dependencies.cpp revision 9111:a41fe5ffa839
1/*
2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciArrayKlass.hpp"
27#include "ci/ciEnv.hpp"
28#include "ci/ciKlass.hpp"
29#include "ci/ciMethod.hpp"
30#include "classfile/javaClasses.inline.hpp"
31#include "code/dependencies.hpp"
32#include "compiler/compileLog.hpp"
33#include "oops/oop.inline.hpp"
34#include "oops/objArrayKlass.hpp"
35#include "runtime/handles.hpp"
36#include "runtime/handles.inline.hpp"
37#include "runtime/thread.inline.hpp"
38#include "utilities/copy.hpp"
39
40
41#ifdef ASSERT
42static bool must_be_in_vm() {
43  Thread* thread = Thread::current();
44  if (thread->is_Java_thread())
45    return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
46  else
47    return true;  //something like this: thread->is_VM_thread();
48}
49#endif //ASSERT
50
51void Dependencies::initialize(ciEnv* env) {
52  Arena* arena = env->arena();
53  _oop_recorder = env->oop_recorder();
54  _log = env->log();
55  _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
56#if INCLUDE_JVMCI
57  _using_dep_values = false;
58#endif
59  DEBUG_ONLY(_deps[end_marker] = NULL);
60  for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
61    _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
62  }
63  _content_bytes = NULL;
64  _size_in_bytes = (size_t)-1;
65
66  assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
67}
68
69void Dependencies::assert_evol_method(ciMethod* m) {
70  assert_common_1(evol_method, m);
71}
72
73void Dependencies::assert_leaf_type(ciKlass* ctxk) {
74  if (ctxk->is_array_klass()) {
75    // As a special case, support this assertion on an array type,
76    // which reduces to an assertion on its element type.
77    // Note that this cannot be done with assertions that
78    // relate to concreteness or abstractness.
79    ciType* elemt = ctxk->as_array_klass()->base_element_type();
80    if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
81    ctxk = elemt->as_instance_klass();
82    //if (ctxk->is_final())  return;            // Ex:  String[][]
83  }
84  check_ctxk(ctxk);
85  assert_common_1(leaf_type, ctxk);
86}
87
88void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
89  check_ctxk_abstract(ctxk);
90  assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
91}
92
93void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
94  check_ctxk_abstract(ctxk);
95  assert_common_1(abstract_with_no_concrete_subtype, ctxk);
96}
97
98void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
99  check_ctxk_concrete(ctxk);
100  assert_common_1(concrete_with_no_concrete_subtype, ctxk);
101}
102
103void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
104  check_ctxk(ctxk);
105  assert_common_2(unique_concrete_method, ctxk, uniqm);
106}
107
108void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
109  check_ctxk(ctxk);
110  assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
111}
112
113void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
114  check_ctxk(ctxk);
115  assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
116}
117
118void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
119  check_ctxk(ctxk);
120  assert_common_1(no_finalizable_subclasses, ctxk);
121}
122
123void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
124  assert_common_2(call_site_target_value, call_site, method_handle);
125}
126
127#if INCLUDE_JVMCI
128
129Dependencies::Dependencies(Arena* arena, OopRecorder* oop_recorder, CompileLog* log) {
130  _oop_recorder = oop_recorder;
131  _log = log;
132  _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
133  _using_dep_values = true;
134  DEBUG_ONLY(_dep_values[end_marker] = NULL);
135  for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
136    _dep_values[i] = new(arena) GrowableArray<DepValue>(arena, 10, 0, DepValue());
137  }
138  _content_bytes = NULL;
139  _size_in_bytes = (size_t)-1;
140
141  assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
142}
143
144void Dependencies::assert_evol_method(Method* m) {
145  assert_common_1(evol_method, DepValue(_oop_recorder, m));
146}
147
148void Dependencies::assert_has_no_finalizable_subclasses(Klass* ctxk) {
149  check_ctxk(ctxk);
150  assert_common_1(no_finalizable_subclasses, DepValue(_oop_recorder, ctxk));
151}
152
153void Dependencies::assert_leaf_type(Klass* ctxk) {
154  if (ctxk->oop_is_array()) {
155    // As a special case, support this assertion on an array type,
156    // which reduces to an assertion on its element type.
157    // Note that this cannot be done with assertions that
158    // relate to concreteness or abstractness.
159    BasicType elemt = ArrayKlass::cast(ctxk)->element_type();
160    if (is_java_primitive(elemt))  return;   // Ex:  int[][]
161    ctxk = ObjArrayKlass::cast(ctxk)->bottom_klass();
162    //if (ctxk->is_final())  return;            // Ex:  String[][]
163  }
164  check_ctxk(ctxk);
165  assert_common_1(leaf_type, DepValue(_oop_recorder, ctxk));
166}
167
168void Dependencies::assert_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck) {
169  check_ctxk_abstract(ctxk);
170  DepValue ctxk_dv(_oop_recorder, ctxk);
171  DepValue conck_dv(_oop_recorder, conck, &ctxk_dv);
172  assert_common_2(abstract_with_unique_concrete_subtype, ctxk_dv, conck_dv);
173}
174
175void Dependencies::assert_unique_concrete_method(Klass* ctxk, Method* uniqm) {
176  check_ctxk(ctxk);
177  assert_common_2(unique_concrete_method, DepValue(_oop_recorder, ctxk), DepValue(_oop_recorder, uniqm));
178}
179
180void Dependencies::assert_call_site_target_value(oop call_site, oop method_handle) {
181  assert_common_2(call_site_target_value, DepValue(_oop_recorder, JNIHandles::make_local(call_site)), DepValue(_oop_recorder, JNIHandles::make_local(method_handle)));
182}
183
184#endif // INCLUDE_JVMCI
185
186
187// Helper function.  If we are adding a new dep. under ctxk2,
188// try to find an old dep. under a broader* ctxk1.  If there is
189//
190bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
191                                    int ctxk_i, ciKlass* ctxk2) {
192  ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
193  if (ctxk2->is_subtype_of(ctxk1)) {
194    return true;  // success, and no need to change
195  } else if (ctxk1->is_subtype_of(ctxk2)) {
196    // new context class fully subsumes previous one
197    deps->at_put(ctxk_i, ctxk2);
198    return true;
199  } else {
200    return false;
201  }
202}
203
204void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
205  assert(dep_args(dept) == 1, "sanity");
206  log_dependency(dept, x);
207  GrowableArray<ciBaseObject*>* deps = _deps[dept];
208
209  // see if the same (or a similar) dep is already recorded
210  if (note_dep_seen(dept, x)) {
211    assert(deps->find(x) >= 0, "sanity");
212  } else {
213    deps->append(x);
214  }
215}
216
217void Dependencies::assert_common_2(DepType dept,
218                                   ciBaseObject* x0, ciBaseObject* x1) {
219  assert(dep_args(dept) == 2, "sanity");
220  log_dependency(dept, x0, x1);
221  GrowableArray<ciBaseObject*>* deps = _deps[dept];
222
223  // see if the same (or a similar) dep is already recorded
224  bool has_ctxk = has_explicit_context_arg(dept);
225  if (has_ctxk) {
226    assert(dep_context_arg(dept) == 0, "sanity");
227    if (note_dep_seen(dept, x1)) {
228      // look in this bucket for redundant assertions
229      const int stride = 2;
230      for (int i = deps->length(); (i -= stride) >= 0; ) {
231        ciBaseObject* y1 = deps->at(i+1);
232        if (x1 == y1) {  // same subject; check the context
233          if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
234            return;
235          }
236        }
237      }
238    }
239  } else {
240    if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
241      // look in this bucket for redundant assertions
242      const int stride = 2;
243      for (int i = deps->length(); (i -= stride) >= 0; ) {
244        ciBaseObject* y0 = deps->at(i+0);
245        ciBaseObject* y1 = deps->at(i+1);
246        if (x0 == y0 && x1 == y1) {
247          return;
248        }
249      }
250    }
251  }
252
253  // append the assertion in the correct bucket:
254  deps->append(x0);
255  deps->append(x1);
256}
257
258void Dependencies::assert_common_3(DepType dept,
259                                   ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
260  assert(dep_context_arg(dept) == 0, "sanity");
261  assert(dep_args(dept) == 3, "sanity");
262  log_dependency(dept, ctxk, x, x2);
263  GrowableArray<ciBaseObject*>* deps = _deps[dept];
264
265  // try to normalize an unordered pair:
266  bool swap = false;
267  switch (dept) {
268  case abstract_with_exclusive_concrete_subtypes_2:
269    swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
270    break;
271  case exclusive_concrete_methods_2:
272    swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
273    break;
274  }
275  if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
276
277  // see if the same (or a similar) dep is already recorded
278  if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
279    // look in this bucket for redundant assertions
280    const int stride = 3;
281    for (int i = deps->length(); (i -= stride) >= 0; ) {
282      ciBaseObject* y  = deps->at(i+1);
283      ciBaseObject* y2 = deps->at(i+2);
284      if (x == y && x2 == y2) {  // same subjects; check the context
285        if (maybe_merge_ctxk(deps, i+0, ctxk)) {
286          return;
287        }
288      }
289    }
290  }
291  // append the assertion in the correct bucket:
292  deps->append(ctxk);
293  deps->append(x);
294  deps->append(x2);
295}
296
297#if INCLUDE_JVMCI
298bool Dependencies::maybe_merge_ctxk(GrowableArray<DepValue>* deps,
299                                    int ctxk_i, DepValue ctxk2_dv) {
300  Klass* ctxk1 = deps->at(ctxk_i).as_klass(_oop_recorder);
301  Klass* ctxk2 = ctxk2_dv.as_klass(_oop_recorder);
302  if (ctxk2->is_subtype_of(ctxk1)) {
303    return true;  // success, and no need to change
304  } else if (ctxk1->is_subtype_of(ctxk2)) {
305    // new context class fully subsumes previous one
306    deps->at_put(ctxk_i, ctxk2_dv);
307    return true;
308  } else {
309    return false;
310  }
311}
312
313void Dependencies::assert_common_1(DepType dept, DepValue x) {
314  assert(dep_args(dept) == 1, "sanity");
315  //log_dependency(dept, x);
316  GrowableArray<DepValue>* deps = _dep_values[dept];
317
318  // see if the same (or a similar) dep is already recorded
319  if (note_dep_seen(dept, x)) {
320    assert(deps->find(x) >= 0, "sanity");
321  } else {
322    deps->append(x);
323  }
324}
325
326void Dependencies::assert_common_2(DepType dept,
327                                   DepValue x0, DepValue x1) {
328  assert(dep_args(dept) == 2, "sanity");
329  //log_dependency(dept, x0, x1);
330  GrowableArray<DepValue>* deps = _dep_values[dept];
331
332  // see if the same (or a similar) dep is already recorded
333  bool has_ctxk = has_explicit_context_arg(dept);
334  if (has_ctxk) {
335    assert(dep_context_arg(dept) == 0, "sanity");
336    if (note_dep_seen(dept, x1)) {
337      // look in this bucket for redundant assertions
338      const int stride = 2;
339      for (int i = deps->length(); (i -= stride) >= 0; ) {
340        DepValue y1 = deps->at(i+1);
341        if (x1 == y1) {  // same subject; check the context
342          if (maybe_merge_ctxk(deps, i+0, x0)) {
343            return;
344          }
345        }
346      }
347    }
348  } else {
349    assert(dep_implicit_context_arg(dept) == 0, "sanity");
350    if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
351      // look in this bucket for redundant assertions
352      const int stride = 2;
353      for (int i = deps->length(); (i -= stride) >= 0; ) {
354        DepValue y0 = deps->at(i+0);
355        DepValue y1 = deps->at(i+1);
356        if (x0 == y0 && x1 == y1) {
357          return;
358        }
359      }
360    }
361  }
362
363  // append the assertion in the correct bucket:
364  deps->append(x0);
365  deps->append(x1);
366}
367#endif // INCLUDE_JVMCI
368
369/// Support for encoding dependencies into an nmethod:
370
371void Dependencies::copy_to(nmethod* nm) {
372  address beg = nm->dependencies_begin();
373  address end = nm->dependencies_end();
374  guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
375  Copy::disjoint_words((HeapWord*) content_bytes(),
376                       (HeapWord*) beg,
377                       size_in_bytes() / sizeof(HeapWord));
378  assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
379}
380
381static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
382  for (int i = 0; i < narg; i++) {
383    int diff = p1[i]->ident() - p2[i]->ident();
384    if (diff != 0)  return diff;
385  }
386  return 0;
387}
388static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
389{ return sort_dep(p1, p2, 1); }
390static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
391{ return sort_dep(p1, p2, 2); }
392static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
393{ return sort_dep(p1, p2, 3); }
394
395#if INCLUDE_JVMCI
396// metadata deps are sorted before object deps
397static int sort_dep_value(Dependencies::DepValue* p1, Dependencies::DepValue* p2, int narg) {
398  for (int i = 0; i < narg; i++) {
399    int diff = p1[i].sort_key() - p2[i].sort_key();
400    if (diff != 0)  return diff;
401  }
402  return 0;
403}
404static int sort_dep_value_arg_1(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
405{ return sort_dep_value(p1, p2, 1); }
406static int sort_dep_value_arg_2(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
407{ return sort_dep_value(p1, p2, 2); }
408static int sort_dep_value_arg_3(Dependencies::DepValue* p1, Dependencies::DepValue* p2)
409{ return sort_dep_value(p1, p2, 3); }
410#endif // INCLUDE_JVMCI
411
412void Dependencies::sort_all_deps() {
413#if INCLUDE_JVMCI
414  if (_using_dep_values) {
415    for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
416      DepType dept = (DepType)deptv;
417      GrowableArray<DepValue>* deps = _dep_values[dept];
418      if (deps->length() <= 1)  continue;
419      switch (dep_args(dept)) {
420      case 1: deps->sort(sort_dep_value_arg_1, 1); break;
421      case 2: deps->sort(sort_dep_value_arg_2, 2); break;
422      case 3: deps->sort(sort_dep_value_arg_3, 3); break;
423      default: ShouldNotReachHere();
424      }
425    }
426    return;
427  }
428#endif // INCLUDE_JVMCI
429  for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
430    DepType dept = (DepType)deptv;
431    GrowableArray<ciBaseObject*>* deps = _deps[dept];
432    if (deps->length() <= 1)  continue;
433    switch (dep_args(dept)) {
434    case 1: deps->sort(sort_dep_arg_1, 1); break;
435    case 2: deps->sort(sort_dep_arg_2, 2); break;
436    case 3: deps->sort(sort_dep_arg_3, 3); break;
437    default: ShouldNotReachHere();
438    }
439  }
440}
441
442size_t Dependencies::estimate_size_in_bytes() {
443  size_t est_size = 100;
444#if INCLUDE_JVMCI
445  if (_using_dep_values) {
446    for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
447      DepType dept = (DepType)deptv;
448      GrowableArray<DepValue>* deps = _dep_values[dept];
449      est_size += deps->length() * 2;  // tags and argument(s)
450    }
451    return est_size;
452  }
453#endif // INCLUDE_JVMCI
454  for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
455    DepType dept = (DepType)deptv;
456    GrowableArray<ciBaseObject*>* deps = _deps[dept];
457    est_size += deps->length()*2;  // tags and argument(s)
458  }
459  return est_size;
460}
461
462ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
463  switch (dept) {
464  case abstract_with_exclusive_concrete_subtypes_2:
465    return x->as_metadata()->as_klass();
466  case unique_concrete_method:
467  case exclusive_concrete_methods_2:
468    return x->as_metadata()->as_method()->holder();
469  }
470  return NULL;  // let NULL be NULL
471}
472
473Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
474  assert(must_be_in_vm(), "raw oops here");
475  switch (dept) {
476  case abstract_with_exclusive_concrete_subtypes_2:
477    assert(x->is_klass(), "sanity");
478    return (Klass*) x;
479  case unique_concrete_method:
480  case exclusive_concrete_methods_2:
481    assert(x->is_method(), "sanity");
482    return ((Method*)x)->method_holder();
483  }
484  return NULL;  // let NULL be NULL
485}
486
487void Dependencies::encode_content_bytes() {
488  sort_all_deps();
489
490  // cast is safe, no deps can overflow INT_MAX
491  CompressedWriteStream bytes((int)estimate_size_in_bytes());
492
493#if INCLUDE_JVMCI
494  if (_using_dep_values) {
495    for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
496      DepType dept = (DepType)deptv;
497      GrowableArray<DepValue>* deps = _dep_values[dept];
498      if (deps->length() == 0)  continue;
499      int stride = dep_args(dept);
500      int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
501      assert(stride > 0, "sanity");
502      for (int i = 0; i < deps->length(); i += stride) {
503        jbyte code_byte = (jbyte)dept;
504        int skipj = -1;
505        if (ctxkj >= 0 && ctxkj+1 < stride) {
506          Klass*  ctxk = deps->at(i+ctxkj+0).as_klass(_oop_recorder);
507          DepValue x = deps->at(i+ctxkj+1);  // following argument
508          if (ctxk == ctxk_encoded_as_null(dept, x.as_metadata(_oop_recorder))) {
509            skipj = ctxkj;  // we win:  maybe one less oop to keep track of
510            code_byte |= default_context_type_bit;
511          }
512        }
513        bytes.write_byte(code_byte);
514        for (int j = 0; j < stride; j++) {
515          if (j == skipj)  continue;
516          DepValue v = deps->at(i+j);
517          int idx = v.index();
518          bytes.write_int(idx);
519        }
520      }
521    }
522  } else {
523#endif // INCLUDE_JVMCI
524  for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
525    DepType dept = (DepType)deptv;
526    GrowableArray<ciBaseObject*>* deps = _deps[dept];
527    if (deps->length() == 0)  continue;
528    int stride = dep_args(dept);
529    int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
530    assert(stride > 0, "sanity");
531    for (int i = 0; i < deps->length(); i += stride) {
532      jbyte code_byte = (jbyte)dept;
533      int skipj = -1;
534      if (ctxkj >= 0 && ctxkj+1 < stride) {
535        ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
536        ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
537        if (ctxk == ctxk_encoded_as_null(dept, x)) {
538          skipj = ctxkj;  // we win:  maybe one less oop to keep track of
539          code_byte |= default_context_type_bit;
540        }
541      }
542      bytes.write_byte(code_byte);
543      for (int j = 0; j < stride; j++) {
544        if (j == skipj)  continue;
545        ciBaseObject* v = deps->at(i+j);
546        int idx;
547        if (v->is_object()) {
548          idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
549        } else {
550          ciMetadata* meta = v->as_metadata();
551          idx = _oop_recorder->find_index(meta->constant_encoding());
552        }
553        bytes.write_int(idx);
554      }
555    }
556  }
557#if INCLUDE_JVMCI
558  }
559#endif
560
561  // write a sentinel byte to mark the end
562  bytes.write_byte(end_marker);
563
564  // round it out to a word boundary
565  while (bytes.position() % sizeof(HeapWord) != 0) {
566    bytes.write_byte(end_marker);
567  }
568
569  // check whether the dept byte encoding really works
570  assert((jbyte)default_context_type_bit != 0, "byte overflow");
571
572  _content_bytes = bytes.buffer();
573  _size_in_bytes = bytes.position();
574}
575
576
577const char* Dependencies::_dep_name[TYPE_LIMIT] = {
578  "end_marker",
579  "evol_method",
580  "leaf_type",
581  "abstract_with_unique_concrete_subtype",
582  "abstract_with_no_concrete_subtype",
583  "concrete_with_no_concrete_subtype",
584  "unique_concrete_method",
585  "abstract_with_exclusive_concrete_subtypes_2",
586  "exclusive_concrete_methods_2",
587  "no_finalizable_subclasses",
588  "call_site_target_value"
589};
590
591int Dependencies::_dep_args[TYPE_LIMIT] = {
592  -1,// end_marker
593  1, // evol_method m
594  1, // leaf_type ctxk
595  2, // abstract_with_unique_concrete_subtype ctxk, k
596  1, // abstract_with_no_concrete_subtype ctxk
597  1, // concrete_with_no_concrete_subtype ctxk
598  2, // unique_concrete_method ctxk, m
599  3, // unique_concrete_subtypes_2 ctxk, k1, k2
600  3, // unique_concrete_methods_2 ctxk, m1, m2
601  1, // no_finalizable_subclasses ctxk
602  2  // call_site_target_value call_site, method_handle
603};
604
605const char* Dependencies::dep_name(Dependencies::DepType dept) {
606  if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
607  return _dep_name[dept];
608}
609
610int Dependencies::dep_args(Dependencies::DepType dept) {
611  if (!dept_in_mask(dept, all_types))  return -1;
612  return _dep_args[dept];
613}
614
615void Dependencies::check_valid_dependency_type(DepType dept) {
616  guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
617}
618
619// for the sake of the compiler log, print out current dependencies:
620void Dependencies::log_all_dependencies() {
621  if (log() == NULL)  return;
622  ResourceMark rm;
623  for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
624    DepType dept = (DepType)deptv;
625    GrowableArray<ciBaseObject*>* deps = _deps[dept];
626    int deplen = deps->length();
627    if (deplen == 0) {
628      continue;
629    }
630    int stride = dep_args(dept);
631    GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(stride);
632    for (int i = 0; i < deps->length(); i += stride) {
633      for (int j = 0; j < stride; j++) {
634        // flush out the identities before printing
635        ciargs->push(deps->at(i+j));
636      }
637      write_dependency_to(log(), dept, ciargs);
638      ciargs->clear();
639    }
640    guarantee(deplen == deps->length(), "deps array cannot grow inside nested ResoureMark scope");
641  }
642}
643
644void Dependencies::write_dependency_to(CompileLog* log,
645                                       DepType dept,
646                                       GrowableArray<DepArgument>* args,
647                                       Klass* witness) {
648  if (log == NULL) {
649    return;
650  }
651  ResourceMark rm;
652  ciEnv* env = ciEnv::current();
653  GrowableArray<ciBaseObject*>* ciargs = new GrowableArray<ciBaseObject*>(args->length());
654  for (GrowableArrayIterator<DepArgument> it = args->begin(); it != args->end(); ++it) {
655    DepArgument arg = *it;
656    if (arg.is_oop()) {
657      ciargs->push(env->get_object(arg.oop_value()));
658    } else {
659      ciargs->push(env->get_metadata(arg.metadata_value()));
660    }
661  }
662  int argslen = ciargs->length();
663  Dependencies::write_dependency_to(log, dept, ciargs, witness);
664  guarantee(argslen == ciargs->length(), "ciargs array cannot grow inside nested ResoureMark scope");
665}
666
667void Dependencies::write_dependency_to(CompileLog* log,
668                                       DepType dept,
669                                       GrowableArray<ciBaseObject*>* args,
670                                       Klass* witness) {
671  if (log == NULL) {
672    return;
673  }
674  ResourceMark rm;
675  GrowableArray<int>* argids = new GrowableArray<int>(args->length());
676  for (GrowableArrayIterator<ciBaseObject*> it = args->begin(); it != args->end(); ++it) {
677    ciBaseObject* obj = *it;
678    if (obj->is_object()) {
679      argids->push(log->identify(obj->as_object()));
680    } else {
681      argids->push(log->identify(obj->as_metadata()));
682    }
683  }
684  if (witness != NULL) {
685    log->begin_elem("dependency_failed");
686  } else {
687    log->begin_elem("dependency");
688  }
689  log->print(" type='%s'", dep_name(dept));
690  const int ctxkj = dep_context_arg(dept);  // -1 if no context arg
691  if (ctxkj >= 0 && ctxkj < argids->length()) {
692    log->print(" ctxk='%d'", argids->at(ctxkj));
693  }
694  // write remaining arguments, if any.
695  for (int j = 0; j < argids->length(); j++) {
696    if (j == ctxkj)  continue;  // already logged
697    if (j == 1) {
698      log->print(  " x='%d'",    argids->at(j));
699    } else {
700      log->print(" x%d='%d'", j, argids->at(j));
701    }
702  }
703  if (witness != NULL) {
704    log->object("witness", witness);
705    log->stamp();
706  }
707  log->end_elem();
708}
709
710void Dependencies::write_dependency_to(xmlStream* xtty,
711                                       DepType dept,
712                                       GrowableArray<DepArgument>* args,
713                                       Klass* witness) {
714  if (xtty == NULL) {
715    return;
716  }
717  ResourceMark rm;
718  ttyLocker ttyl;
719  int ctxkj = dep_context_arg(dept);  // -1 if no context arg
720  if (witness != NULL) {
721    xtty->begin_elem("dependency_failed");
722  } else {
723    xtty->begin_elem("dependency");
724  }
725  xtty->print(" type='%s'", dep_name(dept));
726  if (ctxkj >= 0) {
727    xtty->object("ctxk", args->at(ctxkj).metadata_value());
728  }
729  // write remaining arguments, if any.
730  for (int j = 0; j < args->length(); j++) {
731    if (j == ctxkj)  continue;  // already logged
732    DepArgument arg = args->at(j);
733    if (j == 1) {
734      if (arg.is_oop()) {
735        xtty->object("x", arg.oop_value());
736      } else {
737        xtty->object("x", arg.metadata_value());
738      }
739    } else {
740      char xn[10]; sprintf(xn, "x%d", j);
741      if (arg.is_oop()) {
742        xtty->object(xn, arg.oop_value());
743      } else {
744        xtty->object(xn, arg.metadata_value());
745      }
746    }
747  }
748  if (witness != NULL) {
749    xtty->object("witness", witness);
750    xtty->stamp();
751  }
752  xtty->end_elem();
753}
754
755void Dependencies::print_dependency(DepType dept, GrowableArray<DepArgument>* args,
756                                    Klass* witness, outputStream* st) {
757  ResourceMark rm;
758  ttyLocker ttyl;   // keep the following output all in one block
759  st->print_cr("%s of type %s",
760                (witness == NULL)? "Dependency": "Failed dependency",
761                dep_name(dept));
762  // print arguments
763  int ctxkj = dep_context_arg(dept);  // -1 if no context arg
764  for (int j = 0; j < args->length(); j++) {
765    DepArgument arg = args->at(j);
766    bool put_star = false;
767    if (arg.is_null())  continue;
768    const char* what;
769    if (j == ctxkj) {
770      assert(arg.is_metadata(), "must be");
771      what = "context";
772      put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
773    } else if (arg.is_method()) {
774      what = "method ";
775      put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value(), NULL);
776    } else if (arg.is_klass()) {
777      what = "class  ";
778    } else {
779      what = "object ";
780    }
781    st->print("  %s = %s", what, (put_star? "*": ""));
782    if (arg.is_klass()) {
783      st->print("%s", ((Klass*)arg.metadata_value())->external_name());
784    } else if (arg.is_method()) {
785      ((Method*)arg.metadata_value())->print_value_on(st);
786    } else if (arg.is_oop()) {
787      arg.oop_value()->print_value_on(st);
788    } else {
789      ShouldNotReachHere(); // Provide impl for this type.
790    }
791
792    st->cr();
793  }
794  if (witness != NULL) {
795    bool put_star = !Dependencies::is_concrete_klass(witness);
796    st->print_cr("  witness = %s%s",
797                  (put_star? "*": ""),
798                  witness->external_name());
799  }
800}
801
802void Dependencies::DepStream::log_dependency(Klass* witness) {
803  if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
804  ResourceMark rm;
805  const int nargs = argument_count();
806  GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
807  for (int j = 0; j < nargs; j++) {
808    if (is_oop_argument(j)) {
809      args->push(argument_oop(j));
810    } else {
811      args->push(argument(j));
812    }
813  }
814  int argslen = args->length();
815  if (_deps != NULL && _deps->log() != NULL) {
816    if (ciEnv::current() != NULL) {
817      Dependencies::write_dependency_to(_deps->log(), type(), args, witness);
818    } else {
819      // Treat the CompileLog as an xmlstream instead
820      Dependencies::write_dependency_to((xmlStream*)_deps->log(), type(), args, witness);
821    }
822  } else {
823    Dependencies::write_dependency_to(xtty, type(), args, witness);
824  }
825  guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
826}
827
828void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose, outputStream* st) {
829  ResourceMark rm;
830  int nargs = argument_count();
831  GrowableArray<DepArgument>* args = new GrowableArray<DepArgument>(nargs);
832  for (int j = 0; j < nargs; j++) {
833    if (is_oop_argument(j)) {
834      args->push(argument_oop(j));
835    } else {
836      args->push(argument(j));
837    }
838  }
839  int argslen = args->length();
840  Dependencies::print_dependency(type(), args, witness, st);
841  if (verbose) {
842    if (_code != NULL) {
843      st->print("  code: ");
844      _code->print_value_on(st);
845      st->cr();
846    }
847  }
848  guarantee(argslen == args->length(), "args array cannot grow inside nested ResoureMark scope");
849}
850
851
852/// Dependency stream support (decodes dependencies from an nmethod):
853
854#ifdef ASSERT
855void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
856  assert(must_be_in_vm(), "raw oops here");
857  _byte_limit = byte_limit;
858  _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
859  assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
860}
861#endif //ASSERT
862
863bool Dependencies::DepStream::next() {
864  assert(_type != end_marker, "already at end");
865  if (_bytes.position() == 0 && _code != NULL
866      && _code->dependencies_size() == 0) {
867    // Method has no dependencies at all.
868    return false;
869  }
870  int code_byte = (_bytes.read_byte() & 0xFF);
871  if (code_byte == end_marker) {
872    DEBUG_ONLY(_type = end_marker);
873    return false;
874  } else {
875    int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
876    code_byte -= ctxk_bit;
877    DepType dept = (DepType)code_byte;
878    _type = dept;
879    Dependencies::check_valid_dependency_type(dept);
880    int stride = _dep_args[dept];
881    assert(stride == dep_args(dept), "sanity");
882    int skipj = -1;
883    if (ctxk_bit != 0) {
884      skipj = 0;  // currently the only context argument is at zero
885      assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
886    }
887    for (int j = 0; j < stride; j++) {
888      _xi[j] = (j == skipj)? 0: _bytes.read_int();
889    }
890    DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
891    return true;
892  }
893}
894
895inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
896  Metadata* o = NULL;
897  if (_code != NULL) {
898    o = _code->metadata_at(i);
899  } else {
900    o = _deps->oop_recorder()->metadata_at(i);
901  }
902  return o;
903}
904
905inline oop Dependencies::DepStream::recorded_oop_at(int i) {
906  return (_code != NULL)
907         ? _code->oop_at(i)
908    : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
909}
910
911Metadata* Dependencies::DepStream::argument(int i) {
912  Metadata* result = recorded_metadata_at(argument_index(i));
913
914  if (result == NULL) { // Explicit context argument can be compressed
915    int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
916    if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
917      result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
918    }
919  }
920
921  assert(result == NULL || result->is_klass() || result->is_method(), "must be");
922  return result;
923}
924
925/**
926 * Returns a unique identifier for each dependency argument.
927 */
928uintptr_t Dependencies::DepStream::get_identifier(int i) {
929  if (is_oop_argument(i)) {
930    return (uintptr_t)(oopDesc*)argument_oop(i);
931  } else {
932    return (uintptr_t)argument(i);
933  }
934}
935
936oop Dependencies::DepStream::argument_oop(int i) {
937  oop result = recorded_oop_at(argument_index(i));
938  assert(result == NULL || result->is_oop(), "must be");
939  return result;
940}
941
942Klass* Dependencies::DepStream::context_type() {
943  assert(must_be_in_vm(), "raw oops here");
944
945  // Most dependencies have an explicit context type argument.
946  {
947    int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
948    if (ctxkj >= 0) {
949      Metadata* k = argument(ctxkj);
950      assert(k != NULL && k->is_klass(), "type check");
951      return (Klass*)k;
952    }
953  }
954
955  // Some dependencies are using the klass of the first object
956  // argument as implicit context type.
957  {
958    int ctxkj = dep_implicit_context_arg(type());
959    if (ctxkj >= 0) {
960      Klass* k = argument_oop(ctxkj)->klass();
961      assert(k != NULL && k->is_klass(), "type check");
962      return (Klass*) k;
963    }
964  }
965
966  // And some dependencies don't have a context type at all,
967  // e.g. evol_method.
968  return NULL;
969}
970
971// ----------------- DependencySignature --------------------------------------
972bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
973  if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
974    return false;
975  }
976
977  for (int i = 0; i < s1.args_count(); i++) {
978    if (s1.arg(i) != s2.arg(i)) {
979      return false;
980    }
981  }
982  return true;
983}
984
985/// Checking dependencies:
986
987// This hierarchy walker inspects subtypes of a given type,
988// trying to find a "bad" class which breaks a dependency.
989// Such a class is called a "witness" to the broken dependency.
990// While searching around, we ignore "participants", which
991// are already known to the dependency.
992class ClassHierarchyWalker {
993 public:
994  enum { PARTICIPANT_LIMIT = 3 };
995
996 private:
997  // optional method descriptor to check for:
998  Symbol* _name;
999  Symbol* _signature;
1000
1001  // special classes which are not allowed to be witnesses:
1002  Klass*    _participants[PARTICIPANT_LIMIT+1];
1003  int       _num_participants;
1004
1005  // cache of method lookups
1006  Method* _found_methods[PARTICIPANT_LIMIT+1];
1007
1008  // if non-zero, tells how many witnesses to convert to participants
1009  int       _record_witnesses;
1010
1011  void initialize(Klass* participant) {
1012    _record_witnesses = 0;
1013    _participants[0]  = participant;
1014    _found_methods[0] = NULL;
1015    _num_participants = 0;
1016    if (participant != NULL) {
1017      // Terminating NULL.
1018      _participants[1] = NULL;
1019      _found_methods[1] = NULL;
1020      _num_participants = 1;
1021    }
1022  }
1023
1024  void initialize_from_method(Method* m) {
1025    assert(m != NULL && m->is_method(), "sanity");
1026    _name      = m->name();
1027    _signature = m->signature();
1028  }
1029
1030 public:
1031  // The walker is initialized to recognize certain methods and/or types
1032  // as friendly participants.
1033  ClassHierarchyWalker(Klass* participant, Method* m) {
1034    initialize_from_method(m);
1035    initialize(participant);
1036  }
1037  ClassHierarchyWalker(Method* m) {
1038    initialize_from_method(m);
1039    initialize(NULL);
1040  }
1041  ClassHierarchyWalker(Klass* participant = NULL) {
1042    _name      = NULL;
1043    _signature = NULL;
1044    initialize(participant);
1045  }
1046
1047  // This is common code for two searches:  One for concrete subtypes,
1048  // the other for concrete method implementations and overrides.
1049  bool doing_subtype_search() {
1050    return _name == NULL;
1051  }
1052
1053  int num_participants() { return _num_participants; }
1054  Klass* participant(int n) {
1055    assert((uint)n <= (uint)_num_participants, "oob");
1056    return _participants[n];
1057  }
1058
1059  // Note:  If n==num_participants, returns NULL.
1060  Method* found_method(int n) {
1061    assert((uint)n <= (uint)_num_participants, "oob");
1062    Method* fm = _found_methods[n];
1063    assert(n == _num_participants || fm != NULL, "proper usage");
1064    if (fm != NULL && fm->method_holder() != _participants[n]) {
1065      // Default methods from interfaces can be added to classes. In
1066      // that case the holder of the method is not the class but the
1067      // interface where it's defined.
1068      assert(fm->is_default_method(), "sanity");
1069      return NULL;
1070    }
1071    return fm;
1072  }
1073
1074#ifdef ASSERT
1075  // Assert that m is inherited into ctxk, without intervening overrides.
1076  // (May return true even if this is not true, in corner cases where we punt.)
1077  bool check_method_context(Klass* ctxk, Method* m) {
1078    if (m->method_holder() == ctxk)
1079      return true;  // Quick win.
1080    if (m->is_private())
1081      return false; // Quick lose.  Should not happen.
1082    if (!(m->is_public() || m->is_protected()))
1083      // The override story is complex when packages get involved.
1084      return true;  // Must punt the assertion to true.
1085    Klass* k = ctxk;
1086    Method* lm = k->lookup_method(m->name(), m->signature());
1087    if (lm == NULL && k->oop_is_instance()) {
1088      // It might be an interface method
1089        lm = ((InstanceKlass*)k)->lookup_method_in_ordered_interfaces(m->name(),
1090                                                                m->signature());
1091    }
1092    if (lm == m)
1093      // Method m is inherited into ctxk.
1094      return true;
1095    if (lm != NULL) {
1096      if (!(lm->is_public() || lm->is_protected())) {
1097        // Method is [package-]private, so the override story is complex.
1098        return true;  // Must punt the assertion to true.
1099      }
1100      if (lm->is_static()) {
1101        // Static methods don't override non-static so punt
1102        return true;
1103      }
1104      if (   !Dependencies::is_concrete_method(lm, k)
1105          && !Dependencies::is_concrete_method(m, ctxk)
1106          && lm->method_holder()->is_subtype_of(m->method_holder()))
1107        // Method m is overridden by lm, but both are non-concrete.
1108        return true;
1109    }
1110    ResourceMark rm;
1111    tty->print_cr("Dependency method not found in the associated context:");
1112    tty->print_cr("  context = %s", ctxk->external_name());
1113    tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
1114    if (lm != NULL) {
1115      tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
1116    }
1117    return false;
1118  }
1119#endif
1120
1121  void add_participant(Klass* participant) {
1122    assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
1123    int np = _num_participants++;
1124    _participants[np] = participant;
1125    _participants[np+1] = NULL;
1126    _found_methods[np+1] = NULL;
1127  }
1128
1129  void record_witnesses(int add) {
1130    if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
1131    assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
1132    _record_witnesses = add;
1133  }
1134
1135  bool is_witness(Klass* k) {
1136    if (doing_subtype_search()) {
1137      return Dependencies::is_concrete_klass(k);
1138    } else if (!k->oop_is_instance()) {
1139      return false; // no methods to find in an array type
1140    } else {
1141      // Search class hierarchy first.
1142      Method* m = InstanceKlass::cast(k)->find_instance_method(_name, _signature);
1143      if (!Dependencies::is_concrete_method(m, k)) {
1144        // Check interface defaults also, if any exist.
1145        Array<Method*>* default_methods = InstanceKlass::cast(k)->default_methods();
1146        if (default_methods == NULL)
1147            return false;
1148        m = InstanceKlass::cast(k)->find_method(default_methods, _name, _signature);
1149        if (!Dependencies::is_concrete_method(m, NULL))
1150            return false;
1151      }
1152      _found_methods[_num_participants] = m;
1153      // Note:  If add_participant(k) is called,
1154      // the method m will already be memoized for it.
1155      return true;
1156    }
1157  }
1158
1159  bool is_participant(Klass* k) {
1160    if (k == _participants[0]) {
1161      return true;
1162    } else if (_num_participants <= 1) {
1163      return false;
1164    } else {
1165      return in_list(k, &_participants[1]);
1166    }
1167  }
1168  bool ignore_witness(Klass* witness) {
1169    if (_record_witnesses == 0) {
1170      return false;
1171    } else {
1172      --_record_witnesses;
1173      add_participant(witness);
1174      return true;
1175    }
1176  }
1177  static bool in_list(Klass* x, Klass** list) {
1178    for (int i = 0; ; i++) {
1179      Klass* y = list[i];
1180      if (y == NULL)  break;
1181      if (y == x)  return true;
1182    }
1183    return false;  // not in list
1184  }
1185
1186 private:
1187  // the actual search method:
1188  Klass* find_witness_anywhere(Klass* context_type,
1189                                 bool participants_hide_witnesses,
1190                                 bool top_level_call = true);
1191  // the spot-checking version:
1192  Klass* find_witness_in(KlassDepChange& changes,
1193                         Klass* context_type,
1194                           bool participants_hide_witnesses);
1195 public:
1196  Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
1197    assert(doing_subtype_search(), "must set up a subtype search");
1198    // When looking for unexpected concrete types,
1199    // do not look beneath expected ones.
1200    const bool participants_hide_witnesses = true;
1201    // CX > CC > C' is OK, even if C' is new.
1202    // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
1203    if (changes != NULL) {
1204      return find_witness_in(*changes, context_type, participants_hide_witnesses);
1205    } else {
1206      return find_witness_anywhere(context_type, participants_hide_witnesses);
1207    }
1208  }
1209  Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
1210    assert(!doing_subtype_search(), "must set up a method definer search");
1211    // When looking for unexpected concrete methods,
1212    // look beneath expected ones, to see if there are overrides.
1213    const bool participants_hide_witnesses = true;
1214    // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
1215    if (changes != NULL) {
1216      return find_witness_in(*changes, context_type, !participants_hide_witnesses);
1217    } else {
1218      return find_witness_anywhere(context_type, !participants_hide_witnesses);
1219    }
1220  }
1221};
1222
1223#ifndef PRODUCT
1224static int deps_find_witness_calls = 0;
1225static int deps_find_witness_steps = 0;
1226static int deps_find_witness_recursions = 0;
1227static int deps_find_witness_singles = 0;
1228static int deps_find_witness_print = 0; // set to -1 to force a final print
1229static bool count_find_witness_calls() {
1230  if (TraceDependencies || LogCompilation) {
1231    int pcount = deps_find_witness_print + 1;
1232    bool final_stats      = (pcount == 0);
1233    bool initial_call     = (pcount == 1);
1234    bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
1235    if (pcount < 0)  pcount = 1; // crude overflow protection
1236    deps_find_witness_print = pcount;
1237    if (VerifyDependencies && initial_call) {
1238      tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
1239    }
1240    if (occasional_print || final_stats) {
1241      // Every now and then dump a little info about dependency searching.
1242      if (xtty != NULL) {
1243       ttyLocker ttyl;
1244       xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
1245                   deps_find_witness_calls,
1246                   deps_find_witness_steps,
1247                   deps_find_witness_recursions,
1248                   deps_find_witness_singles);
1249      }
1250      if (final_stats || (TraceDependencies && WizardMode)) {
1251        ttyLocker ttyl;
1252        tty->print_cr("Dependency check (find_witness) "
1253                      "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
1254                      deps_find_witness_calls,
1255                      deps_find_witness_steps,
1256                      (double)deps_find_witness_steps / deps_find_witness_calls,
1257                      deps_find_witness_recursions,
1258                      deps_find_witness_singles);
1259      }
1260    }
1261    return true;
1262  }
1263  return false;
1264}
1265#else
1266#define count_find_witness_calls() (0)
1267#endif //PRODUCT
1268
1269
1270Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
1271                                               Klass* context_type,
1272                                               bool participants_hide_witnesses) {
1273  assert(changes.involves_context(context_type), "irrelevant dependency");
1274  Klass* new_type = changes.new_type();
1275
1276  (void)count_find_witness_calls();
1277  NOT_PRODUCT(deps_find_witness_singles++);
1278
1279  // Current thread must be in VM (not native mode, as in CI):
1280  assert(must_be_in_vm(), "raw oops here");
1281  // Must not move the class hierarchy during this check:
1282  assert_locked_or_safepoint(Compile_lock);
1283
1284  int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1285  if (nof_impls > 1) {
1286    // Avoid this case: *I.m > { A.m, C }; B.m > C
1287    // %%% Until this is fixed more systematically, bail out.
1288    // See corresponding comment in find_witness_anywhere.
1289    return context_type;
1290  }
1291
1292  assert(!is_participant(new_type), "only old classes are participants");
1293  if (participants_hide_witnesses) {
1294    // If the new type is a subtype of a participant, we are done.
1295    for (int i = 0; i < num_participants(); i++) {
1296      Klass* part = participant(i);
1297      if (part == NULL)  continue;
1298      assert(changes.involves_context(part) == new_type->is_subtype_of(part),
1299             "correct marking of participants, b/c new_type is unique");
1300      if (changes.involves_context(part)) {
1301        // new guy is protected from this check by previous participant
1302        return NULL;
1303      }
1304    }
1305  }
1306
1307  if (is_witness(new_type) &&
1308      !ignore_witness(new_type)) {
1309    return new_type;
1310  }
1311
1312  return NULL;
1313}
1314
1315
1316// Walk hierarchy under a context type, looking for unexpected types.
1317// Do not report participant types, and recursively walk beneath
1318// them only if participants_hide_witnesses is false.
1319// If top_level_call is false, skip testing the context type,
1320// because the caller has already considered it.
1321Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
1322                                                     bool participants_hide_witnesses,
1323                                                     bool top_level_call) {
1324  // Current thread must be in VM (not native mode, as in CI):
1325  assert(must_be_in_vm(), "raw oops here");
1326  // Must not move the class hierarchy during this check:
1327  assert_locked_or_safepoint(Compile_lock);
1328
1329  bool do_counts = count_find_witness_calls();
1330
1331  // Check the root of the sub-hierarchy first.
1332  if (top_level_call) {
1333    if (do_counts) {
1334      NOT_PRODUCT(deps_find_witness_calls++);
1335      NOT_PRODUCT(deps_find_witness_steps++);
1336    }
1337    if (is_participant(context_type)) {
1338      if (participants_hide_witnesses)  return NULL;
1339      // else fall through to search loop...
1340    } else if (is_witness(context_type) && !ignore_witness(context_type)) {
1341      // The context is an abstract class or interface, to start with.
1342      return context_type;
1343    }
1344  }
1345
1346  // Now we must check each implementor and each subclass.
1347  // Use a short worklist to avoid blowing the stack.
1348  // Each worklist entry is a *chain* of subklass siblings to process.
1349  const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
1350  Klass* chains[CHAINMAX];
1351  int    chaini = 0;  // index into worklist
1352  Klass* chain;       // scratch variable
1353#define ADD_SUBCLASS_CHAIN(k)                     {  \
1354    assert(chaini < CHAINMAX, "oob");                \
1355    chain = k->subklass();                           \
1356    if (chain != NULL)  chains[chaini++] = chain;    }
1357
1358  // Look for non-abstract subclasses.
1359  // (Note:  Interfaces do not have subclasses.)
1360  ADD_SUBCLASS_CHAIN(context_type);
1361
1362  // If it is an interface, search its direct implementors.
1363  // (Their subclasses are additional indirect implementors.
1364  // See InstanceKlass::add_implementor.)
1365  // (Note:  nof_implementors is always zero for non-interfaces.)
1366  if (top_level_call) {
1367    int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1368    if (nof_impls > 1) {
1369      // Avoid this case: *I.m > { A.m, C }; B.m > C
1370      // Here, I.m has 2 concrete implementations, but m appears unique
1371      // as A.m, because the search misses B.m when checking C.
1372      // The inherited method B.m was getting missed by the walker
1373      // when interface 'I' was the starting point.
1374      // %%% Until this is fixed more systematically, bail out.
1375      // (Old CHA had the same limitation.)
1376      return context_type;
1377    }
1378    if (nof_impls > 0) {
1379      Klass* impl = InstanceKlass::cast(context_type)->implementor();
1380      assert(impl != NULL, "just checking");
1381      // If impl is the same as the context_type, then more than one
1382      // implementor has seen. No exact info in this case.
1383      if (impl == context_type) {
1384        return context_type;  // report an inexact witness to this sad affair
1385      }
1386      if (do_counts)
1387        { NOT_PRODUCT(deps_find_witness_steps++); }
1388      if (is_participant(impl)) {
1389        if (!participants_hide_witnesses) {
1390          ADD_SUBCLASS_CHAIN(impl);
1391        }
1392      } else if (is_witness(impl) && !ignore_witness(impl)) {
1393        return impl;
1394      } else {
1395        ADD_SUBCLASS_CHAIN(impl);
1396      }
1397    }
1398  }
1399
1400  // Recursively process each non-trivial sibling chain.
1401  while (chaini > 0) {
1402    Klass* chain = chains[--chaini];
1403    for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
1404      if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
1405      if (is_participant(sub)) {
1406        if (participants_hide_witnesses)  continue;
1407        // else fall through to process this guy's subclasses
1408      } else if (is_witness(sub) && !ignore_witness(sub)) {
1409        return sub;
1410      }
1411      if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
1412        // Fast path.  (Partially disabled if VerifyDependencies.)
1413        ADD_SUBCLASS_CHAIN(sub);
1414      } else {
1415        // Worklist overflow.  Do a recursive call.  Should be rare.
1416        // The recursive call will have its own worklist, of course.
1417        // (Note that sub has already been tested, so that there is
1418        // no need for the recursive call to re-test.  That's handy,
1419        // since the recursive call sees sub as the context_type.)
1420        if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
1421        Klass* witness = find_witness_anywhere(sub,
1422                                                 participants_hide_witnesses,
1423                                                 /*top_level_call=*/ false);
1424        if (witness != NULL)  return witness;
1425      }
1426    }
1427  }
1428
1429  // No witness found.  The dependency remains unbroken.
1430  return NULL;
1431#undef ADD_SUBCLASS_CHAIN
1432}
1433
1434
1435bool Dependencies::is_concrete_klass(Klass* k) {
1436  if (k->is_abstract())  return false;
1437  // %%% We could treat classes which are concrete but
1438  // have not yet been instantiated as virtually abstract.
1439  // This would require a deoptimization barrier on first instantiation.
1440  //if (k->is_not_instantiated())  return false;
1441  return true;
1442}
1443
1444bool Dependencies::is_concrete_method(Method* m, Klass * k) {
1445  // NULL is not a concrete method,
1446  // statics are irrelevant to virtual call sites,
1447  // abstract methods are not concrete,
1448  // overpass (error) methods are not concrete if k is abstract
1449  //
1450  // note "true" is conservative answer --
1451  //     overpass clause is false if k == NULL, implies return true if
1452  //     answer depends on overpass clause.
1453  return ! ( m == NULL || m -> is_static() || m -> is_abstract() ||
1454             m->is_overpass() && k != NULL && k -> is_abstract() );
1455}
1456
1457
1458Klass* Dependencies::find_finalizable_subclass(Klass* k) {
1459  if (k->is_interface())  return NULL;
1460  if (k->has_finalizer()) return k;
1461  k = k->subklass();
1462  while (k != NULL) {
1463    Klass* result = find_finalizable_subclass(k);
1464    if (result != NULL) return result;
1465    k = k->next_sibling();
1466  }
1467  return NULL;
1468}
1469
1470
1471bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1472  if (k->is_abstract())  return false;
1473  // We could also return false if k does not yet appear to be
1474  // instantiated, if the VM version supports this distinction also.
1475  //if (k->is_not_instantiated())  return false;
1476  return true;
1477}
1478
1479bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1480  return k->has_finalizable_subclass();
1481}
1482
1483
1484// Any use of the contents (bytecodes) of a method must be
1485// marked by an "evol_method" dependency, if those contents
1486// can change.  (Note: A method is always dependent on itself.)
1487Klass* Dependencies::check_evol_method(Method* m) {
1488  assert(must_be_in_vm(), "raw oops here");
1489  // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1490  // Or is there a now a breakpoint?
1491  // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1492  if (m->is_old()
1493      || m->number_of_breakpoints() > 0) {
1494    return m->method_holder();
1495  } else {
1496    return NULL;
1497  }
1498}
1499
1500// This is a strong assertion:  It is that the given type
1501// has no subtypes whatever.  It is most useful for
1502// optimizing checks on reflected types or on array types.
1503// (Checks on types which are derived from real instances
1504// can be optimized more strongly than this, because we
1505// know that the checked type comes from a concrete type,
1506// and therefore we can disregard abstract types.)
1507Klass* Dependencies::check_leaf_type(Klass* ctxk) {
1508  assert(must_be_in_vm(), "raw oops here");
1509  assert_locked_or_safepoint(Compile_lock);
1510  InstanceKlass* ctx = InstanceKlass::cast(ctxk);
1511  Klass* sub = ctx->subklass();
1512  if (sub != NULL) {
1513    return sub;
1514  } else if (ctx->nof_implementors() != 0) {
1515    // if it is an interface, it must be unimplemented
1516    // (if it is not an interface, nof_implementors is always zero)
1517    Klass* impl = ctx->implementor();
1518    assert(impl != NULL, "must be set");
1519    return impl;
1520  } else {
1521    return NULL;
1522  }
1523}
1524
1525// Test the assertion that conck is the only concrete subtype* of ctxk.
1526// The type conck itself is allowed to have have further concrete subtypes.
1527// This allows the compiler to narrow occurrences of ctxk by conck,
1528// when dealing with the types of actual instances.
1529Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
1530                                                                   Klass* conck,
1531                                                                   KlassDepChange* changes) {
1532  ClassHierarchyWalker wf(conck);
1533  return wf.find_witness_subtype(ctxk, changes);
1534}
1535
1536// If a non-concrete class has no concrete subtypes, it is not (yet)
1537// instantiatable.  This can allow the compiler to make some paths go
1538// dead, if they are gated by a test of the type.
1539Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
1540                                                               KlassDepChange* changes) {
1541  // Find any concrete subtype, with no participants:
1542  ClassHierarchyWalker wf;
1543  return wf.find_witness_subtype(ctxk, changes);
1544}
1545
1546
1547// If a concrete class has no concrete subtypes, it can always be
1548// exactly typed.  This allows the use of a cheaper type test.
1549Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
1550                                                               KlassDepChange* changes) {
1551  // Find any concrete subtype, with only the ctxk as participant:
1552  ClassHierarchyWalker wf(ctxk);
1553  return wf.find_witness_subtype(ctxk, changes);
1554}
1555
1556
1557// Find the unique concrete proper subtype of ctxk, or NULL if there
1558// is more than one concrete proper subtype.  If there are no concrete
1559// proper subtypes, return ctxk itself, whether it is concrete or not.
1560// The returned subtype is allowed to have have further concrete subtypes.
1561// That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
1562Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
1563  ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
1564  wf.record_witnesses(1);          // Record one other witness when walking.
1565  Klass* wit = wf.find_witness_subtype(ctxk);
1566  if (wit != NULL)  return NULL;   // Too many witnesses.
1567  Klass* conck = wf.participant(0);
1568  if (conck == NULL) {
1569#ifndef PRODUCT
1570    // Make sure the dependency mechanism will pass this discovery:
1571    if (VerifyDependencies) {
1572      // Turn off dependency tracing while actually testing deps.
1573      FlagSetting fs(TraceDependencies, false);
1574      if (!Dependencies::is_concrete_klass(ctxk)) {
1575        guarantee(NULL ==
1576                  (void *)check_abstract_with_no_concrete_subtype(ctxk),
1577                  "verify dep.");
1578      } else {
1579        guarantee(NULL ==
1580                  (void *)check_concrete_with_no_concrete_subtype(ctxk),
1581                  "verify dep.");
1582      }
1583    }
1584#endif //PRODUCT
1585    return ctxk;                   // Return ctxk as a flag for "no subtypes".
1586  } else {
1587#ifndef PRODUCT
1588    // Make sure the dependency mechanism will pass this discovery:
1589    if (VerifyDependencies) {
1590      // Turn off dependency tracing while actually testing deps.
1591      FlagSetting fs(TraceDependencies, false);
1592      if (!Dependencies::is_concrete_klass(ctxk)) {
1593        guarantee(NULL == (void *)
1594                  check_abstract_with_unique_concrete_subtype(ctxk, conck),
1595                  "verify dep.");
1596      }
1597    }
1598#endif //PRODUCT
1599    return conck;
1600  }
1601}
1602
1603// Test the assertion that the k[12] are the only concrete subtypes of ctxk,
1604// except possibly for further subtypes of k[12] themselves.
1605// The context type must be abstract.  The types k1 and k2 are themselves
1606// allowed to have further concrete subtypes.
1607Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
1608                                                Klass* ctxk,
1609                                                Klass* k1,
1610                                                Klass* k2,
1611                                                KlassDepChange* changes) {
1612  ClassHierarchyWalker wf;
1613  wf.add_participant(k1);
1614  wf.add_participant(k2);
1615  return wf.find_witness_subtype(ctxk, changes);
1616}
1617
1618// Search ctxk for concrete implementations.  If there are klen or fewer,
1619// pack them into the given array and return the number.
1620// Otherwise, return -1, meaning the given array would overflow.
1621// (Note that a return of 0 means there are exactly no concrete subtypes.)
1622// In this search, if ctxk is concrete, it will be reported alone.
1623// For any type CC reported, no proper subtypes of CC will be reported.
1624int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
1625                                                   int klen,
1626                                                   Klass* karray[]) {
1627  ClassHierarchyWalker wf;
1628  wf.record_witnesses(klen);
1629  Klass* wit = wf.find_witness_subtype(ctxk);
1630  if (wit != NULL)  return -1;  // Too many witnesses.
1631  int num = wf.num_participants();
1632  assert(num <= klen, "oob");
1633  // Pack the result array with the good news.
1634  for (int i = 0; i < num; i++)
1635    karray[i] = wf.participant(i);
1636#ifndef PRODUCT
1637  // Make sure the dependency mechanism will pass this discovery:
1638  if (VerifyDependencies) {
1639    // Turn off dependency tracing while actually testing deps.
1640    FlagSetting fs(TraceDependencies, false);
1641    switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
1642    case -1: // ctxk was itself concrete
1643      guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
1644      break;
1645    case 0:
1646      guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
1647                "verify dep.");
1648      break;
1649    case 1:
1650      guarantee(NULL == (void *)
1651                check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
1652                "verify dep.");
1653      break;
1654    case 2:
1655      guarantee(NULL == (void *)
1656                check_abstract_with_exclusive_concrete_subtypes(ctxk,
1657                                                                karray[0],
1658                                                                karray[1]),
1659                "verify dep.");
1660      break;
1661    default:
1662      ShouldNotReachHere();  // klen > 2 yet supported
1663    }
1664  }
1665#endif //PRODUCT
1666  return num;
1667}
1668
1669// If a class (or interface) has a unique concrete method uniqm, return NULL.
1670// Otherwise, return a class that contains an interfering method.
1671Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
1672                                                    KlassDepChange* changes) {
1673  // Here is a missing optimization:  If uniqm->is_final(),
1674  // we don't really need to search beneath it for overrides.
1675  // This is probably not important, since we don't use dependencies
1676  // to track final methods.  (They can't be "definalized".)
1677  ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
1678  return wf.find_witness_definer(ctxk, changes);
1679}
1680
1681// Find the set of all non-abstract methods under ctxk that match m.
1682// (The method m must be defined or inherited in ctxk.)
1683// Include m itself in the set, unless it is abstract.
1684// If this set has exactly one element, return that element.
1685Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
1686  // Return NULL if m is marked old; must have been a redefined method.
1687  if (m->is_old()) {
1688    return NULL;
1689  }
1690  ClassHierarchyWalker wf(m);
1691  assert(wf.check_method_context(ctxk, m), "proper context");
1692  wf.record_witnesses(1);
1693  Klass* wit = wf.find_witness_definer(ctxk);
1694  if (wit != NULL)  return NULL;  // Too many witnesses.
1695  Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
1696  if (Dependencies::is_concrete_method(m, ctxk)) {
1697    if (fm == NULL) {
1698      // It turns out that m was always the only implementation.
1699      fm = m;
1700    } else if (fm != m) {
1701      // Two conflicting implementations after all.
1702      // (This can happen if m is inherited into ctxk and fm overrides it.)
1703      return NULL;
1704    }
1705  }
1706#ifndef PRODUCT
1707  // Make sure the dependency mechanism will pass this discovery:
1708  if (VerifyDependencies && fm != NULL) {
1709    guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
1710              "verify dep.");
1711  }
1712#endif //PRODUCT
1713  return fm;
1714}
1715
1716Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
1717                                                        Method* m1,
1718                                                        Method* m2,
1719                                                        KlassDepChange* changes) {
1720  ClassHierarchyWalker wf(m1);
1721  wf.add_participant(m1->method_holder());
1722  wf.add_participant(m2->method_holder());
1723  return wf.find_witness_definer(ctxk, changes);
1724}
1725
1726Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
1727  Klass* search_at = ctxk;
1728  if (changes != NULL)
1729    search_at = changes->new_type(); // just look at the new bit
1730  return find_finalizable_subclass(search_at);
1731}
1732
1733Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
1734  assert(!oopDesc::is_null(call_site), "sanity");
1735  assert(!oopDesc::is_null(method_handle), "sanity");
1736  assert(call_site->is_a(SystemDictionary::CallSite_klass()),     "sanity");
1737
1738  if (changes == NULL) {
1739    // Validate all CallSites
1740    if (java_lang_invoke_CallSite::target(call_site) != method_handle)
1741      return call_site->klass();  // assertion failed
1742  } else {
1743    // Validate the given CallSite
1744    if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
1745      assert(method_handle != changes->method_handle(), "must be");
1746      return call_site->klass();  // assertion failed
1747    }
1748  }
1749  return NULL;  // assertion still valid
1750}
1751
1752void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
1753  if (witness != NULL) {
1754    if (TraceDependencies) {
1755      print_dependency(witness, /*verbose=*/ true);
1756    }
1757    // The following is a no-op unless logging is enabled:
1758    log_dependency(witness);
1759  }
1760}
1761
1762
1763Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
1764  assert_locked_or_safepoint(Compile_lock);
1765  Dependencies::check_valid_dependency_type(type());
1766
1767  Klass* witness = NULL;
1768  switch (type()) {
1769  case evol_method:
1770    witness = check_evol_method(method_argument(0));
1771    break;
1772  case leaf_type:
1773    witness = check_leaf_type(context_type());
1774    break;
1775  case abstract_with_unique_concrete_subtype:
1776    witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
1777    break;
1778  case abstract_with_no_concrete_subtype:
1779    witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
1780    break;
1781  case concrete_with_no_concrete_subtype:
1782    witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
1783    break;
1784  case unique_concrete_method:
1785    witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
1786    break;
1787  case abstract_with_exclusive_concrete_subtypes_2:
1788    witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
1789    break;
1790  case exclusive_concrete_methods_2:
1791    witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
1792    break;
1793  case no_finalizable_subclasses:
1794    witness = check_has_no_finalizable_subclasses(context_type(), changes);
1795    break;
1796  default:
1797    witness = NULL;
1798    break;
1799  }
1800  trace_and_log_witness(witness);
1801  return witness;
1802}
1803
1804
1805Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
1806  assert_locked_or_safepoint(Compile_lock);
1807  Dependencies::check_valid_dependency_type(type());
1808
1809  Klass* witness = NULL;
1810  switch (type()) {
1811  case call_site_target_value:
1812    witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
1813    break;
1814  default:
1815    witness = NULL;
1816    break;
1817  }
1818  trace_and_log_witness(witness);
1819  return witness;
1820}
1821
1822
1823Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
1824  // Handle klass dependency
1825  if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
1826    return check_klass_dependency(changes.as_klass_change());
1827
1828  // Handle CallSite dependency
1829  if (changes.is_call_site_change())
1830    return check_call_site_dependency(changes.as_call_site_change());
1831
1832  // irrelevant dependency; skip it
1833  return NULL;
1834}
1835
1836
1837void DepChange::print() {
1838  int nsup = 0, nint = 0;
1839  for (ContextStream str(*this); str.next(); ) {
1840    Klass* k = str.klass();
1841    switch (str.change_type()) {
1842    case Change_new_type:
1843      tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
1844      break;
1845    case Change_new_sub:
1846      if (!WizardMode) {
1847        ++nsup;
1848      } else {
1849        tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
1850      }
1851      break;
1852    case Change_new_impl:
1853      if (!WizardMode) {
1854        ++nint;
1855      } else {
1856        tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
1857      }
1858      break;
1859    }
1860  }
1861  if (nsup + nint != 0) {
1862    tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
1863  }
1864}
1865
1866void DepChange::ContextStream::start() {
1867  Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
1868  _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
1869  _klass = new_type;
1870  _ti_base = NULL;
1871  _ti_index = 0;
1872  _ti_limit = 0;
1873}
1874
1875bool DepChange::ContextStream::next() {
1876  switch (_change_type) {
1877  case Start_Klass:             // initial state; _klass is the new type
1878    _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
1879    _ti_index = 0;
1880    _change_type = Change_new_type;
1881    return true;
1882  case Change_new_type:
1883    // fall through:
1884    _change_type = Change_new_sub;
1885  case Change_new_sub:
1886    // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
1887    {
1888      _klass = InstanceKlass::cast(_klass)->super();
1889      if (_klass != NULL) {
1890        return true;
1891      }
1892    }
1893    // else set up _ti_limit and fall through:
1894    _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
1895    _change_type = Change_new_impl;
1896  case Change_new_impl:
1897    if (_ti_index < _ti_limit) {
1898      _klass = _ti_base->at(_ti_index++);
1899      return true;
1900    }
1901    // fall through:
1902    _change_type = NO_CHANGE;  // iterator is exhausted
1903  case NO_CHANGE:
1904    break;
1905  default:
1906    ShouldNotReachHere();
1907  }
1908  return false;
1909}
1910
1911void KlassDepChange::initialize() {
1912  // entire transaction must be under this lock:
1913  assert_lock_strong(Compile_lock);
1914
1915  // Mark all dependee and all its superclasses
1916  // Mark transitive interfaces
1917  for (ContextStream str(*this); str.next(); ) {
1918    Klass* d = str.klass();
1919    assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
1920    InstanceKlass::cast(d)->set_is_marked_dependent(true);
1921  }
1922}
1923
1924KlassDepChange::~KlassDepChange() {
1925  // Unmark all dependee and all its superclasses
1926  // Unmark transitive interfaces
1927  for (ContextStream str(*this); str.next(); ) {
1928    Klass* d = str.klass();
1929    InstanceKlass::cast(d)->set_is_marked_dependent(false);
1930  }
1931}
1932
1933bool KlassDepChange::involves_context(Klass* k) {
1934  if (k == NULL || !k->oop_is_instance()) {
1935    return false;
1936  }
1937  InstanceKlass* ik = InstanceKlass::cast(k);
1938  bool is_contained = ik->is_marked_dependent();
1939  assert(is_contained == new_type()->is_subtype_of(k),
1940         "correct marking of potential context types");
1941  return is_contained;
1942}
1943
1944#ifndef PRODUCT
1945void Dependencies::print_statistics() {
1946  if (deps_find_witness_print != 0) {
1947    // Call one final time, to flush out the data.
1948    deps_find_witness_print = -1;
1949    count_find_witness_calls();
1950  }
1951}
1952#endif
1953