c1_Runtime1.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_c1_Runtime1.cpp.incl"
27
28
29// Implementation of StubAssembler
30
31StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
32  _name = name;
33  _must_gc_arguments = false;
34  _frame_size = no_frame_size;
35  _num_rt_args = 0;
36  _stub_id = stub_id;
37}
38
39
40void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
41  _name = name;
42  _must_gc_arguments = must_gc_arguments;
43}
44
45
46void StubAssembler::set_frame_size(int size) {
47  if (_frame_size == no_frame_size) {
48    _frame_size = size;
49  }
50  assert(_frame_size == size, "can't change the frame size");
51}
52
53
54void StubAssembler::set_num_rt_args(int args) {
55  if (_num_rt_args == 0) {
56    _num_rt_args = args;
57  }
58  assert(_num_rt_args == args, "can't change the number of args");
59}
60
61// Implementation of Runtime1
62
63bool      Runtime1::_is_initialized = false;
64CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
65const char *Runtime1::_blob_names[] = {
66  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
67};
68
69#ifndef PRODUCT
70// statistics
71int Runtime1::_generic_arraycopy_cnt = 0;
72int Runtime1::_primitive_arraycopy_cnt = 0;
73int Runtime1::_oop_arraycopy_cnt = 0;
74int Runtime1::_arraycopy_slowcase_cnt = 0;
75int Runtime1::_new_type_array_slowcase_cnt = 0;
76int Runtime1::_new_object_array_slowcase_cnt = 0;
77int Runtime1::_new_instance_slowcase_cnt = 0;
78int Runtime1::_new_multi_array_slowcase_cnt = 0;
79int Runtime1::_monitorenter_slowcase_cnt = 0;
80int Runtime1::_monitorexit_slowcase_cnt = 0;
81int Runtime1::_patch_code_slowcase_cnt = 0;
82int Runtime1::_throw_range_check_exception_count = 0;
83int Runtime1::_throw_index_exception_count = 0;
84int Runtime1::_throw_div0_exception_count = 0;
85int Runtime1::_throw_null_pointer_exception_count = 0;
86int Runtime1::_throw_class_cast_exception_count = 0;
87int Runtime1::_throw_incompatible_class_change_error_count = 0;
88int Runtime1::_throw_array_store_exception_count = 0;
89int Runtime1::_throw_count = 0;
90#endif
91
92BufferBlob* Runtime1::_buffer_blob  = NULL;
93
94// Simple helper to see if the caller of a runtime stub which
95// entered the VM has been deoptimized
96
97static bool caller_is_deopted() {
98  JavaThread* thread = JavaThread::current();
99  RegisterMap reg_map(thread, false);
100  frame runtime_frame = thread->last_frame();
101  frame caller_frame = runtime_frame.sender(&reg_map);
102  assert(caller_frame.is_compiled_frame(), "must be compiled");
103  return caller_frame.is_deoptimized_frame();
104}
105
106// Stress deoptimization
107static void deopt_caller() {
108  if ( !caller_is_deopted()) {
109    JavaThread* thread = JavaThread::current();
110    RegisterMap reg_map(thread, false);
111    frame runtime_frame = thread->last_frame();
112    frame caller_frame = runtime_frame.sender(&reg_map);
113    // bypass VM_DeoptimizeFrame and deoptimize the frame directly
114    Deoptimization::deoptimize_frame(thread, caller_frame.id());
115    assert(caller_is_deopted(), "Must be deoptimized");
116  }
117}
118
119
120BufferBlob* Runtime1::get_buffer_blob() {
121  // Allocate code buffer space only once
122  BufferBlob* blob = _buffer_blob;
123  if (blob == NULL) {
124    // setup CodeBuffer.  Preallocate a BufferBlob of size
125    // NMethodSizeLimit plus some extra space for constants.
126    int code_buffer_size = desired_max_code_buffer_size() + desired_max_constant_size();
127    blob = BufferBlob::create("Compiler1 temporary CodeBuffer",
128                              code_buffer_size);
129    guarantee(blob != NULL, "must create initial code buffer");
130    _buffer_blob = blob;
131  }
132  return _buffer_blob;
133}
134
135void Runtime1::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
136  // Preinitialize the consts section to some large size:
137  int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
138  char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
139  code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
140                                        locs_buffer_size / sizeof(relocInfo));
141  code->initialize_consts_size(desired_max_constant_size());
142  // Call stubs + deopt/exception handler
143  code->initialize_stubs_size((call_stub_estimate * LIR_Assembler::call_stub_size) +
144                              LIR_Assembler::exception_handler_size +
145                              LIR_Assembler::deopt_handler_size);
146}
147
148
149void Runtime1::generate_blob_for(StubID id) {
150  assert(0 <= id && id < number_of_ids, "illegal stub id");
151  ResourceMark rm;
152  // create code buffer for code storage
153  CodeBuffer code(get_buffer_blob()->instructions_begin(),
154                  get_buffer_blob()->instructions_size());
155
156  setup_code_buffer(&code, 0);
157
158  // create assembler for code generation
159  StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
160  // generate code for runtime stub
161  OopMapSet* oop_maps;
162  oop_maps = generate_code_for(id, sasm);
163  assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
164         "if stub has an oop map it must have a valid frame size");
165
166#ifdef ASSERT
167  // Make sure that stubs that need oopmaps have them
168  switch (id) {
169    // These stubs don't need to have an oopmap
170    case dtrace_object_alloc_id:
171    case g1_pre_barrier_slow_id:
172    case g1_post_barrier_slow_id:
173    case slow_subtype_check_id:
174    case fpu2long_stub_id:
175    case unwind_exception_id:
176#ifndef TIERED
177    case counter_overflow_id: // Not generated outside the tiered world
178#endif
179#ifdef SPARC
180    case handle_exception_nofpu_id:  // Unused on sparc
181#endif
182      break;
183
184    // All other stubs should have oopmaps
185    default:
186      assert(oop_maps != NULL, "must have an oopmap");
187  }
188#endif
189
190  // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
191  sasm->align(BytesPerWord);
192  // make sure all code is in code buffer
193  sasm->flush();
194  // create blob - distinguish a few special cases
195  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
196                                                 &code,
197                                                 CodeOffsets::frame_never_safe,
198                                                 sasm->frame_size(),
199                                                 oop_maps,
200                                                 sasm->must_gc_arguments());
201  // install blob
202  assert(blob != NULL, "blob must exist");
203  _blobs[id] = blob;
204}
205
206
207void Runtime1::initialize() {
208  // Warning: If we have more than one compilation running in parallel, we
209  //          need a lock here with the current setup (lazy initialization).
210  if (!is_initialized()) {
211    _is_initialized = true;
212
213    // platform-dependent initialization
214    initialize_pd();
215    // generate stubs
216    for (int id = 0; id < number_of_ids; id++) generate_blob_for((StubID)id);
217    // printing
218#ifndef PRODUCT
219    if (PrintSimpleStubs) {
220      ResourceMark rm;
221      for (int id = 0; id < number_of_ids; id++) {
222        _blobs[id]->print();
223        if (_blobs[id]->oop_maps() != NULL) {
224          _blobs[id]->oop_maps()->print();
225        }
226      }
227    }
228#endif
229  }
230}
231
232
233CodeBlob* Runtime1::blob_for(StubID id) {
234  assert(0 <= id && id < number_of_ids, "illegal stub id");
235  if (!is_initialized()) initialize();
236  return _blobs[id];
237}
238
239
240const char* Runtime1::name_for(StubID id) {
241  assert(0 <= id && id < number_of_ids, "illegal stub id");
242  return _blob_names[id];
243}
244
245const char* Runtime1::name_for_address(address entry) {
246  for (int id = 0; id < number_of_ids; id++) {
247    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
248  }
249
250#define FUNCTION_CASE(a, f) \
251  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
252
253  FUNCTION_CASE(entry, os::javaTimeMillis);
254  FUNCTION_CASE(entry, os::javaTimeNanos);
255  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
256  FUNCTION_CASE(entry, SharedRuntime::d2f);
257  FUNCTION_CASE(entry, SharedRuntime::d2i);
258  FUNCTION_CASE(entry, SharedRuntime::d2l);
259  FUNCTION_CASE(entry, SharedRuntime::dcos);
260  FUNCTION_CASE(entry, SharedRuntime::dexp);
261  FUNCTION_CASE(entry, SharedRuntime::dlog);
262  FUNCTION_CASE(entry, SharedRuntime::dlog10);
263  FUNCTION_CASE(entry, SharedRuntime::dpow);
264  FUNCTION_CASE(entry, SharedRuntime::drem);
265  FUNCTION_CASE(entry, SharedRuntime::dsin);
266  FUNCTION_CASE(entry, SharedRuntime::dtan);
267  FUNCTION_CASE(entry, SharedRuntime::f2i);
268  FUNCTION_CASE(entry, SharedRuntime::f2l);
269  FUNCTION_CASE(entry, SharedRuntime::frem);
270  FUNCTION_CASE(entry, SharedRuntime::l2d);
271  FUNCTION_CASE(entry, SharedRuntime::l2f);
272  FUNCTION_CASE(entry, SharedRuntime::ldiv);
273  FUNCTION_CASE(entry, SharedRuntime::lmul);
274  FUNCTION_CASE(entry, SharedRuntime::lrem);
275  FUNCTION_CASE(entry, SharedRuntime::lrem);
276  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
277  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
278  FUNCTION_CASE(entry, trace_block_entry);
279
280#undef FUNCTION_CASE
281
282  return "<unknown function>";
283}
284
285
286JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
287  NOT_PRODUCT(_new_instance_slowcase_cnt++;)
288
289  assert(oop(klass)->is_klass(), "not a class");
290  instanceKlassHandle h(thread, klass);
291  h->check_valid_for_instantiation(true, CHECK);
292  // make sure klass is initialized
293  h->initialize(CHECK);
294  // allocate instance and return via TLS
295  oop obj = h->allocate_instance(CHECK);
296  thread->set_vm_result(obj);
297JRT_END
298
299
300JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
301  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
302  // Note: no handle for klass needed since they are not used
303  //       anymore after new_typeArray() and no GC can happen before.
304  //       (This may have to change if this code changes!)
305  assert(oop(klass)->is_klass(), "not a class");
306  BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
307  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
308  thread->set_vm_result(obj);
309  // This is pretty rare but this runtime patch is stressful to deoptimization
310  // if we deoptimize here so force a deopt to stress the path.
311  if (DeoptimizeALot) {
312    deopt_caller();
313  }
314
315JRT_END
316
317
318JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
319  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
320
321  // Note: no handle for klass needed since they are not used
322  //       anymore after new_objArray() and no GC can happen before.
323  //       (This may have to change if this code changes!)
324  assert(oop(array_klass)->is_klass(), "not a class");
325  klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
326  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
327  thread->set_vm_result(obj);
328  // This is pretty rare but this runtime patch is stressful to deoptimization
329  // if we deoptimize here so force a deopt to stress the path.
330  if (DeoptimizeALot) {
331    deopt_caller();
332  }
333JRT_END
334
335
336JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
337  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
338
339  assert(oop(klass)->is_klass(), "not a class");
340  assert(rank >= 1, "rank must be nonzero");
341  oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
342  thread->set_vm_result(obj);
343JRT_END
344
345
346JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
347  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
348JRT_END
349
350
351JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
352  THROW(vmSymbolHandles::java_lang_ArrayStoreException());
353JRT_END
354
355
356JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
357  if (JvmtiExport::can_post_on_exceptions()) {
358    vframeStream vfst(thread, true);
359    address bcp = vfst.method()->bcp_from(vfst.bci());
360    JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
361  }
362JRT_END
363
364#ifdef TIERED
365JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
366  RegisterMap map(thread, false);
367  frame fr =  thread->last_frame().sender(&map);
368  nmethod* nm = (nmethod*) fr.cb();
369  assert(nm!= NULL && nm->is_nmethod(), "what?");
370  methodHandle method(thread, nm->method());
371  if (bci == 0) {
372    // invocation counter overflow
373    if (!Tier1CountOnly) {
374      CompilationPolicy::policy()->method_invocation_event(method, CHECK);
375    } else {
376      method()->invocation_counter()->reset();
377    }
378  } else {
379    if (!Tier1CountOnly) {
380      // Twe have a bci but not the destination bci and besides a backedge
381      // event is more for OSR which we don't want here.
382      CompilationPolicy::policy()->method_invocation_event(method, CHECK);
383    } else {
384      method()->backedge_counter()->reset();
385    }
386  }
387JRT_END
388#endif // TIERED
389
390extern void vm_exit(int code);
391
392// Enter this method from compiled code handler below. This is where we transition
393// to VM mode. This is done as a helper routine so that the method called directly
394// from compiled code does not have to transition to VM. This allows the entry
395// method to see if the nmethod that we have just looked up a handler for has
396// been deoptimized while we were in the vm. This simplifies the assembly code
397// cpu directories.
398//
399// We are entering here from exception stub (via the entry method below)
400// If there is a compiled exception handler in this method, we will continue there;
401// otherwise we will unwind the stack and continue at the caller of top frame method
402// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
403// control the area where we can allow a safepoint. After we exit the safepoint area we can
404// check to see if the handler we are going to return is now in a nmethod that has
405// been deoptimized. If that is the case we return the deopt blob
406// unpack_with_exception entry instead. This makes life for the exception blob easier
407// because making that same check and diverting is painful from assembly language.
408//
409
410
411JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
412
413  Handle exception(thread, ex);
414  nm = CodeCache::find_nmethod(pc);
415  assert(nm != NULL, "this is not an nmethod");
416  // Adjust the pc as needed/
417  if (nm->is_deopt_pc(pc)) {
418    RegisterMap map(thread, false);
419    frame exception_frame = thread->last_frame().sender(&map);
420    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
421    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
422    pc = exception_frame.pc();
423  }
424#ifdef ASSERT
425  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
426  assert(exception->is_oop(), "just checking");
427  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
428  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
429    if (ExitVMOnVerifyError) vm_exit(-1);
430    ShouldNotReachHere();
431  }
432#endif
433
434  // Check the stack guard pages and reenable them if necessary and there is
435  // enough space on the stack to do so.  Use fast exceptions only if the guard
436  // pages are enabled.
437  bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
438  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
439
440  if (JvmtiExport::can_post_on_exceptions()) {
441    // To ensure correct notification of exception catches and throws
442    // we have to deoptimize here.  If we attempted to notify the
443    // catches and throws during this exception lookup it's possible
444    // we could deoptimize on the way out of the VM and end back in
445    // the interpreter at the throw site.  This would result in double
446    // notifications since the interpreter would also notify about
447    // these same catches and throws as it unwound the frame.
448
449    RegisterMap reg_map(thread);
450    frame stub_frame = thread->last_frame();
451    frame caller_frame = stub_frame.sender(&reg_map);
452
453    // We don't really want to deoptimize the nmethod itself since we
454    // can actually continue in the exception handler ourselves but I
455    // don't see an easy way to have the desired effect.
456    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
457    VMThread::execute(&deopt);
458
459    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
460  }
461
462  // ExceptionCache is used only for exceptions at call and not for implicit exceptions
463  if (guard_pages_enabled) {
464    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
465    if (fast_continuation != NULL) {
466      if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
467      return fast_continuation;
468    }
469  }
470
471  // If the stack guard pages are enabled, check whether there is a handler in
472  // the current method.  Otherwise (guard pages disabled), force an unwind and
473  // skip the exception cache update (i.e., just leave continuation==NULL).
474  address continuation = NULL;
475  if (guard_pages_enabled) {
476
477    // New exception handling mechanism can support inlined methods
478    // with exception handlers since the mappings are from PC to PC
479
480    // debugging support
481    // tracing
482    if (TraceExceptions) {
483      ttyLocker ttyl;
484      ResourceMark rm;
485      tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
486                    exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
487    }
488    // for AbortVMOnException flag
489    NOT_PRODUCT(Exceptions::debug_check_abort(exception));
490
491    // Clear out the exception oop and pc since looking up an
492    // exception handler can cause class loading, which might throw an
493    // exception and those fields are expected to be clear during
494    // normal bytecode execution.
495    thread->set_exception_oop(NULL);
496    thread->set_exception_pc(NULL);
497
498    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
499    // If an exception was thrown during exception dispatch, the exception oop may have changed
500    thread->set_exception_oop(exception());
501    thread->set_exception_pc(pc);
502
503    // the exception cache is used only by non-implicit exceptions
504    if (continuation == NULL) {
505      nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
506    } else {
507      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
508    }
509  }
510
511  thread->set_vm_result(exception());
512
513  if (TraceExceptions) {
514    ttyLocker ttyl;
515    ResourceMark rm;
516    tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
517                  thread, continuation, pc);
518  }
519
520  return continuation;
521JRT_END
522
523// Enter this method from compiled code only if there is a Java exception handler
524// in the method handling the exception
525// We are entering here from exception stub. We don't do a normal VM transition here.
526// We do it in a helper. This is so we can check to see if the nmethod we have just
527// searched for an exception handler has been deoptimized in the meantime.
528address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
529  oop exception = thread->exception_oop();
530  address pc = thread->exception_pc();
531  // Still in Java mode
532  debug_only(ResetNoHandleMark rnhm);
533  nmethod* nm = NULL;
534  address continuation = NULL;
535  {
536    // Enter VM mode by calling the helper
537
538    ResetNoHandleMark rnhm;
539    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
540  }
541  // Back in JAVA, use no oops DON'T safepoint
542
543  // Now check to see if the nmethod we were called from is now deoptimized.
544  // If so we must return to the deopt blob and deoptimize the nmethod
545
546  if (nm != NULL && caller_is_deopted()) {
547    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
548  }
549
550  return continuation;
551}
552
553
554JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
555  NOT_PRODUCT(_throw_range_check_exception_count++;)
556  Events::log("throw_range_check");
557  char message[jintAsStringSize];
558  sprintf(message, "%d", index);
559  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
560JRT_END
561
562
563JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
564  NOT_PRODUCT(_throw_index_exception_count++;)
565  Events::log("throw_index");
566  char message[16];
567  sprintf(message, "%d", index);
568  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
569JRT_END
570
571
572JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
573  NOT_PRODUCT(_throw_div0_exception_count++;)
574  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
575JRT_END
576
577
578JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
579  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
580  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
581JRT_END
582
583
584JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
585  NOT_PRODUCT(_throw_class_cast_exception_count++;)
586  ResourceMark rm(thread);
587  char* message = SharedRuntime::generate_class_cast_message(
588    thread, Klass::cast(object->klass())->external_name());
589  SharedRuntime::throw_and_post_jvmti_exception(
590    thread, vmSymbols::java_lang_ClassCastException(), message);
591JRT_END
592
593
594JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
595  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
596  ResourceMark rm(thread);
597  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
598JRT_END
599
600
601JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
602  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
603  if (PrintBiasedLockingStatistics) {
604    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
605  }
606  Handle h_obj(thread, obj);
607  assert(h_obj()->is_oop(), "must be NULL or an object");
608  if (UseBiasedLocking) {
609    // Retry fast entry if bias is revoked to avoid unnecessary inflation
610    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
611  } else {
612    if (UseFastLocking) {
613      // When using fast locking, the compiled code has already tried the fast case
614      assert(obj == lock->obj(), "must match");
615      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
616    } else {
617      lock->set_obj(obj);
618      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
619    }
620  }
621JRT_END
622
623
624JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
625  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
626  assert(thread == JavaThread::current(), "threads must correspond");
627  assert(thread->last_Java_sp(), "last_Java_sp must be set");
628  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
629  EXCEPTION_MARK;
630
631  oop obj = lock->obj();
632  assert(obj->is_oop(), "must be NULL or an object");
633  if (UseFastLocking) {
634    // When using fast locking, the compiled code has already tried the fast case
635    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
636  } else {
637    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
638  }
639JRT_END
640
641
642static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
643  Bytecode_field* field_access = Bytecode_field_at(caller(), caller->bcp_from(bci));
644  // This can be static or non-static field access
645  Bytecodes::Code code       = field_access->code();
646
647  // We must load class, initialize class and resolvethe field
648  FieldAccessInfo result; // initialize class if needed
649  constantPoolHandle constants(THREAD, caller->constants());
650  LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
651  return result.klass()();
652}
653
654
655//
656// This routine patches sites where a class wasn't loaded or
657// initialized at the time the code was generated.  It handles
658// references to classes, fields and forcing of initialization.  Most
659// of the cases are straightforward and involving simply forcing
660// resolution of a class, rewriting the instruction stream with the
661// needed constant and replacing the call in this function with the
662// patched code.  The case for static field is more complicated since
663// the thread which is in the process of initializing a class can
664// access it's static fields but other threads can't so the code
665// either has to deoptimize when this case is detected or execute a
666// check that the current thread is the initializing thread.  The
667// current
668//
669// Patches basically look like this:
670//
671//
672// patch_site: jmp patch stub     ;; will be patched
673// continue:   ...
674//             ...
675//             ...
676//             ...
677//
678// They have a stub which looks like this:
679//
680//             ;; patch body
681//             movl <const>, reg           (for class constants)
682//        <or> movl [reg1 + <const>], reg  (for field offsets)
683//        <or> movl reg, [reg1 + <const>]  (for field offsets)
684//             <being_init offset> <bytes to copy> <bytes to skip>
685// patch_stub: call Runtime1::patch_code (through a runtime stub)
686//             jmp patch_site
687//
688//
689// A normal patch is done by rewriting the patch body, usually a move,
690// and then copying it into place over top of the jmp instruction
691// being careful to flush caches and doing it in an MP-safe way.  The
692// constants following the patch body are used to find various pieces
693// of the patch relative to the call site for Runtime1::patch_code.
694// The case for getstatic and putstatic is more complicated because
695// getstatic and putstatic have special semantics when executing while
696// the class is being initialized.  getstatic/putstatic on a class
697// which is being_initialized may be executed by the initializing
698// thread but other threads have to block when they execute it.  This
699// is accomplished in compiled code by executing a test of the current
700// thread against the initializing thread of the class.  It's emitted
701// as boilerplate in their stub which allows the patched code to be
702// executed before it's copied back into the main body of the nmethod.
703//
704// being_init: get_thread(<tmp reg>
705//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
706//             jne patch_stub
707//             movl [reg1 + <const>], reg  (for field offsets)  <or>
708//             movl reg, [reg1 + <const>]  (for field offsets)
709//             jmp continue
710//             <being_init offset> <bytes to copy> <bytes to skip>
711// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
712//             jmp patch_site
713//
714// If the class is being initialized the patch body is rewritten and
715// the patch site is rewritten to jump to being_init, instead of
716// patch_stub.  Whenever this code is executed it checks the current
717// thread against the intializing thread so other threads will enter
718// the runtime and end up blocked waiting the class to finish
719// initializing inside the calls to resolve_field below.  The
720// initializing class will continue on it's way.  Once the class is
721// fully_initialized, the intializing_thread of the class becomes
722// NULL, so the next thread to execute this code will fail the test,
723// call into patch_code and complete the patching process by copying
724// the patch body back into the main part of the nmethod and resume
725// executing.
726//
727//
728
729JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
730  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
731
732  ResourceMark rm(thread);
733  RegisterMap reg_map(thread, false);
734  frame runtime_frame = thread->last_frame();
735  frame caller_frame = runtime_frame.sender(&reg_map);
736
737  // last java frame on stack
738  vframeStream vfst(thread, true);
739  assert(!vfst.at_end(), "Java frame must exist");
740
741  methodHandle caller_method(THREAD, vfst.method());
742  // Note that caller_method->code() may not be same as caller_code because of OSR's
743  // Note also that in the presence of inlining it is not guaranteed
744  // that caller_method() == caller_code->method()
745
746
747  int bci = vfst.bci();
748
749  Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
750
751  Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
752
753#ifndef PRODUCT
754  // this is used by assertions in the access_field_patching_id
755  BasicType patch_field_type = T_ILLEGAL;
756#endif // PRODUCT
757  bool deoptimize_for_volatile = false;
758  int patch_field_offset = -1;
759  KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
760  Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
761  if (stub_id == Runtime1::access_field_patching_id) {
762
763    Bytecode_field* field_access = Bytecode_field_at(caller_method(), caller_method->bcp_from(bci));
764    FieldAccessInfo result; // initialize class if needed
765    Bytecodes::Code code = field_access->code();
766    constantPoolHandle constants(THREAD, caller_method->constants());
767    LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
768    patch_field_offset = result.field_offset();
769
770    // If we're patching a field which is volatile then at compile it
771    // must not have been know to be volatile, so the generated code
772    // isn't correct for a volatile reference.  The nmethod has to be
773    // deoptimized so that the code can be regenerated correctly.
774    // This check is only needed for access_field_patching since this
775    // is the path for patching field offsets.  load_klass is only
776    // used for patching references to oops which don't need special
777    // handling in the volatile case.
778    deoptimize_for_volatile = result.access_flags().is_volatile();
779
780#ifndef PRODUCT
781    patch_field_type = result.field_type();
782#endif
783  } else if (stub_id == Runtime1::load_klass_patching_id) {
784    oop k;
785    switch (code) {
786      case Bytecodes::_putstatic:
787      case Bytecodes::_getstatic:
788        { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
789          // Save a reference to the class that has to be checked for initialization
790          init_klass = KlassHandle(THREAD, klass);
791          k = klass;
792        }
793        break;
794      case Bytecodes::_new:
795        { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
796          k = caller_method->constants()->klass_at(bnew->index(), CHECK);
797        }
798        break;
799      case Bytecodes::_multianewarray:
800        { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
801          k = caller_method->constants()->klass_at(mna->index(), CHECK);
802        }
803        break;
804      case Bytecodes::_instanceof:
805        { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
806          k = caller_method->constants()->klass_at(io->index(), CHECK);
807        }
808        break;
809      case Bytecodes::_checkcast:
810        { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
811          k = caller_method->constants()->klass_at(cc->index(), CHECK);
812        }
813        break;
814      case Bytecodes::_anewarray:
815        { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
816          klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
817          k = Klass::cast(ek)->array_klass(CHECK);
818        }
819        break;
820      case Bytecodes::_ldc:
821      case Bytecodes::_ldc_w:
822        {
823          Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method(),
824                                                               caller_method->bcp_from(bci));
825          klassOop resolved = caller_method->constants()->klass_at(cc->index(), CHECK);
826          // ldc wants the java mirror.
827          k = resolved->klass_part()->java_mirror();
828        }
829        break;
830      default: Unimplemented();
831    }
832    // convert to handle
833    load_klass = Handle(THREAD, k);
834  } else {
835    ShouldNotReachHere();
836  }
837
838  if (deoptimize_for_volatile) {
839    // At compile time we assumed the field wasn't volatile but after
840    // loading it turns out it was volatile so we have to throw the
841    // compiled code out and let it be regenerated.
842    if (TracePatching) {
843      tty->print_cr("Deoptimizing for patching volatile field reference");
844    }
845    // It's possible the nmethod was invalidated in the last
846    // safepoint, but if it's still alive then make it not_entrant.
847    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
848    if (nm != NULL) {
849      nm->make_not_entrant();
850    }
851
852    VM_DeoptimizeFrame deopt(thread, caller_frame.id());
853    VMThread::execute(&deopt);
854
855    // Return to the now deoptimized frame.
856  }
857
858
859  // Now copy code back
860
861  {
862    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
863    //
864    // Deoptimization may have happened while we waited for the lock.
865    // In that case we don't bother to do any patching we just return
866    // and let the deopt happen
867    if (!caller_is_deopted()) {
868      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
869      address instr_pc = jump->jump_destination();
870      NativeInstruction* ni = nativeInstruction_at(instr_pc);
871      if (ni->is_jump() ) {
872        // the jump has not been patched yet
873        // The jump destination is slow case and therefore not part of the stubs
874        // (stubs are only for StaticCalls)
875
876        // format of buffer
877        //    ....
878        //    instr byte 0     <-- copy_buff
879        //    instr byte 1
880        //    ..
881        //    instr byte n-1
882        //      n
883        //    ....             <-- call destination
884
885        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
886        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
887        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
888        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
889        address copy_buff = stub_location - *byte_skip - *byte_count;
890        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
891        if (TracePatching) {
892          tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
893                        instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
894          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
895          assert(caller_code != NULL, "nmethod not found");
896
897          // NOTE we use pc() not original_pc() because we already know they are
898          // identical otherwise we'd have never entered this block of code
899
900          OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
901          assert(map != NULL, "null check");
902          map->print();
903          tty->cr();
904
905          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
906        }
907        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
908        bool do_patch = true;
909        if (stub_id == Runtime1::access_field_patching_id) {
910          // The offset may not be correct if the class was not loaded at code generation time.
911          // Set it now.
912          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
913          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
914          assert(patch_field_offset >= 0, "illegal offset");
915          n_move->add_offset_in_bytes(patch_field_offset);
916        } else if (stub_id == Runtime1::load_klass_patching_id) {
917          // If a getstatic or putstatic is referencing a klass which
918          // isn't fully initialized, the patch body isn't copied into
919          // place until initialization is complete.  In this case the
920          // patch site is setup so that any threads besides the
921          // initializing thread are forced to come into the VM and
922          // block.
923          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
924                     instanceKlass::cast(init_klass())->is_initialized();
925          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
926          if (jump->jump_destination() == being_initialized_entry) {
927            assert(do_patch == true, "initialization must be complete at this point");
928          } else {
929            // patch the instruction <move reg, klass>
930            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
931            assert(n_copy->data() == 0, "illegal init value");
932            assert(load_klass() != NULL, "klass not set");
933            n_copy->set_data((intx) (load_klass()));
934
935            if (TracePatching) {
936              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
937            }
938
939#ifdef SPARC
940            // Update the oop location in the nmethod with the proper
941            // oop.  When the code was generated, a NULL was stuffed
942            // in the oop table and that table needs to be update to
943            // have the right value.  On intel the value is kept
944            // directly in the instruction instead of in the oop
945            // table, so set_data above effectively updated the value.
946            nmethod* nm = CodeCache::find_nmethod(instr_pc);
947            assert(nm != NULL, "invalid nmethod_pc");
948            RelocIterator oops(nm, copy_buff, copy_buff + 1);
949            bool found = false;
950            while (oops.next() && !found) {
951              if (oops.type() == relocInfo::oop_type) {
952                oop_Relocation* r = oops.oop_reloc();
953                oop* oop_adr = r->oop_addr();
954                *oop_adr = load_klass();
955                r->fix_oop_relocation();
956                found = true;
957              }
958            }
959            assert(found, "the oop must exist!");
960#endif
961
962          }
963        } else {
964          ShouldNotReachHere();
965        }
966        if (do_patch) {
967          // replace instructions
968          // first replace the tail, then the call
969          for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
970            address ptr = copy_buff + i;
971            int a_byte = (*ptr) & 0xFF;
972            address dst = instr_pc + i;
973            *(unsigned char*)dst = (unsigned char) a_byte;
974          }
975          ICache::invalidate_range(instr_pc, *byte_count);
976          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
977
978          if (stub_id == Runtime1::load_klass_patching_id) {
979            // update relocInfo to oop
980            nmethod* nm = CodeCache::find_nmethod(instr_pc);
981            assert(nm != NULL, "invalid nmethod_pc");
982
983            // The old patch site is now a move instruction so update
984            // the reloc info so that it will get updated during
985            // future GCs.
986            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
987            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
988                                                     relocInfo::none, relocInfo::oop_type);
989#ifdef SPARC
990            // Sparc takes two relocations for an oop so update the second one.
991            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
992            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
993            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
994                                                     relocInfo::none, relocInfo::oop_type);
995#endif
996          }
997
998        } else {
999          ICache::invalidate_range(copy_buff, *byte_count);
1000          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1001        }
1002      }
1003    }
1004  }
1005JRT_END
1006
1007//
1008// Entry point for compiled code. We want to patch a nmethod.
1009// We don't do a normal VM transition here because we want to
1010// know after the patching is complete and any safepoint(s) are taken
1011// if the calling nmethod was deoptimized. We do this by calling a
1012// helper method which does the normal VM transition and when it
1013// completes we can check for deoptimization. This simplifies the
1014// assembly code in the cpu directories.
1015//
1016int Runtime1::move_klass_patching(JavaThread* thread) {
1017//
1018// NOTE: we are still in Java
1019//
1020  Thread* THREAD = thread;
1021  debug_only(NoHandleMark nhm;)
1022  {
1023    // Enter VM mode
1024
1025    ResetNoHandleMark rnhm;
1026    patch_code(thread, load_klass_patching_id);
1027  }
1028  // Back in JAVA, use no oops DON'T safepoint
1029
1030  // Return true if calling code is deoptimized
1031
1032  return caller_is_deopted();
1033}
1034
1035//
1036// Entry point for compiled code. We want to patch a nmethod.
1037// We don't do a normal VM transition here because we want to
1038// know after the patching is complete and any safepoint(s) are taken
1039// if the calling nmethod was deoptimized. We do this by calling a
1040// helper method which does the normal VM transition and when it
1041// completes we can check for deoptimization. This simplifies the
1042// assembly code in the cpu directories.
1043//
1044
1045int Runtime1::access_field_patching(JavaThread* thread) {
1046//
1047// NOTE: we are still in Java
1048//
1049  Thread* THREAD = thread;
1050  debug_only(NoHandleMark nhm;)
1051  {
1052    // Enter VM mode
1053
1054    ResetNoHandleMark rnhm;
1055    patch_code(thread, access_field_patching_id);
1056  }
1057  // Back in JAVA, use no oops DON'T safepoint
1058
1059  // Return true if calling code is deoptimized
1060
1061  return caller_is_deopted();
1062JRT_END
1063
1064
1065JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1066  // for now we just print out the block id
1067  tty->print("%d ", block_id);
1068JRT_END
1069
1070
1071// Array copy return codes.
1072enum {
1073  ac_failed = -1, // arraycopy failed
1074  ac_ok = 0       // arraycopy succeeded
1075};
1076
1077
1078// Below length is the # elements copied.
1079template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1080                                          oopDesc* dst, T* dst_addr,
1081                                          int length) {
1082
1083  // For performance reasons, we assume we are using a card marking write
1084  // barrier. The assert will fail if this is not the case.
1085  // Note that we use the non-virtual inlineable variant of write_ref_array.
1086  BarrierSet* bs = Universe::heap()->barrier_set();
1087  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1088  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1089  if (src == dst) {
1090    // same object, no check
1091    bs->write_ref_array_pre(dst_addr, length);
1092    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1093    bs->write_ref_array((HeapWord*)dst_addr, length);
1094    return ac_ok;
1095  } else {
1096    klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
1097    klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
1098    if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
1099      // Elements are guaranteed to be subtypes, so no check necessary
1100      bs->write_ref_array_pre(dst_addr, length);
1101      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1102      bs->write_ref_array((HeapWord*)dst_addr, length);
1103      return ac_ok;
1104    }
1105  }
1106  return ac_failed;
1107}
1108
1109// fast and direct copy of arrays; returning -1, means that an exception may be thrown
1110// and we did not copy anything
1111JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1112#ifndef PRODUCT
1113  _generic_arraycopy_cnt++;        // Slow-path oop array copy
1114#endif
1115
1116  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1117  if (!dst->is_array() || !src->is_array()) return ac_failed;
1118  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1119  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1120
1121  if (length == 0) return ac_ok;
1122  if (src->is_typeArray()) {
1123    const klassOop klass_oop = src->klass();
1124    if (klass_oop != dst->klass()) return ac_failed;
1125    typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
1126    const int l2es = klass->log2_element_size();
1127    const int ihs = klass->array_header_in_bytes() / wordSize;
1128    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1129    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1130    // Potential problem: memmove is not guaranteed to be word atomic
1131    // Revisit in Merlin
1132    memmove(dst_addr, src_addr, length << l2es);
1133    return ac_ok;
1134  } else if (src->is_objArray() && dst->is_objArray()) {
1135    if (UseCompressedOops) {  // will need for tiered
1136      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1137      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1138      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1139    } else {
1140      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1141      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1142      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1143    }
1144  }
1145  return ac_failed;
1146JRT_END
1147
1148
1149JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1150#ifndef PRODUCT
1151  _primitive_arraycopy_cnt++;
1152#endif
1153
1154  if (length == 0) return;
1155  // Not guaranteed to be word atomic, but that doesn't matter
1156  // for anything but an oop array, which is covered by oop_arraycopy.
1157  Copy::conjoint_bytes(src, dst, length);
1158JRT_END
1159
1160JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1161#ifndef PRODUCT
1162  _oop_arraycopy_cnt++;
1163#endif
1164
1165  if (num == 0) return;
1166  BarrierSet* bs = Universe::heap()->barrier_set();
1167  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1168  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1169  if (UseCompressedOops) {
1170    bs->write_ref_array_pre((narrowOop*)dst, num);
1171  } else {
1172    bs->write_ref_array_pre((oop*)dst, num);
1173  }
1174  Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1175  bs->write_ref_array(dst, num);
1176JRT_END
1177
1178
1179#ifndef PRODUCT
1180void Runtime1::print_statistics() {
1181  tty->print_cr("C1 Runtime statistics:");
1182  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1183  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1184  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1185  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1186  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1187  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1188  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1189  tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
1190  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1191
1192  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1193  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1194  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1195  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1196  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1197  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1198  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1199
1200  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1201  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1202  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1203  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1204  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1205  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1206  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1207  tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1208
1209  SharedRuntime::print_ic_miss_histogram();
1210  tty->cr();
1211}
1212#endif // PRODUCT
1213