relocInfo.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_relocInfo.cpp.incl"
27
28
29const RelocationHolder RelocationHolder::none; // its type is relocInfo::none
30
31
32// Implementation of relocInfo
33
34#ifdef ASSERT
35relocInfo::relocInfo(relocType t, int off, int f) {
36  assert(t != data_prefix_tag, "cannot build a prefix this way");
37  assert((t & type_mask) == t, "wrong type");
38  assert((f & format_mask) == f, "wrong format");
39  assert(off >= 0 && off < offset_limit(), "offset out off bounds");
40  assert((off & (offset_unit-1)) == 0, "misaligned offset");
41  (*this) = relocInfo(t, RAW_BITS, off, f);
42}
43#endif
44
45void relocInfo::initialize(CodeSection* dest, Relocation* reloc) {
46  relocInfo* data = this+1;  // here's where the data might go
47  dest->set_locs_end(data);  // sync end: the next call may read dest.locs_end
48  reloc->pack_data_to(dest); // maybe write data into locs, advancing locs_end
49  relocInfo* data_limit = dest->locs_end();
50  if (data_limit > data) {
51    relocInfo suffix = (*this);
52    data_limit = this->finish_prefix((short*) data_limit);
53    // Finish up with the suffix.  (Hack note: pack_data_to might edit this.)
54    *data_limit = suffix;
55    dest->set_locs_end(data_limit+1);
56  }
57}
58
59relocInfo* relocInfo::finish_prefix(short* prefix_limit) {
60  assert(sizeof(relocInfo) == sizeof(short), "change this code");
61  short* p = (short*)(this+1);
62  assert(prefix_limit >= p, "must be a valid span of data");
63  int plen = prefix_limit - p;
64  if (plen == 0) {
65    debug_only(_value = 0xFFFF);
66    return this;                         // no data: remove self completely
67  }
68  if (plen == 1 && fits_into_immediate(p[0])) {
69    (*this) = immediate_relocInfo(p[0]); // move data inside self
70    return this+1;
71  }
72  // cannot compact, so just update the count and return the limit pointer
73  (*this) = prefix_relocInfo(plen);   // write new datalen
74  assert(data() + datalen() == prefix_limit, "pointers must line up");
75  return (relocInfo*)prefix_limit;
76}
77
78
79void relocInfo::set_type(relocType t) {
80  int old_offset = addr_offset();
81  int old_format = format();
82  (*this) = relocInfo(t, old_offset, old_format);
83  assert(type()==(int)t, "sanity check");
84  assert(addr_offset()==old_offset, "sanity check");
85  assert(format()==old_format, "sanity check");
86}
87
88
89void relocInfo::set_format(int f) {
90  int old_offset = addr_offset();
91  assert((f & format_mask) == f, "wrong format");
92  _value = (_value & ~(format_mask << offset_width)) | (f << offset_width);
93  assert(addr_offset()==old_offset, "sanity check");
94}
95
96
97void relocInfo::change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type) {
98  bool found = false;
99  while (itr->next() && !found) {
100    if (itr->addr() == pc) {
101      assert(itr->type()==old_type, "wrong relocInfo type found");
102      itr->current()->set_type(new_type);
103      found=true;
104    }
105  }
106  assert(found, "no relocInfo found for pc");
107}
108
109
110void relocInfo::remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type) {
111  change_reloc_info_for_address(itr, pc, old_type, none);
112}
113
114
115// ----------------------------------------------------------------------------------------------------
116// Implementation of RelocIterator
117
118void RelocIterator::initialize(CodeBlob* cb, address begin, address limit) {
119  initialize_misc();
120
121  if (cb == NULL && begin != NULL) {
122    // allow CodeBlob to be deduced from beginning address
123    cb = CodeCache::find_blob(begin);
124  }
125  assert(cb != NULL, "must be able to deduce nmethod from other arguments");
126
127  _code    = cb;
128  _current = cb->relocation_begin()-1;
129  _end     = cb->relocation_end();
130  _addr    = (address) cb->instructions_begin();
131
132  assert(!has_current(), "just checking");
133  address code_end = cb->instructions_end();
134
135  assert(begin == NULL || begin >= cb->instructions_begin(), "in bounds");
136 // FIX THIS  assert(limit == NULL || limit <= code_end,     "in bounds");
137  set_limits(begin, limit);
138}
139
140
141RelocIterator::RelocIterator(CodeSection* cs, address begin, address limit) {
142  initialize_misc();
143
144  _current = cs->locs_start()-1;
145  _end     = cs->locs_end();
146  _addr    = cs->start();
147  _code    = NULL; // Not cb->blob();
148
149  CodeBuffer* cb = cs->outer();
150  assert((int)SECT_LIMIT == CodeBuffer::SECT_LIMIT, "my copy must be equal");
151  for (int n = 0; n < (int)SECT_LIMIT; n++) {
152    _section_start[n] = cb->code_section(n)->start();
153  }
154
155  assert(!has_current(), "just checking");
156
157  assert(begin == NULL || begin >= cs->start(), "in bounds");
158  assert(limit == NULL || limit <= cs->end(),   "in bounds");
159  set_limits(begin, limit);
160}
161
162
163enum { indexCardSize = 128 };
164struct RelocIndexEntry {
165  jint addr_offset;          // offset from header_end of an addr()
166  jint reloc_offset;         // offset from header_end of a relocInfo (prefix)
167};
168
169
170static inline int num_cards(int code_size) {
171  return (code_size-1) / indexCardSize;
172}
173
174
175int RelocIterator::locs_and_index_size(int code_size, int locs_size) {
176  if (!UseRelocIndex)  return locs_size;   // no index
177  code_size = round_to(code_size, oopSize);
178  locs_size = round_to(locs_size, oopSize);
179  int index_size = num_cards(code_size) * sizeof(RelocIndexEntry);
180  // format of indexed relocs:
181  //   relocation_begin:   relocInfo ...
182  //   index:              (addr,reloc#) ...
183  //                       indexSize           :relocation_end
184  return locs_size + index_size + BytesPerInt;
185}
186
187
188void RelocIterator::create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end) {
189  address relocation_begin = (address)dest_begin;
190  address relocation_end   = (address)dest_end;
191  int     total_size       = relocation_end - relocation_begin;
192  int     locs_size        = dest_count * sizeof(relocInfo);
193  if (!UseRelocIndex) {
194    Copy::fill_to_bytes(relocation_begin + locs_size, total_size-locs_size, 0);
195    return;
196  }
197  int     index_size       = total_size - locs_size - BytesPerInt;      // find out how much space is left
198  int     ncards           = index_size / sizeof(RelocIndexEntry);
199  assert(total_size == locs_size + index_size + BytesPerInt, "checkin'");
200  assert(index_size >= 0 && index_size % sizeof(RelocIndexEntry) == 0, "checkin'");
201  jint*   index_size_addr  = (jint*)relocation_end - 1;
202
203  assert(sizeof(jint) == BytesPerInt, "change this code");
204
205  *index_size_addr = index_size;
206  if (index_size != 0) {
207    assert(index_size > 0, "checkin'");
208
209    RelocIndexEntry* index = (RelocIndexEntry *)(relocation_begin + locs_size);
210    assert(index == (RelocIndexEntry*)index_size_addr - ncards, "checkin'");
211
212    // walk over the relocations, and fill in index entries as we go
213    RelocIterator iter;
214    const address    initial_addr    = NULL;
215    relocInfo* const initial_current = dest_begin - 1;  // biased by -1 like elsewhere
216
217    iter._code    = NULL;
218    iter._addr    = initial_addr;
219    iter._limit   = (address)(intptr_t)(ncards * indexCardSize);
220    iter._current = initial_current;
221    iter._end     = dest_begin + dest_count;
222
223    int i = 0;
224    address next_card_addr = (address)indexCardSize;
225    int addr_offset = 0;
226    int reloc_offset = 0;
227    while (true) {
228      // Checkpoint the iterator before advancing it.
229      addr_offset  = iter._addr    - initial_addr;
230      reloc_offset = iter._current - initial_current;
231      if (!iter.next())  break;
232      while (iter.addr() >= next_card_addr) {
233        index[i].addr_offset  = addr_offset;
234        index[i].reloc_offset = reloc_offset;
235        i++;
236        next_card_addr += indexCardSize;
237      }
238    }
239    while (i < ncards) {
240      index[i].addr_offset  = addr_offset;
241      index[i].reloc_offset = reloc_offset;
242      i++;
243    }
244  }
245}
246
247
248void RelocIterator::set_limits(address begin, address limit) {
249  int index_size = 0;
250  if (UseRelocIndex && _code != NULL) {
251    index_size = ((jint*)_end)[-1];
252    _end = (relocInfo*)( (address)_end - index_size - BytesPerInt );
253  }
254
255  _limit = limit;
256
257  // the limit affects this next stuff:
258  if (begin != NULL) {
259#ifdef ASSERT
260    // In ASSERT mode we do not actually use the index, but simply
261    // check that its contents would have led us to the right answer.
262    address addrCheck = _addr;
263    relocInfo* infoCheck = _current;
264#endif // ASSERT
265    if (index_size > 0) {
266      // skip ahead
267      RelocIndexEntry* index       = (RelocIndexEntry*)_end;
268      RelocIndexEntry* index_limit = (RelocIndexEntry*)((address)index + index_size);
269      assert(_addr == _code->instructions_begin(), "_addr must be unadjusted");
270      int card = (begin - _addr) / indexCardSize;
271      if (card > 0) {
272        if (index+card-1 < index_limit)  index += card-1;
273        else                             index = index_limit - 1;
274#ifdef ASSERT
275        addrCheck = _addr    + index->addr_offset;
276        infoCheck = _current + index->reloc_offset;
277#else
278        // Advance the iterator immediately to the last valid state
279        // for the previous card.  Calling "next" will then advance
280        // it to the first item on the required card.
281        _addr    += index->addr_offset;
282        _current += index->reloc_offset;
283#endif // ASSERT
284      }
285    }
286
287    relocInfo* backup;
288    address    backup_addr;
289    while (true) {
290      backup      = _current;
291      backup_addr = _addr;
292#ifdef ASSERT
293      if (backup == infoCheck) {
294        assert(backup_addr == addrCheck, "must match"); addrCheck = NULL; infoCheck = NULL;
295      } else {
296        assert(addrCheck == NULL || backup_addr <= addrCheck, "must not pass addrCheck");
297      }
298#endif // ASSERT
299      if (!next() || addr() >= begin) break;
300    }
301    assert(addrCheck == NULL || addrCheck == backup_addr, "must have matched addrCheck");
302    assert(infoCheck == NULL || infoCheck == backup,      "must have matched infoCheck");
303    // At this point, either we are at the first matching record,
304    // or else there is no such record, and !has_current().
305    // In either case, revert to the immediatly preceding state.
306    _current = backup;
307    _addr    = backup_addr;
308    set_has_current(false);
309  }
310}
311
312
313void RelocIterator::set_limit(address limit) {
314  address code_end = (address)code() + code()->size();
315  assert(limit == NULL || limit <= code_end, "in bounds");
316  _limit = limit;
317}
318
319
320void PatchingRelocIterator:: prepass() {
321  // turn breakpoints off during patching
322  _init_state = (*this);        // save cursor
323  while (next()) {
324    if (type() == relocInfo::breakpoint_type) {
325      breakpoint_reloc()->set_active(false);
326    }
327  }
328  (RelocIterator&)(*this) = _init_state;        // reset cursor for client
329}
330
331
332void PatchingRelocIterator:: postpass() {
333  // turn breakpoints back on after patching
334  (RelocIterator&)(*this) = _init_state;        // reset cursor again
335  while (next()) {
336    if (type() == relocInfo::breakpoint_type) {
337      breakpoint_Relocation* bpt = breakpoint_reloc();
338      bpt->set_active(bpt->enabled());
339    }
340  }
341}
342
343
344// All the strange bit-encodings are in here.
345// The idea is to encode relocation data which are small integers
346// very efficiently (a single extra halfword).  Larger chunks of
347// relocation data need a halfword header to hold their size.
348void RelocIterator::advance_over_prefix() {
349  if (_current->is_datalen()) {
350    _data    = (short*) _current->data();
351    _datalen =          _current->datalen();
352    _current += _datalen + 1;   // skip the embedded data & header
353  } else {
354    _databuf = _current->immediate();
355    _data = &_databuf;
356    _datalen = 1;
357    _current++;                 // skip the header
358  }
359  // The client will see the following relocInfo, whatever that is.
360  // It is the reloc to which the preceding data applies.
361}
362
363
364address RelocIterator::compute_section_start(int n) const {
365// This routine not only computes a section start, but also
366// memoizes it for later.
367#define CACHE ((RelocIterator*)this)->_section_start[n]
368  CodeBlob* cb = code();
369  guarantee(cb != NULL, "must have a code blob");
370  if (n == CodeBuffer::SECT_INSTS)
371    return CACHE = cb->instructions_begin();
372  assert(cb->is_nmethod(), "only nmethods have these sections");
373  nmethod* nm = (nmethod*) cb;
374  address res = NULL;
375  switch (n) {
376  case CodeBuffer::SECT_STUBS:
377    res = nm->stub_begin();
378    break;
379  case CodeBuffer::SECT_CONSTS:
380    res = nm->consts_begin();
381    break;
382  default:
383    ShouldNotReachHere();
384  }
385  assert(nm->contains(res) || res == nm->instructions_end(), "tame pointer");
386  CACHE = res;
387  return res;
388#undef CACHE
389}
390
391
392Relocation* RelocIterator::reloc() {
393  // (take the "switch" out-of-line)
394  relocInfo::relocType t = type();
395  if (false) {}
396  #define EACH_TYPE(name)                             \
397  else if (t == relocInfo::name##_type) {             \
398    return name##_reloc();                            \
399  }
400  APPLY_TO_RELOCATIONS(EACH_TYPE);
401  #undef EACH_TYPE
402  assert(t == relocInfo::none, "must be padding");
403  return new(_rh) Relocation();
404}
405
406
407//////// Methods for flyweight Relocation types
408
409
410RelocationHolder RelocationHolder::plus(int offset) const {
411  if (offset != 0) {
412    switch (type()) {
413    case relocInfo::none:
414      break;
415    case relocInfo::oop_type:
416      {
417        oop_Relocation* r = (oop_Relocation*)reloc();
418        return oop_Relocation::spec(r->oop_index(), r->offset() + offset);
419      }
420    default:
421      ShouldNotReachHere();
422    }
423  }
424  return (*this);
425}
426
427
428void Relocation::guarantee_size() {
429  guarantee(false, "Make _relocbuf bigger!");
430}
431
432    // some relocations can compute their own values
433address Relocation::value() {
434  ShouldNotReachHere();
435  return NULL;
436}
437
438
439void Relocation::set_value(address x) {
440  ShouldNotReachHere();
441}
442
443
444RelocationHolder Relocation::spec_simple(relocInfo::relocType rtype) {
445  if (rtype == relocInfo::none)  return RelocationHolder::none;
446  relocInfo ri = relocInfo(rtype, 0);
447  RelocIterator itr;
448  itr.set_current(ri);
449  itr.reloc();
450  return itr._rh;
451}
452
453
454static inline bool is_index(intptr_t index) {
455  return 0 < index && index < os::vm_page_size();
456}
457
458
459int32_t Relocation::runtime_address_to_index(address runtime_address) {
460  assert(!is_index((intptr_t)runtime_address), "must not look like an index");
461
462  if (runtime_address == NULL)  return 0;
463
464  StubCodeDesc* p = StubCodeDesc::desc_for(runtime_address);
465  if (p != NULL && p->begin() == runtime_address) {
466    assert(is_index(p->index()), "there must not be too many stubs");
467    return (int32_t)p->index();
468  } else {
469    // Known "miscellaneous" non-stub pointers:
470    // os::get_polling_page(), SafepointSynchronize::address_of_state()
471    if (PrintRelocations) {
472      tty->print_cr("random unregistered address in relocInfo: " INTPTR_FORMAT, runtime_address);
473    }
474#ifndef _LP64
475    return (int32_t) (intptr_t)runtime_address;
476#else
477    // didn't fit return non-index
478    return -1;
479#endif /* _LP64 */
480  }
481}
482
483
484address Relocation::index_to_runtime_address(int32_t index) {
485  if (index == 0)  return NULL;
486
487  if (is_index(index)) {
488    StubCodeDesc* p = StubCodeDesc::desc_for_index(index);
489    assert(p != NULL, "there must be a stub for this index");
490    return p->begin();
491  } else {
492#ifndef _LP64
493    // this only works on 32bit machines
494    return (address) ((intptr_t) index);
495#else
496    fatal("Relocation::index_to_runtime_address, int32_t not pointer sized");
497    return NULL;
498#endif /* _LP64 */
499  }
500}
501
502address Relocation::old_addr_for(address newa,
503                                 const CodeBuffer* src, CodeBuffer* dest) {
504  int sect = dest->section_index_of(newa);
505  guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
506  address ostart = src->code_section(sect)->start();
507  address nstart = dest->code_section(sect)->start();
508  return ostart + (newa - nstart);
509}
510
511address Relocation::new_addr_for(address olda,
512                                 const CodeBuffer* src, CodeBuffer* dest) {
513  debug_only(const CodeBuffer* src0 = src);
514  int sect = CodeBuffer::SECT_NONE;
515  // Look for olda in the source buffer, and all previous incarnations
516  // if the source buffer has been expanded.
517  for (; src != NULL; src = src->before_expand()) {
518    sect = src->section_index_of(olda);
519    if (sect != CodeBuffer::SECT_NONE)  break;
520  }
521  guarantee(sect != CodeBuffer::SECT_NONE, "lost track of this address");
522  address ostart = src->code_section(sect)->start();
523  address nstart = dest->code_section(sect)->start();
524  return nstart + (olda - ostart);
525}
526
527void Relocation::normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections) {
528  address addr0 = addr;
529  if (addr0 == NULL || dest->allocates2(addr0))  return;
530  CodeBuffer* cb = dest->outer();
531  addr = new_addr_for(addr0, cb, cb);
532  assert(allow_other_sections || dest->contains2(addr),
533         "addr must be in required section");
534}
535
536
537void CallRelocation::set_destination(address x) {
538  pd_set_call_destination(x);
539}
540
541void CallRelocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
542  // Usually a self-relative reference to an external routine.
543  // On some platforms, the reference is absolute (not self-relative).
544  // The enhanced use of pd_call_destination sorts this all out.
545  address orig_addr = old_addr_for(addr(), src, dest);
546  address callee    = pd_call_destination(orig_addr);
547  // Reassert the callee address, this time in the new copy of the code.
548  pd_set_call_destination(callee);
549}
550
551
552//// pack/unpack methods
553
554void oop_Relocation::pack_data_to(CodeSection* dest) {
555  short* p = (short*) dest->locs_end();
556  p = pack_2_ints_to(p, _oop_index, _offset);
557  dest->set_locs_end((relocInfo*) p);
558}
559
560
561void oop_Relocation::unpack_data() {
562  unpack_2_ints(_oop_index, _offset);
563}
564
565
566void virtual_call_Relocation::pack_data_to(CodeSection* dest) {
567  short*  p     = (short*) dest->locs_end();
568  address point =          dest->locs_point();
569
570  // Try to make a pointer NULL first.
571  if (_oop_limit >= point &&
572      _oop_limit <= point + NativeCall::instruction_size) {
573    _oop_limit = NULL;
574  }
575  // If the _oop_limit is NULL, it "defaults" to the end of the call.
576  // See ic_call_Relocation::oop_limit() below.
577
578  normalize_address(_first_oop, dest);
579  normalize_address(_oop_limit, dest);
580  jint x0 = scaled_offset_null_special(_first_oop, point);
581  jint x1 = scaled_offset_null_special(_oop_limit, point);
582  p = pack_2_ints_to(p, x0, x1);
583  dest->set_locs_end((relocInfo*) p);
584}
585
586
587void virtual_call_Relocation::unpack_data() {
588  jint x0, x1; unpack_2_ints(x0, x1);
589  address point = addr();
590  _first_oop = x0==0? NULL: address_from_scaled_offset(x0, point);
591  _oop_limit = x1==0? NULL: address_from_scaled_offset(x1, point);
592}
593
594
595void static_stub_Relocation::pack_data_to(CodeSection* dest) {
596  short* p = (short*) dest->locs_end();
597  CodeSection* insts = dest->outer()->insts();
598  normalize_address(_static_call, insts);
599  p = pack_1_int_to(p, scaled_offset(_static_call, insts->start()));
600  dest->set_locs_end((relocInfo*) p);
601}
602
603void static_stub_Relocation::unpack_data() {
604  address base = binding()->section_start(CodeBuffer::SECT_INSTS);
605  _static_call = address_from_scaled_offset(unpack_1_int(), base);
606}
607
608
609void external_word_Relocation::pack_data_to(CodeSection* dest) {
610  short* p = (short*) dest->locs_end();
611  int32_t index = runtime_address_to_index(_target);
612#ifndef _LP64
613  p = pack_1_int_to(p, index);
614#else
615  if (is_index(index)) {
616    p = pack_2_ints_to(p, index, 0);
617  } else {
618    jlong t = (jlong) _target;
619    int32_t lo = low(t);
620    int32_t hi = high(t);
621    p = pack_2_ints_to(p, lo, hi);
622    DEBUG_ONLY(jlong t1 = jlong_from(hi, lo));
623    assert(!is_index(t1) && (address) t1 == _target, "not symmetric");
624  }
625#endif /* _LP64 */
626  dest->set_locs_end((relocInfo*) p);
627}
628
629
630void external_word_Relocation::unpack_data() {
631#ifndef _LP64
632  _target = index_to_runtime_address(unpack_1_int());
633#else
634  int32_t lo, hi;
635  unpack_2_ints(lo, hi);
636  jlong t = jlong_from(hi, lo);;
637  if (is_index(t)) {
638    _target = index_to_runtime_address(t);
639  } else {
640    _target = (address) t;
641  }
642#endif /* _LP64 */
643}
644
645
646void internal_word_Relocation::pack_data_to(CodeSection* dest) {
647  short* p = (short*) dest->locs_end();
648  normalize_address(_target, dest, true);
649
650  // Check whether my target address is valid within this section.
651  // If not, strengthen the relocation type to point to another section.
652  int sindex = _section;
653  if (sindex == CodeBuffer::SECT_NONE && _target != NULL
654      && (!dest->allocates(_target) || _target == dest->locs_point())) {
655    sindex = dest->outer()->section_index_of(_target);
656    guarantee(sindex != CodeBuffer::SECT_NONE, "must belong somewhere");
657    relocInfo* base = dest->locs_end() - 1;
658    assert(base->type() == this->type(), "sanity");
659    // Change the written type, to be section_word_type instead.
660    base->set_type(relocInfo::section_word_type);
661  }
662
663  // Note: An internal_word relocation cannot refer to its own instruction,
664  // because we reserve "0" to mean that the pointer itself is embedded
665  // in the code stream.  We use a section_word relocation for such cases.
666
667  if (sindex == CodeBuffer::SECT_NONE) {
668    assert(type() == relocInfo::internal_word_type, "must be base class");
669    guarantee(_target == NULL || dest->allocates2(_target), "must be within the given code section");
670    jint x0 = scaled_offset_null_special(_target, dest->locs_point());
671    assert(!(x0 == 0 && _target != NULL), "correct encoding of null target");
672    p = pack_1_int_to(p, x0);
673  } else {
674    assert(_target != NULL, "sanity");
675    CodeSection* sect = dest->outer()->code_section(sindex);
676    guarantee(sect->allocates2(_target), "must be in correct section");
677    address base = sect->start();
678    jint offset = scaled_offset(_target, base);
679    assert((uint)sindex < (uint)CodeBuffer::SECT_LIMIT, "sanity");
680    assert(CodeBuffer::SECT_LIMIT <= (1 << section_width), "section_width++");
681    p = pack_1_int_to(p, (offset << section_width) | sindex);
682  }
683
684  dest->set_locs_end((relocInfo*) p);
685}
686
687
688void internal_word_Relocation::unpack_data() {
689  jint x0 = unpack_1_int();
690  _target = x0==0? NULL: address_from_scaled_offset(x0, addr());
691  _section = CodeBuffer::SECT_NONE;
692}
693
694
695void section_word_Relocation::unpack_data() {
696  jint    x      = unpack_1_int();
697  jint    offset = (x >> section_width);
698  int     sindex = (x & ((1<<section_width)-1));
699  address base   = binding()->section_start(sindex);
700
701  _section = sindex;
702  _target  = address_from_scaled_offset(offset, base);
703}
704
705
706void breakpoint_Relocation::pack_data_to(CodeSection* dest) {
707  short* p = (short*) dest->locs_end();
708  address point = dest->locs_point();
709
710  *p++ = _bits;
711
712  assert(_target != NULL, "sanity");
713
714  if (internal())  normalize_address(_target, dest);
715
716  jint target_bits =
717    (jint)( internal() ? scaled_offset           (_target, point)
718                       : runtime_address_to_index(_target) );
719  if (settable()) {
720    // save space for set_target later
721    p = add_jint(p, target_bits);
722  } else {
723    p = add_var_int(p, target_bits);
724  }
725
726  for (int i = 0; i < instrlen(); i++) {
727    // put placeholder words until bytes can be saved
728    p = add_short(p, (short)0x7777);
729  }
730
731  dest->set_locs_end((relocInfo*) p);
732}
733
734
735void breakpoint_Relocation::unpack_data() {
736  _bits = live_bits();
737
738  int targetlen = datalen() - 1 - instrlen();
739  jint target_bits = 0;
740  if (targetlen == 0)       target_bits = 0;
741  else if (targetlen == 1)  target_bits = *(data()+1);
742  else if (targetlen == 2)  target_bits = relocInfo::jint_from_data(data()+1);
743  else                      { ShouldNotReachHere(); }
744
745  _target = internal() ? address_from_scaled_offset(target_bits, addr())
746                       : index_to_runtime_address  (target_bits);
747}
748
749
750//// miscellaneous methods
751oop* oop_Relocation::oop_addr() {
752  int n = _oop_index;
753  if (n == 0) {
754    // oop is stored in the code stream
755    return (oop*) pd_address_in_code();
756  } else {
757    // oop is stored in table at CodeBlob::oops_begin
758    return code()->oop_addr_at(n);
759  }
760}
761
762
763oop oop_Relocation::oop_value() {
764  oop v = *oop_addr();
765  // clean inline caches store a special pseudo-null
766  if (v == (oop)Universe::non_oop_word())  v = NULL;
767  return v;
768}
769
770
771void oop_Relocation::fix_oop_relocation() {
772  if (!oop_is_immediate()) {
773    // get the oop from the pool, and re-insert it into the instruction:
774    set_value(value());
775  }
776}
777
778
779RelocIterator virtual_call_Relocation::parse_ic(CodeBlob* &code, address &ic_call, address &first_oop,
780                                                oop* &oop_addr, bool *is_optimized) {
781  assert(ic_call != NULL, "ic_call address must be set");
782  assert(ic_call != NULL || first_oop != NULL, "must supply a non-null input");
783  if (code == NULL) {
784    if (ic_call != NULL) {
785      code = CodeCache::find_blob(ic_call);
786    } else if (first_oop != NULL) {
787      code = CodeCache::find_blob(first_oop);
788    }
789    assert(code != NULL, "address to parse must be in CodeBlob");
790  }
791  assert(ic_call   == NULL || code->contains(ic_call),   "must be in CodeBlob");
792  assert(first_oop == NULL || code->contains(first_oop), "must be in CodeBlob");
793
794  address oop_limit = NULL;
795
796  if (ic_call != NULL) {
797    // search for the ic_call at the given address
798    RelocIterator iter(code, ic_call, ic_call+1);
799    bool ret = iter.next();
800    assert(ret == true, "relocInfo must exist at this address");
801    assert(iter.addr() == ic_call, "must find ic_call");
802    if (iter.type() == relocInfo::virtual_call_type) {
803      virtual_call_Relocation* r = iter.virtual_call_reloc();
804      first_oop = r->first_oop();
805      oop_limit = r->oop_limit();
806      *is_optimized = false;
807    } else {
808      assert(iter.type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
809      *is_optimized = true;
810      oop_addr = NULL;
811      first_oop = NULL;
812      return iter;
813    }
814  }
815
816  // search for the first_oop, to get its oop_addr
817  RelocIterator all_oops(code, first_oop);
818  RelocIterator iter = all_oops;
819  iter.set_limit(first_oop+1);
820  bool found_oop = false;
821  while (iter.next()) {
822    if (iter.type() == relocInfo::oop_type) {
823      assert(iter.addr() == first_oop, "must find first_oop");
824      oop_addr = iter.oop_reloc()->oop_addr();
825      found_oop = true;
826      break;
827    }
828  }
829  assert(found_oop, "must find first_oop");
830
831  bool did_reset = false;
832  while (ic_call == NULL) {
833    // search forward for the ic_call matching the given first_oop
834    while (iter.next()) {
835      if (iter.type() == relocInfo::virtual_call_type) {
836        virtual_call_Relocation* r = iter.virtual_call_reloc();
837        if (r->first_oop() == first_oop) {
838          ic_call   = r->addr();
839          oop_limit = r->oop_limit();
840          break;
841        }
842      }
843    }
844    guarantee(!did_reset, "cannot find ic_call");
845    iter = RelocIterator(code); // search the whole CodeBlob
846    did_reset = true;
847  }
848
849  assert(oop_limit != NULL && first_oop != NULL && ic_call != NULL, "");
850  all_oops.set_limit(oop_limit);
851  return all_oops;
852}
853
854
855address virtual_call_Relocation::first_oop() {
856  assert(_first_oop != NULL && _first_oop < addr(), "must precede ic_call");
857  return _first_oop;
858}
859
860
861address virtual_call_Relocation::oop_limit() {
862  if (_oop_limit == NULL)
863    return addr() + NativeCall::instruction_size;
864  else
865    return _oop_limit;
866}
867
868
869
870void virtual_call_Relocation::clear_inline_cache() {
871  // No stubs for ICs
872  // Clean IC
873  ResourceMark rm;
874  CompiledIC* icache = CompiledIC_at(this);
875  icache->set_to_clean();
876}
877
878
879void opt_virtual_call_Relocation::clear_inline_cache() {
880  // No stubs for ICs
881  // Clean IC
882  ResourceMark rm;
883  CompiledIC* icache = CompiledIC_at(this);
884  icache->set_to_clean();
885}
886
887
888address opt_virtual_call_Relocation::static_stub() {
889  // search for the static stub who points back to this static call
890  address static_call_addr = addr();
891  RelocIterator iter(code());
892  while (iter.next()) {
893    if (iter.type() == relocInfo::static_stub_type) {
894      if (iter.static_stub_reloc()->static_call() == static_call_addr) {
895        return iter.addr();
896      }
897    }
898  }
899  return NULL;
900}
901
902
903void static_call_Relocation::clear_inline_cache() {
904  // Safe call site info
905  CompiledStaticCall* handler = compiledStaticCall_at(this);
906  handler->set_to_clean();
907}
908
909
910address static_call_Relocation::static_stub() {
911  // search for the static stub who points back to this static call
912  address static_call_addr = addr();
913  RelocIterator iter(code());
914  while (iter.next()) {
915    if (iter.type() == relocInfo::static_stub_type) {
916      if (iter.static_stub_reloc()->static_call() == static_call_addr) {
917        return iter.addr();
918      }
919    }
920  }
921  return NULL;
922}
923
924
925void static_stub_Relocation::clear_inline_cache() {
926  // Call stub is only used when calling the interpreted code.
927  // It does not really need to be cleared, except that we want to clean out the methodoop.
928  CompiledStaticCall::set_stub_to_clean(this);
929}
930
931
932void external_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
933  address target = _target;
934  if (target == NULL) {
935    // An absolute embedded reference to an external location,
936    // which means there is nothing to fix here.
937    return;
938  }
939  // Probably this reference is absolute, not relative, so the
940  // following is probably a no-op.
941  assert(src->section_index_of(target) == CodeBuffer::SECT_NONE, "sanity");
942  set_value(target);
943}
944
945
946address external_word_Relocation::target() {
947  address target = _target;
948  if (target == NULL) {
949    target = pd_get_address_from_code();
950  }
951  return target;
952}
953
954
955void internal_word_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
956  address target = _target;
957  if (target == NULL) {
958    if (addr_in_const()) {
959      target = new_addr_for(*(address*)addr(), src, dest);
960    } else {
961      target = new_addr_for(pd_get_address_from_code(), src, dest);
962    }
963  }
964  set_value(target);
965}
966
967
968address internal_word_Relocation::target() {
969  address target = _target;
970  if (target == NULL) {
971    target = pd_get_address_from_code();
972  }
973  return target;
974}
975
976
977breakpoint_Relocation::breakpoint_Relocation(int kind, address target, bool internal) {
978  bool active    = false;
979  bool enabled   = (kind == initialization);
980  bool removable = (kind != safepoint);
981  bool settable  = (target == NULL);
982
983  int bits = kind;
984  if (enabled)    bits |= enabled_state;
985  if (internal)   bits |= internal_attr;
986  if (removable)  bits |= removable_attr;
987  if (settable)   bits |= settable_attr;
988
989  _bits = bits | high_bit;
990  _target = target;
991
992  assert(this->kind()      == kind,      "kind encoded");
993  assert(this->enabled()   == enabled,   "enabled encoded");
994  assert(this->active()    == active,    "active encoded");
995  assert(this->internal()  == internal,  "internal encoded");
996  assert(this->removable() == removable, "removable encoded");
997  assert(this->settable()  == settable,  "settable encoded");
998}
999
1000
1001address breakpoint_Relocation::target() const {
1002  return _target;
1003}
1004
1005
1006void breakpoint_Relocation::set_target(address x) {
1007  assert(settable(), "must be settable");
1008  jint target_bits =
1009    (jint)(internal() ? scaled_offset           (x, addr())
1010                      : runtime_address_to_index(x));
1011  short* p = &live_bits() + 1;
1012  p = add_jint(p, target_bits);
1013  assert(p == instrs(), "new target must fit");
1014  _target = x;
1015}
1016
1017
1018void breakpoint_Relocation::set_enabled(bool b) {
1019  if (enabled() == b) return;
1020
1021  if (b) {
1022    set_bits(bits() | enabled_state);
1023  } else {
1024    set_active(false);          // remove the actual breakpoint insn, if any
1025    set_bits(bits() & ~enabled_state);
1026  }
1027}
1028
1029
1030void breakpoint_Relocation::set_active(bool b) {
1031  assert(!b || enabled(), "cannot activate a disabled breakpoint");
1032
1033  if (active() == b) return;
1034
1035  // %%% should probably seize a lock here (might not be the right lock)
1036  //MutexLockerEx ml_patch(Patching_lock, true);
1037  //if (active() == b)  return;         // recheck state after locking
1038
1039  if (b) {
1040    set_bits(bits() | active_state);
1041    if (instrlen() == 0)
1042      fatal("breakpoints in original code must be undoable");
1043    pd_swap_in_breakpoint (addr(), instrs(), instrlen());
1044  } else {
1045    set_bits(bits() & ~active_state);
1046    pd_swap_out_breakpoint(addr(), instrs(), instrlen());
1047  }
1048}
1049
1050
1051//---------------------------------------------------------------------------------
1052// Non-product code
1053
1054#ifndef PRODUCT
1055
1056static const char* reloc_type_string(relocInfo::relocType t) {
1057  switch (t) {
1058  #define EACH_CASE(name) \
1059  case relocInfo::name##_type: \
1060    return #name;
1061
1062  APPLY_TO_RELOCATIONS(EACH_CASE);
1063  #undef EACH_CASE
1064
1065  case relocInfo::none:
1066    return "none";
1067  case relocInfo::data_prefix_tag:
1068    return "prefix";
1069  default:
1070    return "UNKNOWN RELOC TYPE";
1071  }
1072}
1073
1074
1075void RelocIterator::print_current() {
1076  if (!has_current()) {
1077    tty->print_cr("(no relocs)");
1078    return;
1079  }
1080  tty->print("relocInfo@" INTPTR_FORMAT " [type=%d(%s) addr=" INTPTR_FORMAT,
1081             _current, type(), reloc_type_string((relocInfo::relocType) type()), _addr);
1082  if (current()->format() != 0)
1083    tty->print(" format=%d", current()->format());
1084  if (datalen() == 1) {
1085    tty->print(" data=%d", data()[0]);
1086  } else if (datalen() > 0) {
1087    tty->print(" data={");
1088    for (int i = 0; i < datalen(); i++) {
1089      tty->print("%04x", data()[i] & 0xFFFF);
1090    }
1091    tty->print("}");
1092  }
1093  tty->print("]");
1094  switch (type()) {
1095  case relocInfo::oop_type:
1096    {
1097      oop_Relocation* r = oop_reloc();
1098      oop* oop_addr  = NULL;
1099      oop  raw_oop   = NULL;
1100      oop  oop_value = NULL;
1101      if (code() != NULL || r->oop_is_immediate()) {
1102        oop_addr  = r->oop_addr();
1103        raw_oop   = *oop_addr;
1104        oop_value = r->oop_value();
1105      }
1106      tty->print(" | [oop_addr=" INTPTR_FORMAT " *=" INTPTR_FORMAT " offset=%d]",
1107                 oop_addr, (address)raw_oop, r->offset());
1108      // Do not print the oop by default--we want this routine to
1109      // work even during GC or other inconvenient times.
1110      if (WizardMode && oop_value != NULL) {
1111        tty->print("oop_value=" INTPTR_FORMAT ": ", (address)oop_value);
1112        oop_value->print_value_on(tty);
1113      }
1114      break;
1115    }
1116  case relocInfo::external_word_type:
1117  case relocInfo::internal_word_type:
1118  case relocInfo::section_word_type:
1119    {
1120      DataRelocation* r = (DataRelocation*) reloc();
1121      tty->print(" | [target=" INTPTR_FORMAT "]", r->value()); //value==target
1122      break;
1123    }
1124  case relocInfo::static_call_type:
1125  case relocInfo::runtime_call_type:
1126    {
1127      CallRelocation* r = (CallRelocation*) reloc();
1128      tty->print(" | [destination=" INTPTR_FORMAT "]", r->destination());
1129      break;
1130    }
1131  case relocInfo::virtual_call_type:
1132    {
1133      virtual_call_Relocation* r = (virtual_call_Relocation*) reloc();
1134      tty->print(" | [destination=" INTPTR_FORMAT " first_oop=" INTPTR_FORMAT " oop_limit=" INTPTR_FORMAT "]",
1135                 r->destination(), r->first_oop(), r->oop_limit());
1136      break;
1137    }
1138  case relocInfo::static_stub_type:
1139    {
1140      static_stub_Relocation* r = (static_stub_Relocation*) reloc();
1141      tty->print(" | [static_call=" INTPTR_FORMAT "]", r->static_call());
1142      break;
1143    }
1144  }
1145  tty->cr();
1146}
1147
1148
1149void RelocIterator::print() {
1150  RelocIterator save_this = (*this);
1151  relocInfo* scan = _current;
1152  if (!has_current())  scan += 1;  // nothing to scan here!
1153
1154  bool skip_next = has_current();
1155  bool got_next;
1156  while (true) {
1157    got_next = (skip_next || next());
1158    skip_next = false;
1159
1160    tty->print("         @" INTPTR_FORMAT ": ", scan);
1161    relocInfo* newscan = _current+1;
1162    if (!has_current())  newscan -= 1;  // nothing to scan here!
1163    while (scan < newscan) {
1164      tty->print("%04x", *(short*)scan & 0xFFFF);
1165      scan++;
1166    }
1167    tty->cr();
1168
1169    if (!got_next)  break;
1170    print_current();
1171  }
1172
1173  (*this) = save_this;
1174}
1175
1176// For the debugger:
1177extern "C"
1178void print_blob_locs(CodeBlob* cb) {
1179  cb->print();
1180  RelocIterator iter(cb);
1181  iter.print();
1182}
1183extern "C"
1184void print_buf_locs(CodeBuffer* cb) {
1185  FlagSetting fs(PrintRelocations, true);
1186  cb->print();
1187}
1188#endif // !PRODUCT
1189