compiledIC.cpp revision 8896:9df4555d2d7d
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "code/codeCache.hpp"
28#include "code/compiledIC.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "memory/metadataFactory.hpp"
35#include "memory/oopFactory.hpp"
36#include "oops/method.hpp"
37#include "oops/oop.inline.hpp"
38#include "oops/symbol.hpp"
39#include "runtime/icache.hpp"
40#include "runtime/sharedRuntime.hpp"
41#include "runtime/stubRoutines.hpp"
42#include "utilities/events.hpp"
43
44
45// Every time a compiled IC is changed or its type is being accessed,
46// either the CompiledIC_lock must be set or we must be at a safe point.
47
48//-----------------------------------------------------------------------------
49// Low-level access to an inline cache. Private, since they might not be
50// MT-safe to use.
51
52void* CompiledIC::cached_value() const {
53  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
54  assert (!is_optimized(), "an optimized virtual call does not have a cached metadata");
55
56  if (!is_in_transition_state()) {
57    void* data = (void*)_value->data();
58    // If we let the metadata value here be initialized to zero...
59    assert(data != NULL || Universe::non_oop_word() == NULL,
60           "no raw nulls in CompiledIC metadatas, because of patching races");
61    return (data == (void*)Universe::non_oop_word()) ? NULL : data;
62  } else {
63    return InlineCacheBuffer::cached_value_for((CompiledIC *)this);
64  }
65}
66
67
68void CompiledIC::internal_set_ic_destination(address entry_point, bool is_icstub, void* cache, bool is_icholder) {
69  assert(entry_point != NULL, "must set legal entry point");
70  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
71  assert (!is_optimized() || cache == NULL, "an optimized virtual call does not have a cached metadata");
72  assert (cache == NULL || cache != (Metadata*)badOopVal, "invalid metadata");
73
74  assert(!is_icholder || is_icholder_entry(entry_point), "must be");
75
76  // Don't use ic_destination for this test since that forwards
77  // through ICBuffer instead of returning the actual current state of
78  // the CompiledIC.
79  if (is_icholder_entry(_ic_call->destination())) {
80    // When patching for the ICStub case the cached value isn't
81    // overwritten until the ICStub copied into the CompiledIC during
82    // the next safepoint.  Make sure that the CompiledICHolder* is
83    // marked for release at this point since it won't be identifiable
84    // once the entry point is overwritten.
85    InlineCacheBuffer::queue_for_release((CompiledICHolder*)_value->data());
86  }
87
88  if (TraceCompiledIC) {
89    tty->print("  ");
90    print_compiled_ic();
91    tty->print(" changing destination to " INTPTR_FORMAT, p2i(entry_point));
92    if (!is_optimized()) {
93      tty->print(" changing cached %s to " INTPTR_FORMAT, is_icholder ? "icholder" : "metadata", p2i((address)cache));
94    }
95    if (is_icstub) {
96      tty->print(" (icstub)");
97    }
98    tty->cr();
99  }
100
101  {
102    MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
103#ifdef ASSERT
104    CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
105    assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
106#endif
107     _ic_call->set_destination_mt_safe(entry_point);
108  }
109
110  if (is_optimized() || is_icstub) {
111    // Optimized call sites don't have a cache value and ICStub call
112    // sites only change the entry point.  Changing the value in that
113    // case could lead to MT safety issues.
114    assert(cache == NULL, "must be null");
115    return;
116  }
117
118  if (cache == NULL)  cache = (void*)Universe::non_oop_word();
119
120  _value->set_data((intptr_t)cache);
121}
122
123
124void CompiledIC::set_ic_destination(ICStub* stub) {
125  internal_set_ic_destination(stub->code_begin(), true, NULL, false);
126}
127
128
129
130address CompiledIC::ic_destination() const {
131 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
132 if (!is_in_transition_state()) {
133   return _ic_call->destination();
134 } else {
135   return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
136 }
137}
138
139
140bool CompiledIC::is_in_transition_state() const {
141  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
142  return InlineCacheBuffer::contains(_ic_call->destination());
143}
144
145
146bool CompiledIC::is_icholder_call() const {
147  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
148  return !_is_optimized && is_icholder_entry(ic_destination());
149}
150
151// Returns native address of 'call' instruction in inline-cache. Used by
152// the InlineCacheBuffer when it needs to find the stub.
153address CompiledIC::stub_address() const {
154  assert(is_in_transition_state(), "should only be called when we are in a transition state");
155  return _ic_call->destination();
156}
157
158// Clears the IC stub if the compiled IC is in transition state
159void CompiledIC::clear_ic_stub() {
160  if (is_in_transition_state()) {
161    ICStub* stub = ICStub_from_destination_address(stub_address());
162    stub->clear();
163  }
164}
165
166
167//-----------------------------------------------------------------------------
168// High-level access to an inline cache. Guaranteed to be MT-safe.
169
170void CompiledIC::initialize_from_iter(RelocIterator* iter) {
171  assert(iter->addr() == _ic_call->instruction_address(), "must find ic_call");
172
173  if (iter->type() == relocInfo::virtual_call_type) {
174    virtual_call_Relocation* r = iter->virtual_call_reloc();
175    _is_optimized = false;
176    _value = nativeMovConstReg_at(r->cached_value());
177  } else {
178    assert(iter->type() == relocInfo::opt_virtual_call_type, "must be a virtual call");
179    _is_optimized = true;
180    _value = NULL;
181  }
182}
183
184CompiledIC::CompiledIC(nmethod* nm, NativeCall* call)
185  : _ic_call(call)
186{
187  address ic_call = _ic_call->instruction_address();
188
189  assert(ic_call != NULL, "ic_call address must be set");
190  assert(nm != NULL, "must pass nmethod");
191  assert(nm->contains(ic_call), "must be in nmethod");
192
193  // Search for the ic_call at the given address.
194  RelocIterator iter(nm, ic_call, ic_call+1);
195  bool ret = iter.next();
196  assert(ret == true, "relocInfo must exist at this address");
197  assert(iter.addr() == ic_call, "must find ic_call");
198
199  initialize_from_iter(&iter);
200}
201
202CompiledIC::CompiledIC(RelocIterator* iter)
203  : _ic_call(nativeCall_at(iter->addr()))
204{
205  address ic_call = _ic_call->instruction_address();
206
207  nmethod* nm = iter->code();
208  assert(ic_call != NULL, "ic_call address must be set");
209  assert(nm != NULL, "must pass nmethod");
210  assert(nm->contains(ic_call), "must be in nmethod");
211
212  initialize_from_iter(iter);
213}
214
215bool CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
216  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
217  assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
218  assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
219
220  address entry;
221  if (call_info->call_kind() == CallInfo::itable_call) {
222    assert(bytecode == Bytecodes::_invokeinterface, "");
223    int itable_index = call_info->itable_index();
224    entry = VtableStubs::find_itable_stub(itable_index);
225    if (entry == false) {
226      return false;
227    }
228#ifdef ASSERT
229    int index = call_info->resolved_method()->itable_index();
230    assert(index == itable_index, "CallInfo pre-computes this");
231#endif //ASSERT
232    InstanceKlass* k = call_info->resolved_method()->method_holder();
233    assert(k->verify_itable_index(itable_index), "sanity check");
234    InlineCacheBuffer::create_transition_stub(this, k, entry);
235  } else {
236    assert(call_info->call_kind() == CallInfo::vtable_call, "either itable or vtable");
237    // Can be different than selected_method->vtable_index(), due to package-private etc.
238    int vtable_index = call_info->vtable_index();
239    assert(call_info->resolved_klass()->verify_vtable_index(vtable_index), "sanity check");
240    entry = VtableStubs::find_vtable_stub(vtable_index);
241    if (entry == NULL) {
242      return false;
243    }
244    InlineCacheBuffer::create_transition_stub(this, NULL, entry);
245  }
246
247  if (TraceICs) {
248    ResourceMark rm;
249    tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
250                   p2i(instruction_address()), call_info->selected_method()->print_value_string(), p2i(entry));
251  }
252
253  // We can't check this anymore. With lazy deopt we could have already
254  // cleaned this IC entry before we even return. This is possible if
255  // we ran out of space in the inline cache buffer trying to do the
256  // set_next and we safepointed to free up space. This is a benign
257  // race because the IC entry was complete when we safepointed so
258  // cleaning it immediately is harmless.
259  // assert(is_megamorphic(), "sanity check");
260  return true;
261}
262
263
264// true if destination is megamorphic stub
265bool CompiledIC::is_megamorphic() const {
266  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
267  assert(!is_optimized(), "an optimized call cannot be megamorphic");
268
269  // Cannot rely on cached_value. It is either an interface or a method.
270  return VtableStubs::is_entry_point(ic_destination());
271}
272
273bool CompiledIC::is_call_to_compiled() const {
274  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
275
276  // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
277  // method is guaranteed to still exist, since we only remove methods after all inline caches
278  // has been cleaned up
279  CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
280  bool is_monomorphic = (cb != NULL && cb->is_nmethod());
281  // Check that the cached_value is a klass for non-optimized monomorphic calls
282  // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
283  // for calling directly to vep without using the inline cache (i.e., cached_value == NULL)
284#ifdef ASSERT
285  CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
286  bool is_c1_method = caller->is_compiled_by_c1();
287  assert( is_c1_method ||
288         !is_monomorphic ||
289         is_optimized() ||
290         !caller->is_alive() ||
291         (cached_metadata() != NULL && cached_metadata()->is_klass()), "sanity check");
292#endif // ASSERT
293  return is_monomorphic;
294}
295
296
297bool CompiledIC::is_call_to_interpreted() const {
298  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
299  // Call to interpreter if destination is either calling to a stub (if it
300  // is optimized), or calling to an I2C blob
301  bool is_call_to_interpreted = false;
302  if (!is_optimized()) {
303    // must use unsafe because the destination can be a zombie (and we're cleaning)
304    // and the print_compiled_ic code wants to know if site (in the non-zombie)
305    // is to the interpreter.
306    CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
307    is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
308    assert(!is_call_to_interpreted || (is_icholder_call() && cached_icholder() != NULL), "sanity check");
309  } else {
310    // Check if we are calling into our own codeblob (i.e., to a stub)
311    CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
312    address dest = ic_destination();
313#ifdef ASSERT
314    {
315      CodeBlob* db = CodeCache::find_blob_unsafe(dest);
316      assert(!db->is_adapter_blob(), "must use stub!");
317    }
318#endif /* ASSERT */
319    is_call_to_interpreted = cb->contains(dest);
320  }
321  return is_call_to_interpreted;
322}
323
324
325void CompiledIC::set_to_clean(bool in_use) {
326  assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
327  if (TraceInlineCacheClearing || TraceICs) {
328    tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", p2i(instruction_address()));
329    print();
330  }
331
332  address entry;
333  if (is_optimized()) {
334    entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
335  } else {
336    entry = SharedRuntime::get_resolve_virtual_call_stub();
337  }
338
339  // A zombie transition will always be safe, since the metadata has already been set to NULL, so
340  // we only need to patch the destination
341  bool safe_transition = !in_use || is_optimized() || SafepointSynchronize::is_at_safepoint();
342
343  if (safe_transition) {
344    // Kill any leftover stub we might have too
345    clear_ic_stub();
346    if (is_optimized()) {
347      set_ic_destination(entry);
348    } else {
349      set_ic_destination_and_value(entry, (void*)NULL);
350    }
351  } else {
352    // Unsafe transition - create stub.
353    InlineCacheBuffer::create_transition_stub(this, NULL, entry);
354  }
355  // We can't check this anymore. With lazy deopt we could have already
356  // cleaned this IC entry before we even return. This is possible if
357  // we ran out of space in the inline cache buffer trying to do the
358  // set_next and we safepointed to free up space. This is a benign
359  // race because the IC entry was complete when we safepointed so
360  // cleaning it immediately is harmless.
361  // assert(is_clean(), "sanity check");
362}
363
364
365bool CompiledIC::is_clean() const {
366  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
367  bool is_clean = false;
368  address dest = ic_destination();
369  is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
370             dest == SharedRuntime::get_resolve_virtual_call_stub();
371  assert(!is_clean || is_optimized() || cached_value() == NULL, "sanity check");
372  return is_clean;
373}
374
375
376void CompiledIC::set_to_monomorphic(CompiledICInfo& info) {
377  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
378  // Updating a cache to the wrong entry can cause bugs that are very hard
379  // to track down - if cache entry gets invalid - we just clean it. In
380  // this way it is always the same code path that is responsible for
381  // updating and resolving an inline cache
382  //
383  // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
384  // callsites. In addition ic_miss code will update a site to monomorphic if it determines
385  // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
386  //
387  // In both of these cases the only thing being modifed is the jump/call target and these
388  // transitions are mt_safe
389
390  Thread *thread = Thread::current();
391  if (info.to_interpreter()) {
392    // Call to interpreter
393    if (info.is_optimized() && is_optimized()) {
394       assert(is_clean(), "unsafe IC path");
395       MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
396      // the call analysis (callee structure) specifies that the call is optimized
397      // (either because of CHA or the static target is final)
398      // At code generation time, this call has been emitted as static call
399      // Call via stub
400      assert(info.cached_metadata() != NULL && info.cached_metadata()->is_method(), "sanity check");
401      CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
402      methodHandle method (thread, (Method*)info.cached_metadata());
403      csc->set_to_interpreted(method, info.entry());
404      if (TraceICs) {
405         ResourceMark rm(thread);
406         tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
407           p2i(instruction_address()),
408           method->print_value_string());
409      }
410    } else {
411      // Call via method-klass-holder
412      InlineCacheBuffer::create_transition_stub(this, info.claim_cached_icholder(), info.entry());
413      if (TraceICs) {
414         ResourceMark rm(thread);
415         tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via icholder ", p2i(instruction_address()));
416      }
417    }
418  } else {
419    // Call to compiled code
420    bool static_bound = info.is_optimized() || (info.cached_metadata() == NULL);
421#ifdef ASSERT
422    CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
423    assert (cb->is_nmethod(), "must be compiled!");
424#endif /* ASSERT */
425
426    // This is MT safe if we come from a clean-cache and go through a
427    // non-verified entry point
428    bool safe = SafepointSynchronize::is_at_safepoint() ||
429                (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
430
431    if (!safe) {
432      InlineCacheBuffer::create_transition_stub(this, info.cached_metadata(), info.entry());
433    } else {
434      if (is_optimized()) {
435      set_ic_destination(info.entry());
436      } else {
437        set_ic_destination_and_value(info.entry(), info.cached_metadata());
438      }
439    }
440
441    if (TraceICs) {
442      ResourceMark rm(thread);
443      assert(info.cached_metadata() == NULL || info.cached_metadata()->is_klass(), "must be");
444      tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
445        p2i(instruction_address()),
446        ((Klass*)info.cached_metadata())->print_value_string(),
447        (safe) ? "" : "via stub");
448    }
449  }
450  // We can't check this anymore. With lazy deopt we could have already
451  // cleaned this IC entry before we even return. This is possible if
452  // we ran out of space in the inline cache buffer trying to do the
453  // set_next and we safepointed to free up space. This is a benign
454  // race because the IC entry was complete when we safepointed so
455  // cleaning it immediately is harmless.
456  // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
457}
458
459
460// is_optimized: Compiler has generated an optimized call (i.e., no inline
461// cache) static_bound: The call can be static bound (i.e, no need to use
462// inline cache)
463void CompiledIC::compute_monomorphic_entry(methodHandle method,
464                                           KlassHandle receiver_klass,
465                                           bool is_optimized,
466                                           bool static_bound,
467                                           CompiledICInfo& info,
468                                           TRAPS) {
469  nmethod* method_code = method->code();
470  address entry = NULL;
471  if (method_code != NULL && method_code->is_in_use()) {
472    // Call to compiled code
473    if (static_bound || is_optimized) {
474      entry      = method_code->verified_entry_point();
475    } else {
476      entry      = method_code->entry_point();
477    }
478  }
479  if (entry != NULL) {
480    // Call to compiled code
481    info.set_compiled_entry(entry, (static_bound || is_optimized) ? NULL : receiver_klass(), is_optimized);
482  } else {
483    // Note: the following problem exists with Compiler1:
484    //   - at compile time we may or may not know if the destination is final
485    //   - if we know that the destination is final, we will emit an optimized
486    //     virtual call (no inline cache), and need a Method* to make a call
487    //     to the interpreter
488    //   - if we do not know if the destination is final, we emit a standard
489    //     virtual call, and use CompiledICHolder to call interpreted code
490    //     (no static call stub has been generated)
491    //     However in that case we will now notice it is static_bound
492    //     and convert the call into what looks to be an optimized
493    //     virtual call. This causes problems in verifying the IC because
494    //     it look vanilla but is optimized. Code in is_call_to_interpreted
495    //     is aware of this and weakens its asserts.
496
497    // static_bound should imply is_optimized -- otherwise we have a
498    // performance bug (statically-bindable method is called via
499    // dynamically-dispatched call note: the reverse implication isn't
500    // necessarily true -- the call may have been optimized based on compiler
501    // analysis (static_bound is only based on "final" etc.)
502#ifdef COMPILER2
503#ifdef TIERED
504#if defined(ASSERT)
505    // can't check the assert because we don't have the CompiledIC with which to
506    // find the address if the call instruction.
507    //
508    // CodeBlob* cb = find_blob_unsafe(instruction_address());
509    // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
510#endif // ASSERT
511#else
512    assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
513#endif // TIERED
514#endif // COMPILER2
515    if (is_optimized) {
516      // Use stub entry
517      info.set_interpreter_entry(method()->get_c2i_entry(), method());
518    } else {
519      // Use icholder entry
520      CompiledICHolder* holder = new CompiledICHolder(method(), receiver_klass());
521      info.set_icholder_entry(method()->get_c2i_unverified_entry(), holder);
522    }
523  }
524  assert(info.is_optimized() == is_optimized, "must agree");
525}
526
527
528bool CompiledIC::is_icholder_entry(address entry) {
529  CodeBlob* cb = CodeCache::find_blob_unsafe(entry);
530  return (cb != NULL && cb->is_adapter_blob());
531}
532
533// ----------------------------------------------------------------------------
534
535void CompiledStaticCall::set_to_clean() {
536  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
537  // Reset call site
538  MutexLockerEx pl(SafepointSynchronize::is_at_safepoint() ? NULL : Patching_lock, Mutex::_no_safepoint_check_flag);
539#ifdef ASSERT
540  CodeBlob* cb = CodeCache::find_blob_unsafe(this);
541  assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
542#endif
543  set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
544
545  // Do not reset stub here:  It is too expensive to call find_stub.
546  // Instead, rely on caller (nmethod::clear_inline_caches) to clear
547  // both the call and its stub.
548}
549
550
551bool CompiledStaticCall::is_clean() const {
552  return destination() == SharedRuntime::get_resolve_static_call_stub();
553}
554
555bool CompiledStaticCall::is_call_to_compiled() const {
556  return CodeCache::contains(destination());
557}
558
559
560bool CompiledStaticCall::is_call_to_interpreted() const {
561  // It is a call to interpreted, if it calls to a stub. Hence, the destination
562  // must be in the stub part of the nmethod that contains the call
563  nmethod* nm = CodeCache::find_nmethod(instruction_address());
564  return nm->stub_contains(destination());
565}
566
567void CompiledStaticCall::set(const StaticCallInfo& info) {
568  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
569  MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
570  // Updating a cache to the wrong entry can cause bugs that are very hard
571  // to track down - if cache entry gets invalid - we just clean it. In
572  // this way it is always the same code path that is responsible for
573  // updating and resolving an inline cache
574  assert(is_clean(), "do not update a call entry - use clean");
575
576  if (info._to_interpreter) {
577    // Call to interpreted code
578    set_to_interpreted(info.callee(), info.entry());
579  } else {
580    if (TraceICs) {
581      ResourceMark rm;
582      tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
583                    p2i(instruction_address()),
584                    p2i(info.entry()));
585    }
586    // Call to compiled code
587    assert (CodeCache::contains(info.entry()), "wrong entry point");
588    set_destination_mt_safe(info.entry());
589  }
590}
591
592
593// Compute settings for a CompiledStaticCall. Since we might have to set
594// the stub when calling to the interpreter, we need to return arguments.
595void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
596  nmethod* m_code = m->code();
597  info._callee = m;
598  if (m_code != NULL && m_code->is_in_use()) {
599    info._to_interpreter = false;
600    info._entry  = m_code->verified_entry_point();
601  } else {
602    // Callee is interpreted code.  In any case entering the interpreter
603    // puts a converter-frame on the stack to save arguments.
604    assert(!m->is_method_handle_intrinsic(), "Compiled code should never call interpreter MH intrinsics");
605    info._to_interpreter = true;
606    info._entry      = m()->get_c2i_entry();
607  }
608}
609
610address CompiledStaticCall::find_stub() {
611  // Find reloc. information containing this call-site
612  RelocIterator iter((nmethod*)NULL, instruction_address());
613  while (iter.next()) {
614    if (iter.addr() == instruction_address()) {
615      switch(iter.type()) {
616        case relocInfo::static_call_type:
617          return iter.static_call_reloc()->static_stub();
618        // We check here for opt_virtual_call_type, since we reuse the code
619        // from the CompiledIC implementation
620        case relocInfo::opt_virtual_call_type:
621          return iter.opt_virtual_call_reloc()->static_stub();
622        case relocInfo::poll_type:
623        case relocInfo::poll_return_type: // A safepoint can't overlap a call.
624        default:
625          ShouldNotReachHere();
626      }
627    }
628  }
629  return NULL;
630}
631
632
633//-----------------------------------------------------------------------------
634// Non-product mode code
635#ifndef PRODUCT
636
637void CompiledIC::verify() {
638  // make sure code pattern is actually a call imm32 instruction
639  _ic_call->verify();
640  if (os::is_MP()) {
641    _ic_call->verify_alignment();
642  }
643  assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
644          || is_optimized() || is_megamorphic(), "sanity check");
645}
646
647void CompiledIC::print() {
648  print_compiled_ic();
649  tty->cr();
650}
651
652void CompiledIC::print_compiled_ic() {
653  tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT " cached_value " INTPTR_FORMAT,
654             p2i(instruction_address()), is_call_to_interpreted() ? "interpreted " : "", p2i(ic_destination()), p2i(is_optimized() ? NULL : cached_value()));
655}
656
657void CompiledStaticCall::print() {
658  tty->print("static call at " INTPTR_FORMAT " -> ", p2i(instruction_address()));
659  if (is_clean()) {
660    tty->print("clean");
661  } else if (is_call_to_compiled()) {
662    tty->print("compiled");
663  } else if (is_call_to_interpreted()) {
664    tty->print("interpreted");
665  }
666  tty->cr();
667}
668
669#endif // !PRODUCT
670