dependencies.hpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
26#define SHARE_VM_CODE_DEPENDENCIES_HPP
27
28#include "ci/ciCallSite.hpp"
29#include "ci/ciKlass.hpp"
30#include "ci/ciMethodHandle.hpp"
31#include "classfile/systemDictionary.hpp"
32#include "code/compressedStream.hpp"
33#include "code/nmethod.hpp"
34#include "utilities/growableArray.hpp"
35
36//** Dependencies represent assertions (approximate invariants) within
37// the runtime system, e.g. class hierarchy changes.  An example is an
38// assertion that a given method is not overridden; another example is
39// that a type has only one concrete subtype.  Compiled code which
40// relies on such assertions must be discarded if they are overturned
41// by changes in the runtime system.  We can think of these assertions
42// as approximate invariants, because we expect them to be overturned
43// very infrequently.  We are willing to perform expensive recovery
44// operations when they are overturned.  The benefit, of course, is
45// performing optimistic optimizations (!) on the object code.
46//
47// Changes in the class hierarchy due to dynamic linking or
48// class evolution can violate dependencies.  There is enough
49// indexing between classes and nmethods to make dependency
50// checking reasonably efficient.
51
52class ciEnv;
53class nmethod;
54class OopRecorder;
55class xmlStream;
56class CompileLog;
57class DepChange;
58class   KlassDepChange;
59class   CallSiteDepChange;
60class No_Safepoint_Verifier;
61
62class Dependencies: public ResourceObj {
63 public:
64  // Note: In the comments on dependency types, most uses of the terms
65  // subtype and supertype are used in a "non-strict" or "inclusive"
66  // sense, and are starred to remind the reader of this fact.
67  // Strict uses of the terms use the word "proper".
68  //
69  // Specifically, every class is its own subtype* and supertype*.
70  // (This trick is easier than continually saying things like "Y is a
71  // subtype of X or X itself".)
72  //
73  // Sometimes we write X > Y to mean X is a proper supertype of Y.
74  // The notation X > {Y, Z} means X has proper subtypes Y, Z.
75  // The notation X.m > Y means that Y inherits m from X, while
76  // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
77  // as *I > A, meaning (abstract) interface I is a super type of A,
78  // or A.*m > B.m, meaning B.m implements abstract method A.m.
79  //
80  // In this module, the terms "subtype" and "supertype" refer to
81  // Java-level reference type conversions, as detected by
82  // "instanceof" and performed by "checkcast" operations.  The method
83  // Klass::is_subtype_of tests these relations.  Note that "subtype"
84  // is richer than "subclass" (as tested by Klass::is_subclass_of),
85  // since it takes account of relations involving interface and array
86  // types.
87  //
88  // To avoid needless complexity, dependencies involving array types
89  // are not accepted.  If you need to make an assertion about an
90  // array type, make the assertion about its corresponding element
91  // types.  Any assertion that might change about an array type can
92  // be converted to an assertion about its element type.
93  //
94  // Most dependencies are evaluated over a "context type" CX, which
95  // stands for the set Subtypes(CX) of every Java type that is a subtype*
96  // of CX.  When the system loads a new class or interface N, it is
97  // responsible for re-evaluating changed dependencies whose context
98  // type now includes N, that is, all super types of N.
99  //
100  enum DepType {
101    end_marker = 0,
102
103    // An 'evol' dependency simply notes that the contents of the
104    // method were used.  If it evolves (is replaced), the nmethod
105    // must be recompiled.  No other dependencies are implied.
106    evol_method,
107    FIRST_TYPE = evol_method,
108
109    // A context type CX is a leaf it if has no proper subtype.
110    leaf_type,
111
112    // An abstract class CX has exactly one concrete subtype CC.
113    abstract_with_unique_concrete_subtype,
114
115    // The type CX is purely abstract, with no concrete subtype* at all.
116    abstract_with_no_concrete_subtype,
117
118    // The concrete CX is free of concrete proper subtypes.
119    concrete_with_no_concrete_subtype,
120
121    // Given a method M1 and a context class CX, the set MM(CX, M1) of
122    // "concrete matching methods" in CX of M1 is the set of every
123    // concrete M2 for which it is possible to create an invokevirtual
124    // or invokeinterface call site that can reach either M1 or M2.
125    // That is, M1 and M2 share a name, signature, and vtable index.
126    // We wish to notice when the set MM(CX, M1) is just {M1}, or
127    // perhaps a set of two {M1,M2}, and issue dependencies on this.
128
129    // The set MM(CX, M1) can be computed by starting with any matching
130    // concrete M2 that is inherited into CX, and then walking the
131    // subtypes* of CX looking for concrete definitions.
132
133    // The parameters to this dependency are the method M1 and the
134    // context class CX.  M1 must be either inherited in CX or defined
135    // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
136    // than {M1}.
137    unique_concrete_method,       // one unique concrete method under CX
138
139    // An "exclusive" assertion concerns two methods or subtypes, and
140    // declares that there are at most two (or perhaps later N>2)
141    // specific items that jointly satisfy the restriction.
142    // We list all items explicitly rather than just giving their
143    // count, for robustness in the face of complex schema changes.
144
145    // A context class CX (which may be either abstract or concrete)
146    // has two exclusive concrete subtypes* C1, C2 if every concrete
147    // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
148    // are equal to CX, then CX itself must be abstract.  But it is
149    // also possible (for example) that C1 is CX (a concrete class)
150    // and C2 is a proper subtype of C1.
151    abstract_with_exclusive_concrete_subtypes_2,
152
153    // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
154    exclusive_concrete_methods_2,
155
156    // This dependency asserts that no instances of class or it's
157    // subclasses require finalization registration.
158    no_finalizable_subclasses,
159
160    // This dependency asserts when the CallSite.target value changed.
161    call_site_target_value,
162
163    TYPE_LIMIT
164  };
165  enum {
166    LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
167
168    // handy categorizations of dependency types:
169    all_types           = ((1 << TYPE_LIMIT) - 1) & ((-1) << FIRST_TYPE),
170
171    non_klass_types     = (1 << call_site_target_value),
172    klass_types         = all_types & ~non_klass_types,
173
174    non_ctxk_types      = (1 << evol_method),
175    implicit_ctxk_types = (1 << call_site_target_value),
176    explicit_ctxk_types = all_types & ~(non_ctxk_types | implicit_ctxk_types),
177
178    max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
179
180    // A "context type" is a class or interface that
181    // provides context for evaluating a dependency.
182    // When present, it is one of the arguments (dep_context_arg).
183    //
184    // If a dependency does not have a context type, there is a
185    // default context, depending on the type of the dependency.
186    // This bit signals that a default context has been compressed away.
187    default_context_type_bit = (1<<LG2_TYPE_LIMIT)
188  };
189
190  static const char* dep_name(DepType dept);
191  static int         dep_args(DepType dept);
192
193  static bool is_klass_type(           DepType dept) { return dept_in_mask(dept, klass_types        ); }
194
195  static bool has_explicit_context_arg(DepType dept) { return dept_in_mask(dept, explicit_ctxk_types); }
196  static bool has_implicit_context_arg(DepType dept) { return dept_in_mask(dept, implicit_ctxk_types); }
197
198  static int           dep_context_arg(DepType dept) { return has_explicit_context_arg(dept) ? 0 : -1; }
199  static int  dep_implicit_context_arg(DepType dept) { return has_implicit_context_arg(dept) ? 0 : -1; }
200
201  static void check_valid_dependency_type(DepType dept);
202
203 private:
204  // State for writing a new set of dependencies:
205  GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
206  GrowableArray<ciBaseObject*>*  _deps[TYPE_LIMIT];
207
208  static const char* _dep_name[TYPE_LIMIT];
209  static int         _dep_args[TYPE_LIMIT];
210
211  static bool dept_in_mask(DepType dept, int mask) {
212    return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
213  }
214
215  bool note_dep_seen(int dept, ciBaseObject* x) {
216    assert(dept < BitsPerInt, "oob");
217    int x_id = x->ident();
218    assert(_dep_seen != NULL, "deps must be writable");
219    int seen = _dep_seen->at_grow(x_id, 0);
220    _dep_seen->at_put(x_id, seen | (1<<dept));
221    // return true if we've already seen dept/x
222    return (seen & (1<<dept)) != 0;
223  }
224
225  bool maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
226                        int ctxk_i, ciKlass* ctxk);
227
228  void sort_all_deps();
229  size_t estimate_size_in_bytes();
230
231  // Initialize _deps, etc.
232  void initialize(ciEnv* env);
233
234  // State for making a new set of dependencies:
235  OopRecorder* _oop_recorder;
236
237  // Logging support
238  CompileLog* _log;
239
240  address  _content_bytes;  // everything but the oop references, encoded
241  size_t   _size_in_bytes;
242
243 public:
244  // Make a new empty dependencies set.
245  Dependencies(ciEnv* env) {
246    initialize(env);
247  }
248
249 private:
250  // Check for a valid context type.
251  // Enforce the restriction against array types.
252  static void check_ctxk(ciKlass* ctxk) {
253    assert(ctxk->is_instance_klass(), "java types only");
254  }
255  static void check_ctxk_concrete(ciKlass* ctxk) {
256    assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
257  }
258  static void check_ctxk_abstract(ciKlass* ctxk) {
259    check_ctxk(ctxk);
260    assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
261  }
262
263  void assert_common_1(DepType dept, ciBaseObject* x);
264  void assert_common_2(DepType dept, ciBaseObject* x0, ciBaseObject* x1);
265  void assert_common_3(DepType dept, ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2);
266
267 public:
268  // Adding assertions to a new dependency set at compile time:
269  void assert_evol_method(ciMethod* m);
270  void assert_leaf_type(ciKlass* ctxk);
271  void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
272  void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
273  void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
274  void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
275  void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
276  void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
277  void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
278  void assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle);
279
280  // Define whether a given method or type is concrete.
281  // These methods define the term "concrete" as used in this module.
282  // For this module, an "abstract" class is one which is non-concrete.
283  //
284  // Future optimizations may allow some classes to remain
285  // non-concrete until their first instantiation, and allow some
286  // methods to remain non-concrete until their first invocation.
287  // In that case, there would be a middle ground between concrete
288  // and abstract (as defined by the Java language and VM).
289  static bool is_concrete_klass(Klass* k);    // k is instantiable
290  static bool is_concrete_method(Method* m);  // m is invocable
291  static Klass* find_finalizable_subclass(Klass* k);
292
293  // These versions of the concreteness queries work through the CI.
294  // The CI versions are allowed to skew sometimes from the VM
295  // (oop-based) versions.  The cost of such a difference is a
296  // (safely) aborted compilation, or a deoptimization, or a missed
297  // optimization opportunity.
298  //
299  // In order to prevent spurious assertions, query results must
300  // remain stable within any single ciEnv instance.  (I.e., they must
301  // not go back into the VM to get their value; they must cache the
302  // bit in the CI, either eagerly or lazily.)
303  static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
304  static bool is_concrete_method(ciMethod* m);       // m appears invocable
305  static bool has_finalizable_subclass(ciInstanceKlass* k);
306
307  // As a general rule, it is OK to compile under the assumption that
308  // a given type or method is concrete, even if it at some future
309  // point becomes abstract.  So dependency checking is one-sided, in
310  // that it permits supposedly concrete classes or methods to turn up
311  // as really abstract.  (This shouldn't happen, except during class
312  // evolution, but that's the logic of the checking.)  However, if a
313  // supposedly abstract class or method suddenly becomes concrete, a
314  // dependency on it must fail.
315
316  // Checking old assertions at run-time (in the VM only):
317  static Klass* check_evol_method(Method* m);
318  static Klass* check_leaf_type(Klass* ctxk);
319  static Klass* check_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck,
320                                                              KlassDepChange* changes = NULL);
321  static Klass* check_abstract_with_no_concrete_subtype(Klass* ctxk,
322                                                          KlassDepChange* changes = NULL);
323  static Klass* check_concrete_with_no_concrete_subtype(Klass* ctxk,
324                                                          KlassDepChange* changes = NULL);
325  static Klass* check_unique_concrete_method(Klass* ctxk, Method* uniqm,
326                                               KlassDepChange* changes = NULL);
327  static Klass* check_abstract_with_exclusive_concrete_subtypes(Klass* ctxk, Klass* k1, Klass* k2,
328                                                                  KlassDepChange* changes = NULL);
329  static Klass* check_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2,
330                                                   KlassDepChange* changes = NULL);
331  static Klass* check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes = NULL);
332  static Klass* check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes = NULL);
333  // A returned Klass* is NULL if the dependency assertion is still
334  // valid.  A non-NULL Klass* is a 'witness' to the assertion
335  // failure, a point in the class hierarchy where the assertion has
336  // been proven false.  For example, if check_leaf_type returns
337  // non-NULL, the value is a subtype of the supposed leaf type.  This
338  // witness value may be useful for logging the dependency failure.
339  // Note that, when a dependency fails, there may be several possible
340  // witnesses to the failure.  The value returned from the check_foo
341  // method is chosen arbitrarily.
342
343  // The 'changes' value, if non-null, requests a limited spot-check
344  // near the indicated recent changes in the class hierarchy.
345  // It is used by DepStream::spot_check_dependency_at.
346
347  // Detecting possible new assertions:
348  static Klass*    find_unique_concrete_subtype(Klass* ctxk);
349  static Method*   find_unique_concrete_method(Klass* ctxk, Method* m);
350  static int       find_exclusive_concrete_subtypes(Klass* ctxk, int klen, Klass* k[]);
351  static int       find_exclusive_concrete_methods(Klass* ctxk, int mlen, Method* m[]);
352
353  // Create the encoding which will be stored in an nmethod.
354  void encode_content_bytes();
355
356  address content_bytes() {
357    assert(_content_bytes != NULL, "encode it first");
358    return _content_bytes;
359  }
360  size_t size_in_bytes() {
361    assert(_content_bytes != NULL, "encode it first");
362    return _size_in_bytes;
363  }
364
365  OopRecorder* oop_recorder() { return _oop_recorder; }
366  CompileLog*  log()          { return _log; }
367
368  void copy_to(nmethod* nm);
369
370  void log_all_dependencies();
371  void log_dependency(DepType dept, int nargs, ciBaseObject* args[]) {
372    write_dependency_to(log(), dept, nargs, args);
373  }
374  void log_dependency(DepType dept,
375                      ciBaseObject* x0,
376                      ciBaseObject* x1 = NULL,
377                      ciBaseObject* x2 = NULL) {
378    if (log() == NULL)  return;
379    ciBaseObject* args[max_arg_count];
380    args[0] = x0;
381    args[1] = x1;
382    args[2] = x2;
383    assert(2 < max_arg_count, "");
384    log_dependency(dept, dep_args(dept), args);
385  }
386
387  class DepArgument : public ResourceObj {
388   private:
389    bool  _is_oop;
390    bool  _valid;
391    void* _value;
392   public:
393    DepArgument() : _is_oop(false), _value(NULL), _valid(false) {}
394    DepArgument(oop v): _is_oop(true), _value(v), _valid(true) {}
395    DepArgument(Metadata* v): _is_oop(false), _value(v), _valid(true) {}
396
397    bool is_null() const               { return _value == NULL; }
398    bool is_oop() const                { return _is_oop; }
399    bool is_metadata() const           { return !_is_oop; }
400    bool is_klass() const              { return is_metadata() && metadata_value()->is_klass(); }
401    bool is_method() const              { return is_metadata() && metadata_value()->is_method(); }
402
403    oop oop_value() const              { assert(_is_oop && _valid, "must be"); return (oop) _value; }
404    Metadata* metadata_value() const { assert(!_is_oop && _valid, "must be"); return (Metadata*) _value; }
405  };
406
407  static void write_dependency_to(CompileLog* log,
408                                  DepType dept,
409                                  int nargs, ciBaseObject* args[],
410                                  Klass* witness = NULL);
411  static void write_dependency_to(CompileLog* log,
412                                  DepType dept,
413                                  int nargs, DepArgument args[],
414                                  Klass* witness = NULL);
415  static void write_dependency_to(xmlStream* xtty,
416                                  DepType dept,
417                                  int nargs, DepArgument args[],
418                                  Klass* witness = NULL);
419  static void print_dependency(DepType dept,
420                               int nargs, DepArgument args[],
421                               Klass* witness = NULL);
422
423 private:
424  // helper for encoding common context types as zero:
425  static ciKlass* ctxk_encoded_as_null(DepType dept, ciBaseObject* x);
426
427  static Klass* ctxk_encoded_as_null(DepType dept, Metadata* x);
428
429 public:
430  // Use this to iterate over an nmethod's dependency set.
431  // Works on new and old dependency sets.
432  // Usage:
433  //
434  // ;
435  // Dependencies::DepType dept;
436  // for (Dependencies::DepStream deps(nm); deps.next(); ) {
437  //   ...
438  // }
439  //
440  // The caller must be in the VM, since oops are not wrapped in handles.
441  class DepStream {
442  private:
443    nmethod*              _code;   // null if in a compiler thread
444    Dependencies*         _deps;   // null if not in a compiler thread
445    CompressedReadStream  _bytes;
446#ifdef ASSERT
447    size_t                _byte_limit;
448#endif
449
450    // iteration variables:
451    DepType               _type;
452    int                   _xi[max_arg_count+1];
453
454    void initial_asserts(size_t byte_limit) NOT_DEBUG({});
455
456    inline Metadata* recorded_metadata_at(int i);
457    inline oop recorded_oop_at(int i);
458
459    Klass* check_klass_dependency(KlassDepChange* changes);
460    Klass* check_call_site_dependency(CallSiteDepChange* changes);
461
462    void trace_and_log_witness(Klass* witness);
463
464  public:
465    DepStream(Dependencies* deps)
466      : _deps(deps),
467        _code(NULL),
468        _bytes(deps->content_bytes())
469    {
470      initial_asserts(deps->size_in_bytes());
471    }
472    DepStream(nmethod* code)
473      : _deps(NULL),
474        _code(code),
475        _bytes(code->dependencies_begin())
476    {
477      initial_asserts(code->dependencies_size());
478    }
479
480    bool next();
481
482    DepType type()               { return _type; }
483    int argument_count()         { return dep_args(type()); }
484    int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
485                                   return _xi[i]; }
486    Metadata* argument(int i);     // => recorded_oop_at(argument_index(i))
487    oop argument_oop(int i);         // => recorded_oop_at(argument_index(i))
488    Klass* context_type();
489
490    bool is_klass_type()         { return Dependencies::is_klass_type(type()); }
491
492    Method* method_argument(int i) {
493      Metadata* x = argument(i);
494      assert(x->is_method(), "type");
495      return (Method*) x;
496    }
497    Klass* type_argument(int i) {
498      Metadata* x = argument(i);
499      assert(x->is_klass(), "type");
500      return (Klass*) x;
501    }
502
503    // The point of the whole exercise:  Is this dep still OK?
504    Klass* check_dependency() {
505      Klass* result = check_klass_dependency(NULL);
506      if (result != NULL)  return result;
507      return check_call_site_dependency(NULL);
508    }
509
510    // A lighter version:  Checks only around recent changes in a class
511    // hierarchy.  (See Universe::flush_dependents_on.)
512    Klass* spot_check_dependency_at(DepChange& changes);
513
514    // Log the current dependency to xtty or compilation log.
515    void log_dependency(Klass* witness = NULL);
516
517    // Print the current dependency to tty.
518    void print_dependency(Klass* witness = NULL, bool verbose = false);
519  };
520  friend class Dependencies::DepStream;
521
522  static void print_statistics() PRODUCT_RETURN;
523};
524
525
526// Every particular DepChange is a sub-class of this class.
527class DepChange : public StackObj {
528 public:
529  // What kind of DepChange is this?
530  virtual bool is_klass_change()     const { return false; }
531  virtual bool is_call_site_change() const { return false; }
532
533  // Subclass casting with assertions.
534  KlassDepChange*    as_klass_change() {
535    assert(is_klass_change(), "bad cast");
536    return (KlassDepChange*) this;
537  }
538  CallSiteDepChange* as_call_site_change() {
539    assert(is_call_site_change(), "bad cast");
540    return (CallSiteDepChange*) this;
541  }
542
543  void print();
544
545 public:
546  enum ChangeType {
547    NO_CHANGE = 0,              // an uninvolved klass
548    Change_new_type,            // a newly loaded type
549    Change_new_sub,             // a super with a new subtype
550    Change_new_impl,            // an interface with a new implementation
551    CHANGE_LIMIT,
552    Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
553  };
554
555  // Usage:
556  // for (DepChange::ContextStream str(changes); str.next(); ) {
557  //   Klass* k = str.klass();
558  //   switch (str.change_type()) {
559  //     ...
560  //   }
561  // }
562  class ContextStream : public StackObj {
563   private:
564    DepChange&  _changes;
565    friend class DepChange;
566
567    // iteration variables:
568    ChangeType  _change_type;
569    Klass*      _klass;
570    Array<Klass*>* _ti_base;    // i.e., transitive_interfaces
571    int         _ti_index;
572    int         _ti_limit;
573
574    // start at the beginning:
575    void start();
576
577   public:
578    ContextStream(DepChange& changes)
579      : _changes(changes)
580    { start(); }
581
582    ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
583      : _changes(changes)
584      // the nsv argument makes it safe to hold oops like _klass
585    { start(); }
586
587    bool next();
588
589    ChangeType change_type()     { return _change_type; }
590    Klass*     klass()           { return _klass; }
591  };
592  friend class DepChange::ContextStream;
593};
594
595
596// A class hierarchy change coming through the VM (under the Compile_lock).
597// The change is structured as a single new type with any number of supers
598// and implemented interface types.  Other than the new type, any of the
599// super types can be context types for a relevant dependency, which the
600// new type could invalidate.
601class KlassDepChange : public DepChange {
602 private:
603  // each change set is rooted in exactly one new type (at present):
604  KlassHandle _new_type;
605
606  void initialize();
607
608 public:
609  // notes the new type, marks it and all its super-types
610  KlassDepChange(KlassHandle new_type)
611    : _new_type(new_type)
612  {
613    initialize();
614  }
615
616  // cleans up the marks
617  ~KlassDepChange();
618
619  // What kind of DepChange is this?
620  virtual bool is_klass_change() const { return true; }
621
622  Klass* new_type() { return _new_type(); }
623
624  // involves_context(k) is true if k is new_type or any of the super types
625  bool involves_context(Klass* k);
626};
627
628
629// A CallSite has changed its target.
630class CallSiteDepChange : public DepChange {
631 private:
632  Handle _call_site;
633  Handle _method_handle;
634
635 public:
636  CallSiteDepChange(Handle call_site, Handle method_handle)
637    : _call_site(call_site),
638      _method_handle(method_handle)
639  {
640    assert(_call_site()    ->is_a(SystemDictionary::CallSite_klass()),     "must be");
641    assert(_method_handle()->is_a(SystemDictionary::MethodHandle_klass()), "must be");
642  }
643
644  // What kind of DepChange is this?
645  virtual bool is_call_site_change() const { return true; }
646
647  oop call_site()     const { return _call_site();     }
648  oop method_handle() const { return _method_handle(); }
649};
650
651#endif // SHARE_VM_CODE_DEPENDENCIES_HPP
652