c1_Runtime1.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "c1/c1_CodeStubs.hpp"
28#include "c1/c1_Defs.hpp"
29#include "c1/c1_FrameMap.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_MacroAssembler.hpp"
32#include "c1/c1_Runtime1.hpp"
33#include "classfile/systemDictionary.hpp"
34#include "classfile/vmSymbols.hpp"
35#include "code/codeBlob.hpp"
36#include "code/compiledIC.hpp"
37#include "code/pcDesc.hpp"
38#include "code/scopeDesc.hpp"
39#include "code/vtableStubs.hpp"
40#include "compiler/disassembler.hpp"
41#include "gc_interface/collectedHeap.hpp"
42#include "interpreter/bytecode.hpp"
43#include "interpreter/interpreter.hpp"
44#include "memory/allocation.inline.hpp"
45#include "memory/barrierSet.hpp"
46#include "memory/oopFactory.hpp"
47#include "memory/resourceArea.hpp"
48#include "oops/objArrayKlass.hpp"
49#include "oops/oop.inline.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/compilationPolicy.hpp"
52#include "runtime/interfaceSupport.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/vframe.hpp"
57#include "runtime/vframeArray.hpp"
58#include "utilities/copy.hpp"
59#include "utilities/events.hpp"
60
61
62// Implementation of StubAssembler
63
64StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
65  _name = name;
66  _must_gc_arguments = false;
67  _frame_size = no_frame_size;
68  _num_rt_args = 0;
69  _stub_id = stub_id;
70}
71
72
73void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
74  _name = name;
75  _must_gc_arguments = must_gc_arguments;
76}
77
78
79void StubAssembler::set_frame_size(int size) {
80  if (_frame_size == no_frame_size) {
81    _frame_size = size;
82  }
83  assert(_frame_size == size, "can't change the frame size");
84}
85
86
87void StubAssembler::set_num_rt_args(int args) {
88  if (_num_rt_args == 0) {
89    _num_rt_args = args;
90  }
91  assert(_num_rt_args == args, "can't change the number of args");
92}
93
94// Implementation of Runtime1
95
96CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
97const char *Runtime1::_blob_names[] = {
98  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
99};
100
101#ifndef PRODUCT
102// statistics
103int Runtime1::_generic_arraycopy_cnt = 0;
104int Runtime1::_primitive_arraycopy_cnt = 0;
105int Runtime1::_oop_arraycopy_cnt = 0;
106int Runtime1::_generic_arraycopystub_cnt = 0;
107int Runtime1::_arraycopy_slowcase_cnt = 0;
108int Runtime1::_arraycopy_checkcast_cnt = 0;
109int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
110int Runtime1::_new_type_array_slowcase_cnt = 0;
111int Runtime1::_new_object_array_slowcase_cnt = 0;
112int Runtime1::_new_instance_slowcase_cnt = 0;
113int Runtime1::_new_multi_array_slowcase_cnt = 0;
114int Runtime1::_monitorenter_slowcase_cnt = 0;
115int Runtime1::_monitorexit_slowcase_cnt = 0;
116int Runtime1::_patch_code_slowcase_cnt = 0;
117int Runtime1::_throw_range_check_exception_count = 0;
118int Runtime1::_throw_index_exception_count = 0;
119int Runtime1::_throw_div0_exception_count = 0;
120int Runtime1::_throw_null_pointer_exception_count = 0;
121int Runtime1::_throw_class_cast_exception_count = 0;
122int Runtime1::_throw_incompatible_class_change_error_count = 0;
123int Runtime1::_throw_array_store_exception_count = 0;
124int Runtime1::_throw_count = 0;
125
126static int _byte_arraycopy_cnt = 0;
127static int _short_arraycopy_cnt = 0;
128static int _int_arraycopy_cnt = 0;
129static int _long_arraycopy_cnt = 0;
130static int _oop_arraycopy_cnt = 0;
131
132address Runtime1::arraycopy_count_address(BasicType type) {
133  switch (type) {
134  case T_BOOLEAN:
135  case T_BYTE:   return (address)&_byte_arraycopy_cnt;
136  case T_CHAR:
137  case T_SHORT:  return (address)&_short_arraycopy_cnt;
138  case T_FLOAT:
139  case T_INT:    return (address)&_int_arraycopy_cnt;
140  case T_DOUBLE:
141  case T_LONG:   return (address)&_long_arraycopy_cnt;
142  case T_ARRAY:
143  case T_OBJECT: return (address)&_oop_arraycopy_cnt;
144  default:
145    ShouldNotReachHere();
146    return NULL;
147  }
148}
149
150
151#endif
152
153// Simple helper to see if the caller of a runtime stub which
154// entered the VM has been deoptimized
155
156static bool caller_is_deopted() {
157  JavaThread* thread = JavaThread::current();
158  RegisterMap reg_map(thread, false);
159  frame runtime_frame = thread->last_frame();
160  frame caller_frame = runtime_frame.sender(&reg_map);
161  assert(caller_frame.is_compiled_frame(), "must be compiled");
162  return caller_frame.is_deoptimized_frame();
163}
164
165// Stress deoptimization
166static void deopt_caller() {
167  if ( !caller_is_deopted()) {
168    JavaThread* thread = JavaThread::current();
169    RegisterMap reg_map(thread, false);
170    frame runtime_frame = thread->last_frame();
171    frame caller_frame = runtime_frame.sender(&reg_map);
172    Deoptimization::deoptimize_frame(thread, caller_frame.id());
173    assert(caller_is_deopted(), "Must be deoptimized");
174  }
175}
176
177
178void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
179  assert(0 <= id && id < number_of_ids, "illegal stub id");
180  ResourceMark rm;
181  // create code buffer for code storage
182  CodeBuffer code(buffer_blob);
183
184  Compilation::setup_code_buffer(&code, 0);
185
186  // create assembler for code generation
187  StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
188  // generate code for runtime stub
189  OopMapSet* oop_maps;
190  oop_maps = generate_code_for(id, sasm);
191  assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
192         "if stub has an oop map it must have a valid frame size");
193
194#ifdef ASSERT
195  // Make sure that stubs that need oopmaps have them
196  switch (id) {
197    // These stubs don't need to have an oopmap
198    case dtrace_object_alloc_id:
199    case g1_pre_barrier_slow_id:
200    case g1_post_barrier_slow_id:
201    case slow_subtype_check_id:
202    case fpu2long_stub_id:
203    case unwind_exception_id:
204    case counter_overflow_id:
205#if defined(SPARC) || defined(PPC)
206    case handle_exception_nofpu_id:  // Unused on sparc
207#endif
208      break;
209
210    // All other stubs should have oopmaps
211    default:
212      assert(oop_maps != NULL, "must have an oopmap");
213  }
214#endif
215
216  // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
217  sasm->align(BytesPerWord);
218  // make sure all code is in code buffer
219  sasm->flush();
220  // create blob - distinguish a few special cases
221  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
222                                                 &code,
223                                                 CodeOffsets::frame_never_safe,
224                                                 sasm->frame_size(),
225                                                 oop_maps,
226                                                 sasm->must_gc_arguments());
227  // install blob
228  assert(blob != NULL, "blob must exist");
229  _blobs[id] = blob;
230}
231
232
233void Runtime1::initialize(BufferBlob* blob) {
234  // platform-dependent initialization
235  initialize_pd();
236  // generate stubs
237  for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
238  // printing
239#ifndef PRODUCT
240  if (PrintSimpleStubs) {
241    ResourceMark rm;
242    for (int id = 0; id < number_of_ids; id++) {
243      _blobs[id]->print();
244      if (_blobs[id]->oop_maps() != NULL) {
245        _blobs[id]->oop_maps()->print();
246      }
247    }
248  }
249#endif
250}
251
252
253CodeBlob* Runtime1::blob_for(StubID id) {
254  assert(0 <= id && id < number_of_ids, "illegal stub id");
255  return _blobs[id];
256}
257
258
259const char* Runtime1::name_for(StubID id) {
260  assert(0 <= id && id < number_of_ids, "illegal stub id");
261  return _blob_names[id];
262}
263
264const char* Runtime1::name_for_address(address entry) {
265  for (int id = 0; id < number_of_ids; id++) {
266    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
267  }
268
269#define FUNCTION_CASE(a, f) \
270  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
271
272  FUNCTION_CASE(entry, os::javaTimeMillis);
273  FUNCTION_CASE(entry, os::javaTimeNanos);
274  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
275  FUNCTION_CASE(entry, SharedRuntime::d2f);
276  FUNCTION_CASE(entry, SharedRuntime::d2i);
277  FUNCTION_CASE(entry, SharedRuntime::d2l);
278  FUNCTION_CASE(entry, SharedRuntime::dcos);
279  FUNCTION_CASE(entry, SharedRuntime::dexp);
280  FUNCTION_CASE(entry, SharedRuntime::dlog);
281  FUNCTION_CASE(entry, SharedRuntime::dlog10);
282  FUNCTION_CASE(entry, SharedRuntime::dpow);
283  FUNCTION_CASE(entry, SharedRuntime::drem);
284  FUNCTION_CASE(entry, SharedRuntime::dsin);
285  FUNCTION_CASE(entry, SharedRuntime::dtan);
286  FUNCTION_CASE(entry, SharedRuntime::f2i);
287  FUNCTION_CASE(entry, SharedRuntime::f2l);
288  FUNCTION_CASE(entry, SharedRuntime::frem);
289  FUNCTION_CASE(entry, SharedRuntime::l2d);
290  FUNCTION_CASE(entry, SharedRuntime::l2f);
291  FUNCTION_CASE(entry, SharedRuntime::ldiv);
292  FUNCTION_CASE(entry, SharedRuntime::lmul);
293  FUNCTION_CASE(entry, SharedRuntime::lrem);
294  FUNCTION_CASE(entry, SharedRuntime::lrem);
295  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
296  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
297  FUNCTION_CASE(entry, is_instance_of);
298  FUNCTION_CASE(entry, trace_block_entry);
299#ifdef TRACE_HAVE_INTRINSICS
300  FUNCTION_CASE(entry, TRACE_TIME_METHOD);
301#endif
302
303#undef FUNCTION_CASE
304
305  // Soft float adds more runtime names.
306  return pd_name_for_address(entry);
307}
308
309
310JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
311  NOT_PRODUCT(_new_instance_slowcase_cnt++;)
312
313  assert(klass->is_klass(), "not a class");
314  instanceKlassHandle h(thread, klass);
315  h->check_valid_for_instantiation(true, CHECK);
316  // make sure klass is initialized
317  h->initialize(CHECK);
318  // allocate instance and return via TLS
319  oop obj = h->allocate_instance(CHECK);
320  thread->set_vm_result(obj);
321JRT_END
322
323
324JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
325  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
326  // Note: no handle for klass needed since they are not used
327  //       anymore after new_typeArray() and no GC can happen before.
328  //       (This may have to change if this code changes!)
329  assert(klass->is_klass(), "not a class");
330  BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
331  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
332  thread->set_vm_result(obj);
333  // This is pretty rare but this runtime patch is stressful to deoptimization
334  // if we deoptimize here so force a deopt to stress the path.
335  if (DeoptimizeALot) {
336    deopt_caller();
337  }
338
339JRT_END
340
341
342JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
343  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
344
345  // Note: no handle for klass needed since they are not used
346  //       anymore after new_objArray() and no GC can happen before.
347  //       (This may have to change if this code changes!)
348  assert(array_klass->is_klass(), "not a class");
349  Klass* elem_klass = objArrayKlass::cast(array_klass)->element_klass();
350  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
351  thread->set_vm_result(obj);
352  // This is pretty rare but this runtime patch is stressful to deoptimization
353  // if we deoptimize here so force a deopt to stress the path.
354  if (DeoptimizeALot) {
355    deopt_caller();
356  }
357JRT_END
358
359
360JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
361  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
362
363  assert(klass->is_klass(), "not a class");
364  assert(rank >= 1, "rank must be nonzero");
365  oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
366  thread->set_vm_result(obj);
367JRT_END
368
369
370JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
371  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
372JRT_END
373
374
375JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
376  ResourceMark rm(thread);
377  const char* klass_name = Klass::cast(obj->klass())->external_name();
378  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
379JRT_END
380
381
382// counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
383// associated with the top activation record. The inlinee (that is possibly included in the enclosing
384// method) method oop is passed as an argument. In order to do that it is embedded in the code as
385// a constant.
386static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
387  nmethod* osr_nm = NULL;
388  methodHandle method(THREAD, m);
389
390  RegisterMap map(THREAD, false);
391  frame fr =  THREAD->last_frame().sender(&map);
392  nmethod* nm = (nmethod*) fr.cb();
393  assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
394  methodHandle enclosing_method(THREAD, nm->method());
395
396  CompLevel level = (CompLevel)nm->comp_level();
397  int bci = InvocationEntryBci;
398  if (branch_bci != InvocationEntryBci) {
399    // Compute desination bci
400    address pc = method()->code_base() + branch_bci;
401    Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
402    int offset = 0;
403    switch (branch) {
404      case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
405      case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
406      case Bytecodes::_if_icmple: case Bytecodes::_ifle:
407      case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
408      case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
409      case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
410      case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
411        offset = (int16_t)Bytes::get_Java_u2(pc + 1);
412        break;
413      case Bytecodes::_goto_w:
414        offset = Bytes::get_Java_u4(pc + 1);
415        break;
416      default: ;
417    }
418    bci = branch_bci + offset;
419  }
420  assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
421  osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
422  assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
423  return osr_nm;
424}
425
426JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
427  nmethod* osr_nm;
428  JRT_BLOCK
429    osr_nm = counter_overflow_helper(thread, bci, method);
430    if (osr_nm != NULL) {
431      RegisterMap map(thread, false);
432      frame fr =  thread->last_frame().sender(&map);
433      Deoptimization::deoptimize_frame(thread, fr.id());
434    }
435  JRT_BLOCK_END
436  return NULL;
437JRT_END
438
439extern void vm_exit(int code);
440
441// Enter this method from compiled code handler below. This is where we transition
442// to VM mode. This is done as a helper routine so that the method called directly
443// from compiled code does not have to transition to VM. This allows the entry
444// method to see if the nmethod that we have just looked up a handler for has
445// been deoptimized while we were in the vm. This simplifies the assembly code
446// cpu directories.
447//
448// We are entering here from exception stub (via the entry method below)
449// If there is a compiled exception handler in this method, we will continue there;
450// otherwise we will unwind the stack and continue at the caller of top frame method
451// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
452// control the area where we can allow a safepoint. After we exit the safepoint area we can
453// check to see if the handler we are going to return is now in a nmethod that has
454// been deoptimized. If that is the case we return the deopt blob
455// unpack_with_exception entry instead. This makes life for the exception blob easier
456// because making that same check and diverting is painful from assembly language.
457JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
458  // Reset method handle flag.
459  thread->set_is_method_handle_return(false);
460
461  Handle exception(thread, ex);
462  nm = CodeCache::find_nmethod(pc);
463  assert(nm != NULL, "this is not an nmethod");
464  // Adjust the pc as needed/
465  if (nm->is_deopt_pc(pc)) {
466    RegisterMap map(thread, false);
467    frame exception_frame = thread->last_frame().sender(&map);
468    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
469    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
470    pc = exception_frame.pc();
471  }
472#ifdef ASSERT
473  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
474  assert(exception->is_oop(), "just checking");
475  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
476  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
477    if (ExitVMOnVerifyError) vm_exit(-1);
478    ShouldNotReachHere();
479  }
480#endif
481
482  // Check the stack guard pages and reenable them if necessary and there is
483  // enough space on the stack to do so.  Use fast exceptions only if the guard
484  // pages are enabled.
485  bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
486  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
487
488  if (JvmtiExport::can_post_on_exceptions()) {
489    // To ensure correct notification of exception catches and throws
490    // we have to deoptimize here.  If we attempted to notify the
491    // catches and throws during this exception lookup it's possible
492    // we could deoptimize on the way out of the VM and end back in
493    // the interpreter at the throw site.  This would result in double
494    // notifications since the interpreter would also notify about
495    // these same catches and throws as it unwound the frame.
496
497    RegisterMap reg_map(thread);
498    frame stub_frame = thread->last_frame();
499    frame caller_frame = stub_frame.sender(&reg_map);
500
501    // We don't really want to deoptimize the nmethod itself since we
502    // can actually continue in the exception handler ourselves but I
503    // don't see an easy way to have the desired effect.
504    Deoptimization::deoptimize_frame(thread, caller_frame.id());
505    assert(caller_is_deopted(), "Must be deoptimized");
506
507    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
508  }
509
510  // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
511  if (guard_pages_enabled) {
512    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
513    if (fast_continuation != NULL) {
514      // Set flag if return address is a method handle call site.
515      thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
516      return fast_continuation;
517    }
518  }
519
520  // If the stack guard pages are enabled, check whether there is a handler in
521  // the current method.  Otherwise (guard pages disabled), force an unwind and
522  // skip the exception cache update (i.e., just leave continuation==NULL).
523  address continuation = NULL;
524  if (guard_pages_enabled) {
525
526    // New exception handling mechanism can support inlined methods
527    // with exception handlers since the mappings are from PC to PC
528
529    // debugging support
530    // tracing
531    if (TraceExceptions) {
532      ttyLocker ttyl;
533      ResourceMark rm;
534      tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
535                    exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
536    }
537    // for AbortVMOnException flag
538    NOT_PRODUCT(Exceptions::debug_check_abort(exception));
539
540    // Clear out the exception oop and pc since looking up an
541    // exception handler can cause class loading, which might throw an
542    // exception and those fields are expected to be clear during
543    // normal bytecode execution.
544    thread->set_exception_oop(NULL);
545    thread->set_exception_pc(NULL);
546
547    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
548    // If an exception was thrown during exception dispatch, the exception oop may have changed
549    thread->set_exception_oop(exception());
550    thread->set_exception_pc(pc);
551
552    // the exception cache is used only by non-implicit exceptions
553    if (continuation != NULL) {
554      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
555    }
556  }
557
558  thread->set_vm_result(exception());
559  // Set flag if return address is a method handle call site.
560  thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
561
562  if (TraceExceptions) {
563    ttyLocker ttyl;
564    ResourceMark rm;
565    tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
566                  thread, continuation, pc);
567  }
568
569  return continuation;
570JRT_END
571
572// Enter this method from compiled code only if there is a Java exception handler
573// in the method handling the exception.
574// We are entering here from exception stub. We don't do a normal VM transition here.
575// We do it in a helper. This is so we can check to see if the nmethod we have just
576// searched for an exception handler has been deoptimized in the meantime.
577address Runtime1::exception_handler_for_pc(JavaThread* thread) {
578  oop exception = thread->exception_oop();
579  address pc = thread->exception_pc();
580  // Still in Java mode
581  DEBUG_ONLY(ResetNoHandleMark rnhm);
582  nmethod* nm = NULL;
583  address continuation = NULL;
584  {
585    // Enter VM mode by calling the helper
586    ResetNoHandleMark rnhm;
587    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
588  }
589  // Back in JAVA, use no oops DON'T safepoint
590
591  // Now check to see if the nmethod we were called from is now deoptimized.
592  // If so we must return to the deopt blob and deoptimize the nmethod
593  if (nm != NULL && caller_is_deopted()) {
594    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
595  }
596
597  assert(continuation != NULL, "no handler found");
598  return continuation;
599}
600
601
602JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
603  NOT_PRODUCT(_throw_range_check_exception_count++;)
604  char message[jintAsStringSize];
605  sprintf(message, "%d", index);
606  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
607JRT_END
608
609
610JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
611  NOT_PRODUCT(_throw_index_exception_count++;)
612  char message[16];
613  sprintf(message, "%d", index);
614  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
615JRT_END
616
617
618JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
619  NOT_PRODUCT(_throw_div0_exception_count++;)
620  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
621JRT_END
622
623
624JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
625  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
626  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
627JRT_END
628
629
630JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
631  NOT_PRODUCT(_throw_class_cast_exception_count++;)
632  ResourceMark rm(thread);
633  char* message = SharedRuntime::generate_class_cast_message(
634    thread, Klass::cast(object->klass())->external_name());
635  SharedRuntime::throw_and_post_jvmti_exception(
636    thread, vmSymbols::java_lang_ClassCastException(), message);
637JRT_END
638
639
640JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
641  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
642  ResourceMark rm(thread);
643  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
644JRT_END
645
646
647JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
648  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
649  if (PrintBiasedLockingStatistics) {
650    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
651  }
652  Handle h_obj(thread, obj);
653  assert(h_obj()->is_oop(), "must be NULL or an object");
654  if (UseBiasedLocking) {
655    // Retry fast entry if bias is revoked to avoid unnecessary inflation
656    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
657  } else {
658    if (UseFastLocking) {
659      // When using fast locking, the compiled code has already tried the fast case
660      assert(obj == lock->obj(), "must match");
661      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
662    } else {
663      lock->set_obj(obj);
664      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
665    }
666  }
667JRT_END
668
669
670JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
671  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
672  assert(thread == JavaThread::current(), "threads must correspond");
673  assert(thread->last_Java_sp(), "last_Java_sp must be set");
674  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
675  EXCEPTION_MARK;
676
677  oop obj = lock->obj();
678  assert(obj->is_oop(), "must be NULL or an object");
679  if (UseFastLocking) {
680    // When using fast locking, the compiled code has already tried the fast case
681    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
682  } else {
683    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
684  }
685JRT_END
686
687// Cf. OptoRuntime::deoptimize_caller_frame
688JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
689  // Called from within the owner thread, so no need for safepoint
690  RegisterMap reg_map(thread, false);
691  frame stub_frame = thread->last_frame();
692  assert(stub_frame.is_runtime_frame(), "sanity check");
693  frame caller_frame = stub_frame.sender(&reg_map);
694
695  // We are coming from a compiled method; check this is true.
696  assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
697
698  // Deoptimize the caller frame.
699  Deoptimization::deoptimize_frame(thread, caller_frame.id());
700
701  // Return to the now deoptimized frame.
702JRT_END
703
704
705static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
706  Bytecode_field field_access(caller, bci);
707  // This can be static or non-static field access
708  Bytecodes::Code code       = field_access.code();
709
710  // We must load class, initialize class and resolvethe field
711  FieldAccessInfo result; // initialize class if needed
712  constantPoolHandle constants(THREAD, caller->constants());
713  LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK_NULL);
714  return result.klass()();
715}
716
717
718//
719// This routine patches sites where a class wasn't loaded or
720// initialized at the time the code was generated.  It handles
721// references to classes, fields and forcing of initialization.  Most
722// of the cases are straightforward and involving simply forcing
723// resolution of a class, rewriting the instruction stream with the
724// needed constant and replacing the call in this function with the
725// patched code.  The case for static field is more complicated since
726// the thread which is in the process of initializing a class can
727// access it's static fields but other threads can't so the code
728// either has to deoptimize when this case is detected or execute a
729// check that the current thread is the initializing thread.  The
730// current
731//
732// Patches basically look like this:
733//
734//
735// patch_site: jmp patch stub     ;; will be patched
736// continue:   ...
737//             ...
738//             ...
739//             ...
740//
741// They have a stub which looks like this:
742//
743//             ;; patch body
744//             movl <const>, reg           (for class constants)
745//        <or> movl [reg1 + <const>], reg  (for field offsets)
746//        <or> movl reg, [reg1 + <const>]  (for field offsets)
747//             <being_init offset> <bytes to copy> <bytes to skip>
748// patch_stub: call Runtime1::patch_code (through a runtime stub)
749//             jmp patch_site
750//
751//
752// A normal patch is done by rewriting the patch body, usually a move,
753// and then copying it into place over top of the jmp instruction
754// being careful to flush caches and doing it in an MP-safe way.  The
755// constants following the patch body are used to find various pieces
756// of the patch relative to the call site for Runtime1::patch_code.
757// The case for getstatic and putstatic is more complicated because
758// getstatic and putstatic have special semantics when executing while
759// the class is being initialized.  getstatic/putstatic on a class
760// which is being_initialized may be executed by the initializing
761// thread but other threads have to block when they execute it.  This
762// is accomplished in compiled code by executing a test of the current
763// thread against the initializing thread of the class.  It's emitted
764// as boilerplate in their stub which allows the patched code to be
765// executed before it's copied back into the main body of the nmethod.
766//
767// being_init: get_thread(<tmp reg>
768//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
769//             jne patch_stub
770//             movl [reg1 + <const>], reg  (for field offsets)  <or>
771//             movl reg, [reg1 + <const>]  (for field offsets)
772//             jmp continue
773//             <being_init offset> <bytes to copy> <bytes to skip>
774// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
775//             jmp patch_site
776//
777// If the class is being initialized the patch body is rewritten and
778// the patch site is rewritten to jump to being_init, instead of
779// patch_stub.  Whenever this code is executed it checks the current
780// thread against the intializing thread so other threads will enter
781// the runtime and end up blocked waiting the class to finish
782// initializing inside the calls to resolve_field below.  The
783// initializing class will continue on it's way.  Once the class is
784// fully_initialized, the intializing_thread of the class becomes
785// NULL, so the next thread to execute this code will fail the test,
786// call into patch_code and complete the patching process by copying
787// the patch body back into the main part of the nmethod and resume
788// executing.
789//
790//
791
792JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
793  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
794
795  ResourceMark rm(thread);
796  RegisterMap reg_map(thread, false);
797  frame runtime_frame = thread->last_frame();
798  frame caller_frame = runtime_frame.sender(&reg_map);
799
800  // last java frame on stack
801  vframeStream vfst(thread, true);
802  assert(!vfst.at_end(), "Java frame must exist");
803
804  methodHandle caller_method(THREAD, vfst.method());
805  // Note that caller_method->code() may not be same as caller_code because of OSR's
806  // Note also that in the presence of inlining it is not guaranteed
807  // that caller_method() == caller_code->method()
808
809  int bci = vfst.bci();
810  Bytecodes::Code code = caller_method()->java_code_at(bci);
811
812#ifndef PRODUCT
813  // this is used by assertions in the access_field_patching_id
814  BasicType patch_field_type = T_ILLEGAL;
815#endif // PRODUCT
816  bool deoptimize_for_volatile = false;
817  int patch_field_offset = -1;
818  KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
819  KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
820  Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
821  bool load_klass_or_mirror_patch_id =
822    (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
823
824  if (stub_id == Runtime1::access_field_patching_id) {
825
826    Bytecode_field field_access(caller_method, bci);
827    FieldAccessInfo result; // initialize class if needed
828    Bytecodes::Code code = field_access.code();
829    constantPoolHandle constants(THREAD, caller_method->constants());
830    LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK);
831    patch_field_offset = result.field_offset();
832
833    // If we're patching a field which is volatile then at compile it
834    // must not have been know to be volatile, so the generated code
835    // isn't correct for a volatile reference.  The nmethod has to be
836    // deoptimized so that the code can be regenerated correctly.
837    // This check is only needed for access_field_patching since this
838    // is the path for patching field offsets.  load_klass is only
839    // used for patching references to oops which don't need special
840    // handling in the volatile case.
841    deoptimize_for_volatile = result.access_flags().is_volatile();
842
843#ifndef PRODUCT
844    patch_field_type = result.field_type();
845#endif
846  } else if (load_klass_or_mirror_patch_id) {
847    Klass* k = NULL;
848    switch (code) {
849      case Bytecodes::_putstatic:
850      case Bytecodes::_getstatic:
851        { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
852          init_klass = KlassHandle(THREAD, klass);
853          mirror = Handle(THREAD, klass->java_mirror());
854        }
855        break;
856      case Bytecodes::_new:
857        { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
858          k = caller_method->constants()->klass_at(bnew.index(), CHECK);
859        }
860        break;
861      case Bytecodes::_multianewarray:
862        { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
863          k = caller_method->constants()->klass_at(mna.index(), CHECK);
864        }
865        break;
866      case Bytecodes::_instanceof:
867        { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
868          k = caller_method->constants()->klass_at(io.index(), CHECK);
869        }
870        break;
871      case Bytecodes::_checkcast:
872        { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
873          k = caller_method->constants()->klass_at(cc.index(), CHECK);
874        }
875        break;
876      case Bytecodes::_anewarray:
877        { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
878          Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
879          k = Klass::cast(ek)->array_klass(CHECK);
880        }
881        break;
882      case Bytecodes::_ldc:
883      case Bytecodes::_ldc_w:
884        {
885          Bytecode_loadconstant cc(caller_method, bci);
886          oop m = cc.resolve_constant(CHECK);
887          mirror = Handle(THREAD, m);
888        }
889        break;
890      default: Unimplemented();
891    }
892    // convert to handle
893    load_klass = KlassHandle(THREAD, k);
894  } else {
895    ShouldNotReachHere();
896  }
897
898  if (deoptimize_for_volatile) {
899    // At compile time we assumed the field wasn't volatile but after
900    // loading it turns out it was volatile so we have to throw the
901    // compiled code out and let it be regenerated.
902    if (TracePatching) {
903      tty->print_cr("Deoptimizing for patching volatile field reference");
904    }
905    // It's possible the nmethod was invalidated in the last
906    // safepoint, but if it's still alive then make it not_entrant.
907    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
908    if (nm != NULL) {
909      nm->make_not_entrant();
910    }
911
912    Deoptimization::deoptimize_frame(thread, caller_frame.id());
913
914    // Return to the now deoptimized frame.
915  }
916
917  // If we are patching in a non-perm oop, make sure the nmethod
918  // is on the right list.
919  if (ScavengeRootsInCode && mirror.not_null() && mirror()->is_scavengable()) {
920    MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
921    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
922    guarantee(nm != NULL, "only nmethods can contain non-perm oops");
923    if (!nm->on_scavenge_root_list())
924      CodeCache::add_scavenge_root_nmethod(nm);
925  }
926
927  // Now copy code back
928
929  {
930    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
931    //
932    // Deoptimization may have happened while we waited for the lock.
933    // In that case we don't bother to do any patching we just return
934    // and let the deopt happen
935    if (!caller_is_deopted()) {
936      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
937      address instr_pc = jump->jump_destination();
938      NativeInstruction* ni = nativeInstruction_at(instr_pc);
939      if (ni->is_jump() ) {
940        // the jump has not been patched yet
941        // The jump destination is slow case and therefore not part of the stubs
942        // (stubs are only for StaticCalls)
943
944        // format of buffer
945        //    ....
946        //    instr byte 0     <-- copy_buff
947        //    instr byte 1
948        //    ..
949        //    instr byte n-1
950        //      n
951        //    ....             <-- call destination
952
953        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
954        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
955        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
956        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
957        address copy_buff = stub_location - *byte_skip - *byte_count;
958        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
959        if (TracePatching) {
960          tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
961                        instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
962          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
963          assert(caller_code != NULL, "nmethod not found");
964
965          // NOTE we use pc() not original_pc() because we already know they are
966          // identical otherwise we'd have never entered this block of code
967
968          OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
969          assert(map != NULL, "null check");
970          map->print();
971          tty->cr();
972
973          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
974        }
975        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
976        bool do_patch = true;
977        if (stub_id == Runtime1::access_field_patching_id) {
978          // The offset may not be correct if the class was not loaded at code generation time.
979          // Set it now.
980          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
981          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
982          assert(patch_field_offset >= 0, "illegal offset");
983          n_move->add_offset_in_bytes(patch_field_offset);
984        } else if (load_klass_or_mirror_patch_id) {
985          // If a getstatic or putstatic is referencing a klass which
986          // isn't fully initialized, the patch body isn't copied into
987          // place until initialization is complete.  In this case the
988          // patch site is setup so that any threads besides the
989          // initializing thread are forced to come into the VM and
990          // block.
991          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
992                     InstanceKlass::cast(init_klass())->is_initialized();
993          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
994          if (jump->jump_destination() == being_initialized_entry) {
995            assert(do_patch == true, "initialization must be complete at this point");
996          } else {
997            // patch the instruction <move reg, klass>
998            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
999
1000            assert(n_copy->data() == 0 ||
1001                   n_copy->data() == (intptr_t)Universe::non_oop_word(),
1002                   "illegal init value");
1003            if (stub_id == Runtime1::load_klass_patching_id) {
1004            assert(load_klass() != NULL, "klass not set");
1005            n_copy->set_data((intx) (load_klass()));
1006            } else {
1007              assert(mirror() != NULL, "klass not set");
1008              n_copy->set_data((intx) (mirror()));
1009            }
1010
1011            if (TracePatching) {
1012              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1013            }
1014
1015#if defined(SPARC) || defined(PPC)
1016            // Update the location in the nmethod with the proper
1017            // metadata.  When the code was generated, a NULL was stuffed
1018            // in the metadata table and that table needs to be update to
1019            // have the right value.  On intel the value is kept
1020            // directly in the instruction instead of in the metadata
1021            // table, so set_data above effectively updated the value.
1022            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1023            assert(nm != NULL, "invalid nmethod_pc");
1024            RelocIterator mds(nm, copy_buff, copy_buff + 1);
1025            bool found = false;
1026            while (mds.next() && !found) {
1027              if (mds.type() == relocInfo::oop_type) {
1028                assert(stub_id == Runtime1::load_mirror_patching_id, "wrong stub id");
1029                oop_Relocation* r = mds.oop_reloc();
1030                oop* oop_adr = r->oop_addr();
1031                *oop_adr = mirror();
1032                r->fix_oop_relocation();
1033                found = true;
1034              } else if (mds.type() == relocInfo::metadata_type) {
1035                assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1036                metadata_Relocation* r = mds.metadata_reloc();
1037                Metadata** metadata_adr = r->metadata_addr();
1038                *metadata_adr = load_klass();
1039                r->fix_metadata_relocation();
1040                found = true;
1041              }
1042            }
1043            assert(found, "the metadata must exist!");
1044#endif
1045
1046          }
1047        } else {
1048          ShouldNotReachHere();
1049        }
1050
1051        if (do_patch) {
1052          // replace instructions
1053          // first replace the tail, then the call
1054#ifdef ARM
1055          if(load_klass_or_mirror_patch_id && !VM_Version::supports_movw()) {
1056            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1057            address addr = NULL;
1058            assert(nm != NULL, "invalid nmethod_pc");
1059            RelocIterator mds(nm, copy_buff, copy_buff + 1);
1060            while (mds.next()) {
1061              if (mds.type() == relocInfo::oop_type) {
1062                assert(stub_id == Runtime1::load_mirror_patching_id, "wrong stub id");
1063                oop_Relocation* r = mds.oop_reloc();
1064                addr = (address)r->oop_addr();
1065                break;
1066              } else if (mds.type() == relocInfo::metadata_type) {
1067                assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1068                metadata_Relocation* r = mds.metadata_reloc();
1069                addr = (address)r->metadata_addr();
1070                break;
1071              }
1072            }
1073            assert(addr != NULL, "metadata relocation must exist");
1074            copy_buff -= *byte_count;
1075            NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1076            n_copy2->set_pc_relative_offset(addr, instr_pc);
1077          }
1078#endif
1079
1080          for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1081            address ptr = copy_buff + i;
1082            int a_byte = (*ptr) & 0xFF;
1083            address dst = instr_pc + i;
1084            *(unsigned char*)dst = (unsigned char) a_byte;
1085          }
1086          ICache::invalidate_range(instr_pc, *byte_count);
1087          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1088
1089          if (load_klass_or_mirror_patch_id) {
1090            relocInfo::relocType rtype =
1091              (stub_id == Runtime1::load_klass_patching_id) ?
1092                                   relocInfo::metadata_type :
1093                                   relocInfo::oop_type;
1094            // update relocInfo to metadata
1095            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1096            assert(nm != NULL, "invalid nmethod_pc");
1097
1098            // The old patch site is now a move instruction so update
1099            // the reloc info so that it will get updated during
1100            // future GCs.
1101            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1102            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1103                                                     relocInfo::none, rtype);
1104#ifdef SPARC
1105            // Sparc takes two relocations for an metadata so update the second one.
1106            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1107            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1108            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1109                                                     relocInfo::none, rtype);
1110#endif
1111#ifdef PPC
1112          { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1113            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1114            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1115                                                     relocInfo::none, rtype);
1116          }
1117#endif
1118          }
1119
1120        } else {
1121          ICache::invalidate_range(copy_buff, *byte_count);
1122          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1123        }
1124      }
1125    }
1126  }
1127JRT_END
1128
1129//
1130// Entry point for compiled code. We want to patch a nmethod.
1131// We don't do a normal VM transition here because we want to
1132// know after the patching is complete and any safepoint(s) are taken
1133// if the calling nmethod was deoptimized. We do this by calling a
1134// helper method which does the normal VM transition and when it
1135// completes we can check for deoptimization. This simplifies the
1136// assembly code in the cpu directories.
1137//
1138int Runtime1::move_klass_patching(JavaThread* thread) {
1139//
1140// NOTE: we are still in Java
1141//
1142  Thread* THREAD = thread;
1143  debug_only(NoHandleMark nhm;)
1144  {
1145    // Enter VM mode
1146
1147    ResetNoHandleMark rnhm;
1148    patch_code(thread, load_klass_patching_id);
1149  }
1150  // Back in JAVA, use no oops DON'T safepoint
1151
1152  // Return true if calling code is deoptimized
1153
1154  return caller_is_deopted();
1155}
1156
1157int Runtime1::move_mirror_patching(JavaThread* thread) {
1158//
1159// NOTE: we are still in Java
1160//
1161  Thread* THREAD = thread;
1162  debug_only(NoHandleMark nhm;)
1163  {
1164    // Enter VM mode
1165
1166    ResetNoHandleMark rnhm;
1167    patch_code(thread, load_mirror_patching_id);
1168  }
1169  // Back in JAVA, use no oops DON'T safepoint
1170
1171  // Return true if calling code is deoptimized
1172
1173  return caller_is_deopted();
1174}
1175
1176//
1177// Entry point for compiled code. We want to patch a nmethod.
1178// We don't do a normal VM transition here because we want to
1179// know after the patching is complete and any safepoint(s) are taken
1180// if the calling nmethod was deoptimized. We do this by calling a
1181// helper method which does the normal VM transition and when it
1182// completes we can check for deoptimization. This simplifies the
1183// assembly code in the cpu directories.
1184//
1185
1186int Runtime1::access_field_patching(JavaThread* thread) {
1187//
1188// NOTE: we are still in Java
1189//
1190  Thread* THREAD = thread;
1191  debug_only(NoHandleMark nhm;)
1192  {
1193    // Enter VM mode
1194
1195    ResetNoHandleMark rnhm;
1196    patch_code(thread, access_field_patching_id);
1197  }
1198  // Back in JAVA, use no oops DON'T safepoint
1199
1200  // Return true if calling code is deoptimized
1201
1202  return caller_is_deopted();
1203JRT_END
1204
1205
1206JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1207  // for now we just print out the block id
1208  tty->print("%d ", block_id);
1209JRT_END
1210
1211
1212// Array copy return codes.
1213enum {
1214  ac_failed = -1, // arraycopy failed
1215  ac_ok = 0       // arraycopy succeeded
1216};
1217
1218
1219// Below length is the # elements copied.
1220template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1221                                          oopDesc* dst, T* dst_addr,
1222                                          int length) {
1223
1224  // For performance reasons, we assume we are using a card marking write
1225  // barrier. The assert will fail if this is not the case.
1226  // Note that we use the non-virtual inlineable variant of write_ref_array.
1227  BarrierSet* bs = Universe::heap()->barrier_set();
1228  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1229  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1230  if (src == dst) {
1231    // same object, no check
1232    bs->write_ref_array_pre(dst_addr, length);
1233    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1234    bs->write_ref_array((HeapWord*)dst_addr, length);
1235    return ac_ok;
1236  } else {
1237    Klass* bound = objArrayKlass::cast(dst->klass())->element_klass();
1238    Klass* stype = objArrayKlass::cast(src->klass())->element_klass();
1239    if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
1240      // Elements are guaranteed to be subtypes, so no check necessary
1241      bs->write_ref_array_pre(dst_addr, length);
1242      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1243      bs->write_ref_array((HeapWord*)dst_addr, length);
1244      return ac_ok;
1245    }
1246  }
1247  return ac_failed;
1248}
1249
1250// fast and direct copy of arrays; returning -1, means that an exception may be thrown
1251// and we did not copy anything
1252JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1253#ifndef PRODUCT
1254  _generic_arraycopy_cnt++;        // Slow-path oop array copy
1255#endif
1256
1257  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1258  if (!dst->is_array() || !src->is_array()) return ac_failed;
1259  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1260  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1261
1262  if (length == 0) return ac_ok;
1263  if (src->is_typeArray()) {
1264    Klass* const klass_oop = src->klass();
1265    if (klass_oop != dst->klass()) return ac_failed;
1266    typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
1267    const int l2es = klass->log2_element_size();
1268    const int ihs = klass->array_header_in_bytes() / wordSize;
1269    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1270    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1271    // Potential problem: memmove is not guaranteed to be word atomic
1272    // Revisit in Merlin
1273    memmove(dst_addr, src_addr, length << l2es);
1274    return ac_ok;
1275  } else if (src->is_objArray() && dst->is_objArray()) {
1276    if (UseCompressedOops) {
1277      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1278      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1279      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1280    } else {
1281      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1282      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1283      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1284    }
1285  }
1286  return ac_failed;
1287JRT_END
1288
1289
1290JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1291#ifndef PRODUCT
1292  _primitive_arraycopy_cnt++;
1293#endif
1294
1295  if (length == 0) return;
1296  // Not guaranteed to be word atomic, but that doesn't matter
1297  // for anything but an oop array, which is covered by oop_arraycopy.
1298  Copy::conjoint_jbytes(src, dst, length);
1299JRT_END
1300
1301JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1302#ifndef PRODUCT
1303  _oop_arraycopy_cnt++;
1304#endif
1305
1306  if (num == 0) return;
1307  BarrierSet* bs = Universe::heap()->barrier_set();
1308  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1309  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1310  if (UseCompressedOops) {
1311    bs->write_ref_array_pre((narrowOop*)dst, num);
1312    Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1313  } else {
1314    bs->write_ref_array_pre((oop*)dst, num);
1315    Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1316  }
1317  bs->write_ref_array(dst, num);
1318JRT_END
1319
1320
1321JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1322  // had to return int instead of bool, otherwise there may be a mismatch
1323  // between the C calling convention and the Java one.
1324  // e.g., on x86, GCC may clear only %al when returning a bool false, but
1325  // JVM takes the whole %eax as the return value, which may misinterpret
1326  // the return value as a boolean true.
1327
1328  assert(mirror != NULL, "should null-check on mirror before calling");
1329  Klass* k = java_lang_Class::as_Klass(mirror);
1330  return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1331JRT_END
1332
1333
1334#ifndef PRODUCT
1335void Runtime1::print_statistics() {
1336  tty->print_cr("C1 Runtime statistics:");
1337  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1338  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1339  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1340  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1341  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1342  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1343  tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1344  tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
1345  tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
1346  tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
1347  tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
1348  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1349  tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1350  tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
1351  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1352  tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1353  tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1354
1355  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1356  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1357  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1358  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1359  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1360  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1361  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1362
1363  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1364  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1365  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1366  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1367  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1368  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1369  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1370  tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1371
1372  SharedRuntime::print_ic_miss_histogram();
1373  tty->cr();
1374}
1375#endif // PRODUCT
1376