c1_Runtime1.cpp revision 10061:197538942788
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "c1/c1_CodeStubs.hpp"
28#include "c1/c1_Defs.hpp"
29#include "c1/c1_FrameMap.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_MacroAssembler.hpp"
32#include "c1/c1_Runtime1.hpp"
33#include "classfile/systemDictionary.hpp"
34#include "classfile/vmSymbols.hpp"
35#include "code/codeBlob.hpp"
36#include "code/codeCacheExtensions.hpp"
37#include "code/compiledIC.hpp"
38#include "code/pcDesc.hpp"
39#include "code/scopeDesc.hpp"
40#include "code/vtableStubs.hpp"
41#include "compiler/disassembler.hpp"
42#include "gc/shared/barrierSet.hpp"
43#include "gc/shared/collectedHeap.hpp"
44#include "interpreter/bytecode.hpp"
45#include "interpreter/interpreter.hpp"
46#include "logging/log.hpp"
47#include "memory/allocation.inline.hpp"
48#include "memory/oopFactory.hpp"
49#include "memory/resourceArea.hpp"
50#include "oops/objArrayKlass.hpp"
51#include "oops/oop.inline.hpp"
52#include "runtime/atomic.inline.hpp"
53#include "runtime/biasedLocking.hpp"
54#include "runtime/compilationPolicy.hpp"
55#include "runtime/interfaceSupport.hpp"
56#include "runtime/javaCalls.hpp"
57#include "runtime/sharedRuntime.hpp"
58#include "runtime/threadCritical.hpp"
59#include "runtime/vframe.hpp"
60#include "runtime/vframeArray.hpp"
61#include "runtime/vm_version.hpp"
62#include "utilities/copy.hpp"
63#include "utilities/events.hpp"
64
65
66// Implementation of StubAssembler
67
68StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
69  _name = name;
70  _must_gc_arguments = false;
71  _frame_size = no_frame_size;
72  _num_rt_args = 0;
73  _stub_id = stub_id;
74}
75
76
77void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
78  _name = name;
79  _must_gc_arguments = must_gc_arguments;
80}
81
82
83void StubAssembler::set_frame_size(int size) {
84  if (_frame_size == no_frame_size) {
85    _frame_size = size;
86  }
87  assert(_frame_size == size, "can't change the frame size");
88}
89
90
91void StubAssembler::set_num_rt_args(int args) {
92  if (_num_rt_args == 0) {
93    _num_rt_args = args;
94  }
95  assert(_num_rt_args == args, "can't change the number of args");
96}
97
98// Implementation of Runtime1
99
100CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
101const char *Runtime1::_blob_names[] = {
102  RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
103};
104
105#ifndef PRODUCT
106// statistics
107int Runtime1::_generic_arraycopy_cnt = 0;
108int Runtime1::_primitive_arraycopy_cnt = 0;
109int Runtime1::_oop_arraycopy_cnt = 0;
110int Runtime1::_generic_arraycopystub_cnt = 0;
111int Runtime1::_arraycopy_slowcase_cnt = 0;
112int Runtime1::_arraycopy_checkcast_cnt = 0;
113int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
114int Runtime1::_new_type_array_slowcase_cnt = 0;
115int Runtime1::_new_object_array_slowcase_cnt = 0;
116int Runtime1::_new_instance_slowcase_cnt = 0;
117int Runtime1::_new_multi_array_slowcase_cnt = 0;
118int Runtime1::_monitorenter_slowcase_cnt = 0;
119int Runtime1::_monitorexit_slowcase_cnt = 0;
120int Runtime1::_patch_code_slowcase_cnt = 0;
121int Runtime1::_throw_range_check_exception_count = 0;
122int Runtime1::_throw_index_exception_count = 0;
123int Runtime1::_throw_div0_exception_count = 0;
124int Runtime1::_throw_null_pointer_exception_count = 0;
125int Runtime1::_throw_class_cast_exception_count = 0;
126int Runtime1::_throw_incompatible_class_change_error_count = 0;
127int Runtime1::_throw_array_store_exception_count = 0;
128int Runtime1::_throw_count = 0;
129
130static int _byte_arraycopy_stub_cnt = 0;
131static int _short_arraycopy_stub_cnt = 0;
132static int _int_arraycopy_stub_cnt = 0;
133static int _long_arraycopy_stub_cnt = 0;
134static int _oop_arraycopy_stub_cnt = 0;
135
136address Runtime1::arraycopy_count_address(BasicType type) {
137  switch (type) {
138  case T_BOOLEAN:
139  case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
140  case T_CHAR:
141  case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
142  case T_FLOAT:
143  case T_INT:    return (address)&_int_arraycopy_stub_cnt;
144  case T_DOUBLE:
145  case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
146  case T_ARRAY:
147  case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
148  default:
149    ShouldNotReachHere();
150    return NULL;
151  }
152}
153
154
155#endif
156
157// Simple helper to see if the caller of a runtime stub which
158// entered the VM has been deoptimized
159
160static bool caller_is_deopted() {
161  JavaThread* thread = JavaThread::current();
162  RegisterMap reg_map(thread, false);
163  frame runtime_frame = thread->last_frame();
164  frame caller_frame = runtime_frame.sender(&reg_map);
165  assert(caller_frame.is_compiled_frame(), "must be compiled");
166  return caller_frame.is_deoptimized_frame();
167}
168
169// Stress deoptimization
170static void deopt_caller() {
171  if ( !caller_is_deopted()) {
172    JavaThread* thread = JavaThread::current();
173    RegisterMap reg_map(thread, false);
174    frame runtime_frame = thread->last_frame();
175    frame caller_frame = runtime_frame.sender(&reg_map);
176    Deoptimization::deoptimize_frame(thread, caller_frame.id());
177    assert(caller_is_deopted(), "Must be deoptimized");
178  }
179}
180
181
182void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
183  assert(0 <= id && id < number_of_ids, "illegal stub id");
184  ResourceMark rm;
185  // create code buffer for code storage
186  CodeBuffer code(buffer_blob);
187
188  OopMapSet* oop_maps;
189  int frame_size;
190  bool must_gc_arguments;
191
192  if (!CodeCacheExtensions::skip_compiler_support()) {
193    // bypass useless code generation
194    Compilation::setup_code_buffer(&code, 0);
195
196    // create assembler for code generation
197    StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
198    // generate code for runtime stub
199    oop_maps = generate_code_for(id, sasm);
200    assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
201           "if stub has an oop map it must have a valid frame size");
202
203#ifdef ASSERT
204    // Make sure that stubs that need oopmaps have them
205    switch (id) {
206      // These stubs don't need to have an oopmap
207    case dtrace_object_alloc_id:
208    case g1_pre_barrier_slow_id:
209    case g1_post_barrier_slow_id:
210    case slow_subtype_check_id:
211    case fpu2long_stub_id:
212    case unwind_exception_id:
213    case counter_overflow_id:
214#if defined(SPARC) || defined(PPC32)
215    case handle_exception_nofpu_id:  // Unused on sparc
216#endif
217      break;
218
219      // All other stubs should have oopmaps
220    default:
221      assert(oop_maps != NULL, "must have an oopmap");
222    }
223#endif
224
225    // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
226    sasm->align(BytesPerWord);
227    // make sure all code is in code buffer
228    sasm->flush();
229
230    frame_size = sasm->frame_size();
231    must_gc_arguments = sasm->must_gc_arguments();
232  } else {
233    /* ignored values */
234    oop_maps = NULL;
235    frame_size = 0;
236    must_gc_arguments = false;
237  }
238  // create blob - distinguish a few special cases
239  CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
240                                                 &code,
241                                                 CodeOffsets::frame_never_safe,
242                                                 frame_size,
243                                                 oop_maps,
244                                                 must_gc_arguments);
245  // install blob
246  assert(blob != NULL, "blob must exist");
247  _blobs[id] = blob;
248}
249
250
251void Runtime1::initialize(BufferBlob* blob) {
252  // platform-dependent initialization
253  initialize_pd();
254  // generate stubs
255  for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
256  // printing
257#ifndef PRODUCT
258  if (PrintSimpleStubs) {
259    ResourceMark rm;
260    for (int id = 0; id < number_of_ids; id++) {
261      _blobs[id]->print();
262      if (_blobs[id]->oop_maps() != NULL) {
263        _blobs[id]->oop_maps()->print();
264      }
265    }
266  }
267#endif
268}
269
270
271CodeBlob* Runtime1::blob_for(StubID id) {
272  assert(0 <= id && id < number_of_ids, "illegal stub id");
273  return _blobs[id];
274}
275
276
277const char* Runtime1::name_for(StubID id) {
278  assert(0 <= id && id < number_of_ids, "illegal stub id");
279  return _blob_names[id];
280}
281
282const char* Runtime1::name_for_address(address entry) {
283  for (int id = 0; id < number_of_ids; id++) {
284    if (entry == entry_for((StubID)id)) return name_for((StubID)id);
285  }
286
287#define FUNCTION_CASE(a, f) \
288  if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
289
290  FUNCTION_CASE(entry, os::javaTimeMillis);
291  FUNCTION_CASE(entry, os::javaTimeNanos);
292  FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
293  FUNCTION_CASE(entry, SharedRuntime::d2f);
294  FUNCTION_CASE(entry, SharedRuntime::d2i);
295  FUNCTION_CASE(entry, SharedRuntime::d2l);
296  FUNCTION_CASE(entry, SharedRuntime::dcos);
297  FUNCTION_CASE(entry, SharedRuntime::dexp);
298  FUNCTION_CASE(entry, SharedRuntime::dlog);
299  FUNCTION_CASE(entry, SharedRuntime::dlog10);
300  FUNCTION_CASE(entry, SharedRuntime::dpow);
301  FUNCTION_CASE(entry, SharedRuntime::drem);
302  FUNCTION_CASE(entry, SharedRuntime::dsin);
303  FUNCTION_CASE(entry, SharedRuntime::dtan);
304  FUNCTION_CASE(entry, SharedRuntime::f2i);
305  FUNCTION_CASE(entry, SharedRuntime::f2l);
306  FUNCTION_CASE(entry, SharedRuntime::frem);
307  FUNCTION_CASE(entry, SharedRuntime::l2d);
308  FUNCTION_CASE(entry, SharedRuntime::l2f);
309  FUNCTION_CASE(entry, SharedRuntime::ldiv);
310  FUNCTION_CASE(entry, SharedRuntime::lmul);
311  FUNCTION_CASE(entry, SharedRuntime::lrem);
312  FUNCTION_CASE(entry, SharedRuntime::lrem);
313  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
314  FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
315  FUNCTION_CASE(entry, is_instance_of);
316  FUNCTION_CASE(entry, trace_block_entry);
317#ifdef TRACE_HAVE_INTRINSICS
318  FUNCTION_CASE(entry, TRACE_TIME_METHOD);
319#endif
320  FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
321  FUNCTION_CASE(entry, StubRoutines::dexp());
322  FUNCTION_CASE(entry, StubRoutines::dlog());
323  FUNCTION_CASE(entry, StubRoutines::dpow());
324  FUNCTION_CASE(entry, StubRoutines::dsin());
325  FUNCTION_CASE(entry, StubRoutines::dcos());
326
327#undef FUNCTION_CASE
328
329  // Soft float adds more runtime names.
330  return pd_name_for_address(entry);
331}
332
333
334JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
335  NOT_PRODUCT(_new_instance_slowcase_cnt++;)
336
337  assert(klass->is_klass(), "not a class");
338  instanceKlassHandle h(thread, klass);
339  h->check_valid_for_instantiation(true, CHECK);
340  // make sure klass is initialized
341  h->initialize(CHECK);
342  // allocate instance and return via TLS
343  oop obj = h->allocate_instance(CHECK);
344  thread->set_vm_result(obj);
345JRT_END
346
347
348JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
349  NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
350  // Note: no handle for klass needed since they are not used
351  //       anymore after new_typeArray() and no GC can happen before.
352  //       (This may have to change if this code changes!)
353  assert(klass->is_klass(), "not a class");
354  BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
355  oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
356  thread->set_vm_result(obj);
357  // This is pretty rare but this runtime patch is stressful to deoptimization
358  // if we deoptimize here so force a deopt to stress the path.
359  if (DeoptimizeALot) {
360    deopt_caller();
361  }
362
363JRT_END
364
365
366JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
367  NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
368
369  // Note: no handle for klass needed since they are not used
370  //       anymore after new_objArray() and no GC can happen before.
371  //       (This may have to change if this code changes!)
372  assert(array_klass->is_klass(), "not a class");
373  Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
374  objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
375  thread->set_vm_result(obj);
376  // This is pretty rare but this runtime patch is stressful to deoptimization
377  // if we deoptimize here so force a deopt to stress the path.
378  if (DeoptimizeALot) {
379    deopt_caller();
380  }
381JRT_END
382
383
384JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
385  NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
386
387  assert(klass->is_klass(), "not a class");
388  assert(rank >= 1, "rank must be nonzero");
389  oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
390  thread->set_vm_result(obj);
391JRT_END
392
393
394JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
395  tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
396JRT_END
397
398
399JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
400  ResourceMark rm(thread);
401  const char* klass_name = obj->klass()->external_name();
402  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
403JRT_END
404
405
406// counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
407// associated with the top activation record. The inlinee (that is possibly included in the enclosing
408// method) method oop is passed as an argument. In order to do that it is embedded in the code as
409// a constant.
410static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
411  nmethod* osr_nm = NULL;
412  methodHandle method(THREAD, m);
413
414  RegisterMap map(THREAD, false);
415  frame fr =  THREAD->last_frame().sender(&map);
416  nmethod* nm = (nmethod*) fr.cb();
417  assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
418  methodHandle enclosing_method(THREAD, nm->method());
419
420  CompLevel level = (CompLevel)nm->comp_level();
421  int bci = InvocationEntryBci;
422  if (branch_bci != InvocationEntryBci) {
423    // Compute destination bci
424    address pc = method()->code_base() + branch_bci;
425    Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
426    int offset = 0;
427    switch (branch) {
428      case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
429      case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
430      case Bytecodes::_if_icmple: case Bytecodes::_ifle:
431      case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
432      case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
433      case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
434      case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
435        offset = (int16_t)Bytes::get_Java_u2(pc + 1);
436        break;
437      case Bytecodes::_goto_w:
438        offset = Bytes::get_Java_u4(pc + 1);
439        break;
440      default: ;
441    }
442    bci = branch_bci + offset;
443  }
444  assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
445  osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
446  assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
447  return osr_nm;
448}
449
450JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
451  nmethod* osr_nm;
452  JRT_BLOCK
453    osr_nm = counter_overflow_helper(thread, bci, method);
454    if (osr_nm != NULL) {
455      RegisterMap map(thread, false);
456      frame fr =  thread->last_frame().sender(&map);
457      Deoptimization::deoptimize_frame(thread, fr.id());
458    }
459  JRT_BLOCK_END
460  return NULL;
461JRT_END
462
463extern void vm_exit(int code);
464
465// Enter this method from compiled code handler below. This is where we transition
466// to VM mode. This is done as a helper routine so that the method called directly
467// from compiled code does not have to transition to VM. This allows the entry
468// method to see if the nmethod that we have just looked up a handler for has
469// been deoptimized while we were in the vm. This simplifies the assembly code
470// cpu directories.
471//
472// We are entering here from exception stub (via the entry method below)
473// If there is a compiled exception handler in this method, we will continue there;
474// otherwise we will unwind the stack and continue at the caller of top frame method
475// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
476// control the area where we can allow a safepoint. After we exit the safepoint area we can
477// check to see if the handler we are going to return is now in a nmethod that has
478// been deoptimized. If that is the case we return the deopt blob
479// unpack_with_exception entry instead. This makes life for the exception blob easier
480// because making that same check and diverting is painful from assembly language.
481JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
482  // Reset method handle flag.
483  thread->set_is_method_handle_return(false);
484
485  Handle exception(thread, ex);
486  nm = CodeCache::find_nmethod(pc);
487  assert(nm != NULL, "this is not an nmethod");
488  // Adjust the pc as needed/
489  if (nm->is_deopt_pc(pc)) {
490    RegisterMap map(thread, false);
491    frame exception_frame = thread->last_frame().sender(&map);
492    // if the frame isn't deopted then pc must not correspond to the caller of last_frame
493    assert(exception_frame.is_deoptimized_frame(), "must be deopted");
494    pc = exception_frame.pc();
495  }
496#ifdef ASSERT
497  assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
498  assert(exception->is_oop(), "just checking");
499  // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
500  if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
501    if (ExitVMOnVerifyError) vm_exit(-1);
502    ShouldNotReachHere();
503  }
504#endif
505
506  // Check the stack guard pages and reenable them if necessary and there is
507  // enough space on the stack to do so.  Use fast exceptions only if the guard
508  // pages are enabled.
509  bool guard_pages_enabled = thread->stack_guards_enabled();
510  if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
511
512  if (JvmtiExport::can_post_on_exceptions()) {
513    // To ensure correct notification of exception catches and throws
514    // we have to deoptimize here.  If we attempted to notify the
515    // catches and throws during this exception lookup it's possible
516    // we could deoptimize on the way out of the VM and end back in
517    // the interpreter at the throw site.  This would result in double
518    // notifications since the interpreter would also notify about
519    // these same catches and throws as it unwound the frame.
520
521    RegisterMap reg_map(thread);
522    frame stub_frame = thread->last_frame();
523    frame caller_frame = stub_frame.sender(&reg_map);
524
525    // We don't really want to deoptimize the nmethod itself since we
526    // can actually continue in the exception handler ourselves but I
527    // don't see an easy way to have the desired effect.
528    Deoptimization::deoptimize_frame(thread, caller_frame.id());
529    assert(caller_is_deopted(), "Must be deoptimized");
530
531    return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
532  }
533
534  // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
535  if (guard_pages_enabled) {
536    address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
537    if (fast_continuation != NULL) {
538      // Set flag if return address is a method handle call site.
539      thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
540      return fast_continuation;
541    }
542  }
543
544  // If the stack guard pages are enabled, check whether there is a handler in
545  // the current method.  Otherwise (guard pages disabled), force an unwind and
546  // skip the exception cache update (i.e., just leave continuation==NULL).
547  address continuation = NULL;
548  if (guard_pages_enabled) {
549
550    // New exception handling mechanism can support inlined methods
551    // with exception handlers since the mappings are from PC to PC
552
553    // debugging support
554    // tracing
555    if (log_is_enabled(Info, exceptions)) {
556      ResourceMark rm;
557      stringStream tempst;
558      tempst.print("compiled method <%s>\n"
559                   " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
560                   nm->method()->print_value_string(), p2i(pc), p2i(thread));
561      Exceptions::log_exception(exception, tempst);
562    }
563    // for AbortVMOnException flag
564    Exceptions::debug_check_abort(exception);
565
566    // Clear out the exception oop and pc since looking up an
567    // exception handler can cause class loading, which might throw an
568    // exception and those fields are expected to be clear during
569    // normal bytecode execution.
570    thread->clear_exception_oop_and_pc();
571
572    Handle original_exception(thread, exception());
573
574    continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
575    // If an exception was thrown during exception dispatch, the exception oop may have changed
576    thread->set_exception_oop(exception());
577    thread->set_exception_pc(pc);
578
579    // the exception cache is used only by non-implicit exceptions
580    // Update the exception cache only when there didn't happen
581    // another exception during the computation of the compiled
582    // exception handler.
583    if (continuation != NULL && original_exception() == exception()) {
584      nm->add_handler_for_exception_and_pc(exception, pc, continuation);
585    }
586  }
587
588  thread->set_vm_result(exception());
589  // Set flag if return address is a method handle call site.
590  thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
591
592  if (log_is_enabled(Info, exceptions)) {
593    ResourceMark rm;
594    log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
595                         " for exception thrown at PC " PTR_FORMAT,
596                         p2i(thread), p2i(continuation), p2i(pc));
597  }
598
599  return continuation;
600JRT_END
601
602// Enter this method from compiled code only if there is a Java exception handler
603// in the method handling the exception.
604// We are entering here from exception stub. We don't do a normal VM transition here.
605// We do it in a helper. This is so we can check to see if the nmethod we have just
606// searched for an exception handler has been deoptimized in the meantime.
607address Runtime1::exception_handler_for_pc(JavaThread* thread) {
608  oop exception = thread->exception_oop();
609  address pc = thread->exception_pc();
610  // Still in Java mode
611  DEBUG_ONLY(ResetNoHandleMark rnhm);
612  nmethod* nm = NULL;
613  address continuation = NULL;
614  {
615    // Enter VM mode by calling the helper
616    ResetNoHandleMark rnhm;
617    continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
618  }
619  // Back in JAVA, use no oops DON'T safepoint
620
621  // Now check to see if the nmethod we were called from is now deoptimized.
622  // If so we must return to the deopt blob and deoptimize the nmethod
623  if (nm != NULL && caller_is_deopted()) {
624    continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
625  }
626
627  assert(continuation != NULL, "no handler found");
628  return continuation;
629}
630
631
632JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
633  NOT_PRODUCT(_throw_range_check_exception_count++;)
634  char message[jintAsStringSize];
635  sprintf(message, "%d", index);
636  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
637JRT_END
638
639
640JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
641  NOT_PRODUCT(_throw_index_exception_count++;)
642  char message[16];
643  sprintf(message, "%d", index);
644  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
645JRT_END
646
647
648JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
649  NOT_PRODUCT(_throw_div0_exception_count++;)
650  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
651JRT_END
652
653
654JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
655  NOT_PRODUCT(_throw_null_pointer_exception_count++;)
656  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
657JRT_END
658
659
660JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
661  NOT_PRODUCT(_throw_class_cast_exception_count++;)
662  ResourceMark rm(thread);
663  char* message = SharedRuntime::generate_class_cast_message(
664    thread, object->klass()->external_name());
665  SharedRuntime::throw_and_post_jvmti_exception(
666    thread, vmSymbols::java_lang_ClassCastException(), message);
667JRT_END
668
669
670JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
671  NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
672  ResourceMark rm(thread);
673  SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
674JRT_END
675
676
677JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
678  NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
679  if (PrintBiasedLockingStatistics) {
680    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
681  }
682  Handle h_obj(thread, obj);
683  assert(h_obj()->is_oop(), "must be NULL or an object");
684  if (UseBiasedLocking) {
685    // Retry fast entry if bias is revoked to avoid unnecessary inflation
686    ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
687  } else {
688    if (UseFastLocking) {
689      // When using fast locking, the compiled code has already tried the fast case
690      assert(obj == lock->obj(), "must match");
691      ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
692    } else {
693      lock->set_obj(obj);
694      ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
695    }
696  }
697JRT_END
698
699
700JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
701  NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
702  assert(thread == JavaThread::current(), "threads must correspond");
703  assert(thread->last_Java_sp(), "last_Java_sp must be set");
704  // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
705  EXCEPTION_MARK;
706
707  oop obj = lock->obj();
708  assert(obj->is_oop(), "must be NULL or an object");
709  if (UseFastLocking) {
710    // When using fast locking, the compiled code has already tried the fast case
711    ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
712  } else {
713    ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
714  }
715JRT_END
716
717// Cf. OptoRuntime::deoptimize_caller_frame
718JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
719  // Called from within the owner thread, so no need for safepoint
720  RegisterMap reg_map(thread, false);
721  frame stub_frame = thread->last_frame();
722  assert(stub_frame.is_runtime_frame(), "Sanity check");
723  frame caller_frame = stub_frame.sender(&reg_map);
724  nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
725  assert(nm != NULL, "Sanity check");
726  methodHandle method(thread, nm->method());
727  assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
728  Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
729  Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
730
731  if (action == Deoptimization::Action_make_not_entrant) {
732    if (nm->make_not_entrant()) {
733      if (reason == Deoptimization::Reason_tenured) {
734        MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
735        if (trap_mdo != NULL) {
736          trap_mdo->inc_tenure_traps();
737        }
738      }
739    }
740  }
741
742  // Deoptimize the caller frame.
743  Deoptimization::deoptimize_frame(thread, caller_frame.id());
744  // Return to the now deoptimized frame.
745JRT_END
746
747
748#ifndef DEOPTIMIZE_WHEN_PATCHING
749
750static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
751  Bytecode_field field_access(caller, bci);
752  // This can be static or non-static field access
753  Bytecodes::Code code       = field_access.code();
754
755  // We must load class, initialize class and resolvethe field
756  fieldDescriptor result; // initialize class if needed
757  constantPoolHandle constants(THREAD, caller->constants());
758  LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
759  return result.field_holder();
760}
761
762
763//
764// This routine patches sites where a class wasn't loaded or
765// initialized at the time the code was generated.  It handles
766// references to classes, fields and forcing of initialization.  Most
767// of the cases are straightforward and involving simply forcing
768// resolution of a class, rewriting the instruction stream with the
769// needed constant and replacing the call in this function with the
770// patched code.  The case for static field is more complicated since
771// the thread which is in the process of initializing a class can
772// access it's static fields but other threads can't so the code
773// either has to deoptimize when this case is detected or execute a
774// check that the current thread is the initializing thread.  The
775// current
776//
777// Patches basically look like this:
778//
779//
780// patch_site: jmp patch stub     ;; will be patched
781// continue:   ...
782//             ...
783//             ...
784//             ...
785//
786// They have a stub which looks like this:
787//
788//             ;; patch body
789//             movl <const>, reg           (for class constants)
790//        <or> movl [reg1 + <const>], reg  (for field offsets)
791//        <or> movl reg, [reg1 + <const>]  (for field offsets)
792//             <being_init offset> <bytes to copy> <bytes to skip>
793// patch_stub: call Runtime1::patch_code (through a runtime stub)
794//             jmp patch_site
795//
796//
797// A normal patch is done by rewriting the patch body, usually a move,
798// and then copying it into place over top of the jmp instruction
799// being careful to flush caches and doing it in an MP-safe way.  The
800// constants following the patch body are used to find various pieces
801// of the patch relative to the call site for Runtime1::patch_code.
802// The case for getstatic and putstatic is more complicated because
803// getstatic and putstatic have special semantics when executing while
804// the class is being initialized.  getstatic/putstatic on a class
805// which is being_initialized may be executed by the initializing
806// thread but other threads have to block when they execute it.  This
807// is accomplished in compiled code by executing a test of the current
808// thread against the initializing thread of the class.  It's emitted
809// as boilerplate in their stub which allows the patched code to be
810// executed before it's copied back into the main body of the nmethod.
811//
812// being_init: get_thread(<tmp reg>
813//             cmpl [reg1 + <init_thread_offset>], <tmp reg>
814//             jne patch_stub
815//             movl [reg1 + <const>], reg  (for field offsets)  <or>
816//             movl reg, [reg1 + <const>]  (for field offsets)
817//             jmp continue
818//             <being_init offset> <bytes to copy> <bytes to skip>
819// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
820//             jmp patch_site
821//
822// If the class is being initialized the patch body is rewritten and
823// the patch site is rewritten to jump to being_init, instead of
824// patch_stub.  Whenever this code is executed it checks the current
825// thread against the intializing thread so other threads will enter
826// the runtime and end up blocked waiting the class to finish
827// initializing inside the calls to resolve_field below.  The
828// initializing class will continue on it's way.  Once the class is
829// fully_initialized, the intializing_thread of the class becomes
830// NULL, so the next thread to execute this code will fail the test,
831// call into patch_code and complete the patching process by copying
832// the patch body back into the main part of the nmethod and resume
833// executing.
834//
835//
836
837JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
838  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
839
840  ResourceMark rm(thread);
841  RegisterMap reg_map(thread, false);
842  frame runtime_frame = thread->last_frame();
843  frame caller_frame = runtime_frame.sender(&reg_map);
844
845  // last java frame on stack
846  vframeStream vfst(thread, true);
847  assert(!vfst.at_end(), "Java frame must exist");
848
849  methodHandle caller_method(THREAD, vfst.method());
850  // Note that caller_method->code() may not be same as caller_code because of OSR's
851  // Note also that in the presence of inlining it is not guaranteed
852  // that caller_method() == caller_code->method()
853
854  int bci = vfst.bci();
855  Bytecodes::Code code = caller_method()->java_code_at(bci);
856
857  // this is used by assertions in the access_field_patching_id
858  BasicType patch_field_type = T_ILLEGAL;
859  bool deoptimize_for_volatile = false;
860  bool deoptimize_for_atomic = false;
861  int patch_field_offset = -1;
862  KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
863  KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
864  Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
865  Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
866  bool load_klass_or_mirror_patch_id =
867    (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
868
869  if (stub_id == Runtime1::access_field_patching_id) {
870
871    Bytecode_field field_access(caller_method, bci);
872    fieldDescriptor result; // initialize class if needed
873    Bytecodes::Code code = field_access.code();
874    constantPoolHandle constants(THREAD, caller_method->constants());
875    LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
876    patch_field_offset = result.offset();
877
878    // If we're patching a field which is volatile then at compile it
879    // must not have been know to be volatile, so the generated code
880    // isn't correct for a volatile reference.  The nmethod has to be
881    // deoptimized so that the code can be regenerated correctly.
882    // This check is only needed for access_field_patching since this
883    // is the path for patching field offsets.  load_klass is only
884    // used for patching references to oops which don't need special
885    // handling in the volatile case.
886
887    deoptimize_for_volatile = result.access_flags().is_volatile();
888
889    // If we are patching a field which should be atomic, then
890    // the generated code is not correct either, force deoptimizing.
891    // We need to only cover T_LONG and T_DOUBLE fields, as we can
892    // break access atomicity only for them.
893
894    // Strictly speaking, the deoptimizaation on 64-bit platforms
895    // is unnecessary, and T_LONG stores on 32-bit platforms need
896    // to be handled by special patching code when AlwaysAtomicAccesses
897    // becomes product feature. At this point, we are still going
898    // for the deoptimization for consistency against volatile
899    // accesses.
900
901    patch_field_type = result.field_type();
902    deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
903
904  } else if (load_klass_or_mirror_patch_id) {
905    Klass* k = NULL;
906    switch (code) {
907      case Bytecodes::_putstatic:
908      case Bytecodes::_getstatic:
909        { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
910          init_klass = KlassHandle(THREAD, klass);
911          mirror = Handle(THREAD, klass->java_mirror());
912        }
913        break;
914      case Bytecodes::_new:
915        { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
916          k = caller_method->constants()->klass_at(bnew.index(), CHECK);
917        }
918        break;
919      case Bytecodes::_multianewarray:
920        { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
921          k = caller_method->constants()->klass_at(mna.index(), CHECK);
922        }
923        break;
924      case Bytecodes::_instanceof:
925        { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
926          k = caller_method->constants()->klass_at(io.index(), CHECK);
927        }
928        break;
929      case Bytecodes::_checkcast:
930        { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
931          k = caller_method->constants()->klass_at(cc.index(), CHECK);
932        }
933        break;
934      case Bytecodes::_anewarray:
935        { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
936          Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
937          k = ek->array_klass(CHECK);
938        }
939        break;
940      case Bytecodes::_ldc:
941      case Bytecodes::_ldc_w:
942        {
943          Bytecode_loadconstant cc(caller_method, bci);
944          oop m = cc.resolve_constant(CHECK);
945          mirror = Handle(THREAD, m);
946        }
947        break;
948      default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
949    }
950    // convert to handle
951    load_klass = KlassHandle(THREAD, k);
952  } else if (stub_id == load_appendix_patching_id) {
953    Bytecode_invoke bytecode(caller_method, bci);
954    Bytecodes::Code bc = bytecode.invoke_code();
955
956    CallInfo info;
957    constantPoolHandle pool(thread, caller_method->constants());
958    int index = bytecode.index();
959    LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
960    switch (bc) {
961      case Bytecodes::_invokehandle: {
962        int cache_index = ConstantPool::decode_cpcache_index(index, true);
963        assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
964        ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
965        cpce->set_method_handle(pool, info);
966        appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
967        break;
968      }
969      case Bytecodes::_invokedynamic: {
970        ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
971        cpce->set_dynamic_call(pool, info);
972        appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
973        break;
974      }
975      default: fatal("unexpected bytecode for load_appendix_patching_id");
976    }
977  } else {
978    ShouldNotReachHere();
979  }
980
981  if (deoptimize_for_volatile || deoptimize_for_atomic) {
982    // At compile time we assumed the field wasn't volatile/atomic but after
983    // loading it turns out it was volatile/atomic so we have to throw the
984    // compiled code out and let it be regenerated.
985    if (TracePatching) {
986      if (deoptimize_for_volatile) {
987        tty->print_cr("Deoptimizing for patching volatile field reference");
988      }
989      if (deoptimize_for_atomic) {
990        tty->print_cr("Deoptimizing for patching atomic field reference");
991      }
992    }
993
994    // It's possible the nmethod was invalidated in the last
995    // safepoint, but if it's still alive then make it not_entrant.
996    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
997    if (nm != NULL) {
998      nm->make_not_entrant();
999    }
1000
1001    Deoptimization::deoptimize_frame(thread, caller_frame.id());
1002
1003    // Return to the now deoptimized frame.
1004  }
1005
1006  // Now copy code back
1007
1008  {
1009    MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1010    //
1011    // Deoptimization may have happened while we waited for the lock.
1012    // In that case we don't bother to do any patching we just return
1013    // and let the deopt happen
1014    if (!caller_is_deopted()) {
1015      NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1016      address instr_pc = jump->jump_destination();
1017      NativeInstruction* ni = nativeInstruction_at(instr_pc);
1018      if (ni->is_jump() ) {
1019        // the jump has not been patched yet
1020        // The jump destination is slow case and therefore not part of the stubs
1021        // (stubs are only for StaticCalls)
1022
1023        // format of buffer
1024        //    ....
1025        //    instr byte 0     <-- copy_buff
1026        //    instr byte 1
1027        //    ..
1028        //    instr byte n-1
1029        //      n
1030        //    ....             <-- call destination
1031
1032        address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1033        unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1034        unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1035        unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1036        address copy_buff = stub_location - *byte_skip - *byte_count;
1037        address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1038        if (TracePatching) {
1039          ttyLocker ttyl;
1040          tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1041                        p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1042          nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1043          assert(caller_code != NULL, "nmethod not found");
1044
1045          // NOTE we use pc() not original_pc() because we already know they are
1046          // identical otherwise we'd have never entered this block of code
1047
1048          const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1049          assert(map != NULL, "null check");
1050          map->print();
1051          tty->cr();
1052
1053          Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1054        }
1055        // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1056        bool do_patch = true;
1057        if (stub_id == Runtime1::access_field_patching_id) {
1058          // The offset may not be correct if the class was not loaded at code generation time.
1059          // Set it now.
1060          NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1061          assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1062          assert(patch_field_offset >= 0, "illegal offset");
1063          n_move->add_offset_in_bytes(patch_field_offset);
1064        } else if (load_klass_or_mirror_patch_id) {
1065          // If a getstatic or putstatic is referencing a klass which
1066          // isn't fully initialized, the patch body isn't copied into
1067          // place until initialization is complete.  In this case the
1068          // patch site is setup so that any threads besides the
1069          // initializing thread are forced to come into the VM and
1070          // block.
1071          do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1072                     InstanceKlass::cast(init_klass())->is_initialized();
1073          NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1074          if (jump->jump_destination() == being_initialized_entry) {
1075            assert(do_patch == true, "initialization must be complete at this point");
1076          } else {
1077            // patch the instruction <move reg, klass>
1078            NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1079
1080            assert(n_copy->data() == 0 ||
1081                   n_copy->data() == (intptr_t)Universe::non_oop_word(),
1082                   "illegal init value");
1083            if (stub_id == Runtime1::load_klass_patching_id) {
1084              assert(load_klass() != NULL, "klass not set");
1085              n_copy->set_data((intx) (load_klass()));
1086            } else {
1087              assert(mirror() != NULL, "klass not set");
1088              // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1089              n_copy->set_data(cast_from_oop<intx>(mirror()));
1090            }
1091
1092            if (TracePatching) {
1093              Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1094            }
1095          }
1096        } else if (stub_id == Runtime1::load_appendix_patching_id) {
1097          NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1098          assert(n_copy->data() == 0 ||
1099                 n_copy->data() == (intptr_t)Universe::non_oop_word(),
1100                 "illegal init value");
1101          n_copy->set_data(cast_from_oop<intx>(appendix()));
1102
1103          if (TracePatching) {
1104            Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1105          }
1106        } else {
1107          ShouldNotReachHere();
1108        }
1109
1110#if defined(SPARC) || defined(PPC32)
1111        if (load_klass_or_mirror_patch_id ||
1112            stub_id == Runtime1::load_appendix_patching_id) {
1113          // Update the location in the nmethod with the proper
1114          // metadata.  When the code was generated, a NULL was stuffed
1115          // in the metadata table and that table needs to be update to
1116          // have the right value.  On intel the value is kept
1117          // directly in the instruction instead of in the metadata
1118          // table, so set_data above effectively updated the value.
1119          nmethod* nm = CodeCache::find_nmethod(instr_pc);
1120          assert(nm != NULL, "invalid nmethod_pc");
1121          RelocIterator mds(nm, copy_buff, copy_buff + 1);
1122          bool found = false;
1123          while (mds.next() && !found) {
1124            if (mds.type() == relocInfo::oop_type) {
1125              assert(stub_id == Runtime1::load_mirror_patching_id ||
1126                     stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1127              oop_Relocation* r = mds.oop_reloc();
1128              oop* oop_adr = r->oop_addr();
1129              *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1130              r->fix_oop_relocation();
1131              found = true;
1132            } else if (mds.type() == relocInfo::metadata_type) {
1133              assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1134              metadata_Relocation* r = mds.metadata_reloc();
1135              Metadata** metadata_adr = r->metadata_addr();
1136              *metadata_adr = load_klass();
1137              r->fix_metadata_relocation();
1138              found = true;
1139            }
1140          }
1141          assert(found, "the metadata must exist!");
1142        }
1143#endif
1144        if (do_patch) {
1145          // replace instructions
1146          // first replace the tail, then the call
1147#ifdef ARM
1148          if((load_klass_or_mirror_patch_id ||
1149              stub_id == Runtime1::load_appendix_patching_id) &&
1150              nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1151            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1152            address addr = NULL;
1153            assert(nm != NULL, "invalid nmethod_pc");
1154            RelocIterator mds(nm, copy_buff, copy_buff + 1);
1155            while (mds.next()) {
1156              if (mds.type() == relocInfo::oop_type) {
1157                assert(stub_id == Runtime1::load_mirror_patching_id ||
1158                       stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1159                oop_Relocation* r = mds.oop_reloc();
1160                addr = (address)r->oop_addr();
1161                break;
1162              } else if (mds.type() == relocInfo::metadata_type) {
1163                assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1164                metadata_Relocation* r = mds.metadata_reloc();
1165                addr = (address)r->metadata_addr();
1166                break;
1167              }
1168            }
1169            assert(addr != NULL, "metadata relocation must exist");
1170            copy_buff -= *byte_count;
1171            NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1172            n_copy2->set_pc_relative_offset(addr, instr_pc);
1173          }
1174#endif
1175
1176          for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1177            address ptr = copy_buff + i;
1178            int a_byte = (*ptr) & 0xFF;
1179            address dst = instr_pc + i;
1180            *(unsigned char*)dst = (unsigned char) a_byte;
1181          }
1182          ICache::invalidate_range(instr_pc, *byte_count);
1183          NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1184
1185          if (load_klass_or_mirror_patch_id ||
1186              stub_id == Runtime1::load_appendix_patching_id) {
1187            relocInfo::relocType rtype =
1188              (stub_id == Runtime1::load_klass_patching_id) ?
1189                                   relocInfo::metadata_type :
1190                                   relocInfo::oop_type;
1191            // update relocInfo to metadata
1192            nmethod* nm = CodeCache::find_nmethod(instr_pc);
1193            assert(nm != NULL, "invalid nmethod_pc");
1194
1195            // The old patch site is now a move instruction so update
1196            // the reloc info so that it will get updated during
1197            // future GCs.
1198            RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1199            relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1200                                                     relocInfo::none, rtype);
1201#ifdef SPARC
1202            // Sparc takes two relocations for an metadata so update the second one.
1203            address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1204            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1205            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1206                                                     relocInfo::none, rtype);
1207#endif
1208#ifdef PPC32
1209          { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1210            RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1211            relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1212                                                     relocInfo::none, rtype);
1213          }
1214#endif
1215          }
1216
1217        } else {
1218          ICache::invalidate_range(copy_buff, *byte_count);
1219          NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1220        }
1221      }
1222    }
1223  }
1224
1225  // If we are patching in a non-perm oop, make sure the nmethod
1226  // is on the right list.
1227  if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1228                              (appendix.not_null() && appendix->is_scavengable()))) {
1229    MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1230    nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1231    guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1232    if (!nm->on_scavenge_root_list()) {
1233      CodeCache::add_scavenge_root_nmethod(nm);
1234    }
1235
1236    // Since we've patched some oops in the nmethod,
1237    // (re)register it with the heap.
1238    Universe::heap()->register_nmethod(nm);
1239  }
1240JRT_END
1241
1242#else // DEOPTIMIZE_WHEN_PATCHING
1243
1244JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1245  RegisterMap reg_map(thread, false);
1246
1247  NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1248  if (TracePatching) {
1249    tty->print_cr("Deoptimizing because patch is needed");
1250  }
1251
1252  frame runtime_frame = thread->last_frame();
1253  frame caller_frame = runtime_frame.sender(&reg_map);
1254
1255  // It's possible the nmethod was invalidated in the last
1256  // safepoint, but if it's still alive then make it not_entrant.
1257  nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1258  if (nm != NULL) {
1259    nm->make_not_entrant();
1260  }
1261
1262  Deoptimization::deoptimize_frame(thread, caller_frame.id());
1263
1264  // Return to the now deoptimized frame.
1265JRT_END
1266
1267#endif // DEOPTIMIZE_WHEN_PATCHING
1268
1269//
1270// Entry point for compiled code. We want to patch a nmethod.
1271// We don't do a normal VM transition here because we want to
1272// know after the patching is complete and any safepoint(s) are taken
1273// if the calling nmethod was deoptimized. We do this by calling a
1274// helper method which does the normal VM transition and when it
1275// completes we can check for deoptimization. This simplifies the
1276// assembly code in the cpu directories.
1277//
1278int Runtime1::move_klass_patching(JavaThread* thread) {
1279//
1280// NOTE: we are still in Java
1281//
1282  Thread* THREAD = thread;
1283  debug_only(NoHandleMark nhm;)
1284  {
1285    // Enter VM mode
1286
1287    ResetNoHandleMark rnhm;
1288    patch_code(thread, load_klass_patching_id);
1289  }
1290  // Back in JAVA, use no oops DON'T safepoint
1291
1292  // Return true if calling code is deoptimized
1293
1294  return caller_is_deopted();
1295}
1296
1297int Runtime1::move_mirror_patching(JavaThread* thread) {
1298//
1299// NOTE: we are still in Java
1300//
1301  Thread* THREAD = thread;
1302  debug_only(NoHandleMark nhm;)
1303  {
1304    // Enter VM mode
1305
1306    ResetNoHandleMark rnhm;
1307    patch_code(thread, load_mirror_patching_id);
1308  }
1309  // Back in JAVA, use no oops DON'T safepoint
1310
1311  // Return true if calling code is deoptimized
1312
1313  return caller_is_deopted();
1314}
1315
1316int Runtime1::move_appendix_patching(JavaThread* thread) {
1317//
1318// NOTE: we are still in Java
1319//
1320  Thread* THREAD = thread;
1321  debug_only(NoHandleMark nhm;)
1322  {
1323    // Enter VM mode
1324
1325    ResetNoHandleMark rnhm;
1326    patch_code(thread, load_appendix_patching_id);
1327  }
1328  // Back in JAVA, use no oops DON'T safepoint
1329
1330  // Return true if calling code is deoptimized
1331
1332  return caller_is_deopted();
1333}
1334//
1335// Entry point for compiled code. We want to patch a nmethod.
1336// We don't do a normal VM transition here because we want to
1337// know after the patching is complete and any safepoint(s) are taken
1338// if the calling nmethod was deoptimized. We do this by calling a
1339// helper method which does the normal VM transition and when it
1340// completes we can check for deoptimization. This simplifies the
1341// assembly code in the cpu directories.
1342//
1343
1344int Runtime1::access_field_patching(JavaThread* thread) {
1345//
1346// NOTE: we are still in Java
1347//
1348  Thread* THREAD = thread;
1349  debug_only(NoHandleMark nhm;)
1350  {
1351    // Enter VM mode
1352
1353    ResetNoHandleMark rnhm;
1354    patch_code(thread, access_field_patching_id);
1355  }
1356  // Back in JAVA, use no oops DON'T safepoint
1357
1358  // Return true if calling code is deoptimized
1359
1360  return caller_is_deopted();
1361JRT_END
1362
1363
1364JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1365  // for now we just print out the block id
1366  tty->print("%d ", block_id);
1367JRT_END
1368
1369
1370// Array copy return codes.
1371enum {
1372  ac_failed = -1, // arraycopy failed
1373  ac_ok = 0       // arraycopy succeeded
1374};
1375
1376
1377// Below length is the # elements copied.
1378template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1379                                          oopDesc* dst, T* dst_addr,
1380                                          int length) {
1381
1382  // For performance reasons, we assume we are using a card marking write
1383  // barrier. The assert will fail if this is not the case.
1384  // Note that we use the non-virtual inlineable variant of write_ref_array.
1385  BarrierSet* bs = Universe::heap()->barrier_set();
1386  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1387  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1388  if (src == dst) {
1389    // same object, no check
1390    bs->write_ref_array_pre(dst_addr, length);
1391    Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1392    bs->write_ref_array((HeapWord*)dst_addr, length);
1393    return ac_ok;
1394  } else {
1395    Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1396    Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1397    if (stype == bound || stype->is_subtype_of(bound)) {
1398      // Elements are guaranteed to be subtypes, so no check necessary
1399      bs->write_ref_array_pre(dst_addr, length);
1400      Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1401      bs->write_ref_array((HeapWord*)dst_addr, length);
1402      return ac_ok;
1403    }
1404  }
1405  return ac_failed;
1406}
1407
1408// fast and direct copy of arrays; returning -1, means that an exception may be thrown
1409// and we did not copy anything
1410JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1411#ifndef PRODUCT
1412  _generic_arraycopy_cnt++;        // Slow-path oop array copy
1413#endif
1414
1415  if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1416  if (!dst->is_array() || !src->is_array()) return ac_failed;
1417  if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1418  if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1419
1420  if (length == 0) return ac_ok;
1421  if (src->is_typeArray()) {
1422    Klass* klass_oop = src->klass();
1423    if (klass_oop != dst->klass()) return ac_failed;
1424    TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1425    const int l2es = klass->log2_element_size();
1426    const int ihs = klass->array_header_in_bytes() / wordSize;
1427    char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1428    char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1429    // Potential problem: memmove is not guaranteed to be word atomic
1430    // Revisit in Merlin
1431    memmove(dst_addr, src_addr, length << l2es);
1432    return ac_ok;
1433  } else if (src->is_objArray() && dst->is_objArray()) {
1434    if (UseCompressedOops) {
1435      narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1436      narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1437      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1438    } else {
1439      oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1440      oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1441      return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1442    }
1443  }
1444  return ac_failed;
1445JRT_END
1446
1447
1448JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1449#ifndef PRODUCT
1450  _primitive_arraycopy_cnt++;
1451#endif
1452
1453  if (length == 0) return;
1454  // Not guaranteed to be word atomic, but that doesn't matter
1455  // for anything but an oop array, which is covered by oop_arraycopy.
1456  Copy::conjoint_jbytes(src, dst, length);
1457JRT_END
1458
1459JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1460#ifndef PRODUCT
1461  _oop_arraycopy_cnt++;
1462#endif
1463
1464  if (num == 0) return;
1465  BarrierSet* bs = Universe::heap()->barrier_set();
1466  assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1467  assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1468  if (UseCompressedOops) {
1469    bs->write_ref_array_pre((narrowOop*)dst, num);
1470    Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1471  } else {
1472    bs->write_ref_array_pre((oop*)dst, num);
1473    Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1474  }
1475  bs->write_ref_array(dst, num);
1476JRT_END
1477
1478
1479JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1480  // had to return int instead of bool, otherwise there may be a mismatch
1481  // between the C calling convention and the Java one.
1482  // e.g., on x86, GCC may clear only %al when returning a bool false, but
1483  // JVM takes the whole %eax as the return value, which may misinterpret
1484  // the return value as a boolean true.
1485
1486  assert(mirror != NULL, "should null-check on mirror before calling");
1487  Klass* k = java_lang_Class::as_Klass(mirror);
1488  return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1489JRT_END
1490
1491JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1492  ResourceMark rm;
1493
1494  assert(!TieredCompilation, "incompatible with tiered compilation");
1495
1496  RegisterMap reg_map(thread, false);
1497  frame runtime_frame = thread->last_frame();
1498  frame caller_frame = runtime_frame.sender(&reg_map);
1499
1500  nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1501  assert (nm != NULL, "no more nmethod?");
1502  nm->make_not_entrant();
1503
1504  methodHandle m(nm->method());
1505  MethodData* mdo = m->method_data();
1506
1507  if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1508    // Build an MDO.  Ignore errors like OutOfMemory;
1509    // that simply means we won't have an MDO to update.
1510    Method::build_interpreter_method_data(m, THREAD);
1511    if (HAS_PENDING_EXCEPTION) {
1512      assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1513      CLEAR_PENDING_EXCEPTION;
1514    }
1515    mdo = m->method_data();
1516  }
1517
1518  if (mdo != NULL) {
1519    mdo->inc_trap_count(Deoptimization::Reason_none);
1520  }
1521
1522  if (TracePredicateFailedTraps) {
1523    stringStream ss1, ss2;
1524    vframeStream vfst(thread);
1525    methodHandle inlinee = methodHandle(vfst.method());
1526    inlinee->print_short_name(&ss1);
1527    m->print_short_name(&ss2);
1528    tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1529  }
1530
1531
1532  Deoptimization::deoptimize_frame(thread, caller_frame.id());
1533
1534JRT_END
1535
1536#ifndef PRODUCT
1537void Runtime1::print_statistics() {
1538  tty->print_cr("C1 Runtime statistics:");
1539  tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1540  tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1541  tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1542  tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1543  tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1544  tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1545  tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1546  tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1547  tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1548  tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1549  tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1550  tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1551  tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1552  tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1553  tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1554  tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1555  tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1556
1557  tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1558  tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1559  tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1560  tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1561  tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1562  tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1563  tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1564
1565  tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1566  tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1567  tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1568  tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1569  tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1570  tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1571  tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1572  tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1573
1574  SharedRuntime::print_ic_miss_histogram();
1575  tty->cr();
1576}
1577#endif // PRODUCT
1578