c1_Runtime1.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_c1_Runtime1.cpp.incl"
27
28
29// Implementation of StubAssembler
30
31StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
32  _name = name;
33  _must_gc_arguments = false;
34  _frame_size = no_frame_size;
35  _num_rt_args = 0;
36  _stub_id = stub_id;
37}
38
39
40void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
41  _name = name;
42  _must_gc_arguments = must_gc_arguments;
43}
44
45
46void StubAssembler::set_frame_size(int size) {
47  if (_frame_size == no_frame_size) {
48    _frame_size = size;
49  }
50  assert(_frame_size == size, "can't change the frame size");
51}
52
53
54void StubAssembler::set_num_rt_args(int args) {
55  if (_num_rt_args == 0) {
56    _num_rt_args = args;
57  }
58  assert(_num_rt_args == args, "can't change the number of args");
59}
60
61// Implementation of Runtime1
62
63bool      Runtime1::_is_initialized = false;
64CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
65const char *Runtime1::_blob_names[] = {
66  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
67};
68
69#ifndef PRODUCT
70// statistics
71int Runtime1::_generic_arraycopy_cnt = 0;
72int Runtime1::_primitive_arraycopy_cnt = 0;
73int Runtime1::_oop_arraycopy_cnt = 0;
74int Runtime1::_arraycopy_slowcase_cnt = 0;
75int Runtime1::_new_type_array_slowcase_cnt = 0;
76int Runtime1::_new_object_array_slowcase_cnt = 0;
77int Runtime1::_new_instance_slowcase_cnt = 0;
78int Runtime1::_new_multi_array_slowcase_cnt = 0;
79int Runtime1::_monitorenter_slowcase_cnt = 0;
80int Runtime1::_monitorexit_slowcase_cnt = 0;
81int Runtime1::_patch_code_slowcase_cnt = 0;
82int Runtime1::_throw_range_check_exception_count = 0;
83int Runtime1::_throw_index_exception_count = 0;
84int Runtime1::_throw_div0_exception_count = 0;
85int Runtime1::_throw_null_pointer_exception_count = 0;
86int Runtime1::_throw_class_cast_exception_count = 0;
87int Runtime1::_throw_incompatible_class_change_error_count = 0;
88int Runtime1::_throw_array_store_exception_count = 0;
89int Runtime1::_throw_count = 0;
90#endif
91
92BufferBlob* Runtime1::_buffer_blob  = NULL;
93
94// Simple helper to see if the caller of a runtime stub which
95// entered the VM has been deoptimized
96
97static bool caller_is_deopted() {
98  JavaThread* thread = JavaThread::current();
99  RegisterMap reg_map(thread, false);
100  frame runtime_frame = thread->last_frame();
101  frame caller_frame = runtime_frame.sender(&reg_map);
102  assert(caller_frame.is_compiled_frame(), "must be compiled");
103  return caller_frame.is_deoptimized_frame();
104}
105
106// Stress deoptimization
107static void deopt_caller() {
108  if ( !caller_is_deopted()) {
109    JavaThread* thread = JavaThread::current();
110    RegisterMap reg_map(thread, false);
111    frame runtime_frame = thread->last_frame();
112    frame caller_frame = runtime_frame.sender(&reg_map);
113    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
114    VMThread::execute(&deopt);
115    assert(caller_is_deopted(), "Must be deoptimized");
116  }
117}
118
119
120BufferBlob* Runtime1::get_buffer_blob() {
121  // Allocate code buffer space only once
122  BufferBlob* blob = _buffer_blob;
123  if (blob == NULL) {
124    // setup CodeBuffer.  Preallocate a BufferBlob of size
125    // NMethodSizeLimit plus some extra space for constants.
126    int code_buffer_size = desired_max_code_buffer_size() + desired_max_constant_size();
127    blob = BufferBlob::create("Compiler1 temporary CodeBuffer",
128                              code_buffer_size);
129    guarantee(blob != NULL, "must create initial code buffer");
130    _buffer_blob = blob;
131  }
132  return _buffer_blob;
133}
134
135void Runtime1::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
136  // Preinitialize the consts section to some large size:
137  int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
138  char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
139  code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
140                                        locs_buffer_size / sizeof(relocInfo));
141  code->initialize_consts_size(desired_max_constant_size());
142  // Call stubs + deopt/exception handler
143  code->initialize_stubs_size((call_stub_estimate * LIR_Assembler::call_stub_size) +
144                              LIR_Assembler::exception_handler_size +
145                              LIR_Assembler::deopt_handler_size);
146}
147
148
149void Runtime1::generate_blob_for(StubID id) {
150  assert(0 <= id && id < number_of_ids, "illegal stub id");
151  ResourceMark rm;
152  // create code buffer for code storage
153  CodeBuffer code(get_buffer_blob()->instructions_begin(),
154                  get_buffer_blob()->instructions_size());
155
156  setup_code_buffer(&code, 0);
157
158  // create assembler for code generation
159  StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
160  // generate code for runtime stub
161  OopMapSet* oop_maps;
162  oop_maps = generate_code_for(id, sasm);
163  assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
164         "if stub has an oop map it must have a valid frame size");
165
166#ifdef ASSERT
167  // Make sure that stubs that need oopmaps have them
168  switch (id) {
169    // These stubs don't need to have an oopmap
170    case dtrace_object_alloc_id:
171    case slow_subtype_check_id:
172    case fpu2long_stub_id:
173    case unwind_exception_id:
174#ifndef TIERED
175    case counter_overflow_id: // Not generated outside the tiered world
176#endif
177#ifdef SPARC
178    case handle_exception_nofpu_id:  // Unused on sparc
179#endif
180      break;
181
182    // All other stubs should have oopmaps
183    default:
184      assert(oop_maps != NULL, "must have an oopmap");
185  }
186#endif
187
188  // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
189  sasm->align(BytesPerWord);
190  // make sure all code is in code buffer
191  sasm->flush();
192  // create blob - distinguish a few special cases
193  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
194                                                 &code,
195                                                 CodeOffsets::frame_never_safe,
196                                                 sasm->frame_size(),
197                                                 oop_maps,
198                                                 sasm->must_gc_arguments());
199  // install blob
200  assert(blob != NULL, "blob must exist");
201  _blobs[id] = blob;
202}
203
204
205void Runtime1::initialize() {
206  // Warning: If we have more than one compilation running in parallel, we
207  //          need a lock here with the current setup (lazy initialization).
208  if (!is_initialized()) {
209    _is_initialized = true;
210
211    // platform-dependent initialization
212    initialize_pd();
213    // generate stubs
214    for (int id = 0; id < number_of_ids; id++) generate_blob_for((StubID)id);
215    // printing
216#ifndef PRODUCT
217    if (PrintSimpleStubs) {
218      ResourceMark rm;
219      for (int id = 0; id < number_of_ids; id++) {
220        _blobs[id]->print();
221        if (_blobs[id]->oop_maps() != NULL) {
222          _blobs[id]->oop_maps()->print();
223        }
224      }
225    }
226#endif
227  }
228}
229
230
231CodeBlob* Runtime1::blob_for(StubID id) {
232  assert(0 <= id && id < number_of_ids, "illegal stub id");
233  if (!is_initialized()) initialize();
234  return _blobs[id];
235}
236
237
238const char* Runtime1::name_for(StubID id) {
239  assert(0 <= id && id < number_of_ids, "illegal stub id");
240  return _blob_names[id];
241}
242
243const char* Runtime1::name_for_address(address entry) {
244  for (int id = 0; id < number_of_ids; id++) {
245    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
246  }
247
248#define FUNCTION_CASE(a, f) \
249  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
250
251  FUNCTION_CASE(entry, os::javaTimeMillis);
252  FUNCTION_CASE(entry, os::javaTimeNanos);
253  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
254  FUNCTION_CASE(entry, SharedRuntime::d2f);
255  FUNCTION_CASE(entry, SharedRuntime::d2i);
256  FUNCTION_CASE(entry, SharedRuntime::d2l);
257  FUNCTION_CASE(entry, SharedRuntime::dcos);
258  FUNCTION_CASE(entry, SharedRuntime::dexp);
259  FUNCTION_CASE(entry, SharedRuntime::dlog);
260  FUNCTION_CASE(entry, SharedRuntime::dlog10);
261  FUNCTION_CASE(entry, SharedRuntime::dpow);
262  FUNCTION_CASE(entry, SharedRuntime::drem);
263  FUNCTION_CASE(entry, SharedRuntime::dsin);
264  FUNCTION_CASE(entry, SharedRuntime::dtan);
265  FUNCTION_CASE(entry, SharedRuntime::f2i);
266  FUNCTION_CASE(entry, SharedRuntime::f2l);
267  FUNCTION_CASE(entry, SharedRuntime::frem);
268  FUNCTION_CASE(entry, SharedRuntime::l2d);
269  FUNCTION_CASE(entry, SharedRuntime::l2f);
270  FUNCTION_CASE(entry, SharedRuntime::ldiv);
271  FUNCTION_CASE(entry, SharedRuntime::lmul);
272  FUNCTION_CASE(entry, SharedRuntime::lrem);
273  FUNCTION_CASE(entry, SharedRuntime::lrem);
274  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
275  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
276  FUNCTION_CASE(entry, trace_block_entry);
277
278#undef FUNCTION_CASE
279
280  return "<unknown function>";
281}
282
283
284JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
285  NOT_PRODUCT(_new_instance_slowcase_cnt++;)
286
287  assert(oop(klass)->is_klass(), "not a class");
288  instanceKlassHandle h(thread, klass);
289  h->check_valid_for_instantiation(true, CHECK);
290  // make sure klass is initialized
291  h->initialize(CHECK);
292  // allocate instance and return via TLS
293  oop obj = h->allocate_instance(CHECK);
294  thread->set_vm_result(obj);
295JRT_END
296
297
298JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
299  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
300  // Note: no handle for klass needed since they are not used
301  //       anymore after new_typeArray() and no GC can happen before.
302  //       (This may have to change if this code changes!)
303  assert(oop(klass)->is_klass(), "not a class");
304  BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
305  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
306  thread->set_vm_result(obj);
307  // This is pretty rare but this runtime patch is stressful to deoptimization
308  // if we deoptimize here so force a deopt to stress the path.
309  if (DeoptimizeALot) {
310    deopt_caller();
311  }
312
313JRT_END
314
315
316JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
317  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
318
319  // Note: no handle for klass needed since they are not used
320  //       anymore after new_objArray() and no GC can happen before.
321  //       (This may have to change if this code changes!)
322  assert(oop(array_klass)->is_klass(), "not a class");
323  klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
324  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
325  thread->set_vm_result(obj);
326  // This is pretty rare but this runtime patch is stressful to deoptimization
327  // if we deoptimize here so force a deopt to stress the path.
328  if (DeoptimizeALot) {
329    deopt_caller();
330  }
331JRT_END
332
333
334JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
335  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
336
337  assert(oop(klass)->is_klass(), "not a class");
338  assert(rank >= 1, "rank must be nonzero");
339#ifdef _LP64
340// In 64 bit mode, the sizes are stored in the top 32 bits
341// of each 64 bit stack entry.
342// dims is actually an intptr_t * because the arguments
343// are pushed onto a 64 bit stack.
344// We must create an array of jints to pass to multi_allocate.
345// We reuse the current stack because it will be popped
346// after this bytecode is completed.
347  if ( rank > 1 ) {
348    int index;
349    for ( index = 1; index < rank; index++ ) {  // First size is ok
350        dims[index] = dims[index*2];
351    }
352  }
353#endif
354  oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
355  thread->set_vm_result(obj);
356JRT_END
357
358
359JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
360  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
361JRT_END
362
363
364JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
365  THROW(vmSymbolHandles::java_lang_ArrayStoreException());
366JRT_END
367
368
369JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
370  if (JvmtiExport::can_post_exceptions()) {
371    vframeStream vfst(thread, true);
372    address bcp = vfst.method()->bcp_from(vfst.bci());
373    JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
374  }
375JRT_END
376
377#ifdef TIERED
378JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
379  RegisterMap map(thread, false);
380  frame fr =  thread->last_frame().sender(&map);
381  nmethod* nm = (nmethod*) fr.cb();
382  assert(nm!= NULL && nm->is_nmethod(), "what?");
383  methodHandle method(thread, nm->method());
384  if (bci == 0) {
385    // invocation counter overflow
386    if (!Tier1CountOnly) {
387      CompilationPolicy::policy()->method_invocation_event(method, CHECK);
388    } else {
389      method()->invocation_counter()->reset();
390    }
391  } else {
392    if (!Tier1CountOnly) {
393      // Twe have a bci but not the destination bci and besides a backedge
394      // event is more for OSR which we don't want here.
395      CompilationPolicy::policy()->method_invocation_event(method, CHECK);
396    } else {
397      method()->backedge_counter()->reset();
398    }
399  }
400JRT_END
401#endif // TIERED
402
403extern void vm_exit(int code);
404
405// Enter this method from compiled code handler below. This is where we transition
406// to VM mode. This is done as a helper routine so that the method called directly
407// from compiled code does not have to transition to VM. This allows the entry
408// method to see if the nmethod that we have just looked up a handler for has
409// been deoptimized while we were in the vm. This simplifies the assembly code
410// cpu directories.
411//
412// We are entering here from exception stub (via the entry method below)
413// If there is a compiled exception handler in this method, we will continue there;
414// otherwise we will unwind the stack and continue at the caller of top frame method
415// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
416// control the area where we can allow a safepoint. After we exit the safepoint area we can
417// check to see if the handler we are going to return is now in a nmethod that has
418// been deoptimized. If that is the case we return the deopt blob
419// unpack_with_exception entry instead. This makes life for the exception blob easier
420// because making that same check and diverting is painful from assembly language.
421//
422
423
424JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
425
426  Handle exception(thread, ex);
427  nm = CodeCache::find_nmethod(pc);
428  assert(nm != NULL, "this is not an nmethod");
429  // Adjust the pc as needed/
430  if (nm->is_deopt_pc(pc)) {
431    RegisterMap map(thread, false);
432    frame exception_frame = thread->last_frame().sender(&map);
433    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
434    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
435    pc = exception_frame.pc();
436  }
437#ifdef ASSERT
438  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
439  assert(exception->is_oop(), "just checking");
440  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
441  if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
442    if (ExitVMOnVerifyError) vm_exit(-1);
443    ShouldNotReachHere();
444  }
445#endif
446
447  // Check the stack guard pages and reenable them if necessary and there is
448  // enough space on the stack to do so.  Use fast exceptions only if the guard
449  // pages are enabled.
450  bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
451  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
452
453  if (JvmtiExport::can_post_exceptions()) {
454    // To ensure correct notification of exception catches and throws
455    // we have to deoptimize here.  If we attempted to notify the
456    // catches and throws during this exception lookup it's possible
457    // we could deoptimize on the way out of the VM and end back in
458    // the interpreter at the throw site.  This would result in double
459    // notifications since the interpreter would also notify about
460    // these same catches and throws as it unwound the frame.
461
462    RegisterMap reg_map(thread);
463    frame stub_frame = thread->last_frame();
464    frame caller_frame = stub_frame.sender(&reg_map);
465
466    // We don't really want to deoptimize the nmethod itself since we
467    // can actually continue in the exception handler ourselves but I
468    // don't see an easy way to have the desired effect.
469    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
470    VMThread::execute(&deopt);
471
472    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
473  }
474
475  // ExceptionCache is used only for exceptions at call and not for implicit exceptions
476  if (guard_pages_enabled) {
477    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
478    if (fast_continuation != NULL) {
479      if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
480      return fast_continuation;
481    }
482  }
483
484  // If the stack guard pages are enabled, check whether there is a handler in
485  // the current method.  Otherwise (guard pages disabled), force an unwind and
486  // skip the exception cache update (i.e., just leave continuation==NULL).
487  address continuation = NULL;
488  if (guard_pages_enabled) {
489
490    // New exception handling mechanism can support inlined methods
491    // with exception handlers since the mappings are from PC to PC
492
493    // debugging support
494    // tracing
495    if (TraceExceptions) {
496      ttyLocker ttyl;
497      ResourceMark rm;
498      tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
499                    exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
500    }
501    // for AbortVMOnException flag
502    NOT_PRODUCT(Exceptions::debug_check_abort(exception));
503
504    // Clear out the exception oop and pc since looking up an
505    // exception handler can cause class loading, which might throw an
506    // exception and those fields are expected to be clear during
507    // normal bytecode execution.
508    thread->set_exception_oop(NULL);
509    thread->set_exception_pc(NULL);
510
511    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
512    // If an exception was thrown during exception dispatch, the exception oop may have changed
513    thread->set_exception_oop(exception());
514    thread->set_exception_pc(pc);
515
516    // the exception cache is used only by non-implicit exceptions
517    if (continuation == NULL) {
518      nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
519    } else {
520      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
521    }
522  }
523
524  thread->set_vm_result(exception());
525
526  if (TraceExceptions) {
527    ttyLocker ttyl;
528    ResourceMark rm;
529    tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
530                  thread, continuation, pc);
531  }
532
533  return continuation;
534JRT_END
535
536// Enter this method from compiled code only if there is a Java exception handler
537// in the method handling the exception
538// We are entering here from exception stub. We don't do a normal VM transition here.
539// We do it in a helper. This is so we can check to see if the nmethod we have just
540// searched for an exception handler has been deoptimized in the meantime.
541address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
542  oop exception = thread->exception_oop();
543  address pc = thread->exception_pc();
544  // Still in Java mode
545  debug_only(ResetNoHandleMark rnhm);
546  nmethod* nm = NULL;
547  address continuation = NULL;
548  {
549    // Enter VM mode by calling the helper
550
551    ResetNoHandleMark rnhm;
552    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
553  }
554  // Back in JAVA, use no oops DON'T safepoint
555
556  // Now check to see if the nmethod we were called from is now deoptimized.
557  // If so we must return to the deopt blob and deoptimize the nmethod
558
559  if (nm != NULL && caller_is_deopted()) {
560    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
561  }
562
563  return continuation;
564}
565
566
567JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
568  NOT_PRODUCT(_throw_range_check_exception_count++;)
569  Events::log("throw_range_check");
570  char message[jintAsStringSize];
571  sprintf(message, "%d", index);
572  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
573JRT_END
574
575
576JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
577  NOT_PRODUCT(_throw_index_exception_count++;)
578  Events::log("throw_index");
579  char message[16];
580  sprintf(message, "%d", index);
581  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
582JRT_END
583
584
585JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
586  NOT_PRODUCT(_throw_div0_exception_count++;)
587  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
588JRT_END
589
590
591JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
592  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
593  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
594JRT_END
595
596
597JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
598  NOT_PRODUCT(_throw_class_cast_exception_count++;)
599  ResourceMark rm(thread);
600  char* message = SharedRuntime::generate_class_cast_message(
601    thread, Klass::cast(object->klass())->external_name());
602  SharedRuntime::throw_and_post_jvmti_exception(
603    thread, vmSymbols::java_lang_ClassCastException(), message);
604JRT_END
605
606
607JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
608  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
609  ResourceMark rm(thread);
610  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
611JRT_END
612
613
614JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
615  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
616  if (PrintBiasedLockingStatistics) {
617    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
618  }
619  Handle h_obj(thread, obj);
620  assert(h_obj()->is_oop(), "must be NULL or an object");
621  if (UseBiasedLocking) {
622    // Retry fast entry if bias is revoked to avoid unnecessary inflation
623    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
624  } else {
625    if (UseFastLocking) {
626      // When using fast locking, the compiled code has already tried the fast case
627      assert(obj == lock->obj(), "must match");
628      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
629    } else {
630      lock->set_obj(obj);
631      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
632    }
633  }
634JRT_END
635
636
637JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
638  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
639  assert(thread == JavaThread::current(), "threads must correspond");
640  assert(thread->last_Java_sp(), "last_Java_sp must be set");
641  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
642  EXCEPTION_MARK;
643
644  oop obj = lock->obj();
645  assert(obj->is_oop(), "must be NULL or an object");
646  if (UseFastLocking) {
647    // When using fast locking, the compiled code has already tried the fast case
648    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
649  } else {
650    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
651  }
652JRT_END
653
654
655static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
656  Bytecode_field* field_access = Bytecode_field_at(caller(), caller->bcp_from(bci));
657  // This can be static or non-static field access
658  Bytecodes::Code code       = field_access->code();
659
660  // We must load class, initialize class and resolvethe field
661  FieldAccessInfo result; // initialize class if needed
662  constantPoolHandle constants(THREAD, caller->constants());
663  LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
664  return result.klass()();
665}
666
667
668//
669// This routine patches sites where a class wasn't loaded or
670// initialized at the time the code was generated.  It handles
671// references to classes, fields and forcing of initialization.  Most
672// of the cases are straightforward and involving simply forcing
673// resolution of a class, rewriting the instruction stream with the
674// needed constant and replacing the call in this function with the
675// patched code.  The case for static field is more complicated since
676// the thread which is in the process of initializing a class can
677// access it's static fields but other threads can't so the code
678// either has to deoptimize when this case is detected or execute a
679// check that the current thread is the initializing thread.  The
680// current
681//
682// Patches basically look like this:
683//
684//
685// patch_site: jmp patch stub     ;; will be patched
686// continue:   ...
687//             ...
688//             ...
689//             ...
690//
691// They have a stub which looks like this:
692//
693//             ;; patch body
694//             movl <const>, reg           (for class constants)
695//        <or> movl [reg1 + <const>], reg  (for field offsets)
696//        <or> movl reg, [reg1 + <const>]  (for field offsets)
697//             <being_init offset> <bytes to copy> <bytes to skip>
698// patch_stub: call Runtime1::patch_code (through a runtime stub)
699//             jmp patch_site
700//
701//
702// A normal patch is done by rewriting the patch body, usually a move,
703// and then copying it into place over top of the jmp instruction
704// being careful to flush caches and doing it in an MP-safe way.  The
705// constants following the patch body are used to find various pieces
706// of the patch relative to the call site for Runtime1::patch_code.
707// The case for getstatic and putstatic is more complicated because
708// getstatic and putstatic have special semantics when executing while
709// the class is being initialized.  getstatic/putstatic on a class
710// which is being_initialized may be executed by the initializing
711// thread but other threads have to block when they execute it.  This
712// is accomplished in compiled code by executing a test of the current
713// thread against the initializing thread of the class.  It's emitted
714// as boilerplate in their stub which allows the patched code to be
715// executed before it's copied back into the main body of the nmethod.
716//
717// being_init: get_thread(<tmp reg>
718//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
719//             jne patch_stub
720//             movl [reg1 + <const>], reg  (for field offsets)  <or>
721//             movl reg, [reg1 + <const>]  (for field offsets)
722//             jmp continue
723//             <being_init offset> <bytes to copy> <bytes to skip>
724// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
725//             jmp patch_site
726//
727// If the class is being initialized the patch body is rewritten and
728// the patch site is rewritten to jump to being_init, instead of
729// patch_stub.  Whenever this code is executed it checks the current
730// thread against the intializing thread so other threads will enter
731// the runtime and end up blocked waiting the class to finish
732// initializing inside the calls to resolve_field below.  The
733// initializing class will continue on it's way.  Once the class is
734// fully_initialized, the intializing_thread of the class becomes
735// NULL, so the next thread to execute this code will fail the test,
736// call into patch_code and complete the patching process by copying
737// the patch body back into the main part of the nmethod and resume
738// executing.
739//
740//
741
742JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
743  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
744
745  ResourceMark rm(thread);
746  RegisterMap reg_map(thread, false);
747  frame runtime_frame = thread->last_frame();
748  frame caller_frame = runtime_frame.sender(&reg_map);
749
750  // last java frame on stack
751  vframeStream vfst(thread, true);
752  assert(!vfst.at_end(), "Java frame must exist");
753
754  methodHandle caller_method(THREAD, vfst.method());
755  // Note that caller_method->code() may not be same as caller_code because of OSR's
756  // Note also that in the presence of inlining it is not guaranteed
757  // that caller_method() == caller_code->method()
758
759
760  int bci = vfst.bci();
761
762  Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
763
764  Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
765
766#ifndef PRODUCT
767  // this is used by assertions in the access_field_patching_id
768  BasicType patch_field_type = T_ILLEGAL;
769#endif // PRODUCT
770  bool deoptimize_for_volatile = false;
771  int patch_field_offset = -1;
772  KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
773  Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
774  if (stub_id == Runtime1::access_field_patching_id) {
775
776    Bytecode_field* field_access = Bytecode_field_at(caller_method(), caller_method->bcp_from(bci));
777    FieldAccessInfo result; // initialize class if needed
778    Bytecodes::Code code = field_access->code();
779    constantPoolHandle constants(THREAD, caller_method->constants());
780    LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
781    patch_field_offset = result.field_offset();
782
783    // If we're patching a field which is volatile then at compile it
784    // must not have been know to be volatile, so the generated code
785    // isn't correct for a volatile reference.  The nmethod has to be
786    // deoptimized so that the code can be regenerated correctly.
787    // This check is only needed for access_field_patching since this
788    // is the path for patching field offsets.  load_klass is only
789    // used for patching references to oops which don't need special
790    // handling in the volatile case.
791    deoptimize_for_volatile = result.access_flags().is_volatile();
792
793#ifndef PRODUCT
794    patch_field_type = result.field_type();
795#endif
796  } else if (stub_id == Runtime1::load_klass_patching_id) {
797    oop k;
798    switch (code) {
799      case Bytecodes::_putstatic:
800      case Bytecodes::_getstatic:
801        { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
802          // Save a reference to the class that has to be checked for initialization
803          init_klass = KlassHandle(THREAD, klass);
804          k = klass;
805        }
806        break;
807      case Bytecodes::_new:
808        { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
809          k = caller_method->constants()->klass_at(bnew->index(), CHECK);
810        }
811        break;
812      case Bytecodes::_multianewarray:
813        { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
814          k = caller_method->constants()->klass_at(mna->index(), CHECK);
815        }
816        break;
817      case Bytecodes::_instanceof:
818        { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
819          k = caller_method->constants()->klass_at(io->index(), CHECK);
820        }
821        break;
822      case Bytecodes::_checkcast:
823        { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
824          k = caller_method->constants()->klass_at(cc->index(), CHECK);
825        }
826        break;
827      case Bytecodes::_anewarray:
828        { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
829          klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
830          k = Klass::cast(ek)->array_klass(CHECK);
831        }
832        break;
833      case Bytecodes::_ldc:
834      case Bytecodes::_ldc_w:
835        {
836          Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method(),
837                                                               caller_method->bcp_from(bci));
838          klassOop resolved = caller_method->constants()->klass_at(cc->index(), CHECK);
839          // ldc wants the java mirror.
840          k = resolved->klass_part()->java_mirror();
841        }
842        break;
843      default: Unimplemented();
844    }
845    // convert to handle
846    load_klass = Handle(THREAD, k);
847  } else {
848    ShouldNotReachHere();
849  }
850
851  if (deoptimize_for_volatile) {
852    // At compile time we assumed the field wasn't volatile but after
853    // loading it turns out it was volatile so we have to throw the
854    // compiled code out and let it be regenerated.
855    if (TracePatching) {
856      tty->print_cr("Deoptimizing for patching volatile field reference");
857    }
858    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
859    VMThread::execute(&deopt);
860
861    // Return to the now deoptimized frame.
862  }
863
864
865  // Now copy code back
866
867  {
868    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
869    //
870    // Deoptimization may have happened while we waited for the lock.
871    // In that case we don't bother to do any patching we just return
872    // and let the deopt happen
873    if (!caller_is_deopted()) {
874      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
875      address instr_pc = jump->jump_destination();
876      NativeInstruction* ni = nativeInstruction_at(instr_pc);
877      if (ni->is_jump() ) {
878        // the jump has not been patched yet
879        // The jump destination is slow case and therefore not part of the stubs
880        // (stubs are only for StaticCalls)
881
882        // format of buffer
883        //    ....
884        //    instr byte 0     <-- copy_buff
885        //    instr byte 1
886        //    ..
887        //    instr byte n-1
888        //      n
889        //    ....             <-- call destination
890
891        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
892        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
893        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
894        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
895        address copy_buff = stub_location - *byte_skip - *byte_count;
896        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
897        if (TracePatching) {
898          tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
899                        instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
900          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
901          assert(caller_code != NULL, "nmethod not found");
902
903          // NOTE we use pc() not original_pc() because we already know they are
904          // identical otherwise we'd have never entered this block of code
905
906          OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
907          assert(map != NULL, "null check");
908          map->print();
909          tty->cr();
910
911          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
912        }
913        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
914        bool do_patch = true;
915        if (stub_id == Runtime1::access_field_patching_id) {
916          // The offset may not be correct if the class was not loaded at code generation time.
917          // Set it now.
918          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
919          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
920          assert(patch_field_offset >= 0, "illegal offset");
921          n_move->add_offset_in_bytes(patch_field_offset);
922        } else if (stub_id == Runtime1::load_klass_patching_id) {
923          // If a getstatic or putstatic is referencing a klass which
924          // isn't fully initialized, the patch body isn't copied into
925          // place until initialization is complete.  In this case the
926          // patch site is setup so that any threads besides the
927          // initializing thread are forced to come into the VM and
928          // block.
929          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
930                     instanceKlass::cast(init_klass())->is_initialized();
931          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
932          if (jump->jump_destination() == being_initialized_entry) {
933            assert(do_patch == true, "initialization must be complete at this point");
934          } else {
935            // patch the instruction <move reg, klass>
936            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
937            assert(n_copy->data() == 0, "illegal init value");
938            assert(load_klass() != NULL, "klass not set");
939            n_copy->set_data((intx) (load_klass()));
940
941            if (TracePatching) {
942              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
943            }
944
945#ifdef SPARC
946            // Update the oop location in the nmethod with the proper
947            // oop.  When the code was generated, a NULL was stuffed
948            // in the oop table and that table needs to be update to
949            // have the right value.  On intel the value is kept
950            // directly in the instruction instead of in the oop
951            // table, so set_data above effectively updated the value.
952            nmethod* nm = CodeCache::find_nmethod(instr_pc);
953            assert(nm != NULL, "invalid nmethod_pc");
954            RelocIterator oops(nm, copy_buff, copy_buff + 1);
955            bool found = false;
956            while (oops.next() && !found) {
957              if (oops.type() == relocInfo::oop_type) {
958                oop_Relocation* r = oops.oop_reloc();
959                oop* oop_adr = r->oop_addr();
960                *oop_adr = load_klass();
961                r->fix_oop_relocation();
962                found = true;
963              }
964            }
965            assert(found, "the oop must exist!");
966#endif
967
968          }
969        } else {
970          ShouldNotReachHere();
971        }
972        if (do_patch) {
973          // replace instructions
974          // first replace the tail, then the call
975          for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
976            address ptr = copy_buff + i;
977            int a_byte = (*ptr) & 0xFF;
978            address dst = instr_pc + i;
979            *(unsigned char*)dst = (unsigned char) a_byte;
980          }
981          ICache::invalidate_range(instr_pc, *byte_count);
982          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
983
984          if (stub_id == Runtime1::load_klass_patching_id) {
985            // update relocInfo to oop
986            nmethod* nm = CodeCache::find_nmethod(instr_pc);
987            assert(nm != NULL, "invalid nmethod_pc");
988
989            // The old patch site is now a move instruction so update
990            // the reloc info so that it will get updated during
991            // future GCs.
992            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
993            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
994                                                     relocInfo::none, relocInfo::oop_type);
995#ifdef SPARC
996            // Sparc takes two relocations for an oop so update the second one.
997            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
998            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
999            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1000                                                     relocInfo::none, relocInfo::oop_type);
1001#endif
1002          }
1003
1004        } else {
1005          ICache::invalidate_range(copy_buff, *byte_count);
1006          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1007        }
1008      }
1009    }
1010  }
1011JRT_END
1012
1013//
1014// Entry point for compiled code. We want to patch a nmethod.
1015// We don't do a normal VM transition here because we want to
1016// know after the patching is complete and any safepoint(s) are taken
1017// if the calling nmethod was deoptimized. We do this by calling a
1018// helper method which does the normal VM transition and when it
1019// completes we can check for deoptimization. This simplifies the
1020// assembly code in the cpu directories.
1021//
1022int Runtime1::move_klass_patching(JavaThread* thread) {
1023//
1024// NOTE: we are still in Java
1025//
1026  Thread* THREAD = thread;
1027  debug_only(NoHandleMark nhm;)
1028  {
1029    // Enter VM mode
1030
1031    ResetNoHandleMark rnhm;
1032    patch_code(thread, load_klass_patching_id);
1033  }
1034  // Back in JAVA, use no oops DON'T safepoint
1035
1036  // Return true if calling code is deoptimized
1037
1038  return caller_is_deopted();
1039}
1040
1041//
1042// Entry point for compiled code. We want to patch a nmethod.
1043// We don't do a normal VM transition here because we want to
1044// know after the patching is complete and any safepoint(s) are taken
1045// if the calling nmethod was deoptimized. We do this by calling a
1046// helper method which does the normal VM transition and when it
1047// completes we can check for deoptimization. This simplifies the
1048// assembly code in the cpu directories.
1049//
1050
1051int Runtime1::access_field_patching(JavaThread* thread) {
1052//
1053// NOTE: we are still in Java
1054//
1055  Thread* THREAD = thread;
1056  debug_only(NoHandleMark nhm;)
1057  {
1058    // Enter VM mode
1059
1060    ResetNoHandleMark rnhm;
1061    patch_code(thread, access_field_patching_id);
1062  }
1063  // Back in JAVA, use no oops DON'T safepoint
1064
1065  // Return true if calling code is deoptimized
1066
1067  return caller_is_deopted();
1068JRT_END
1069
1070
1071JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1072  // for now we just print out the block id
1073  tty->print("%d ", block_id);
1074JRT_END
1075
1076
1077// Array copy return codes.
1078enum {
1079  ac_failed = -1, // arraycopy failed
1080  ac_ok = 0       // arraycopy succeeded
1081};
1082
1083
1084template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1085                                          oopDesc* dst, T* dst_addr,
1086                                          int length) {
1087
1088  // For performance reasons, we assume we are using a card marking write
1089  // barrier. The assert will fail if this is not the case.
1090  // Note that we use the non-virtual inlineable variant of write_ref_array.
1091  BarrierSet* bs = Universe::heap()->barrier_set();
1092  assert(bs->has_write_ref_array_opt(),
1093         "Barrier set must have ref array opt");
1094  if (src == dst) {
1095    // same object, no check
1096    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1097    bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
1098                                  (HeapWord*)(dst_addr + length)));
1099    return ac_ok;
1100  } else {
1101    klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
1102    klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
1103    if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
1104      // Elements are guaranteed to be subtypes, so no check necessary
1105      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1106      bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
1107                                    (HeapWord*)(dst_addr + length)));
1108      return ac_ok;
1109    }
1110  }
1111  return ac_failed;
1112}
1113
1114// fast and direct copy of arrays; returning -1, means that an exception may be thrown
1115// and we did not copy anything
1116JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1117#ifndef PRODUCT
1118  _generic_arraycopy_cnt++;        // Slow-path oop array copy
1119#endif
1120
1121  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1122  if (!dst->is_array() || !src->is_array()) return ac_failed;
1123  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1124  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1125
1126  if (length == 0) return ac_ok;
1127  if (src->is_typeArray()) {
1128    const klassOop klass_oop = src->klass();
1129    if (klass_oop != dst->klass()) return ac_failed;
1130    typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
1131    const int l2es = klass->log2_element_size();
1132    const int ihs = klass->array_header_in_bytes() / wordSize;
1133    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1134    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1135    // Potential problem: memmove is not guaranteed to be word atomic
1136    // Revisit in Merlin
1137    memmove(dst_addr, src_addr, length << l2es);
1138    return ac_ok;
1139  } else if (src->is_objArray() && dst->is_objArray()) {
1140    if (UseCompressedOops) {  // will need for tiered
1141      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1142      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1143      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1144    } else {
1145      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1146      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1147      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1148    }
1149  }
1150  return ac_failed;
1151JRT_END
1152
1153
1154JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1155#ifndef PRODUCT
1156  _primitive_arraycopy_cnt++;
1157#endif
1158
1159  if (length == 0) return;
1160  // Not guaranteed to be word atomic, but that doesn't matter
1161  // for anything but an oop array, which is covered by oop_arraycopy.
1162  Copy::conjoint_bytes(src, dst, length);
1163JRT_END
1164
1165JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1166#ifndef PRODUCT
1167  _oop_arraycopy_cnt++;
1168#endif
1169
1170  if (num == 0) return;
1171  Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1172  BarrierSet* bs = Universe::heap()->barrier_set();
1173  bs->write_ref_array(MemRegion(dst, dst + num));
1174JRT_END
1175
1176
1177#ifndef PRODUCT
1178void Runtime1::print_statistics() {
1179  tty->print_cr("C1 Runtime statistics:");
1180  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1181  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1182  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1183  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1184  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1185  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1186  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1187  tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
1188  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1189
1190  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1191  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1192  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1193  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1194  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1195  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1196  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1197
1198  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1199  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1200  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1201  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1202  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1203  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1204  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1205  tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1206
1207  SharedRuntime::print_ic_miss_histogram();
1208  tty->cr();
1209}
1210#endif // PRODUCT
1211