+1;
96  }
97  // cannot compact, so just update the count and return the limit pointer
98  (*this) = prefix_relocInfo(plen);   // write new datalen
99  assert(data() + datalen() == prefix_limit, "pointers must line up");
100  return (relocInfo*)prefix_limit;
101}
102
103
104void relocInfo::set_type(relocType t) {
105  int old_offset = addr_offset();
106  int old_format = format();
107  (*this) = relocInfo(t, old_offset, old_format);
108  assert(type()==(int)t, "sanity check");
109  assert(addr_offset()==old_offset, "sanity check");
110  assert(format()==old_format, "sanity check");
111}
112
113
114void relocInfo::set_format(int f) {
115  int old_offset = addr_offset();
116  assert((f & format_mask) == f, "wrong format");
117  _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
118  assert(addr_offset()==old_offset, "sanity check");
119}
120
121
122void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
123  bool found = false;
124  while (itr->next() && !found) {
125    if (itr->addr() == pc) {
126      assert(itr->type()==old_type, "wrong relocInfo type found");
127      itr->current()->set_type(new_type);
128      found=true;
129    }
130  }
131  assert(found, "no relocInfo found for pc");
132}
133
134
135void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
136  change_reloc_info_for_address(itr, pc, old_type, none);
137}
138
139
140// ----------------------------------------------------------------------------------------------------
141// Implementation of RelocIterator
142
143void RelocIterator::initialize(nmethod* nm, address begin, address limit) {
144  initialize_misc();
145
146  if (nm == NULL && begin != NULL) {
147    // allow nmethod to be deduced from beginning address
148    CodeBlob* cb = CodeCache::find_blob(begin);
149    nm = cb->as_nmethod_or_null();
150  }
151  assert(nm != NULL, "must be able to deduce nmethod from other arguments");
152
153  _code    = nm;
154  _current = nm->relocation_begin() - 1;
155  _end     = nm->relocation_end();
156  _addr    = nm->content_begin();
157
158  // Initialize code sections.
159  _section_start[CodeBuffer::SECT_CONSTS] = nm->consts_begin();
160  _section_start[CodeBuffer::SECT_INSTS ] = nm->insts_begin() ;
161  _section_start[CodeBuffer::SECT_STUBS ] = nm->stub_begin()  ;
162
163  _section_end  [CodeBuffer::SECT_CONSTS] = nm->consts_end()  ;
164  _section_end  [CodeBuffer::SECT_INSTS ] = nm->insts_end()   ;
165  _section_end  [CodeBuffer::SECT_STUBS ] = nm->stub_end()    ;
166
167  assert(!has_current(), "just checking");
168  assert(begin == NULL || begin >= nm->code_begin(), "in bounds");
169  assert(limit == NULL || limit <= nm->code_end(),   "in bounds");
170  set_limits(begin, limit);
171}
172
173
174RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
175  initialize_misc();
176
177  _current = cs->locs_start()-1;
178  _end     = cs->locs_end();
179  _addr    = cs->start();
180  _code    = NULL; // Not cb->blob();
181
182  CodeBuffer* cb = cs->outer();
183  assert((int) SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
184  for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
185    CodeSection* cs = cb->code_section(n);
186    _section_start[n] = cs->start();
187    _section_end  [n] = cs->end();
188  }
189
190  assert(!has_current(), "just checking");
191
192  assert(begin == NULL || begin >= cs->start(), "in bounds");
193  assert(limit == NULL || limit <= cs->end(),   "in bounds");
194  set_limits(begin, limit);
195}
196
197
198enum { indexCardSize = 128 };
199struct RelocIndexEntry {
200  jint addr_offset;          // offset from header_end of an addr()
201  jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
202};
203
204
205bool RelocIterator::addr_in_const() const {
206  const int n = CodeBuffer::SECT_CONSTS;
207  return section_start(n) <= addr() && addr() < section_end(n);
208}
209
210
211static inline int num_cards(int code_size) {
212  return (code_size-1) / indexCardSize;
213}
214
215
216int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
217  if (!UseRelocIndex)  return locs_size;   // no index
218  code_size = round_to(code_size, oopSize);
219  locs_size = round_to(locs_size, oopSize);
220  int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
221  // format of indexed relocs:
222  //   relocation_begin:   relocInfo ...
223  //   index:              (addr,reloc#) ...
224  //                       indexSize           :relocation_end
225  return locs_size + index_size + BytesPerInt;
226}
227
228
229void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
230  address relocation_begin = (address)dest_begin;
231  address relocation_end   = (address)dest_end;
232  int     total_size       = relocation_end - relocation_begin;
233  int     locs_size        = dest_count * sizeof(relocInfo);
234  if (!UseRelocIndex) {
235    Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
236    return;
237  }
238  int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
239  int     ncards           = index_size / sizeof(RelocIndexEntry);
240  assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
241  assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
242  jint*   index_size_addr  = (jint*)relocation_end - 1;
243
244  assert(sizeof(jint) == BytesPerInt, "change this code");
245
246  *index_size_addr = index_size;
247  if (index_size != 0) {
248    assert(index_size > 0, "checkin'");
249
250    RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
251    assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
252
253    // walk over the relocations, and fill in index entries as we go
254    RelocIterator iter;
255    const address    initial_addr    = NULL;
256    relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
257
258    iter._code    = NULL;
259    iter._addr    = initial_addr;
260    iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
261    iter._current = initial_current;
262    iter._end     = dest_begin + dest_count;
263
264    int i = 0;
265    address next_card_addr = (address)indexCardSize;
266    int addr_offset = 0;
267    int reloc_offset = 0;
268    while (true) {
269      // Checkpoint the iterator before advancing it.
270      addr_offset  = iter._addr    - initial_addr;
271      reloc_offset = iter._current - initial_current;
272      if (!iter.next())  break;
273      while (iter.addr() >= next_card_addr) {
274        index[i].addr_offset  = addr_offset;
275        index[i].reloc_offset = reloc_offset;
276        i++;
277        next_card_addr += indexCardSize;
278      }
279    }
280    while (i < ncards) {
281      index[i].addr_offset  = addr_offset;
282      index[i].reloc_offset = reloc_offset;
283      i++;
284    }
285  }
286}
287
288
289void RelocIterator::set_limits(address begin, address limit) {
290  int index_size = 0;
291  if (UseRelocIndex && _code != NULL) {
292    index_size = ((jint*)_end)[-1];
293    _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
294  }
295
296  _limit = limit;
297
298  // the limit affects this next stuff:
299  if (begin != NULL) {
300#ifdef ASSERT
301    // In ASSERT mode we do not actually use the index, but simply
302    // check that its contents would have led us to the right answer.
303    address addrCheck = _addr;
304    relocInfo* infoCheck = _current;
305#endif // ASSERT
306    if (index_size > 0) {
307      // skip ahead
308      RelocIndexEntry* index       = (RelocIndexEntry*)_end;
309      RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
310      assert(_addr == _code->code_begin(), "_addr must be unadjusted");
311      int card = (begin - _addr) / indexCardSize;
312      if (card > 0) {
313        if (index+card-1 < index_limit)  index += card-1;
314        else                             index = index_limit - 1;
315#ifdef ASSERT
316        addrCheck = _addr    + index->addr_offset;
317        infoCheck = _current + index->reloc_offset;
318#else
319        // Advance the iterator immediately to the last valid state
320        // for the previous card.  Calling "next" will then advance
321        // it to the first item on the required card.
322        _addr    += index->addr_offset;
323        _current += index->reloc_offset;
324#endif // ASSERT
325      }
326    }
327
328    relocInfo* backup;
329    address    backup_addr;
330    while (true) {
331      backup      = _current;
332      backup_addr = _addr;
333#ifdef ASSERT
334      if (backup == infoCheck) {
335        assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
336      } else {
337        assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
338      }
339#endif // ASSERT
340      if (!next() || addr() >= begin) break;
341    }
342    assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
343    assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
344    // At this point, either we are at the first matching record,
345    // or else there is no such record, and !has_current().
346    // In either case, revert to the immediatly preceding state.
347    _current = backup;
348    _addr    = backup_addr;
349    set_has_current(false);
350  }
351}
352
353
354void RelocIterator::set_limit(address limit) {
355  address code_end = (address)code() + code()->size();
356  assert(limit == NULL || limit <= code_end, "in bounds");
357  _limit = limit;
358}
359
360
361void PatchingRelocIterator:: prepass() {
362  // turn breakpoints off during patching
363  _init_state = (*this);        // save cursor
364  while (next()) {
365    if (type() == relocInfo::breakpoint_type) {
366      breakpoint_reloc()->set_active(false);
367    }
368  }
369  (RelocIterator&)(*this) = _init_state;        // reset cursor for client
370}
371
372
373void PatchingRelocIterator:: postpass() {
374  // turn breakpoints back on after patching
375  (RelocIterator&)(*this) = _init_state;        // reset cursor again
376  while (next()) {
377    if (type() == relocInfo::breakpoint_type) {
378      breakpoint_Relocation* bpt = breakpoint_reloc();
379      bpt->set_active(bpt->enabled());
380    }
381  }
382}
383
384
385// All the strange bit-encodings are in here.
386// The idea is to encode relocation data which are small integers
387// very efficiently (a single extra halfword).  Larger chunks of
388// relocation data need a halfword header to hold their size.
389void RelocIterator::advance_over_prefix() {
390  if (_current->is_datalen()) {
391    _data    = (short*) _current->data();
392    _datalen =          _current->datalen();
393    _current += _datalen + 1;   // skip the embedded data & header
394  } else {
395    _databuf = _current->immediate();
396    _data = &_databuf;
397    _datalen = 1;
398    _current++;                 // skip the header
399  }
400  // The client will see the following relocInfo, whatever that is.
401  // It is the reloc to which the preceding data applies.
402}
403
404
405void RelocIterator::initialize_misc() {
406  set_has_current(false);
407  for (int i = (int) CodeBuffer::SECT_FIRST; i < (int) CodeBuffer::SECT_LIMIT; i++) {
408    _section_start[i] = NULL;  // these will be lazily computed, if needed
409    _section_end  [i] = NULL;
410  }
411}
412
413
414Relocation* RelocIterator::reloc() {
415  // (take the "switch" out-of-line)
416  relocInfo::relocType t = type();
417  if (false) {}
418  #define EACH_TYPE(name)                             \
419  else if (t == relocInfo::name##_type) {             \
420    return name##_reloc();                            \
421  }
422  APPLY_TO_RELOCATIONS(EACH_TYPE);
423  #undef EACH_TYPE
424  assert(t == relocInfo::none, "must be padding");
425  return new(_rh) Relocation();
426}
427
428
429//////// Methods for flyweight Relocation types
430
431
432RelocationHolder RelocationHolder::plus(int offset) const {
433  if (offset != 0) {
434    switch (type()) {
435    case relocInfo::none:
436      break;
437    case relocInfo::oop_type:
438      {
439        oop_Relocation* r = (oop_Relocation*)reloc();
440        return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
441      }
442    default:
443      ShouldNotReachHere();
444    }
445  }
446  return (*this);
447}
448
449
450void Relocation::guarantee_size() {
451  guarantee(false, "Make _relocbuf bigger!");
452}
453
454    // some relocations can compute their own values
455address Relocation::value() {
456  ShouldNotReachHere();
457  return NULL;
458}
459
460
461void Relocation::set_value(address x) {
462  ShouldNotReachHere();
463}
464
465
466RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
467  if (rtype == relocInfo::none)  return RelocationHolder::none;
468  relocInfo ri = relocInfo(rtype, 0);
469  RelocIterator itr;
470  itr.set_current(ri);
471  itr.reloc();
472  return itr._rh;
473}
474
475
476static inline bool is_index(intptr_t index) {
477  return 0 < index && index < os::vm_page_size();
478}
479
480
481int32_t Relocation::runtime_address_to_index(address runtime_address) {
482  assert(!is_index((intptr_t)runtime_address), "must not look like an index");
483
484  if (runtime_address == NULL)  return 0;
485
486  StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
487  if (p != NULL && p->begin() == runtime_address) {
488    assert(is_index(p->index()), "there must not be too many stubs");
489    return (int32_t)p->index();
490  } else {
491    // Known "miscellaneous" non-stub pointers:
492    // os::get_polling_page(), SafepointSynchronize::address_of_state()
493    if (PrintRelocations) {
494      tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
495    }
496#ifndef _LP64
497    return (int32_t) (intptr_t)runtime_address;
498#else
499    // didn't fit return non-index
500    return -1;
501#endif /* _LP64 */
502  }
503}
504
505
506address Relocation::index_to_runtime_address(int32_t index) {
507  if (index == 0)  return NULL;
508
509  if (is_index(index)) {
510    StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
511    assert(p != NULL, "there must be a stub for this index");
512    return p->begin();
513  } else {
514#ifndef _LP64
515    // this only works on 32bit machines
516    return (address) ((intptr_t) index);
517#else
518    fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
519    return NULL;
520#endif /* _LP64 */
521  }
522}
523
524address Relocation::old_addr_for(address newa,
525                                 const CodeBuffer* src, CodeBuffer* dest) {
526  int sect = dest->section_index_of(newa);
527  guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
528  address ostart = src->code_section(sect)->start();
529  address nstart = dest->code_section(sect)->start();
530  return ostart + (newa - nstart);
531}
532
533address Relocation::new_addr_for(address olda,
534                                 const CodeBuffer* src, CodeBuffer* dest) {
535  debug_only(const CodeBuffer* src0 = src);
536  int sect = CodeBuffer::SECT_NONE;
537  // Look for olda in the source buffer, and all previous incarnations
538  // if the source buffer has been expanded.
539  for (; src != NULL; src = src->before_expand()) {
540    sect = src->section_index_of(olda);
541    if (sect != CodeBuffer::SECT_NONE)  break;
542  }
543  guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
544  address ostart = src->code_section(sect)->start();
545  address nstart = dest->code_section(sect)->start();
546  return nstart + (olda - ostart);
547}
548
549void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
550  address addr0 = addr;
551  if (addr0 == NULL || dest->allocates2(addr0))  return;
552  CodeBuffer* cb = dest->outer();
553  addr = new_addr_for(addr0, cb, cb);
554  assert(allow_other_sections || dest->contains2(addr),
555         "addr must be in required section");
556}
557
558
559void CallRelocation::set_destination(address x) {
560  pd_set_call_destination(x);
561}
562
563void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
564  // Usually a self-relative reference to an external routine.
565  // On some platforms, the reference is absolute (not self-relative).
566  // The enhanced use of pd_call_destination sorts this all out.
567  address orig_addr = old_addr_for(addr(), src, dest);
568  address callee    = pd_call_destination(orig_addr);
569  // Reassert the callee address, this time in the new copy of the code.
570  pd_set_call_destination(callee);
571}
572
573
574//// pack/unpack methods
575
576void oop_Relocation::pack_data_to(CodeSection* dest) {
577  short* p = (short*) dest->locs_end();
578  p = pack_2_ints_to(p, _oop_index, _offset);
579  dest->set_locs_end((relocInfo*) p);
580}
581
582
583void oop_Relocation::unpack_data() {
584  unpack_2_ints(_oop_index, _offset);
585}
586
587
588void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
589  short*  p     = (short*) dest->locs_end();
590  address point =          dest->locs_point();
591
592  // Try to make a pointer NULL first.
593  if (_oop_limit >= point &&
594      _oop_limit <= point + NativeCall::instruction_size) {
595    _oop_limit = NULL;
596  }
597  // If the _oop_limit is NULL, it "defaults" to the end of the call.
598  // See ic_call_Relocation::oop_limit() below.
599
600  normalize_address(_first_oop, dest);
601  normalize_address(_oop_limit, dest);
602  jint x0 = scaled_offset_null_special(_first_oop, point);
603  jint x1 = scaled_offset_null_special(_oop_limit, point);
604  p = pack_2_ints_to(p, x0, x1);
605  dest->set_locs_end((relocInfo*) p);
606}
607
608
609void virtual_call_Relocation::unpack_data() {
610  jint x0, x1; unpack_2_ints(x0, x1);
611  address point = addr();
612  _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
613  _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
614}
615
616
617void static_stub_Relocation::pack_data_to(CodeSection* dest) {
618  short* p = (short*) dest->locs_end();
619  CodeSection* insts = dest->outer()->insts();
620  normalize_address(_static_call, insts);
621  p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
622  dest->set_locs_end((relocInfo*) p);
623}
624
625void static_stub_Relocation::unpack_data() {
626  address base = binding()->section_start(CodeBuffer::SECT_INSTS);
627  _static_call = address_from_scaled_offset(unpack_1_int(), base);
628}
629
630
631void external_word_Relocation::pack_data_to(CodeSection* dest) {
632  short* p = (short*) dest->locs_end();
633  int32_t index = runtime_address_to_index(_target);
634#ifndef _LP64
635  p = pack_1_int_to(p, index);
636#else
637  if (is_index(index)) {
638    p = pack_2_ints_to(p, index, 0);
639  } else {
640    jlong t = (jlong) _target;
641    int32_t lo = low(t);
642    int32_t hi = high(t);
643    p = pack_2_ints_to(p, lo, hi);
644    DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
645    assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
646  }
647#endif /* _LP64 */
648  dest->set_locs_end((relocInfo*) p);
649}
650
651
652void external_word_Relocation::unpack_data() {
653#ifndef _LP64
654  _target = index_to_runtime_address(unpack_1_int());
655#else
656  int32_t lo, hi;
657  unpack_2_ints(lo, hi);
658  jlong t = jlong_from(hi, lo);;
659  if (is_index(t)) {
660    _target = index_to_runtime_address(t);
661  } else {
662    _target = (address) t;
663  }
664#endif /* _LP64 */
665}
666
667
668void internal_word_Relocation::pack_data_to(CodeSection* dest) {
669  short* p = (short*) dest->locs_end();
670  normalize_address(_target, dest, true);
671
672  // Check whether my target address is valid within this section.
673  // If not, strengthen the relocation type to point to another section.
674  int sindex = _section;
675  if (sindex == CodeBuffer::SECT_NONE && _target != NULL
676      && (!dest->allocates(_target) || _target == dest->locs_point())) {
677    sindex = dest->outer()->section_index_of(_target);
678    guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
679    relocInfo* base = dest->locs_end() - 1;
680    assert(base->type() == this->type(), "sanity");
681    // Change the written type, to be section_word_type instead.
682    base->set_type(relocInfo::section_word_type);
683  }
684
685  // Note: An internal_word relocation cannot refer to its own instruction,
686  // because we reserve "0" to mean that the pointer itself is embedded
687  // in the code stream.  We use a section_word relocation for such cases.
688
689  if (sindex == CodeBuffer::SECT_NONE) {
690    assert(type() == relocInfo::internal_word_type, "must be base class");
691    guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
692    jint x0 = scaled_offset_null_special(_target, dest->locs_point());
693    assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
694    p = pack_1_int_to(p, x0);
695  } else {
696    assert(_target != NULL, "sanity");
697    CodeSection* sect = dest->outer()->code_section(sindex);
698    guarantee(sect->allocates2(_target), "must be in correct section");
699    address base = sect->start();
700    jint offset = scaled_offset(_target, base);
701    assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
702    assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
703    p = pack_1_int_to(p, (offset << section_width) | sindex);
704  }
705
706  dest->set_locs_end((relocInfo*) p);
707}
708
709
710void internal_word_Relocation::unpack_data() {
711  jint x0 = unpack_1_int();
712  _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
713  _section = CodeBuffer::SECT_NONE;
714}
715
716
717void section_word_Relocation::unpack_data() {
718  jint    x      = unpack_1_int();
719  jint    offset = (x >> section_width);
720  int     sindex = (x & ((1<<section_width)-1));
721  address base   = binding()->section_start(sindex);
722
723  _section = sindex;
724  _target  = address_from_scaled_offset(offset, base);
725}
726
727
728void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
729  short* p = (short*) dest->locs_end();
730  address point = dest->locs_point();
731
732  *p++ = _bits;
733
734  assert(_target != NULL, "sanity");
735
736  if (internal())  normalize_address(_target, dest);
737
738  jint target_bits =
739    (jint)( internal() ? scaled_offset           (_target, point)
740                       : runtime_address_to_index(_target) );
741  if (settable()) {
742    // save space for set_target later
743    p = add_jint(p, target_bits);
744  } else {
745    p = add_var_int(p, target_bits);
746  }
747
748  for (int i = 0; i < instrlen(); i++) {
749    // put placeholder words until bytes can be saved
750    p = add_short(p, (short)0x7777);
751  }
752
753  dest->set_locs_end((relocInfo*) p);
754}
755
756
757void breakpoint_Relocation::unpack_data() {
758  _bits = live_bits();
759
760  int targetlen = datalen() - 1 - instrlen();
761  jint target_bits = 0;
762  if (targetlen == 0)       target_bits = 0;
763  else if (targetlen == 1)  target_bits = *(data()+1);
764  else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
765  else                      { ShouldNotReachHere(); }
766
767  _target = internal() ? address_from_scaled_offset(target_bits, addr())
768                       : index_to_runtime_address  (target_bits);
769}
770
771
772//// miscellaneous methods
773oop* oop_Relocation::oop_addr() {
774  int n = _oop_index;
775  if (n == 0) {
776    // oop is stored in the code stream
777    return (oop*) pd_address_in_code();
778  } else {
779    // oop is stored in table at nmethod::oops_begin
780    return code()->oop_addr_at(n);
781  }
782}
783
784
785oop oop_Relocation::oop_value() {
786  oop v = *oop_addr();
787  // clean inline caches store a special pseudo-null
788  if (v == (oop)Universe::non_oop_word())  v = NULL;
789  return v;
790}
791
792
793void oop_Relocation::fix_oop_relocation() {
794  if (!oop_is_immediate()) {
795    // get the oop from the pool, and re-insert it into the instruction:
796    set_value(value());
797  }
798}
799
800
801void oop_Relocation::verify_oop_relocation() {
802  if (!oop_is_immediate()) {
803    // get the oop from the pool, and re-insert it into the instruction:
804    verify_value(value());
805  }
806}
807
808
809RelocIterator virtual_call_Relocation::parse_ic(nmethod* &nm, address &ic_call, address &first_oop,
810                                                oop* &oop_addr, bool *is_optimized) {
811  assert(ic_call != NULL, "ic_call address must be set");
812  assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
813  if (nm == NULL) {
814    CodeBlob* code;
815    if (ic_call != NULL) {
816      code = CodeCache::find_blob(ic_call);
817    } else if (first_oop != NULL) {
818      code = CodeCache::find_blob(first_oop);
819    }
820    nm = code->as_nmethod_or_null();
821    assert(nm != NULL, "address to parse must be in nmethod");
822  }
823  assert(ic_call   == NULL || nm->contains(ic_call),   "must be in nmethod");
824  assert(first_oop == NULL || nm->contains(first_oop), "must be in nmethod");
825
826  address oop_limit = NULL;
827
828  if (ic_call != NULL) {
829    // search for the ic_call at the given address
830    RelocIterator iter(nm, ic_call, ic_call+1);
831    bool ret = iter.next();
832    assert(ret == true, "relocInfo must exist at this address");
833    assert(iter.addr() == ic_call, "must find ic_call");
834    if (iter.type() == relocInfo::virtual_call_type) {
835      virtual_call_Relocation* r = iter.virtual_call_reloc();
836      first_oop = r->first_oop();
837      oop_limit = r->oop_limit();
838      *is_optimized = false;
839    } else {
840      assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
841      *is_optimized = true;
842      oop_addr = NULL;
843      first_oop = NULL;
844      return iter;
845    }
846  }
847
848  // search for the first_oop, to get its oop_addr
849  RelocIterator all_oops(nm, first_oop);
850  RelocIterator iter = all_oops;
851  iter.set_limit(first_oop+1);
852  bool found_oop = false;
853  while (iter.next()) {
854    if (iter.type() == relocInfo::oop_type) {
855      assert(iter.addr() == first_oop, "must find first_oop");
856      oop_addr = iter.oop_reloc()->oop_addr();
857      found_oop = true;
858      break;
859    }
860  }
861  assert(found_oop, "must find first_oop");
862
863  bool did_reset = false;
864  while (ic_call == NULL) {
865    // search forward for the ic_call matching the given first_oop
866    while (iter.next()) {
867      if (iter.type() == relocInfo::virtual_call_type) {
868        virtual_call_Relocation* r = iter.virtual_call_reloc();
869        if (r->first_oop() == first_oop) {
870          ic_call   = r->addr();
871          oop_limit = r->oop_limit();
872          break;
873        }
874      }
875    }
876    guarantee(!did_reset, "cannot find ic_call");
877    iter = RelocIterator(nm); // search the whole nmethod
878    did_reset = true;
879  }
880
881  assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
882  all_oops.set_limit(oop_limit);
883  return all_oops;
884}
885
886
887address virtual_call_Relocation::first_oop() {
888  assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
889  return _first_oop;
890}
891
892
893address virtual_call_Relocation::oop_limit() {
894  if (_oop_limit == NULL)
895    return addr() + NativeCall::instruction_size;
896  else
897    return _oop_limit;
898}
899
900
901
902void virtual_call_Relocation::clear_inline_cache() {
903  // No stubs for ICs
904  // Clean IC
905  ResourceMark rm;
906  CompiledIC* icache = CompiledIC_at(this);
907  icache->set_to_clean();
908}
909
910
911void opt_virtual_call_Relocation::clear_inline_cache() {
912  // No stubs for ICs
913  // Clean IC
914  ResourceMark rm;
915  CompiledIC* icache = CompiledIC_at(this);
916  icache->set_to_clean();
917}
918
919
920address opt_virtual_call_Relocation::static_stub() {
921  // search for the static stub who points back to this static call
922  address static_call_addr = addr();
923  RelocIterator iter(code());
924  while (iter.next()) {
925    if (iter.type() == relocInfo::static_stub_type) {
926      if (iter.static_stub_reloc()->static_call() == static_call_addr) {
927        return iter.addr();
928      }
929    }
930  }
931  return NULL;
932}
933
934
935void static_call_Relocation::clear_inline_cache() {
936  // Safe call site info
937  CompiledStaticCall* handler = compiledStaticCall_at(this);
938  handler->set_to_clean();
939}
940
941
942address static_call_Relocation::static_stub() {
943  // search for the static stub who points back to this static call
944  address static_call_addr = addr();
945  RelocIterator iter(code());
946  while (iter.next()) {
947    if (iter.type() == relocInfo::static_stub_type) {
948      if (iter.static_stub_reloc()->static_call() == static_call_addr) {
949        return iter.addr();
950      }
951    }
952  }
953  return NULL;
954}
955
956
957void static_stub_Relocation::clear_inline_cache() {
958  // Call stub is only used when calling the interpreted code.
959  // It does not really need to be cleared, except that we want to clean out the methodoop.
960  CompiledStaticCall::set_stub_to_clean(this);
961}
962
963
964void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
965  address target = _target;
966  if (target == NULL) {
967    // An absolute embedded reference to an external location,
968    // which means there is nothing to fix here.
969    return;
970  }
971  // Probably this reference is absolute, not relative, so the
972  // following is probably a no-op.
973  assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
974  set_value(target);
975}
976
977
978address external_word_Relocation::target() {
979  address target = _target;
980  if (target == NULL) {
981    target = pd_get_address_from_code();
982  }
983  return target;
984}
985
986
987void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
988  address target = _target;
989  if (target == NULL) {
990    if (addr_in_const()) {
991      target = new_addr_for(*(address*)addr(), src, dest);
992    } else {
993      target = new_addr_for(pd_get_address_from_code(), src, dest);
994    }
995  }
996  set_value(target);
997}
998
999
1000address internal_word_Relocation::target() {
1001  address target = _target;
1002  if (target == NULL) {
1003    target = pd_get_address_from_code();
1004  }
1005  return target;
1006}
1007
1008
1009breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
1010  bool active    = false;
1011  bool enabled   = (kind == initialization);
1012  bool removable = (kind != safepoint);
1013  bool settable  = (target == NULL);
1014
1015  int bits = kind;
1016  if (enabled)    bits |= enabled_state;
1017  if (internal)   bits |= internal_attr;
1018  if (removable)  bits |= removable_attr;
1019  if (settable)   bits |= settable_attr;
1020
1021  _bits = bits | high_bit;
1022  _target = target;
1023
1024  assert(this->kind()      == kind,      "kind encoded");
1025  assert(this->enabled()   == enabled,   "enabled encoded");
1026  assert(this->active()    == active,    "active encoded");
1027  assert(this->internal()  == internal,  "internal encoded");
1028  assert(this->removable() == removable, "removable encoded");
1029  assert(this->settable()  == settable,  "settable encoded");
1030}
1031
1032
1033address breakpoint_Relocation::target() const {
1034  return _target;
1035}
1036
1037
1038void breakpoint_Relocation::set_target(address x) {
1039  assert(settable(), "must be settable");
1040  jint target_bits =
1041    (jint)(internal() ? scaled_offset           (x, addr())
1042                      : runtime_address_to_index(x));
1043  short* p = &live_bits() + 1;
1044  p = add_jint(p, target_bits);
1045  assert(p == instrs(), "new target must fit");
1046  _target = x;
1047}
1048
1049
1050void breakpoint_Relocation::set_enabled(bool b) {
1051  if (enabled() == b) return;
1052
1053  if (b) {
1054    set_bits(bits() | enabled_state);
1055  } else {
1056    set_active(false);          // remove the actual breakpoint insn, if any
1057    set_bits(bits() & ~enabled_state);
1058  }
1059}
1060
1061
1062void breakpoint_Relocation::set_active(bool b) {
1063  assert(!b || enabled(), "cannot activate a disabled breakpoint");
1064
1065  if (active() == b) return;
1066
1067  // %%% should probably seize a lock here (might not be the right lock)
1068  //MutexLockerEx ml_patch(Patching_lock, true);
1069  //if (active() == b)  return;         // recheck state after locking
1070
1071  if (b) {
1072    set_bits(bits() | active_state);
1073    if (instrlen() == 0)
1074      fatal("breakpoints in original code must be undoable");
1075    pd_swap_in_breakpoint (addr(), instrs(), instrlen());
1076  } else {
1077    set_bits(bits() & ~active_state);
1078    pd_swap_out_breakpoint(addr(), instrs(), instrlen());
1079  }
1080}
1081
1082
1083//---------------------------------------------------------------------------------
1084// Non-product code
1085
1086#ifndef PRODUCT
1087
1088static const char* reloc_type_string(relocInfo::relocType t) {
1089  switch (t) {
1090  #define EACH_CASE(name) \
1091  case relocInfo::name##_type: \
1092    return #name;
1093
1094  APPLY_TO_RELOCATIONS(EACH_CASE);
1095  #undef EACH_CASE
1096
1097  case relocInfo::none:
1098    return "none";
1099  case relocInfo::data_prefix_tag:
1100    return "prefix";
1101  default:
1102    return "UNKNOWN RELOC TYPE";
1103  }
1104}
1105
1106
1107void RelocIterator::print_current() {
1108  if (!has_current()) {
1109    tty->print_cr("(no relocs)");
1110    return;
1111  }
1112  tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT " offset=%d",
1113             _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr, _current->addr_offset());
1114  if (current()->format() != 0)
1115    tty->print(" format=%d", current()->format());
1116  if (datalen() == 1) {
1117    tty->print(" data=%d", data()[0]);
1118  } else if (datalen() > 0) {
1119    tty->print(" data={");
1120    for (int i = 0; i < datalen(); i++) {
1121      tty->print("%04x", data()[i] & 0xFFFF);
1122    }
1123    tty->print("}");
1124  }
1125  tty->print("]");
1126  switch (type()) {
1127  case relocInfo::oop_type:
1128    {
1129      oop_Relocation* r = oop_reloc();
1130      oop* oop_addr  = NULL;
1131      oop  raw_oop   = NULL;
1132      oop  oop_value = NULL;
1133      if (code() != NULL || r->oop_is_immediate()) {
1134        oop_addr  = r->oop_addr();
1135        raw_oop   = *oop_addr;
1136        oop_value = r->oop_value();
1137      }
1138      tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
1139                 oop_addr, (address)raw_oop, r->offset());
1140      // Do not print the oop by default--we want this routine to
1141      // work even during GC or other inconvenient times.
1142      if (WizardMode && oop_value != NULL) {
1143        tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
1144        oop_value->print_value_on(tty);
1145      }
1146      break;
1147    }
1148  case relocInfo::external_word_type:
1149  case relocInfo::internal_word_type:
1150  case relocInfo::section_word_type:
1151    {
1152      DataRelocation* r = (DataRelocation*) reloc();
1153      tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
1154      break;
1155    }
1156  case relocInfo::static_call_type:
1157  case relocInfo::runtime_call_type:
1158    {
1159      CallRelocation* r = (CallRelocation*) reloc();
1160      tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
1161      break;
1162    }
1163  case relocInfo::virtual_call_type:
1164    {
1165      virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
1166      tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
1167                 r->destination(), r->first_oop(), r->oop_limit());
1168      break;
1169    }
1170  case relocInfo::static_stub_type:
1171    {
1172      static_stub_Relocation* r = (static_stub_Relocation*) reloc();
1173      tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
1174      break;
1175    }
1176  }
1177  tty->cr();
1178}
1179
1180
1181void RelocIterator::print() {
1182  RelocIterator save_this = (*this);
1183  relocInfo* scan = _current;
1184  if (!has_current())  scan += 1;  // nothing to scan here!
1185
1186  bool skip_next = has_current();
1187  bool got_next;
1188  while (true) {
1189    got_next = (skip_next || next());
1190    skip_next = false;
1191
1192    tty->print("         @" INTPTR_FORMAT ": ", scan);
1193    relocInfo* newscan = _current+1;
1194    if (!has_current())  newscan -= 1;  // nothing to scan here!
1195    while (scan < newscan) {
1196      tty->print("%04x", *(short*)scan & 0xFFFF);
1197      scan++;
1198    }
1199    tty->cr();
1200
1201    if (!got_next)  break;
1202    print_current();
1203  }
1204
1205  (*this) = save_this;
1206}
1207
1208// For the debugger:
1209extern "C"
1210void print_blob_locs(nmethod* nm) {
1211  nm->print();
1212  RelocIterator iter(nm);
1213  iter.print();
1214}
1215extern "C"
1216void print_buf_locs(CodeBuffer* cb) {
1217  FlagSetting fs(PrintRelocations, true);
1218  cb->print();
1219}
1220#endif // !PRODUCT
1221