c1_Runtime1.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "c1/c1_CodeStubs.hpp"
28#include "c1/c1_Defs.hpp"
29#include "c1/c1_FrameMap.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_MacroAssembler.hpp"
32#include "c1/c1_Runtime1.hpp"
33#include "classfile/systemDictionary.hpp"
34#include "classfile/vmSymbols.hpp"
35#include "code/codeBlob.hpp"
36#include "code/compiledIC.hpp"
37#include "code/pcDesc.hpp"
38#include "code/scopeDesc.hpp"
39#include "code/vtableStubs.hpp"
40#include "compiler/disassembler.hpp"
41#include "gc_interface/collectedHeap.hpp"
42#include "interpreter/bytecode.hpp"
43#include "interpreter/interpreter.hpp"
44#include "memory/allocation.inline.hpp"
45#include "memory/barrierSet.hpp"
46#include "memory/oopFactory.hpp"
47#include "memory/resourceArea.hpp"
48#include "oops/objArrayKlass.hpp"
49#include "oops/oop.inline.hpp"
50#include "runtime/biasedLocking.hpp"
51#include "runtime/compilationPolicy.hpp"
52#include "runtime/interfaceSupport.hpp"
53#include "runtime/javaCalls.hpp"
54#include "runtime/sharedRuntime.hpp"
55#include "runtime/threadCritical.hpp"
56#include "runtime/vframe.hpp"
57#include "runtime/vframeArray.hpp"
58#include "utilities/copy.hpp"
59#include "utilities/events.hpp"
60
61
62// Implementation of StubAssembler
63
64StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
65  _name = name;
66  _must_gc_arguments = false;
67  _frame_size = no_frame_size;
68  _num_rt_args = 0;
69  _stub_id = stub_id;
70}
71
72
73void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
74  _name = name;
75  _must_gc_arguments = must_gc_arguments;
76}
77
78
79void StubAssembler::set_frame_size(int size) {
80  if (_frame_size == no_frame_size) {
81    _frame_size = size;
82  }
83  assert(_frame_size == size, "can't change the frame size");
84}
85
86
87void StubAssembler::set_num_rt_args(int args) {
88  if (_num_rt_args == 0) {
89    _num_rt_args = args;
90  }
91  assert(_num_rt_args == args, "can't change the number of args");
92}
93
94// Implementation of Runtime1
95
96CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
97const char *Runtime1::_blob_names[] = {
98  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
99};
100
101#ifndef PRODUCT
102// statistics
103int Runtime1::_generic_arraycopy_cnt = 0;
104int Runtime1::_primitive_arraycopy_cnt = 0;
105int Runtime1::_oop_arraycopy_cnt = 0;
106int Runtime1::_arraycopy_slowcase_cnt = 0;
107int Runtime1::_new_type_array_slowcase_cnt = 0;
108int Runtime1::_new_object_array_slowcase_cnt = 0;
109int Runtime1::_new_instance_slowcase_cnt = 0;
110int Runtime1::_new_multi_array_slowcase_cnt = 0;
111int Runtime1::_monitorenter_slowcase_cnt = 0;
112int Runtime1::_monitorexit_slowcase_cnt = 0;
113int Runtime1::_patch_code_slowcase_cnt = 0;
114int Runtime1::_throw_range_check_exception_count = 0;
115int Runtime1::_throw_index_exception_count = 0;
116int Runtime1::_throw_div0_exception_count = 0;
117int Runtime1::_throw_null_pointer_exception_count = 0;
118int Runtime1::_throw_class_cast_exception_count = 0;
119int Runtime1::_throw_incompatible_class_change_error_count = 0;
120int Runtime1::_throw_array_store_exception_count = 0;
121int Runtime1::_throw_count = 0;
122#endif
123
124// Simple helper to see if the caller of a runtime stub which
125// entered the VM has been deoptimized
126
127static bool caller_is_deopted() {
128  JavaThread* thread = JavaThread::current();
129  RegisterMap reg_map(thread, false);
130  frame runtime_frame = thread->last_frame();
131  frame caller_frame = runtime_frame.sender(&reg_map);
132  assert(caller_frame.is_compiled_frame(), "must be compiled");
133  return caller_frame.is_deoptimized_frame();
134}
135
136// Stress deoptimization
137static void deopt_caller() {
138  if ( !caller_is_deopted()) {
139    JavaThread* thread = JavaThread::current();
140    RegisterMap reg_map(thread, false);
141    frame runtime_frame = thread->last_frame();
142    frame caller_frame = runtime_frame.sender(&reg_map);
143    Deoptimization::deoptimize_frame(thread, caller_frame.id());
144    assert(caller_is_deopted(), "Must be deoptimized");
145  }
146}
147
148
149void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
150  assert(0 <= id && id < number_of_ids, "illegal stub id");
151  ResourceMark rm;
152  // create code buffer for code storage
153  CodeBuffer code(buffer_blob);
154
155  Compilation::setup_code_buffer(&code, 0);
156
157  // create assembler for code generation
158  StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
159  // generate code for runtime stub
160  OopMapSet* oop_maps;
161  oop_maps = generate_code_for(id, sasm);
162  assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
163         "if stub has an oop map it must have a valid frame size");
164
165#ifdef ASSERT
166  // Make sure that stubs that need oopmaps have them
167  switch (id) {
168    // These stubs don't need to have an oopmap
169    case dtrace_object_alloc_id:
170    case g1_pre_barrier_slow_id:
171    case g1_post_barrier_slow_id:
172    case slow_subtype_check_id:
173    case fpu2long_stub_id:
174    case unwind_exception_id:
175    case counter_overflow_id:
176#if defined(SPARC) || defined(PPC)
177    case handle_exception_nofpu_id:  // Unused on sparc
178#endif
179      break;
180
181    // All other stubs should have oopmaps
182    default:
183      assert(oop_maps != NULL, "must have an oopmap");
184  }
185#endif
186
187  // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
188  sasm->align(BytesPerWord);
189  // make sure all code is in code buffer
190  sasm->flush();
191  // create blob - distinguish a few special cases
192  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
193                                                 &code,
194                                                 CodeOffsets::frame_never_safe,
195                                                 sasm->frame_size(),
196                                                 oop_maps,
197                                                 sasm->must_gc_arguments());
198  // install blob
199  assert(blob != NULL, "blob must exist");
200  _blobs[id] = blob;
201}
202
203
204void Runtime1::initialize(BufferBlob* blob) {
205  // platform-dependent initialization
206  initialize_pd();
207  // generate stubs
208  for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
209  // printing
210#ifndef PRODUCT
211  if (PrintSimpleStubs) {
212    ResourceMark rm;
213    for (int id = 0; id < number_of_ids; id++) {
214      _blobs[id]->print();
215      if (_blobs[id]->oop_maps() != NULL) {
216        _blobs[id]->oop_maps()->print();
217      }
218    }
219  }
220#endif
221}
222
223
224CodeBlob* Runtime1::blob_for(StubID id) {
225  assert(0 <= id && id < number_of_ids, "illegal stub id");
226  return _blobs[id];
227}
228
229
230const char* Runtime1::name_for(StubID id) {
231  assert(0 <= id && id < number_of_ids, "illegal stub id");
232  return _blob_names[id];
233}
234
235const char* Runtime1::name_for_address(address entry) {
236  for (int id = 0; id < number_of_ids; id++) {
237    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
238  }
239
240#define FUNCTION_CASE(a, f) \
241  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
242
243  FUNCTION_CASE(entry, os::javaTimeMillis);
244  FUNCTION_CASE(entry, os::javaTimeNanos);
245  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
246  FUNCTION_CASE(entry, SharedRuntime::d2f);
247  FUNCTION_CASE(entry, SharedRuntime::d2i);
248  FUNCTION_CASE(entry, SharedRuntime::d2l);
249  FUNCTION_CASE(entry, SharedRuntime::dcos);
250  FUNCTION_CASE(entry, SharedRuntime::dexp);
251  FUNCTION_CASE(entry, SharedRuntime::dlog);
252  FUNCTION_CASE(entry, SharedRuntime::dlog10);
253  FUNCTION_CASE(entry, SharedRuntime::dpow);
254  FUNCTION_CASE(entry, SharedRuntime::drem);
255  FUNCTION_CASE(entry, SharedRuntime::dsin);
256  FUNCTION_CASE(entry, SharedRuntime::dtan);
257  FUNCTION_CASE(entry, SharedRuntime::f2i);
258  FUNCTION_CASE(entry, SharedRuntime::f2l);
259  FUNCTION_CASE(entry, SharedRuntime::frem);
260  FUNCTION_CASE(entry, SharedRuntime::l2d);
261  FUNCTION_CASE(entry, SharedRuntime::l2f);
262  FUNCTION_CASE(entry, SharedRuntime::ldiv);
263  FUNCTION_CASE(entry, SharedRuntime::lmul);
264  FUNCTION_CASE(entry, SharedRuntime::lrem);
265  FUNCTION_CASE(entry, SharedRuntime::lrem);
266  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
267  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
268  FUNCTION_CASE(entry, trace_block_entry);
269
270#undef FUNCTION_CASE
271
272  // Soft float adds more runtime names.
273  return pd_name_for_address(entry);
274}
275
276
277JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
278  NOT_PRODUCT(_new_instance_slowcase_cnt++;)
279
280  assert(oop(klass)->is_klass(), "not a class");
281  instanceKlassHandle h(thread, klass);
282  h->check_valid_for_instantiation(true, CHECK);
283  // make sure klass is initialized
284  h->initialize(CHECK);
285  // allocate instance and return via TLS
286  oop obj = h->allocate_instance(CHECK);
287  thread->set_vm_result(obj);
288JRT_END
289
290
291JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
292  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
293  // Note: no handle for klass needed since they are not used
294  //       anymore after new_typeArray() and no GC can happen before.
295  //       (This may have to change if this code changes!)
296  assert(oop(klass)->is_klass(), "not a class");
297  BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
298  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
299  thread->set_vm_result(obj);
300  // This is pretty rare but this runtime patch is stressful to deoptimization
301  // if we deoptimize here so force a deopt to stress the path.
302  if (DeoptimizeALot) {
303    deopt_caller();
304  }
305
306JRT_END
307
308
309JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
310  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
311
312  // Note: no handle for klass needed since they are not used
313  //       anymore after new_objArray() and no GC can happen before.
314  //       (This may have to change if this code changes!)
315  assert(oop(array_klass)->is_klass(), "not a class");
316  klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
317  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
318  thread->set_vm_result(obj);
319  // This is pretty rare but this runtime patch is stressful to deoptimization
320  // if we deoptimize here so force a deopt to stress the path.
321  if (DeoptimizeALot) {
322    deopt_caller();
323  }
324JRT_END
325
326
327JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
328  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
329
330  assert(oop(klass)->is_klass(), "not a class");
331  assert(rank >= 1, "rank must be nonzero");
332  oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
333  thread->set_vm_result(obj);
334JRT_END
335
336
337JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
338  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
339JRT_END
340
341
342JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
343  THROW(vmSymbolHandles::java_lang_ArrayStoreException());
344JRT_END
345
346
347JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
348  if (JvmtiExport::can_post_on_exceptions()) {
349    vframeStream vfst(thread, true);
350    address bcp = vfst.method()->bcp_from(vfst.bci());
351    JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
352  }
353JRT_END
354
355// This is a helper to allow us to safepoint but allow the outer entry
356// to be safepoint free if we need to do an osr
357static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
358  nmethod* osr_nm = NULL;
359  methodHandle method(THREAD, m);
360
361  RegisterMap map(THREAD, false);
362  frame fr =  THREAD->last_frame().sender(&map);
363  nmethod* nm = (nmethod*) fr.cb();
364  assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
365  methodHandle enclosing_method(THREAD, nm->method());
366
367  CompLevel level = (CompLevel)nm->comp_level();
368  int bci = InvocationEntryBci;
369  if (branch_bci != InvocationEntryBci) {
370    // Compute desination bci
371    address pc = method()->code_base() + branch_bci;
372    Bytecodes::Code branch = Bytecodes::code_at(pc, method());
373    int offset = 0;
374    switch (branch) {
375      case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
376      case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
377      case Bytecodes::_if_icmple: case Bytecodes::_ifle:
378      case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
379      case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
380      case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
381      case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
382        offset = (int16_t)Bytes::get_Java_u2(pc + 1);
383        break;
384      case Bytecodes::_goto_w:
385        offset = Bytes::get_Java_u4(pc + 1);
386        break;
387      default: ;
388    }
389    bci = branch_bci + offset;
390  }
391
392  osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, THREAD);
393  return osr_nm;
394}
395
396JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
397  nmethod* osr_nm;
398  JRT_BLOCK
399    osr_nm = counter_overflow_helper(thread, bci, method);
400    if (osr_nm != NULL) {
401      RegisterMap map(thread, false);
402      frame fr =  thread->last_frame().sender(&map);
403      Deoptimization::deoptimize_frame(thread, fr.id());
404    }
405  JRT_BLOCK_END
406  return NULL;
407JRT_END
408
409extern void vm_exit(int code);
410
411// Enter this method from compiled code handler below. This is where we transition
412// to VM mode. This is done as a helper routine so that the method called directly
413// from compiled code does not have to transition to VM. This allows the entry
414// method to see if the nmethod that we have just looked up a handler for has
415// been deoptimized while we were in the vm. This simplifies the assembly code
416// cpu directories.
417//
418// We are entering here from exception stub (via the entry method below)
419// If there is a compiled exception handler in this method, we will continue there;
420// otherwise we will unwind the stack and continue at the caller of top frame method
421// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
422// control the area where we can allow a safepoint. After we exit the safepoint area we can
423// check to see if the handler we are going to return is now in a nmethod that has
424// been deoptimized. If that is the case we return the deopt blob
425// unpack_with_exception entry instead. This makes life for the exception blob easier
426// because making that same check and diverting is painful from assembly language.
427//
428
429
430JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
431
432  Handle exception(thread, ex);
433  nm = CodeCache::find_nmethod(pc);
434  assert(nm != NULL, "this is not an nmethod");
435  // Adjust the pc as needed/
436  if (nm->is_deopt_pc(pc)) {
437    RegisterMap map(thread, false);
438    frame exception_frame = thread->last_frame().sender(&map);
439    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
440    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
441    pc = exception_frame.pc();
442  }
443#ifdef ASSERT
444  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
445  assert(exception->is_oop(), "just checking");
446  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
447  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
448    if (ExitVMOnVerifyError) vm_exit(-1);
449    ShouldNotReachHere();
450  }
451#endif
452
453  // Check the stack guard pages and reenable them if necessary and there is
454  // enough space on the stack to do so.  Use fast exceptions only if the guard
455  // pages are enabled.
456  bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
457  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
458
459  if (JvmtiExport::can_post_on_exceptions()) {
460    // To ensure correct notification of exception catches and throws
461    // we have to deoptimize here.  If we attempted to notify the
462    // catches and throws during this exception lookup it's possible
463    // we could deoptimize on the way out of the VM and end back in
464    // the interpreter at the throw site.  This would result in double
465    // notifications since the interpreter would also notify about
466    // these same catches and throws as it unwound the frame.
467
468    RegisterMap reg_map(thread);
469    frame stub_frame = thread->last_frame();
470    frame caller_frame = stub_frame.sender(&reg_map);
471
472    // We don't really want to deoptimize the nmethod itself since we
473    // can actually continue in the exception handler ourselves but I
474    // don't see an easy way to have the desired effect.
475    Deoptimization::deoptimize_frame(thread, caller_frame.id());
476    assert(caller_is_deopted(), "Must be deoptimized");
477
478    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
479  }
480
481  // ExceptionCache is used only for exceptions at call and not for implicit exceptions
482  if (guard_pages_enabled) {
483    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
484    if (fast_continuation != NULL) {
485      if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
486      return fast_continuation;
487    }
488  }
489
490  // If the stack guard pages are enabled, check whether there is a handler in
491  // the current method.  Otherwise (guard pages disabled), force an unwind and
492  // skip the exception cache update (i.e., just leave continuation==NULL).
493  address continuation = NULL;
494  if (guard_pages_enabled) {
495
496    // New exception handling mechanism can support inlined methods
497    // with exception handlers since the mappings are from PC to PC
498
499    // debugging support
500    // tracing
501    if (TraceExceptions) {
502      ttyLocker ttyl;
503      ResourceMark rm;
504      tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
505                    exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
506    }
507    // for AbortVMOnException flag
508    NOT_PRODUCT(Exceptions::debug_check_abort(exception));
509
510    // Clear out the exception oop and pc since looking up an
511    // exception handler can cause class loading, which might throw an
512    // exception and those fields are expected to be clear during
513    // normal bytecode execution.
514    thread->set_exception_oop(NULL);
515    thread->set_exception_pc(NULL);
516
517    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
518    // If an exception was thrown during exception dispatch, the exception oop may have changed
519    thread->set_exception_oop(exception());
520    thread->set_exception_pc(pc);
521
522    // the exception cache is used only by non-implicit exceptions
523    if (continuation == NULL) {
524      nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
525    } else {
526      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
527    }
528  }
529
530  thread->set_vm_result(exception());
531
532  if (TraceExceptions) {
533    ttyLocker ttyl;
534    ResourceMark rm;
535    tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
536                  thread, continuation, pc);
537  }
538
539  return continuation;
540JRT_END
541
542// Enter this method from compiled code only if there is a Java exception handler
543// in the method handling the exception
544// We are entering here from exception stub. We don't do a normal VM transition here.
545// We do it in a helper. This is so we can check to see if the nmethod we have just
546// searched for an exception handler has been deoptimized in the meantime.
547address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
548  oop exception = thread->exception_oop();
549  address pc = thread->exception_pc();
550  // Still in Java mode
551  debug_only(ResetNoHandleMark rnhm);
552  nmethod* nm = NULL;
553  address continuation = NULL;
554  {
555    // Enter VM mode by calling the helper
556
557    ResetNoHandleMark rnhm;
558    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
559  }
560  // Back in JAVA, use no oops DON'T safepoint
561
562  // Now check to see if the nmethod we were called from is now deoptimized.
563  // If so we must return to the deopt blob and deoptimize the nmethod
564
565  if (nm != NULL && caller_is_deopted()) {
566    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
567  }
568
569  return continuation;
570}
571
572
573JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
574  NOT_PRODUCT(_throw_range_check_exception_count++;)
575  Events::log("throw_range_check");
576  char message[jintAsStringSize];
577  sprintf(message, "%d", index);
578  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
579JRT_END
580
581
582JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
583  NOT_PRODUCT(_throw_index_exception_count++;)
584  Events::log("throw_index");
585  char message[16];
586  sprintf(message, "%d", index);
587  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
588JRT_END
589
590
591JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
592  NOT_PRODUCT(_throw_div0_exception_count++;)
593  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
594JRT_END
595
596
597JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
598  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
599  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
600JRT_END
601
602
603JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
604  NOT_PRODUCT(_throw_class_cast_exception_count++;)
605  ResourceMark rm(thread);
606  char* message = SharedRuntime::generate_class_cast_message(
607    thread, Klass::cast(object->klass())->external_name());
608  SharedRuntime::throw_and_post_jvmti_exception(
609    thread, vmSymbols::java_lang_ClassCastException(), message);
610JRT_END
611
612
613JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
614  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
615  ResourceMark rm(thread);
616  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
617JRT_END
618
619
620JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
621  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
622  if (PrintBiasedLockingStatistics) {
623    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
624  }
625  Handle h_obj(thread, obj);
626  assert(h_obj()->is_oop(), "must be NULL or an object");
627  if (UseBiasedLocking) {
628    // Retry fast entry if bias is revoked to avoid unnecessary inflation
629    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
630  } else {
631    if (UseFastLocking) {
632      // When using fast locking, the compiled code has already tried the fast case
633      assert(obj == lock->obj(), "must match");
634      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
635    } else {
636      lock->set_obj(obj);
637      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
638    }
639  }
640JRT_END
641
642
643JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
644  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
645  assert(thread == JavaThread::current(), "threads must correspond");
646  assert(thread->last_Java_sp(), "last_Java_sp must be set");
647  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
648  EXCEPTION_MARK;
649
650  oop obj = lock->obj();
651  assert(obj->is_oop(), "must be NULL or an object");
652  if (UseFastLocking) {
653    // When using fast locking, the compiled code has already tried the fast case
654    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
655  } else {
656    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
657  }
658JRT_END
659
660
661static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
662  Bytecode_field* field_access = Bytecode_field_at(caller, bci);
663  // This can be static or non-static field access
664  Bytecodes::Code code       = field_access->code();
665
666  // We must load class, initialize class and resolvethe field
667  FieldAccessInfo result; // initialize class if needed
668  constantPoolHandle constants(THREAD, caller->constants());
669  LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
670  return result.klass()();
671}
672
673
674//
675// This routine patches sites where a class wasn't loaded or
676// initialized at the time the code was generated.  It handles
677// references to classes, fields and forcing of initialization.  Most
678// of the cases are straightforward and involving simply forcing
679// resolution of a class, rewriting the instruction stream with the
680// needed constant and replacing the call in this function with the
681// patched code.  The case for static field is more complicated since
682// the thread which is in the process of initializing a class can
683// access it's static fields but other threads can't so the code
684// either has to deoptimize when this case is detected or execute a
685// check that the current thread is the initializing thread.  The
686// current
687//
688// Patches basically look like this:
689//
690//
691// patch_site: jmp patch stub     ;; will be patched
692// continue:   ...
693//             ...
694//             ...
695//             ...
696//
697// They have a stub which looks like this:
698//
699//             ;; patch body
700//             movl <const>, reg           (for class constants)
701//        <or> movl [reg1 + <const>], reg  (for field offsets)
702//        <or> movl reg, [reg1 + <const>]  (for field offsets)
703//             <being_init offset> <bytes to copy> <bytes to skip>
704// patch_stub: call Runtime1::patch_code (through a runtime stub)
705//             jmp patch_site
706//
707//
708// A normal patch is done by rewriting the patch body, usually a move,
709// and then copying it into place over top of the jmp instruction
710// being careful to flush caches and doing it in an MP-safe way.  The
711// constants following the patch body are used to find various pieces
712// of the patch relative to the call site for Runtime1::patch_code.
713// The case for getstatic and putstatic is more complicated because
714// getstatic and putstatic have special semantics when executing while
715// the class is being initialized.  getstatic/putstatic on a class
716// which is being_initialized may be executed by the initializing
717// thread but other threads have to block when they execute it.  This
718// is accomplished in compiled code by executing a test of the current
719// thread against the initializing thread of the class.  It's emitted
720// as boilerplate in their stub which allows the patched code to be
721// executed before it's copied back into the main body of the nmethod.
722//
723// being_init: get_thread(<tmp reg>
724//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
725//             jne patch_stub
726//             movl [reg1 + <const>], reg  (for field offsets)  <or>
727//             movl reg, [reg1 + <const>]  (for field offsets)
728//             jmp continue
729//             <being_init offset> <bytes to copy> <bytes to skip>
730// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
731//             jmp patch_site
732//
733// If the class is being initialized the patch body is rewritten and
734// the patch site is rewritten to jump to being_init, instead of
735// patch_stub.  Whenever this code is executed it checks the current
736// thread against the intializing thread so other threads will enter
737// the runtime and end up blocked waiting the class to finish
738// initializing inside the calls to resolve_field below.  The
739// initializing class will continue on it's way.  Once the class is
740// fully_initialized, the intializing_thread of the class becomes
741// NULL, so the next thread to execute this code will fail the test,
742// call into patch_code and complete the patching process by copying
743// the patch body back into the main part of the nmethod and resume
744// executing.
745//
746//
747
748JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
749  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
750
751  ResourceMark rm(thread);
752  RegisterMap reg_map(thread, false);
753  frame runtime_frame = thread->last_frame();
754  frame caller_frame = runtime_frame.sender(&reg_map);
755
756  // last java frame on stack
757  vframeStream vfst(thread, true);
758  assert(!vfst.at_end(), "Java frame must exist");
759
760  methodHandle caller_method(THREAD, vfst.method());
761  // Note that caller_method->code() may not be same as caller_code because of OSR's
762  // Note also that in the presence of inlining it is not guaranteed
763  // that caller_method() == caller_code->method()
764
765
766  int bci = vfst.bci();
767
768  Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
769
770  Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
771
772#ifndef PRODUCT
773  // this is used by assertions in the access_field_patching_id
774  BasicType patch_field_type = T_ILLEGAL;
775#endif // PRODUCT
776  bool deoptimize_for_volatile = false;
777  int patch_field_offset = -1;
778  KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
779  Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
780  if (stub_id == Runtime1::access_field_patching_id) {
781
782    Bytecode_field* field_access = Bytecode_field_at(caller_method, bci);
783    FieldAccessInfo result; // initialize class if needed
784    Bytecodes::Code code = field_access->code();
785    constantPoolHandle constants(THREAD, caller_method->constants());
786    LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
787    patch_field_offset = result.field_offset();
788
789    // If we're patching a field which is volatile then at compile it
790    // must not have been know to be volatile, so the generated code
791    // isn't correct for a volatile reference.  The nmethod has to be
792    // deoptimized so that the code can be regenerated correctly.
793    // This check is only needed for access_field_patching since this
794    // is the path for patching field offsets.  load_klass is only
795    // used for patching references to oops which don't need special
796    // handling in the volatile case.
797    deoptimize_for_volatile = result.access_flags().is_volatile();
798
799#ifndef PRODUCT
800    patch_field_type = result.field_type();
801#endif
802  } else if (stub_id == Runtime1::load_klass_patching_id) {
803    oop k;
804    switch (code) {
805      case Bytecodes::_putstatic:
806      case Bytecodes::_getstatic:
807        { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
808          // Save a reference to the class that has to be checked for initialization
809          init_klass = KlassHandle(THREAD, klass);
810          k = klass;
811        }
812        break;
813      case Bytecodes::_new:
814        { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
815          k = caller_method->constants()->klass_at(bnew->index(), CHECK);
816        }
817        break;
818      case Bytecodes::_multianewarray:
819        { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
820          k = caller_method->constants()->klass_at(mna->index(), CHECK);
821        }
822        break;
823      case Bytecodes::_instanceof:
824        { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
825          k = caller_method->constants()->klass_at(io->index(), CHECK);
826        }
827        break;
828      case Bytecodes::_checkcast:
829        { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
830          k = caller_method->constants()->klass_at(cc->index(), CHECK);
831        }
832        break;
833      case Bytecodes::_anewarray:
834        { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
835          klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
836          k = Klass::cast(ek)->array_klass(CHECK);
837        }
838        break;
839      case Bytecodes::_ldc:
840      case Bytecodes::_ldc_w:
841        {
842          Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method, bci);
843          k = cc->resolve_constant(CHECK);
844          assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
845        }
846        break;
847      default: Unimplemented();
848    }
849    // convert to handle
850    load_klass = Handle(THREAD, k);
851  } else {
852    ShouldNotReachHere();
853  }
854
855  if (deoptimize_for_volatile) {
856    // At compile time we assumed the field wasn't volatile but after
857    // loading it turns out it was volatile so we have to throw the
858    // compiled code out and let it be regenerated.
859    if (TracePatching) {
860      tty->print_cr("Deoptimizing for patching volatile field reference");
861    }
862    // It's possible the nmethod was invalidated in the last
863    // safepoint, but if it's still alive then make it not_entrant.
864    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
865    if (nm != NULL) {
866      nm->make_not_entrant();
867    }
868
869    Deoptimization::deoptimize_frame(thread, caller_frame.id());
870
871    // Return to the now deoptimized frame.
872  }
873
874  // If we are patching in a non-perm oop, make sure the nmethod
875  // is on the right list.
876  if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
877    MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
878    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
879    guarantee(nm != NULL, "only nmethods can contain non-perm oops");
880    if (!nm->on_scavenge_root_list())
881      CodeCache::add_scavenge_root_nmethod(nm);
882  }
883
884  // Now copy code back
885
886  {
887    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
888    //
889    // Deoptimization may have happened while we waited for the lock.
890    // In that case we don't bother to do any patching we just return
891    // and let the deopt happen
892    if (!caller_is_deopted()) {
893      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
894      address instr_pc = jump->jump_destination();
895      NativeInstruction* ni = nativeInstruction_at(instr_pc);
896      if (ni->is_jump() ) {
897        // the jump has not been patched yet
898        // The jump destination is slow case and therefore not part of the stubs
899        // (stubs are only for StaticCalls)
900
901        // format of buffer
902        //    ....
903        //    instr byte 0     <-- copy_buff
904        //    instr byte 1
905        //    ..
906        //    instr byte n-1
907        //      n
908        //    ....             <-- call destination
909
910        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
911        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
912        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
913        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
914        address copy_buff = stub_location - *byte_skip - *byte_count;
915        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
916        if (TracePatching) {
917          tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
918                        instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
919          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
920          assert(caller_code != NULL, "nmethod not found");
921
922          // NOTE we use pc() not original_pc() because we already know they are
923          // identical otherwise we'd have never entered this block of code
924
925          OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
926          assert(map != NULL, "null check");
927          map->print();
928          tty->cr();
929
930          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
931        }
932        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
933        bool do_patch = true;
934        if (stub_id == Runtime1::access_field_patching_id) {
935          // The offset may not be correct if the class was not loaded at code generation time.
936          // Set it now.
937          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
938          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
939          assert(patch_field_offset >= 0, "illegal offset");
940          n_move->add_offset_in_bytes(patch_field_offset);
941        } else if (stub_id == Runtime1::load_klass_patching_id) {
942          // If a getstatic or putstatic is referencing a klass which
943          // isn't fully initialized, the patch body isn't copied into
944          // place until initialization is complete.  In this case the
945          // patch site is setup so that any threads besides the
946          // initializing thread are forced to come into the VM and
947          // block.
948          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
949                     instanceKlass::cast(init_klass())->is_initialized();
950          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
951          if (jump->jump_destination() == being_initialized_entry) {
952            assert(do_patch == true, "initialization must be complete at this point");
953          } else {
954            // patch the instruction <move reg, klass>
955            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
956
957            assert(n_copy->data() == 0 ||
958                   n_copy->data() == (intptr_t)Universe::non_oop_word(),
959                   "illegal init value");
960            assert(load_klass() != NULL, "klass not set");
961            n_copy->set_data((intx) (load_klass()));
962
963            if (TracePatching) {
964              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
965            }
966
967#if defined(SPARC) || defined(PPC)
968            // Update the oop location in the nmethod with the proper
969            // oop.  When the code was generated, a NULL was stuffed
970            // in the oop table and that table needs to be update to
971            // have the right value.  On intel the value is kept
972            // directly in the instruction instead of in the oop
973            // table, so set_data above effectively updated the value.
974            nmethod* nm = CodeCache::find_nmethod(instr_pc);
975            assert(nm != NULL, "invalid nmethod_pc");
976            RelocIterator oops(nm, copy_buff, copy_buff + 1);
977            bool found = false;
978            while (oops.next() && !found) {
979              if (oops.type() == relocInfo::oop_type) {
980                oop_Relocation* r = oops.oop_reloc();
981                oop* oop_adr = r->oop_addr();
982                *oop_adr = load_klass();
983                r->fix_oop_relocation();
984                found = true;
985              }
986            }
987            assert(found, "the oop must exist!");
988#endif
989
990          }
991        } else {
992          ShouldNotReachHere();
993        }
994        if (do_patch) {
995          // replace instructions
996          // first replace the tail, then the call
997#ifdef ARM
998          if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
999            copy_buff -= *byte_count;
1000            NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1001            n_copy2->set_data((intx) (load_klass()), instr_pc);
1002          }
1003#endif
1004
1005          for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1006            address ptr = copy_buff + i;
1007            int a_byte = (*ptr) & 0xFF;
1008            address dst = instr_pc + i;
1009            *(unsigned char*)dst = (unsigned char) a_byte;
1010          }
1011          ICache::invalidate_range(instr_pc, *byte_count);
1012          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1013
1014          if (stub_id == Runtime1::load_klass_patching_id) {
1015            // update relocInfo to oop
1016            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1017            assert(nm != NULL, "invalid nmethod_pc");
1018
1019            // The old patch site is now a move instruction so update
1020            // the reloc info so that it will get updated during
1021            // future GCs.
1022            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1023            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1024                                                     relocInfo::none, relocInfo::oop_type);
1025#ifdef SPARC
1026            // Sparc takes two relocations for an oop so update the second one.
1027            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1028            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1029            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1030                                                     relocInfo::none, relocInfo::oop_type);
1031#endif
1032#ifdef PPC
1033          { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1034            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1035            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
1036          }
1037#endif
1038          }
1039
1040        } else {
1041          ICache::invalidate_range(copy_buff, *byte_count);
1042          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1043        }
1044      }
1045    }
1046  }
1047JRT_END
1048
1049//
1050// Entry point for compiled code. We want to patch a nmethod.
1051// We don't do a normal VM transition here because we want to
1052// know after the patching is complete and any safepoint(s) are taken
1053// if the calling nmethod was deoptimized. We do this by calling a
1054// helper method which does the normal VM transition and when it
1055// completes we can check for deoptimization. This simplifies the
1056// assembly code in the cpu directories.
1057//
1058int Runtime1::move_klass_patching(JavaThread* thread) {
1059//
1060// NOTE: we are still in Java
1061//
1062  Thread* THREAD = thread;
1063  debug_only(NoHandleMark nhm;)
1064  {
1065    // Enter VM mode
1066
1067    ResetNoHandleMark rnhm;
1068    patch_code(thread, load_klass_patching_id);
1069  }
1070  // Back in JAVA, use no oops DON'T safepoint
1071
1072  // Return true if calling code is deoptimized
1073
1074  return caller_is_deopted();
1075}
1076
1077//
1078// Entry point for compiled code. We want to patch a nmethod.
1079// We don't do a normal VM transition here because we want to
1080// know after the patching is complete and any safepoint(s) are taken
1081// if the calling nmethod was deoptimized. We do this by calling a
1082// helper method which does the normal VM transition and when it
1083// completes we can check for deoptimization. This simplifies the
1084// assembly code in the cpu directories.
1085//
1086
1087int Runtime1::access_field_patching(JavaThread* thread) {
1088//
1089// NOTE: we are still in Java
1090//
1091  Thread* THREAD = thread;
1092  debug_only(NoHandleMark nhm;)
1093  {
1094    // Enter VM mode
1095
1096    ResetNoHandleMark rnhm;
1097    patch_code(thread, access_field_patching_id);
1098  }
1099  // Back in JAVA, use no oops DON'T safepoint
1100
1101  // Return true if calling code is deoptimized
1102
1103  return caller_is_deopted();
1104JRT_END
1105
1106
1107JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1108  // for now we just print out the block id
1109  tty->print("%d ", block_id);
1110JRT_END
1111
1112
1113// Array copy return codes.
1114enum {
1115  ac_failed = -1, // arraycopy failed
1116  ac_ok = 0       // arraycopy succeeded
1117};
1118
1119
1120// Below length is the # elements copied.
1121template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1122                                          oopDesc* dst, T* dst_addr,
1123                                          int length) {
1124
1125  // For performance reasons, we assume we are using a card marking write
1126  // barrier. The assert will fail if this is not the case.
1127  // Note that we use the non-virtual inlineable variant of write_ref_array.
1128  BarrierSet* bs = Universe::heap()->barrier_set();
1129  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1130  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1131  if (src == dst) {
1132    // same object, no check
1133    bs->write_ref_array_pre(dst_addr, length);
1134    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1135    bs->write_ref_array((HeapWord*)dst_addr, length);
1136    return ac_ok;
1137  } else {
1138    klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
1139    klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
1140    if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
1141      // Elements are guaranteed to be subtypes, so no check necessary
1142      bs->write_ref_array_pre(dst_addr, length);
1143      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1144      bs->write_ref_array((HeapWord*)dst_addr, length);
1145      return ac_ok;
1146    }
1147  }
1148  return ac_failed;
1149}
1150
1151// fast and direct copy of arrays; returning -1, means that an exception may be thrown
1152// and we did not copy anything
1153JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1154#ifndef PRODUCT
1155  _generic_arraycopy_cnt++;        // Slow-path oop array copy
1156#endif
1157
1158  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1159  if (!dst->is_array() || !src->is_array()) return ac_failed;
1160  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1161  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1162
1163  if (length == 0) return ac_ok;
1164  if (src->is_typeArray()) {
1165    const klassOop klass_oop = src->klass();
1166    if (klass_oop != dst->klass()) return ac_failed;
1167    typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
1168    const int l2es = klass->log2_element_size();
1169    const int ihs = klass->array_header_in_bytes() / wordSize;
1170    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1171    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1172    // Potential problem: memmove is not guaranteed to be word atomic
1173    // Revisit in Merlin
1174    memmove(dst_addr, src_addr, length << l2es);
1175    return ac_ok;
1176  } else if (src->is_objArray() && dst->is_objArray()) {
1177    if (UseCompressedOops) {  // will need for tiered
1178      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1179      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1180      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1181    } else {
1182      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1183      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1184      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1185    }
1186  }
1187  return ac_failed;
1188JRT_END
1189
1190
1191JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1192#ifndef PRODUCT
1193  _primitive_arraycopy_cnt++;
1194#endif
1195
1196  if (length == 0) return;
1197  // Not guaranteed to be word atomic, but that doesn't matter
1198  // for anything but an oop array, which is covered by oop_arraycopy.
1199  Copy::conjoint_jbytes(src, dst, length);
1200JRT_END
1201
1202JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1203#ifndef PRODUCT
1204  _oop_arraycopy_cnt++;
1205#endif
1206
1207  if (num == 0) return;
1208  BarrierSet* bs = Universe::heap()->barrier_set();
1209  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1210  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1211  if (UseCompressedOops) {
1212    bs->write_ref_array_pre((narrowOop*)dst, num);
1213  } else {
1214    bs->write_ref_array_pre((oop*)dst, num);
1215  }
1216  Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1217  bs->write_ref_array(dst, num);
1218JRT_END
1219
1220
1221#ifndef PRODUCT
1222void Runtime1::print_statistics() {
1223  tty->print_cr("C1 Runtime statistics:");
1224  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1225  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1226  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1227  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1228  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1229  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1230  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1231  tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
1232  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1233
1234  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1235  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1236  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1237  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1238  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1239  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1240  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1241
1242  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1243  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1244  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1245  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1246  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1247  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1248  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1249  tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1250
1251  SharedRuntime::print_ic_miss_histogram();
1252  tty->cr();
1253}
1254#endif // PRODUCT
1255