c1_Runtime1.cpp revision 3064:aa3d708d67c4
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "c1/c1_CodeStubs.hpp"
28#include "c1/c1_Defs.hpp"
29#include "c1/c1_FrameMap.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_MacroAssembler.hpp"
32#include "c1/c1_Runtime1.hpp"
33#include "classfile/systemDictionary.hpp"
34#include "classfile/vmSymbols.hpp"
35#include "code/codeBlob.hpp"
36#include "code/compiledIC.hpp"
37#include "code/pcDesc.hpp"
38#include "code/scopeDesc.hpp"
39#include "code/vtableStubs.hpp"
40#include "compiler/disassembler.hpp"
41#include "gc_interface/collectedHeap.hpp"
42#include "interpreter/bytecode.hpp"
43#include "interpreter/interpreter.hpp"
44#include "memory/allocation.inline.hpp"
45#include "memory/barrierSet.hpp"
46#include "memory/oopFactory.hpp"
47#include "memory/resourceArea.hpp"
48#include "oops/objArrayKlass.hpp"
49#include "oops/oop.inline.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/compilationPolicy.hpp"
52#include "runtime/interfaceSupport.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/vframe.hpp"
57#include "runtime/vframeArray.hpp"
58#include "utilities/copy.hpp"
59#include "utilities/events.hpp"
60
61
62// Implementation of StubAssembler
63
64StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
65  _name = name;
66  _must_gc_arguments = false;
67  _frame_size = no_frame_size;
68  _num_rt_args = 0;
69  _stub_id = stub_id;
70}
71
72
73void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
74  _name = name;
75  _must_gc_arguments = must_gc_arguments;
76}
77
78
79void StubAssembler::set_frame_size(int size) {
80  if (_frame_size == no_frame_size) {
81    _frame_size = size;
82  }
83  assert(_frame_size == size, "can't change the frame size");
84}
85
86
87void StubAssembler::set_num_rt_args(int args) {
88  if (_num_rt_args == 0) {
89    _num_rt_args = args;
90  }
91  assert(_num_rt_args == args, "can't change the number of args");
92}
93
94// Implementation of Runtime1
95
96CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
97const char *Runtime1::_blob_names[] = {
98  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
99};
100
101#ifndef PRODUCT
102// statistics
103int Runtime1::_generic_arraycopy_cnt = 0;
104int Runtime1::_primitive_arraycopy_cnt = 0;
105int Runtime1::_oop_arraycopy_cnt = 0;
106int Runtime1::_generic_arraycopystub_cnt = 0;
107int Runtime1::_arraycopy_slowcase_cnt = 0;
108int Runtime1::_arraycopy_checkcast_cnt = 0;
109int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
110int Runtime1::_new_type_array_slowcase_cnt = 0;
111int Runtime1::_new_object_array_slowcase_cnt = 0;
112int Runtime1::_new_instance_slowcase_cnt = 0;
113int Runtime1::_new_multi_array_slowcase_cnt = 0;
114int Runtime1::_monitorenter_slowcase_cnt = 0;
115int Runtime1::_monitorexit_slowcase_cnt = 0;
116int Runtime1::_patch_code_slowcase_cnt = 0;
117int Runtime1::_throw_range_check_exception_count = 0;
118int Runtime1::_throw_index_exception_count = 0;
119int Runtime1::_throw_div0_exception_count = 0;
120int Runtime1::_throw_null_pointer_exception_count = 0;
121int Runtime1::_throw_class_cast_exception_count = 0;
122int Runtime1::_throw_incompatible_class_change_error_count = 0;
123int Runtime1::_throw_array_store_exception_count = 0;
124int Runtime1::_throw_count = 0;
125
126static int _byte_arraycopy_cnt = 0;
127static int _short_arraycopy_cnt = 0;
128static int _int_arraycopy_cnt = 0;
129static int _long_arraycopy_cnt = 0;
130static int _oop_arraycopy_cnt = 0;
131
132address Runtime1::arraycopy_count_address(BasicType type) {
133  switch (type) {
134  case T_BOOLEAN:
135  case T_BYTE:   return (address)&_byte_arraycopy_cnt;
136  case T_CHAR:
137  case T_SHORT:  return (address)&_short_arraycopy_cnt;
138  case T_FLOAT:
139  case T_INT:    return (address)&_int_arraycopy_cnt;
140  case T_DOUBLE:
141  case T_LONG:   return (address)&_long_arraycopy_cnt;
142  case T_ARRAY:
143  case T_OBJECT: return (address)&_oop_arraycopy_cnt;
144  default:
145    ShouldNotReachHere();
146    return NULL;
147  }
148}
149
150
151#endif
152
153// Simple helper to see if the caller of a runtime stub which
154// entered the VM has been deoptimized
155
156static bool caller_is_deopted() {
157  JavaThread* thread = JavaThread::current();
158  RegisterMap reg_map(thread, false);
159  frame runtime_frame = thread->last_frame();
160  frame caller_frame = runtime_frame.sender(&reg_map);
161  assert(caller_frame.is_compiled_frame(), "must be compiled");
162  return caller_frame.is_deoptimized_frame();
163}
164
165// Stress deoptimization
166static void deopt_caller() {
167  if ( !caller_is_deopted()) {
168    JavaThread* thread = JavaThread::current();
169    RegisterMap reg_map(thread, false);
170    frame runtime_frame = thread->last_frame();
171    frame caller_frame = runtime_frame.sender(&reg_map);
172    Deoptimization::deoptimize_frame(thread, caller_frame.id());
173    assert(caller_is_deopted(), "Must be deoptimized");
174  }
175}
176
177
178void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
179  assert(0 <= id && id < number_of_ids, "illegal stub id");
180  ResourceMark rm;
181  // create code buffer for code storage
182  CodeBuffer code(buffer_blob);
183
184  Compilation::setup_code_buffer(&code, 0);
185
186  // create assembler for code generation
187  StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
188  // generate code for runtime stub
189  OopMapSet* oop_maps;
190  oop_maps = generate_code_for(id, sasm);
191  assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
192         "if stub has an oop map it must have a valid frame size");
193
194#ifdef ASSERT
195  // Make sure that stubs that need oopmaps have them
196  switch (id) {
197    // These stubs don't need to have an oopmap
198    case dtrace_object_alloc_id:
199    case g1_pre_barrier_slow_id:
200    case g1_post_barrier_slow_id:
201    case slow_subtype_check_id:
202    case fpu2long_stub_id:
203    case unwind_exception_id:
204    case counter_overflow_id:
205#if defined(SPARC) || defined(PPC)
206    case handle_exception_nofpu_id:  // Unused on sparc
207#endif
208      break;
209
210    // All other stubs should have oopmaps
211    default:
212      assert(oop_maps != NULL, "must have an oopmap");
213  }
214#endif
215
216  // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
217  sasm->align(BytesPerWord);
218  // make sure all code is in code buffer
219  sasm->flush();
220  // create blob - distinguish a few special cases
221  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
222                                                 &code,
223                                                 CodeOffsets::frame_never_safe,
224                                                 sasm->frame_size(),
225                                                 oop_maps,
226                                                 sasm->must_gc_arguments());
227  // install blob
228  assert(blob != NULL, "blob must exist");
229  _blobs[id] = blob;
230}
231
232
233void Runtime1::initialize(BufferBlob* blob) {
234  // platform-dependent initialization
235  initialize_pd();
236  // generate stubs
237  for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
238  // printing
239#ifndef PRODUCT
240  if (PrintSimpleStubs) {
241    ResourceMark rm;
242    for (int id = 0; id < number_of_ids; id++) {
243      _blobs[id]->print();
244      if (_blobs[id]->oop_maps() != NULL) {
245        _blobs[id]->oop_maps()->print();
246      }
247    }
248  }
249#endif
250}
251
252
253CodeBlob* Runtime1::blob_for(StubID id) {
254  assert(0 <= id && id < number_of_ids, "illegal stub id");
255  return _blobs[id];
256}
257
258
259const char* Runtime1::name_for(StubID id) {
260  assert(0 <= id && id < number_of_ids, "illegal stub id");
261  return _blob_names[id];
262}
263
264const char* Runtime1::name_for_address(address entry) {
265  for (int id = 0; id < number_of_ids; id++) {
266    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
267  }
268
269#define FUNCTION_CASE(a, f) \
270  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
271
272  FUNCTION_CASE(entry, os::javaTimeMillis);
273  FUNCTION_CASE(entry, os::javaTimeNanos);
274  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
275  FUNCTION_CASE(entry, SharedRuntime::d2f);
276  FUNCTION_CASE(entry, SharedRuntime::d2i);
277  FUNCTION_CASE(entry, SharedRuntime::d2l);
278  FUNCTION_CASE(entry, SharedRuntime::dcos);
279  FUNCTION_CASE(entry, SharedRuntime::dexp);
280  FUNCTION_CASE(entry, SharedRuntime::dlog);
281  FUNCTION_CASE(entry, SharedRuntime::dlog10);
282  FUNCTION_CASE(entry, SharedRuntime::dpow);
283  FUNCTION_CASE(entry, SharedRuntime::drem);
284  FUNCTION_CASE(entry, SharedRuntime::dsin);
285  FUNCTION_CASE(entry, SharedRuntime::dtan);
286  FUNCTION_CASE(entry, SharedRuntime::f2i);
287  FUNCTION_CASE(entry, SharedRuntime::f2l);
288  FUNCTION_CASE(entry, SharedRuntime::frem);
289  FUNCTION_CASE(entry, SharedRuntime::l2d);
290  FUNCTION_CASE(entry, SharedRuntime::l2f);
291  FUNCTION_CASE(entry, SharedRuntime::ldiv);
292  FUNCTION_CASE(entry, SharedRuntime::lmul);
293  FUNCTION_CASE(entry, SharedRuntime::lrem);
294  FUNCTION_CASE(entry, SharedRuntime::lrem);
295  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
296  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
297  FUNCTION_CASE(entry, trace_block_entry);
298
299#undef FUNCTION_CASE
300
301  // Soft float adds more runtime names.
302  return pd_name_for_address(entry);
303}
304
305
306JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
307  NOT_PRODUCT(_new_instance_slowcase_cnt++;)
308
309  assert(oop(klass)->is_klass(), "not a class");
310  instanceKlassHandle h(thread, klass);
311  h->check_valid_for_instantiation(true, CHECK);
312  // make sure klass is initialized
313  h->initialize(CHECK);
314  // allocate instance and return via TLS
315  oop obj = h->allocate_instance(CHECK);
316  thread->set_vm_result(obj);
317JRT_END
318
319
320JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
321  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
322  // Note: no handle for klass needed since they are not used
323  //       anymore after new_typeArray() and no GC can happen before.
324  //       (This may have to change if this code changes!)
325  assert(oop(klass)->is_klass(), "not a class");
326  BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
327  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
328  thread->set_vm_result(obj);
329  // This is pretty rare but this runtime patch is stressful to deoptimization
330  // if we deoptimize here so force a deopt to stress the path.
331  if (DeoptimizeALot) {
332    deopt_caller();
333  }
334
335JRT_END
336
337
338JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
339  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
340
341  // Note: no handle for klass needed since they are not used
342  //       anymore after new_objArray() and no GC can happen before.
343  //       (This may have to change if this code changes!)
344  assert(oop(array_klass)->is_klass(), "not a class");
345  klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
346  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
347  thread->set_vm_result(obj);
348  // This is pretty rare but this runtime patch is stressful to deoptimization
349  // if we deoptimize here so force a deopt to stress the path.
350  if (DeoptimizeALot) {
351    deopt_caller();
352  }
353JRT_END
354
355
356JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
357  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
358
359  assert(oop(klass)->is_klass(), "not a class");
360  assert(rank >= 1, "rank must be nonzero");
361  oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
362  thread->set_vm_result(obj);
363JRT_END
364
365
366JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
367  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
368JRT_END
369
370
371JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
372  ResourceMark rm(thread);
373  const char* klass_name = Klass::cast(obj->klass())->external_name();
374  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
375JRT_END
376
377
378// counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
379// associated with the top activation record. The inlinee (that is possibly included in the enclosing
380// method) method oop is passed as an argument. In order to do that it is embedded in the code as
381// a constant.
382static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
383  nmethod* osr_nm = NULL;
384  methodHandle method(THREAD, m);
385
386  RegisterMap map(THREAD, false);
387  frame fr =  THREAD->last_frame().sender(&map);
388  nmethod* nm = (nmethod*) fr.cb();
389  assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
390  methodHandle enclosing_method(THREAD, nm->method());
391
392  CompLevel level = (CompLevel)nm->comp_level();
393  int bci = InvocationEntryBci;
394  if (branch_bci != InvocationEntryBci) {
395    // Compute desination bci
396    address pc = method()->code_base() + branch_bci;
397    Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
398    int offset = 0;
399    switch (branch) {
400      case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
401      case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
402      case Bytecodes::_if_icmple: case Bytecodes::_ifle:
403      case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
404      case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
405      case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
406      case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
407        offset = (int16_t)Bytes::get_Java_u2(pc + 1);
408        break;
409      case Bytecodes::_goto_w:
410        offset = Bytes::get_Java_u4(pc + 1);
411        break;
412      default: ;
413    }
414    bci = branch_bci + offset;
415  }
416  assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
417  osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
418  assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
419  return osr_nm;
420}
421
422JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
423  nmethod* osr_nm;
424  JRT_BLOCK
425    osr_nm = counter_overflow_helper(thread, bci, method);
426    if (osr_nm != NULL) {
427      RegisterMap map(thread, false);
428      frame fr =  thread->last_frame().sender(&map);
429      Deoptimization::deoptimize_frame(thread, fr.id());
430    }
431  JRT_BLOCK_END
432  return NULL;
433JRT_END
434
435extern void vm_exit(int code);
436
437// Enter this method from compiled code handler below. This is where we transition
438// to VM mode. This is done as a helper routine so that the method called directly
439// from compiled code does not have to transition to VM. This allows the entry
440// method to see if the nmethod that we have just looked up a handler for has
441// been deoptimized while we were in the vm. This simplifies the assembly code
442// cpu directories.
443//
444// We are entering here from exception stub (via the entry method below)
445// If there is a compiled exception handler in this method, we will continue there;
446// otherwise we will unwind the stack and continue at the caller of top frame method
447// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
448// control the area where we can allow a safepoint. After we exit the safepoint area we can
449// check to see if the handler we are going to return is now in a nmethod that has
450// been deoptimized. If that is the case we return the deopt blob
451// unpack_with_exception entry instead. This makes life for the exception blob easier
452// because making that same check and diverting is painful from assembly language.
453JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
454  // Reset method handle flag.
455  thread->set_is_method_handle_return(false);
456
457  Handle exception(thread, ex);
458  nm = CodeCache::find_nmethod(pc);
459  assert(nm != NULL, "this is not an nmethod");
460  // Adjust the pc as needed/
461  if (nm->is_deopt_pc(pc)) {
462    RegisterMap map(thread, false);
463    frame exception_frame = thread->last_frame().sender(&map);
464    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
465    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
466    pc = exception_frame.pc();
467  }
468#ifdef ASSERT
469  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
470  assert(exception->is_oop(), "just checking");
471  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
472  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
473    if (ExitVMOnVerifyError) vm_exit(-1);
474    ShouldNotReachHere();
475  }
476#endif
477
478  // Check the stack guard pages and reenable them if necessary and there is
479  // enough space on the stack to do so.  Use fast exceptions only if the guard
480  // pages are enabled.
481  bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
482  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
483
484  if (JvmtiExport::can_post_on_exceptions()) {
485    // To ensure correct notification of exception catches and throws
486    // we have to deoptimize here.  If we attempted to notify the
487    // catches and throws during this exception lookup it's possible
488    // we could deoptimize on the way out of the VM and end back in
489    // the interpreter at the throw site.  This would result in double
490    // notifications since the interpreter would also notify about
491    // these same catches and throws as it unwound the frame.
492
493    RegisterMap reg_map(thread);
494    frame stub_frame = thread->last_frame();
495    frame caller_frame = stub_frame.sender(&reg_map);
496
497    // We don't really want to deoptimize the nmethod itself since we
498    // can actually continue in the exception handler ourselves but I
499    // don't see an easy way to have the desired effect.
500    Deoptimization::deoptimize_frame(thread, caller_frame.id());
501    assert(caller_is_deopted(), "Must be deoptimized");
502
503    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
504  }
505
506  // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
507  if (guard_pages_enabled) {
508    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
509    if (fast_continuation != NULL) {
510      // Set flag if return address is a method handle call site.
511      thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
512      return fast_continuation;
513    }
514  }
515
516  // If the stack guard pages are enabled, check whether there is a handler in
517  // the current method.  Otherwise (guard pages disabled), force an unwind and
518  // skip the exception cache update (i.e., just leave continuation==NULL).
519  address continuation = NULL;
520  if (guard_pages_enabled) {
521
522    // New exception handling mechanism can support inlined methods
523    // with exception handlers since the mappings are from PC to PC
524
525    // debugging support
526    // tracing
527    if (TraceExceptions) {
528      ttyLocker ttyl;
529      ResourceMark rm;
530      tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
531                    exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
532    }
533    // for AbortVMOnException flag
534    NOT_PRODUCT(Exceptions::debug_check_abort(exception));
535
536    // Clear out the exception oop and pc since looking up an
537    // exception handler can cause class loading, which might throw an
538    // exception and those fields are expected to be clear during
539    // normal bytecode execution.
540    thread->set_exception_oop(NULL);
541    thread->set_exception_pc(NULL);
542
543    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
544    // If an exception was thrown during exception dispatch, the exception oop may have changed
545    thread->set_exception_oop(exception());
546    thread->set_exception_pc(pc);
547
548    // the exception cache is used only by non-implicit exceptions
549    if (continuation != NULL) {
550      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
551    }
552  }
553
554  thread->set_vm_result(exception());
555  // Set flag if return address is a method handle call site.
556  thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
557
558  if (TraceExceptions) {
559    ttyLocker ttyl;
560    ResourceMark rm;
561    tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
562                  thread, continuation, pc);
563  }
564
565  return continuation;
566JRT_END
567
568// Enter this method from compiled code only if there is a Java exception handler
569// in the method handling the exception.
570// We are entering here from exception stub. We don't do a normal VM transition here.
571// We do it in a helper. This is so we can check to see if the nmethod we have just
572// searched for an exception handler has been deoptimized in the meantime.
573address Runtime1::exception_handler_for_pc(JavaThread* thread) {
574  oop exception = thread->exception_oop();
575  address pc = thread->exception_pc();
576  // Still in Java mode
577  DEBUG_ONLY(ResetNoHandleMark rnhm);
578  nmethod* nm = NULL;
579  address continuation = NULL;
580  {
581    // Enter VM mode by calling the helper
582    ResetNoHandleMark rnhm;
583    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
584  }
585  // Back in JAVA, use no oops DON'T safepoint
586
587  // Now check to see if the nmethod we were called from is now deoptimized.
588  // If so we must return to the deopt blob and deoptimize the nmethod
589  if (nm != NULL && caller_is_deopted()) {
590    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
591  }
592
593  assert(continuation != NULL, "no handler found");
594  return continuation;
595}
596
597
598JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
599  NOT_PRODUCT(_throw_range_check_exception_count++;)
600  char message[jintAsStringSize];
601  sprintf(message, "%d", index);
602  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
603JRT_END
604
605
606JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
607  NOT_PRODUCT(_throw_index_exception_count++;)
608  char message[16];
609  sprintf(message, "%d", index);
610  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
611JRT_END
612
613
614JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
615  NOT_PRODUCT(_throw_div0_exception_count++;)
616  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
617JRT_END
618
619
620JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
621  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
622  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
623JRT_END
624
625
626JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
627  NOT_PRODUCT(_throw_class_cast_exception_count++;)
628  ResourceMark rm(thread);
629  char* message = SharedRuntime::generate_class_cast_message(
630    thread, Klass::cast(object->klass())->external_name());
631  SharedRuntime::throw_and_post_jvmti_exception(
632    thread, vmSymbols::java_lang_ClassCastException(), message);
633JRT_END
634
635
636JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
637  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
638  ResourceMark rm(thread);
639  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
640JRT_END
641
642
643JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
644  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
645  if (PrintBiasedLockingStatistics) {
646    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
647  }
648  Handle h_obj(thread, obj);
649  assert(h_obj()->is_oop(), "must be NULL or an object");
650  if (UseBiasedLocking) {
651    // Retry fast entry if bias is revoked to avoid unnecessary inflation
652    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
653  } else {
654    if (UseFastLocking) {
655      // When using fast locking, the compiled code has already tried the fast case
656      assert(obj == lock->obj(), "must match");
657      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
658    } else {
659      lock->set_obj(obj);
660      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
661    }
662  }
663JRT_END
664
665
666JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
667  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
668  assert(thread == JavaThread::current(), "threads must correspond");
669  assert(thread->last_Java_sp(), "last_Java_sp must be set");
670  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
671  EXCEPTION_MARK;
672
673  oop obj = lock->obj();
674  assert(obj->is_oop(), "must be NULL or an object");
675  if (UseFastLocking) {
676    // When using fast locking, the compiled code has already tried the fast case
677    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
678  } else {
679    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
680  }
681JRT_END
682
683// Cf. OptoRuntime::deoptimize_caller_frame
684JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
685  // Called from within the owner thread, so no need for safepoint
686  RegisterMap reg_map(thread, false);
687  frame stub_frame = thread->last_frame();
688  assert(stub_frame.is_runtime_frame(), "sanity check");
689  frame caller_frame = stub_frame.sender(&reg_map);
690
691  // We are coming from a compiled method; check this is true.
692  assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
693
694  // Deoptimize the caller frame.
695  Deoptimization::deoptimize_frame(thread, caller_frame.id());
696
697  // Return to the now deoptimized frame.
698JRT_END
699
700
701static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
702  Bytecode_field field_access(caller, bci);
703  // This can be static or non-static field access
704  Bytecodes::Code code       = field_access.code();
705
706  // We must load class, initialize class and resolvethe field
707  FieldAccessInfo result; // initialize class if needed
708  constantPoolHandle constants(THREAD, caller->constants());
709  LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK_NULL);
710  return result.klass()();
711}
712
713
714//
715// This routine patches sites where a class wasn't loaded or
716// initialized at the time the code was generated.  It handles
717// references to classes, fields and forcing of initialization.  Most
718// of the cases are straightforward and involving simply forcing
719// resolution of a class, rewriting the instruction stream with the
720// needed constant and replacing the call in this function with the
721// patched code.  The case for static field is more complicated since
722// the thread which is in the process of initializing a class can
723// access it's static fields but other threads can't so the code
724// either has to deoptimize when this case is detected or execute a
725// check that the current thread is the initializing thread.  The
726// current
727//
728// Patches basically look like this:
729//
730//
731// patch_site: jmp patch stub     ;; will be patched
732// continue:   ...
733//             ...
734//             ...
735//             ...
736//
737// They have a stub which looks like this:
738//
739//             ;; patch body
740//             movl <const>, reg           (for class constants)
741//        <or> movl [reg1 + <const>], reg  (for field offsets)
742//        <or> movl reg, [reg1 + <const>]  (for field offsets)
743//             <being_init offset> <bytes to copy> <bytes to skip>
744// patch_stub: call Runtime1::patch_code (through a runtime stub)
745//             jmp patch_site
746//
747//
748// A normal patch is done by rewriting the patch body, usually a move,
749// and then copying it into place over top of the jmp instruction
750// being careful to flush caches and doing it in an MP-safe way.  The
751// constants following the patch body are used to find various pieces
752// of the patch relative to the call site for Runtime1::patch_code.
753// The case for getstatic and putstatic is more complicated because
754// getstatic and putstatic have special semantics when executing while
755// the class is being initialized.  getstatic/putstatic on a class
756// which is being_initialized may be executed by the initializing
757// thread but other threads have to block when they execute it.  This
758// is accomplished in compiled code by executing a test of the current
759// thread against the initializing thread of the class.  It's emitted
760// as boilerplate in their stub which allows the patched code to be
761// executed before it's copied back into the main body of the nmethod.
762//
763// being_init: get_thread(<tmp reg>
764//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
765//             jne patch_stub
766//             movl [reg1 + <const>], reg  (for field offsets)  <or>
767//             movl reg, [reg1 + <const>]  (for field offsets)
768//             jmp continue
769//             <being_init offset> <bytes to copy> <bytes to skip>
770// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
771//             jmp patch_site
772//
773// If the class is being initialized the patch body is rewritten and
774// the patch site is rewritten to jump to being_init, instead of
775// patch_stub.  Whenever this code is executed it checks the current
776// thread against the intializing thread so other threads will enter
777// the runtime and end up blocked waiting the class to finish
778// initializing inside the calls to resolve_field below.  The
779// initializing class will continue on it's way.  Once the class is
780// fully_initialized, the intializing_thread of the class becomes
781// NULL, so the next thread to execute this code will fail the test,
782// call into patch_code and complete the patching process by copying
783// the patch body back into the main part of the nmethod and resume
784// executing.
785//
786//
787
788JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
789  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
790
791  ResourceMark rm(thread);
792  RegisterMap reg_map(thread, false);
793  frame runtime_frame = thread->last_frame();
794  frame caller_frame = runtime_frame.sender(&reg_map);
795
796  // last java frame on stack
797  vframeStream vfst(thread, true);
798  assert(!vfst.at_end(), "Java frame must exist");
799
800  methodHandle caller_method(THREAD, vfst.method());
801  // Note that caller_method->code() may not be same as caller_code because of OSR's
802  // Note also that in the presence of inlining it is not guaranteed
803  // that caller_method() == caller_code->method()
804
805  int bci = vfst.bci();
806  Bytecodes::Code code = caller_method()->java_code_at(bci);
807
808#ifndef PRODUCT
809  // this is used by assertions in the access_field_patching_id
810  BasicType patch_field_type = T_ILLEGAL;
811#endif // PRODUCT
812  bool deoptimize_for_volatile = false;
813  int patch_field_offset = -1;
814  KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
815  Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
816  if (stub_id == Runtime1::access_field_patching_id) {
817
818    Bytecode_field field_access(caller_method, bci);
819    FieldAccessInfo result; // initialize class if needed
820    Bytecodes::Code code = field_access.code();
821    constantPoolHandle constants(THREAD, caller_method->constants());
822    LinkResolver::resolve_field(result, constants, field_access.index(), Bytecodes::java_code(code), false, CHECK);
823    patch_field_offset = result.field_offset();
824
825    // If we're patching a field which is volatile then at compile it
826    // must not have been know to be volatile, so the generated code
827    // isn't correct for a volatile reference.  The nmethod has to be
828    // deoptimized so that the code can be regenerated correctly.
829    // This check is only needed for access_field_patching since this
830    // is the path for patching field offsets.  load_klass is only
831    // used for patching references to oops which don't need special
832    // handling in the volatile case.
833    deoptimize_for_volatile = result.access_flags().is_volatile();
834
835#ifndef PRODUCT
836    patch_field_type = result.field_type();
837#endif
838  } else if (stub_id == Runtime1::load_klass_patching_id) {
839    oop k;
840    switch (code) {
841      case Bytecodes::_putstatic:
842      case Bytecodes::_getstatic:
843        { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
844          // Save a reference to the class that has to be checked for initialization
845          init_klass = KlassHandle(THREAD, klass);
846          k = klass->java_mirror();
847        }
848        break;
849      case Bytecodes::_new:
850        { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
851          k = caller_method->constants()->klass_at(bnew.index(), CHECK);
852        }
853        break;
854      case Bytecodes::_multianewarray:
855        { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
856          k = caller_method->constants()->klass_at(mna.index(), CHECK);
857        }
858        break;
859      case Bytecodes::_instanceof:
860        { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
861          k = caller_method->constants()->klass_at(io.index(), CHECK);
862        }
863        break;
864      case Bytecodes::_checkcast:
865        { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
866          k = caller_method->constants()->klass_at(cc.index(), CHECK);
867        }
868        break;
869      case Bytecodes::_anewarray:
870        { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
871          klassOop ek = caller_method->constants()->klass_at(anew.index(), CHECK);
872          k = Klass::cast(ek)->array_klass(CHECK);
873        }
874        break;
875      case Bytecodes::_ldc:
876      case Bytecodes::_ldc_w:
877        {
878          Bytecode_loadconstant cc(caller_method, bci);
879          k = cc.resolve_constant(CHECK);
880          assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
881        }
882        break;
883      default: Unimplemented();
884    }
885    // convert to handle
886    load_klass = Handle(THREAD, k);
887  } else {
888    ShouldNotReachHere();
889  }
890
891  if (deoptimize_for_volatile) {
892    // At compile time we assumed the field wasn't volatile but after
893    // loading it turns out it was volatile so we have to throw the
894    // compiled code out and let it be regenerated.
895    if (TracePatching) {
896      tty->print_cr("Deoptimizing for patching volatile field reference");
897    }
898    // It's possible the nmethod was invalidated in the last
899    // safepoint, but if it's still alive then make it not_entrant.
900    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
901    if (nm != NULL) {
902      nm->make_not_entrant();
903    }
904
905    Deoptimization::deoptimize_frame(thread, caller_frame.id());
906
907    // Return to the now deoptimized frame.
908  }
909
910  // If we are patching in a non-perm oop, make sure the nmethod
911  // is on the right list.
912  if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
913    MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
914    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
915    guarantee(nm != NULL, "only nmethods can contain non-perm oops");
916    if (!nm->on_scavenge_root_list())
917      CodeCache::add_scavenge_root_nmethod(nm);
918  }
919
920  // Now copy code back
921
922  {
923    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
924    //
925    // Deoptimization may have happened while we waited for the lock.
926    // In that case we don't bother to do any patching we just return
927    // and let the deopt happen
928    if (!caller_is_deopted()) {
929      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
930      address instr_pc = jump->jump_destination();
931      NativeInstruction* ni = nativeInstruction_at(instr_pc);
932      if (ni->is_jump() ) {
933        // the jump has not been patched yet
934        // The jump destination is slow case and therefore not part of the stubs
935        // (stubs are only for StaticCalls)
936
937        // format of buffer
938        //    ....
939        //    instr byte 0     <-- copy_buff
940        //    instr byte 1
941        //    ..
942        //    instr byte n-1
943        //      n
944        //    ....             <-- call destination
945
946        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
947        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
948        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
949        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
950        address copy_buff = stub_location - *byte_skip - *byte_count;
951        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
952        if (TracePatching) {
953          tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
954                        instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
955          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
956          assert(caller_code != NULL, "nmethod not found");
957
958          // NOTE we use pc() not original_pc() because we already know they are
959          // identical otherwise we'd have never entered this block of code
960
961          OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
962          assert(map != NULL, "null check");
963          map->print();
964          tty->cr();
965
966          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
967        }
968        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
969        bool do_patch = true;
970        if (stub_id == Runtime1::access_field_patching_id) {
971          // The offset may not be correct if the class was not loaded at code generation time.
972          // Set it now.
973          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
974          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
975          assert(patch_field_offset >= 0, "illegal offset");
976          n_move->add_offset_in_bytes(patch_field_offset);
977        } else if (stub_id == Runtime1::load_klass_patching_id) {
978          // If a getstatic or putstatic is referencing a klass which
979          // isn't fully initialized, the patch body isn't copied into
980          // place until initialization is complete.  In this case the
981          // patch site is setup so that any threads besides the
982          // initializing thread are forced to come into the VM and
983          // block.
984          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
985                     instanceKlass::cast(init_klass())->is_initialized();
986          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
987          if (jump->jump_destination() == being_initialized_entry) {
988            assert(do_patch == true, "initialization must be complete at this point");
989          } else {
990            // patch the instruction <move reg, klass>
991            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
992
993            assert(n_copy->data() == 0 ||
994                   n_copy->data() == (intptr_t)Universe::non_oop_word(),
995                   "illegal init value");
996            assert(load_klass() != NULL, "klass not set");
997            n_copy->set_data((intx) (load_klass()));
998
999            if (TracePatching) {
1000              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1001            }
1002
1003#if defined(SPARC) || defined(PPC)
1004            // Update the oop location in the nmethod with the proper
1005            // oop.  When the code was generated, a NULL was stuffed
1006            // in the oop table and that table needs to be update to
1007            // have the right value.  On intel the value is kept
1008            // directly in the instruction instead of in the oop
1009            // table, so set_data above effectively updated the value.
1010            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1011            assert(nm != NULL, "invalid nmethod_pc");
1012            RelocIterator oops(nm, copy_buff, copy_buff + 1);
1013            bool found = false;
1014            while (oops.next() && !found) {
1015              if (oops.type() == relocInfo::oop_type) {
1016                oop_Relocation* r = oops.oop_reloc();
1017                oop* oop_adr = r->oop_addr();
1018                *oop_adr = load_klass();
1019                r->fix_oop_relocation();
1020                found = true;
1021              }
1022            }
1023            assert(found, "the oop must exist!");
1024#endif
1025
1026          }
1027        } else {
1028          ShouldNotReachHere();
1029        }
1030        if (do_patch) {
1031          // replace instructions
1032          // first replace the tail, then the call
1033#ifdef ARM
1034          if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
1035            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1036            oop* oop_addr = NULL;
1037            assert(nm != NULL, "invalid nmethod_pc");
1038            RelocIterator oops(nm, copy_buff, copy_buff + 1);
1039            while (oops.next()) {
1040              if (oops.type() == relocInfo::oop_type) {
1041                oop_Relocation* r = oops.oop_reloc();
1042                oop_addr = r->oop_addr();
1043                break;
1044              }
1045            }
1046            assert(oop_addr != NULL, "oop relocation must exist");
1047            copy_buff -= *byte_count;
1048            NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1049            n_copy2->set_pc_relative_offset((address)oop_addr, instr_pc);
1050          }
1051#endif
1052
1053          for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1054            address ptr = copy_buff + i;
1055            int a_byte = (*ptr) & 0xFF;
1056            address dst = instr_pc + i;
1057            *(unsigned char*)dst = (unsigned char) a_byte;
1058          }
1059          ICache::invalidate_range(instr_pc, *byte_count);
1060          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1061
1062          if (stub_id == Runtime1::load_klass_patching_id) {
1063            // update relocInfo to oop
1064            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1065            assert(nm != NULL, "invalid nmethod_pc");
1066
1067            // The old patch site is now a move instruction so update
1068            // the reloc info so that it will get updated during
1069            // future GCs.
1070            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1071            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1072                                                     relocInfo::none, relocInfo::oop_type);
1073#ifdef SPARC
1074            // Sparc takes two relocations for an oop so update the second one.
1075            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1076            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1077            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1078                                                     relocInfo::none, relocInfo::oop_type);
1079#endif
1080#ifdef PPC
1081          { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1082            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1083            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
1084          }
1085#endif
1086          }
1087
1088        } else {
1089          ICache::invalidate_range(copy_buff, *byte_count);
1090          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1091        }
1092      }
1093    }
1094  }
1095JRT_END
1096
1097//
1098// Entry point for compiled code. We want to patch a nmethod.
1099// We don't do a normal VM transition here because we want to
1100// know after the patching is complete and any safepoint(s) are taken
1101// if the calling nmethod was deoptimized. We do this by calling a
1102// helper method which does the normal VM transition and when it
1103// completes we can check for deoptimization. This simplifies the
1104// assembly code in the cpu directories.
1105//
1106int Runtime1::move_klass_patching(JavaThread* thread) {
1107//
1108// NOTE: we are still in Java
1109//
1110  Thread* THREAD = thread;
1111  debug_only(NoHandleMark nhm;)
1112  {
1113    // Enter VM mode
1114
1115    ResetNoHandleMark rnhm;
1116    patch_code(thread, load_klass_patching_id);
1117  }
1118  // Back in JAVA, use no oops DON'T safepoint
1119
1120  // Return true if calling code is deoptimized
1121
1122  return caller_is_deopted();
1123}
1124
1125//
1126// Entry point for compiled code. We want to patch a nmethod.
1127// We don't do a normal VM transition here because we want to
1128// know after the patching is complete and any safepoint(s) are taken
1129// if the calling nmethod was deoptimized. We do this by calling a
1130// helper method which does the normal VM transition and when it
1131// completes we can check for deoptimization. This simplifies the
1132// assembly code in the cpu directories.
1133//
1134
1135int Runtime1::access_field_patching(JavaThread* thread) {
1136//
1137// NOTE: we are still in Java
1138//
1139  Thread* THREAD = thread;
1140  debug_only(NoHandleMark nhm;)
1141  {
1142    // Enter VM mode
1143
1144    ResetNoHandleMark rnhm;
1145    patch_code(thread, access_field_patching_id);
1146  }
1147  // Back in JAVA, use no oops DON'T safepoint
1148
1149  // Return true if calling code is deoptimized
1150
1151  return caller_is_deopted();
1152JRT_END
1153
1154
1155JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1156  // for now we just print out the block id
1157  tty->print("%d ", block_id);
1158JRT_END
1159
1160
1161// Array copy return codes.
1162enum {
1163  ac_failed = -1, // arraycopy failed
1164  ac_ok = 0       // arraycopy succeeded
1165};
1166
1167
1168// Below length is the # elements copied.
1169template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1170                                          oopDesc* dst, T* dst_addr,
1171                                          int length) {
1172
1173  // For performance reasons, we assume we are using a card marking write
1174  // barrier. The assert will fail if this is not the case.
1175  // Note that we use the non-virtual inlineable variant of write_ref_array.
1176  BarrierSet* bs = Universe::heap()->barrier_set();
1177  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1178  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1179  if (src == dst) {
1180    // same object, no check
1181    bs->write_ref_array_pre(dst_addr, length);
1182    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1183    bs->write_ref_array((HeapWord*)dst_addr, length);
1184    return ac_ok;
1185  } else {
1186    klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
1187    klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
1188    if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
1189      // Elements are guaranteed to be subtypes, so no check necessary
1190      bs->write_ref_array_pre(dst_addr, length);
1191      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1192      bs->write_ref_array((HeapWord*)dst_addr, length);
1193      return ac_ok;
1194    }
1195  }
1196  return ac_failed;
1197}
1198
1199// fast and direct copy of arrays; returning -1, means that an exception may be thrown
1200// and we did not copy anything
1201JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1202#ifndef PRODUCT
1203  _generic_arraycopy_cnt++;        // Slow-path oop array copy
1204#endif
1205
1206  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1207  if (!dst->is_array() || !src->is_array()) return ac_failed;
1208  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1209  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1210
1211  if (length == 0) return ac_ok;
1212  if (src->is_typeArray()) {
1213    const klassOop klass_oop = src->klass();
1214    if (klass_oop != dst->klass()) return ac_failed;
1215    typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
1216    const int l2es = klass->log2_element_size();
1217    const int ihs = klass->array_header_in_bytes() / wordSize;
1218    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1219    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1220    // Potential problem: memmove is not guaranteed to be word atomic
1221    // Revisit in Merlin
1222    memmove(dst_addr, src_addr, length << l2es);
1223    return ac_ok;
1224  } else if (src->is_objArray() && dst->is_objArray()) {
1225    if (UseCompressedOops) {
1226      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1227      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1228      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1229    } else {
1230      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1231      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1232      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1233    }
1234  }
1235  return ac_failed;
1236JRT_END
1237
1238
1239JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1240#ifndef PRODUCT
1241  _primitive_arraycopy_cnt++;
1242#endif
1243
1244  if (length == 0) return;
1245  // Not guaranteed to be word atomic, but that doesn't matter
1246  // for anything but an oop array, which is covered by oop_arraycopy.
1247  Copy::conjoint_jbytes(src, dst, length);
1248JRT_END
1249
1250JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1251#ifndef PRODUCT
1252  _oop_arraycopy_cnt++;
1253#endif
1254
1255  if (num == 0) return;
1256  BarrierSet* bs = Universe::heap()->barrier_set();
1257  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1258  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1259  if (UseCompressedOops) {
1260    bs->write_ref_array_pre((narrowOop*)dst, num);
1261    Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1262  } else {
1263    bs->write_ref_array_pre((oop*)dst, num);
1264    Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1265  }
1266  bs->write_ref_array(dst, num);
1267JRT_END
1268
1269
1270#ifndef PRODUCT
1271void Runtime1::print_statistics() {
1272  tty->print_cr("C1 Runtime statistics:");
1273  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1274  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1275  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1276  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1277  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1278  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1279  tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1280  tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_cnt);
1281  tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_cnt);
1282  tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_cnt);
1283  tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_cnt);
1284  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1285  tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1286  tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_cnt);
1287  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1288  tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1289  tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1290
1291  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1292  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1293  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1294  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1295  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1296  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1297  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1298
1299  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1300  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1301  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1302  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1303  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1304  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1305  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1306  tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1307
1308  SharedRuntime::print_ic_miss_histogram();
1309  tty->cr();
1310}
1311#endif // PRODUCT
1312