compiledIC.cpp revision 3064:aa3d708d67c4
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "code/codeCache.hpp"
28#include "code/compiledIC.hpp"
29#include "code/icBuffer.hpp"
30#include "code/nmethod.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/linkResolver.hpp"
34#include "memory/oopFactory.hpp"
35#include "oops/methodOop.hpp"
36#include "oops/oop.inline.hpp"
37#include "oops/symbol.hpp"
38#include "runtime/icache.hpp"
39#include "runtime/sharedRuntime.hpp"
40#include "runtime/stubRoutines.hpp"
41#include "utilities/events.hpp"
42
43
44// Every time a compiled IC is changed or its type is being accessed,
45// either the CompiledIC_lock must be set or we must be at a safe point.
46
47//-----------------------------------------------------------------------------
48// Low-level access to an inline cache. Private, since they might not be
49// MT-safe to use.
50
51void CompiledIC::set_cached_oop(oop cache) {
52  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
53  assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
54  assert (cache == NULL || cache != badOop, "invalid oop");
55
56  if (TraceCompiledIC) {
57    tty->print("  ");
58    print_compiled_ic();
59    tty->print_cr(" changing oop to " INTPTR_FORMAT, (address)cache);
60  }
61
62  if (cache == NULL)  cache = (oop)Universe::non_oop_word();
63
64  *_oop_addr = cache;
65  // fix up the relocations
66  RelocIterator iter = _oops;
67  while (iter.next()) {
68    if (iter.type() == relocInfo::oop_type) {
69      oop_Relocation* r = iter.oop_reloc();
70      if (r->oop_addr() == _oop_addr)
71        r->fix_oop_relocation();
72    }
73  }
74  return;
75}
76
77
78oop CompiledIC::cached_oop() const {
79  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
80  assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
81
82  if (!is_in_transition_state()) {
83    oop data = *_oop_addr;
84    // If we let the oop value here be initialized to zero...
85    assert(data != NULL || Universe::non_oop_word() == NULL,
86           "no raw nulls in CompiledIC oops, because of patching races");
87    return (data == (oop)Universe::non_oop_word()) ? (oop)NULL : data;
88  } else {
89    return InlineCacheBuffer::cached_oop_for((CompiledIC *)this);
90  }
91}
92
93
94void CompiledIC::set_ic_destination(address entry_point) {
95  assert(entry_point != NULL, "must set legal entry point");
96  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
97  if (TraceCompiledIC) {
98    tty->print("  ");
99    print_compiled_ic();
100    tty->print_cr(" changing destination to " INTPTR_FORMAT, entry_point);
101  }
102  MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
103#ifdef ASSERT
104  CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
105  assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
106#endif
107  _ic_call->set_destination_mt_safe(entry_point);
108}
109
110
111address CompiledIC::ic_destination() const {
112 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
113 if (!is_in_transition_state()) {
114   return _ic_call->destination();
115 } else {
116   return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
117 }
118}
119
120
121bool CompiledIC::is_in_transition_state() const {
122  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
123  return InlineCacheBuffer::contains(_ic_call->destination());
124}
125
126
127// Returns native address of 'call' instruction in inline-cache. Used by
128// the InlineCacheBuffer when it needs to find the stub.
129address CompiledIC::stub_address() const {
130  assert(is_in_transition_state(), "should only be called when we are in a transition state");
131  return _ic_call->destination();
132}
133
134
135//-----------------------------------------------------------------------------
136// High-level access to an inline cache. Guaranteed to be MT-safe.
137
138
139void CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
140  methodHandle method = call_info->selected_method();
141  bool is_invoke_interface = (bytecode == Bytecodes::_invokeinterface && !call_info->has_vtable_index());
142  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
143  assert(method->is_oop(), "cannot be NULL and must be oop");
144  assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
145  assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
146
147  address entry;
148  if (is_invoke_interface) {
149    int index = klassItable::compute_itable_index(call_info->resolved_method()());
150    entry = VtableStubs::create_stub(false, index, method());
151    assert(entry != NULL, "entry not computed");
152    klassOop k = call_info->resolved_method()->method_holder();
153    assert(Klass::cast(k)->is_interface(), "sanity check");
154    InlineCacheBuffer::create_transition_stub(this, k, entry);
155  } else {
156    // Can be different than method->vtable_index(), due to package-private etc.
157    int vtable_index = call_info->vtable_index();
158    entry = VtableStubs::create_stub(true, vtable_index, method());
159    InlineCacheBuffer::create_transition_stub(this, method(), entry);
160  }
161
162  if (TraceICs) {
163    ResourceMark rm;
164    tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
165                   instruction_address(), method->print_value_string(), entry);
166  }
167
168  // We can't check this anymore. With lazy deopt we could have already
169  // cleaned this IC entry before we even return. This is possible if
170  // we ran out of space in the inline cache buffer trying to do the
171  // set_next and we safepointed to free up space. This is a benign
172  // race because the IC entry was complete when we safepointed so
173  // cleaning it immediately is harmless.
174  // assert(is_megamorphic(), "sanity check");
175}
176
177
178// true if destination is megamorphic stub
179bool CompiledIC::is_megamorphic() const {
180  assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
181  assert(!is_optimized(), "an optimized call cannot be megamorphic");
182
183  // Cannot rely on cached_oop. It is either an interface or a method.
184  return VtableStubs::is_entry_point(ic_destination());
185}
186
187bool CompiledIC::is_call_to_compiled() const {
188  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
189
190  // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
191  // method is guaranteed to still exist, since we only remove methods after all inline caches
192  // has been cleaned up
193  CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
194  bool is_monomorphic = (cb != NULL && cb->is_nmethod());
195  // Check that the cached_oop is a klass for non-optimized monomorphic calls
196  // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
197  // for calling directly to vep without using the inline cache (i.e., cached_oop == NULL)
198#ifdef ASSERT
199#ifdef TIERED
200  CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
201  bool is_c1_method = caller->is_compiled_by_c1();
202#else
203#ifdef COMPILER1
204  bool is_c1_method = true;
205#else
206  bool is_c1_method = false;
207#endif // COMPILER1
208#endif // TIERED
209  assert( is_c1_method ||
210         !is_monomorphic ||
211         is_optimized() ||
212         (cached_oop() != NULL && cached_oop()->is_klass()), "sanity check");
213#endif // ASSERT
214  return is_monomorphic;
215}
216
217
218bool CompiledIC::is_call_to_interpreted() const {
219  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
220  // Call to interpreter if destination is either calling to a stub (if it
221  // is optimized), or calling to an I2C blob
222  bool is_call_to_interpreted = false;
223  if (!is_optimized()) {
224    // must use unsafe because the destination can be a zombie (and we're cleaning)
225    // and the print_compiled_ic code wants to know if site (in the non-zombie)
226    // is to the interpreter.
227    CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
228    is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
229    assert(!is_call_to_interpreted ||  (cached_oop() != NULL && cached_oop()->is_compiledICHolder()), "sanity check");
230  } else {
231    // Check if we are calling into our own codeblob (i.e., to a stub)
232    CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
233    address dest = ic_destination();
234#ifdef ASSERT
235    {
236      CodeBlob* db = CodeCache::find_blob_unsafe(dest);
237      assert(!db->is_adapter_blob(), "must use stub!");
238    }
239#endif /* ASSERT */
240    is_call_to_interpreted = cb->contains(dest);
241  }
242  return is_call_to_interpreted;
243}
244
245
246void CompiledIC::set_to_clean() {
247  assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
248  if (TraceInlineCacheClearing || TraceICs) {
249    tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", instruction_address());
250    print();
251  }
252
253  address entry;
254  if (is_optimized()) {
255    entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
256  } else {
257    entry = SharedRuntime::get_resolve_virtual_call_stub();
258  }
259
260  // A zombie transition will always be safe, since the oop has already been set to NULL, so
261  // we only need to patch the destination
262  bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
263
264  if (safe_transition) {
265    if (!is_optimized()) set_cached_oop(NULL);
266    // Kill any leftover stub we might have too
267    if (is_in_transition_state()) {
268      ICStub* old_stub = ICStub_from_destination_address(stub_address());
269      old_stub->clear();
270    }
271    set_ic_destination(entry);
272  } else {
273    // Unsafe transition - create stub.
274    InlineCacheBuffer::create_transition_stub(this, NULL, entry);
275  }
276  // We can't check this anymore. With lazy deopt we could have already
277  // cleaned this IC entry before we even return. This is possible if
278  // we ran out of space in the inline cache buffer trying to do the
279  // set_next and we safepointed to free up space. This is a benign
280  // race because the IC entry was complete when we safepointed so
281  // cleaning it immediately is harmless.
282  // assert(is_clean(), "sanity check");
283}
284
285
286bool CompiledIC::is_clean() const {
287  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
288  bool is_clean = false;
289  address dest = ic_destination();
290  is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
291             dest == SharedRuntime::get_resolve_virtual_call_stub();
292  assert(!is_clean || is_optimized() || cached_oop() == NULL, "sanity check");
293  return is_clean;
294}
295
296
297void CompiledIC::set_to_monomorphic(const CompiledICInfo& info) {
298  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
299  // Updating a cache to the wrong entry can cause bugs that are very hard
300  // to track down - if cache entry gets invalid - we just clean it. In
301  // this way it is always the same code path that is responsible for
302  // updating and resolving an inline cache
303  //
304  // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
305  // callsites. In addition ic_miss code will update a site to monomorphic if it determines
306  // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
307  //
308  // In both of these cases the only thing being modifed is the jump/call target and these
309  // transitions are mt_safe
310
311  Thread *thread = Thread::current();
312  if (info._to_interpreter) {
313    // Call to interpreter
314    if (info.is_optimized() && is_optimized()) {
315       assert(is_clean(), "unsafe IC path");
316       MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
317      // the call analysis (callee structure) specifies that the call is optimized
318      // (either because of CHA or the static target is final)
319      // At code generation time, this call has been emitted as static call
320      // Call via stub
321      assert(info.cached_oop().not_null() && info.cached_oop()->is_method(), "sanity check");
322      CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
323      methodHandle method (thread, (methodOop)info.cached_oop()());
324      csc->set_to_interpreted(method, info.entry());
325      if (TraceICs) {
326         ResourceMark rm(thread);
327         tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
328           instruction_address(),
329           method->print_value_string());
330      }
331    } else {
332      // Call via method-klass-holder
333      assert(info.cached_oop().not_null(), "must be set");
334      InlineCacheBuffer::create_transition_stub(this, info.cached_oop()(), info.entry());
335
336      if (TraceICs) {
337         ResourceMark rm(thread);
338         tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via mkh", instruction_address());
339      }
340    }
341  } else {
342    // Call to compiled code
343    bool static_bound = info.is_optimized() || (info.cached_oop().is_null());
344#ifdef ASSERT
345    CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
346    assert (cb->is_nmethod(), "must be compiled!");
347#endif /* ASSERT */
348
349    // This is MT safe if we come from a clean-cache and go through a
350    // non-verified entry point
351    bool safe = SafepointSynchronize::is_at_safepoint() ||
352                (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
353
354    if (!safe) {
355      InlineCacheBuffer::create_transition_stub(this, info.cached_oop()(), info.entry());
356    } else {
357      set_ic_destination(info.entry());
358      if (!is_optimized()) set_cached_oop(info.cached_oop()());
359    }
360
361    if (TraceICs) {
362      ResourceMark rm(thread);
363      assert(info.cached_oop() == NULL || info.cached_oop()()->is_klass(), "must be");
364      tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
365        instruction_address(),
366        ((klassOop)info.cached_oop()())->print_value_string(),
367        (safe) ? "" : "via stub");
368    }
369  }
370  // We can't check this anymore. With lazy deopt we could have already
371  // cleaned this IC entry before we even return. This is possible if
372  // we ran out of space in the inline cache buffer trying to do the
373  // set_next and we safepointed to free up space. This is a benign
374  // race because the IC entry was complete when we safepointed so
375  // cleaning it immediately is harmless.
376  // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
377}
378
379
380// is_optimized: Compiler has generated an optimized call (i.e., no inline
381// cache) static_bound: The call can be static bound (i.e, no need to use
382// inline cache)
383void CompiledIC::compute_monomorphic_entry(methodHandle method,
384                                           KlassHandle receiver_klass,
385                                           bool is_optimized,
386                                           bool static_bound,
387                                           CompiledICInfo& info,
388                                           TRAPS) {
389  info._is_optimized = is_optimized;
390
391  nmethod* method_code = method->code();
392  address entry = NULL;
393  if (method_code != NULL) {
394    // Call to compiled code
395    if (static_bound || is_optimized) {
396      entry      = method_code->verified_entry_point();
397    } else {
398      entry      = method_code->entry_point();
399    }
400  }
401  if (entry != NULL) {
402    // Call to compiled code
403    info._entry      = entry;
404    if (static_bound || is_optimized) {
405      info._cached_oop = Handle(THREAD, (oop)NULL);
406    } else {
407      info._cached_oop = receiver_klass;
408    }
409    info._to_interpreter = false;
410  } else {
411    // Note: the following problem exists with Compiler1:
412    //   - at compile time we may or may not know if the destination is final
413    //   - if we know that the destination is final, we will emit an optimized
414    //     virtual call (no inline cache), and need a methodOop to make a call
415    //     to the interpreter
416    //   - if we do not know if the destination is final, we emit a standard
417    //     virtual call, and use CompiledICHolder to call interpreted code
418    //     (no static call stub has been generated)
419    //     However in that case we will now notice it is static_bound
420    //     and convert the call into what looks to be an optimized
421    //     virtual call. This causes problems in verifying the IC because
422    //     it look vanilla but is optimized. Code in is_call_to_interpreted
423    //     is aware of this and weakens its asserts.
424
425    info._to_interpreter = true;
426    // static_bound should imply is_optimized -- otherwise we have a
427    // performance bug (statically-bindable method is called via
428    // dynamically-dispatched call note: the reverse implication isn't
429    // necessarily true -- the call may have been optimized based on compiler
430    // analysis (static_bound is only based on "final" etc.)
431#ifdef COMPILER2
432#ifdef TIERED
433#if defined(ASSERT)
434    // can't check the assert because we don't have the CompiledIC with which to
435    // find the address if the call instruction.
436    //
437    // CodeBlob* cb = find_blob_unsafe(instruction_address());
438    // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
439#endif // ASSERT
440#else
441    assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
442#endif // TIERED
443#endif // COMPILER2
444    if (is_optimized) {
445      // Use stub entry
446      info._entry      = method()->get_c2i_entry();
447      info._cached_oop = method;
448    } else {
449      // Use mkh entry
450      oop holder = oopFactory::new_compiledICHolder(method, receiver_klass, CHECK);
451      info._cached_oop = Handle(THREAD, holder);
452      info._entry      = method()->get_c2i_unverified_entry();
453    }
454  }
455}
456
457
458inline static RelocIterator parse_ic(nmethod* nm, address ic_call, oop* &_oop_addr, bool *is_optimized) {
459   address  first_oop = NULL;
460   // Mergers please note: Sun SC5.x CC insists on an lvalue for a reference parameter.
461   nmethod* tmp_nm = nm;
462   return virtual_call_Relocation::parse_ic(tmp_nm, ic_call, first_oop, _oop_addr, is_optimized);
463}
464
465CompiledIC::CompiledIC(NativeCall* ic_call)
466  : _ic_call(ic_call),
467    _oops(parse_ic(NULL, ic_call->instruction_address(), _oop_addr, &_is_optimized))
468{
469}
470
471
472CompiledIC::CompiledIC(Relocation* ic_reloc)
473  : _ic_call(nativeCall_at(ic_reloc->addr())),
474    _oops(parse_ic(ic_reloc->code(), ic_reloc->addr(), _oop_addr, &_is_optimized))
475{
476  assert(ic_reloc->type() == relocInfo::virtual_call_type ||
477         ic_reloc->type() == relocInfo::opt_virtual_call_type, "wrong reloc. info");
478}
479
480
481// ----------------------------------------------------------------------------
482
483void CompiledStaticCall::set_to_clean() {
484  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
485  // Reset call site
486  MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
487#ifdef ASSERT
488  CodeBlob* cb = CodeCache::find_blob_unsafe(this);
489  assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
490#endif
491  set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
492
493  // Do not reset stub here:  It is too expensive to call find_stub.
494  // Instead, rely on caller (nmethod::clear_inline_caches) to clear
495  // both the call and its stub.
496}
497
498
499bool CompiledStaticCall::is_clean() const {
500  return destination() == SharedRuntime::get_resolve_static_call_stub();
501}
502
503bool CompiledStaticCall::is_call_to_compiled() const {
504  return CodeCache::contains(destination());
505}
506
507
508bool CompiledStaticCall::is_call_to_interpreted() const {
509  // It is a call to interpreted, if it calls to a stub. Hence, the destination
510  // must be in the stub part of the nmethod that contains the call
511  nmethod* nm = CodeCache::find_nmethod(instruction_address());
512  return nm->stub_contains(destination());
513}
514
515
516void CompiledStaticCall::set_to_interpreted(methodHandle callee, address entry) {
517  address stub=find_stub();
518  assert(stub!=NULL, "stub not found");
519
520  if (TraceICs) {
521    ResourceMark rm;
522    tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_interpreted %s",
523                  instruction_address(),
524                  callee->name_and_sig_as_C_string());
525  }
526
527  NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
528  NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
529
530  assert(method_holder->data()    == 0           || method_holder->data()    == (intptr_t)callee(), "a) MT-unsafe modification of inline cache");
531  assert(jump->jump_destination() == (address)-1 || jump->jump_destination() == entry, "b) MT-unsafe modification of inline cache");
532
533  // Update stub
534  method_holder->set_data((intptr_t)callee());
535  jump->set_jump_destination(entry);
536
537  // Update jump to call
538  set_destination_mt_safe(stub);
539}
540
541
542void CompiledStaticCall::set(const StaticCallInfo& info) {
543  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
544  MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
545  // Updating a cache to the wrong entry can cause bugs that are very hard
546  // to track down - if cache entry gets invalid - we just clean it. In
547  // this way it is always the same code path that is responsible for
548  // updating and resolving an inline cache
549  assert(is_clean(), "do not update a call entry - use clean");
550
551  if (info._to_interpreter) {
552    // Call to interpreted code
553    set_to_interpreted(info.callee(), info.entry());
554  } else {
555    if (TraceICs) {
556      ResourceMark rm;
557      tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
558                    instruction_address(),
559                    info.entry());
560    }
561    // Call to compiled code
562    assert (CodeCache::contains(info.entry()), "wrong entry point");
563    set_destination_mt_safe(info.entry());
564  }
565}
566
567
568// Compute settings for a CompiledStaticCall. Since we might have to set
569// the stub when calling to the interpreter, we need to return arguments.
570void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
571  nmethod* m_code = m->code();
572  info._callee = m;
573  if (m_code != NULL) {
574    info._to_interpreter = false;
575    info._entry  = m_code->verified_entry_point();
576  } else {
577    // Callee is interpreted code.  In any case entering the interpreter
578    // puts a converter-frame on the stack to save arguments.
579    info._to_interpreter = true;
580    info._entry      = m()->get_c2i_entry();
581  }
582}
583
584
585void CompiledStaticCall::set_stub_to_clean(static_stub_Relocation* static_stub) {
586  assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
587  // Reset stub
588  address stub = static_stub->addr();
589  assert(stub!=NULL, "stub not found");
590  NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
591  NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
592  method_holder->set_data(0);
593  jump->set_jump_destination((address)-1);
594}
595
596
597address CompiledStaticCall::find_stub() {
598  // Find reloc. information containing this call-site
599  RelocIterator iter((nmethod*)NULL, instruction_address());
600  while (iter.next()) {
601    if (iter.addr() == instruction_address()) {
602      switch(iter.type()) {
603        case relocInfo::static_call_type:
604          return iter.static_call_reloc()->static_stub();
605        // We check here for opt_virtual_call_type, since we reuse the code
606        // from the CompiledIC implementation
607        case relocInfo::opt_virtual_call_type:
608          return iter.opt_virtual_call_reloc()->static_stub();
609        case relocInfo::poll_type:
610        case relocInfo::poll_return_type: // A safepoint can't overlap a call.
611        default:
612          ShouldNotReachHere();
613      }
614    }
615  }
616  return NULL;
617}
618
619
620//-----------------------------------------------------------------------------
621// Non-product mode code
622#ifndef PRODUCT
623
624void CompiledIC::verify() {
625  // make sure code pattern is actually a call imm32 instruction
626  _ic_call->verify();
627  if (os::is_MP()) {
628    _ic_call->verify_alignment();
629  }
630  assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
631          || is_optimized() || is_megamorphic(), "sanity check");
632}
633
634
635void CompiledIC::print() {
636  print_compiled_ic();
637  tty->cr();
638}
639
640
641void CompiledIC::print_compiled_ic() {
642  tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT,
643             instruction_address(), is_call_to_interpreted() ? "interpreted " : "", ic_destination());
644}
645
646
647void CompiledStaticCall::print() {
648  tty->print("static call at " INTPTR_FORMAT " -> ", instruction_address());
649  if (is_clean()) {
650    tty->print("clean");
651  } else if (is_call_to_compiled()) {
652    tty->print("compiled");
653  } else if (is_call_to_interpreted()) {
654    tty->print("interpreted");
655  }
656  tty->cr();
657}
658
659void CompiledStaticCall::verify() {
660  // Verify call
661  NativeCall::verify();
662  if (os::is_MP()) {
663    verify_alignment();
664  }
665
666  // Verify stub
667  address stub = find_stub();
668  assert(stub != NULL, "no stub found for static call");
669  NativeMovConstReg* method_holder = nativeMovConstReg_at(stub);   // creation also verifies the object
670  NativeJump*        jump          = nativeJump_at(method_holder->next_instruction_address());
671
672  // Verify state
673  assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
674}
675
676#endif
677