c1_LIRGenerator.cpp revision 8683:850b88dc0981
1/*
2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_Defs.hpp"
28#include "c1/c1_FrameMap.hpp"
29#include "c1/c1_Instruction.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_LIRGenerator.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArrayKlass.hpp"
34#include "ci/ciInstance.hpp"
35#include "ci/ciObjArray.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "runtime/arguments.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "runtime/vm_version.hpp"
41#include "utilities/bitMap.inline.hpp"
42#include "utilities/macros.hpp"
43#if INCLUDE_ALL_GCS
44#include "gc/g1/heapRegion.hpp"
45#endif // INCLUDE_ALL_GCS
46
47#ifdef ASSERT
48#define __ gen()->lir(__FILE__, __LINE__)->
49#else
50#define __ gen()->lir()->
51#endif
52
53#ifndef PATCHED_ADDR
54#define PATCHED_ADDR  (max_jint)
55#endif
56
57void PhiResolverState::reset(int max_vregs) {
58  // Initialize array sizes
59  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
60  _virtual_operands.trunc_to(0);
61  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
62  _other_operands.trunc_to(0);
63  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
64  _vreg_table.trunc_to(0);
65}
66
67
68
69//--------------------------------------------------------------
70// PhiResolver
71
72// Resolves cycles:
73//
74//  r1 := r2  becomes  temp := r1
75//  r2 := r1           r1 := r2
76//                     r2 := temp
77// and orders moves:
78//
79//  r2 := r3  becomes  r1 := r2
80//  r1 := r2           r2 := r3
81
82PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
83 : _gen(gen)
84 , _state(gen->resolver_state())
85 , _temp(LIR_OprFact::illegalOpr)
86{
87  // reinitialize the shared state arrays
88  _state.reset(max_vregs);
89}
90
91
92void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
93  assert(src->is_valid(), "");
94  assert(dest->is_valid(), "");
95  __ move(src, dest);
96}
97
98
99void PhiResolver::move_temp_to(LIR_Opr dest) {
100  assert(_temp->is_valid(), "");
101  emit_move(_temp, dest);
102  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
103}
104
105
106void PhiResolver::move_to_temp(LIR_Opr src) {
107  assert(_temp->is_illegal(), "");
108  _temp = _gen->new_register(src->type());
109  emit_move(src, _temp);
110}
111
112
113// Traverse assignment graph in depth first order and generate moves in post order
114// ie. two assignments: b := c, a := b start with node c:
115// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
116// Generates moves in this order: move b to a and move c to b
117// ie. cycle a := b, b := a start with node a
118// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
119// Generates moves in this order: move b to temp, move a to b, move temp to a
120void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
121  if (!dest->visited()) {
122    dest->set_visited();
123    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
124      move(dest, dest->destination_at(i));
125    }
126  } else if (!dest->start_node()) {
127    // cylce in graph detected
128    assert(_loop == NULL, "only one loop valid!");
129    _loop = dest;
130    move_to_temp(src->operand());
131    return;
132  } // else dest is a start node
133
134  if (!dest->assigned()) {
135    if (_loop == dest) {
136      move_temp_to(dest->operand());
137      dest->set_assigned();
138    } else if (src != NULL) {
139      emit_move(src->operand(), dest->operand());
140      dest->set_assigned();
141    }
142  }
143}
144
145
146PhiResolver::~PhiResolver() {
147  int i;
148  // resolve any cycles in moves from and to virtual registers
149  for (i = virtual_operands().length() - 1; i >= 0; i --) {
150    ResolveNode* node = virtual_operands()[i];
151    if (!node->visited()) {
152      _loop = NULL;
153      move(NULL, node);
154      node->set_start_node();
155      assert(_temp->is_illegal(), "move_temp_to() call missing");
156    }
157  }
158
159  // generate move for move from non virtual register to abitrary destination
160  for (i = other_operands().length() - 1; i >= 0; i --) {
161    ResolveNode* node = other_operands()[i];
162    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
163      emit_move(node->operand(), node->destination_at(j)->operand());
164    }
165  }
166}
167
168
169ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
170  ResolveNode* node;
171  if (opr->is_virtual()) {
172    int vreg_num = opr->vreg_number();
173    node = vreg_table().at_grow(vreg_num, NULL);
174    assert(node == NULL || node->operand() == opr, "");
175    if (node == NULL) {
176      node = new ResolveNode(opr);
177      vreg_table()[vreg_num] = node;
178    }
179    // Make sure that all virtual operands show up in the list when
180    // they are used as the source of a move.
181    if (source && !virtual_operands().contains(node)) {
182      virtual_operands().append(node);
183    }
184  } else {
185    assert(source, "");
186    node = new ResolveNode(opr);
187    other_operands().append(node);
188  }
189  return node;
190}
191
192
193void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
194  assert(dest->is_virtual(), "");
195  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
196  assert(src->is_valid(), "");
197  assert(dest->is_valid(), "");
198  ResolveNode* source = source_node(src);
199  source->append(destination_node(dest));
200}
201
202
203//--------------------------------------------------------------
204// LIRItem
205
206void LIRItem::set_result(LIR_Opr opr) {
207  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
208  value()->set_operand(opr);
209
210  if (opr->is_virtual()) {
211    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
212  }
213
214  _result = opr;
215}
216
217void LIRItem::load_item() {
218  if (result()->is_illegal()) {
219    // update the items result
220    _result = value()->operand();
221  }
222  if (!result()->is_register()) {
223    LIR_Opr reg = _gen->new_register(value()->type());
224    __ move(result(), reg);
225    if (result()->is_constant()) {
226      _result = reg;
227    } else {
228      set_result(reg);
229    }
230  }
231}
232
233
234void LIRItem::load_for_store(BasicType type) {
235  if (_gen->can_store_as_constant(value(), type)) {
236    _result = value()->operand();
237    if (!_result->is_constant()) {
238      _result = LIR_OprFact::value_type(value()->type());
239    }
240  } else if (type == T_BYTE || type == T_BOOLEAN) {
241    load_byte_item();
242  } else {
243    load_item();
244  }
245}
246
247void LIRItem::load_item_force(LIR_Opr reg) {
248  LIR_Opr r = result();
249  if (r != reg) {
250#if !defined(ARM) && !defined(E500V2)
251    if (r->type() != reg->type()) {
252      // moves between different types need an intervening spill slot
253      r = _gen->force_to_spill(r, reg->type());
254    }
255#endif
256    __ move(r, reg);
257    _result = reg;
258  }
259}
260
261ciObject* LIRItem::get_jobject_constant() const {
262  ObjectType* oc = type()->as_ObjectType();
263  if (oc) {
264    return oc->constant_value();
265  }
266  return NULL;
267}
268
269
270jint LIRItem::get_jint_constant() const {
271  assert(is_constant() && value() != NULL, "");
272  assert(type()->as_IntConstant() != NULL, "type check");
273  return type()->as_IntConstant()->value();
274}
275
276
277jint LIRItem::get_address_constant() const {
278  assert(is_constant() && value() != NULL, "");
279  assert(type()->as_AddressConstant() != NULL, "type check");
280  return type()->as_AddressConstant()->value();
281}
282
283
284jfloat LIRItem::get_jfloat_constant() const {
285  assert(is_constant() && value() != NULL, "");
286  assert(type()->as_FloatConstant() != NULL, "type check");
287  return type()->as_FloatConstant()->value();
288}
289
290
291jdouble LIRItem::get_jdouble_constant() const {
292  assert(is_constant() && value() != NULL, "");
293  assert(type()->as_DoubleConstant() != NULL, "type check");
294  return type()->as_DoubleConstant()->value();
295}
296
297
298jlong LIRItem::get_jlong_constant() const {
299  assert(is_constant() && value() != NULL, "");
300  assert(type()->as_LongConstant() != NULL, "type check");
301  return type()->as_LongConstant()->value();
302}
303
304
305
306//--------------------------------------------------------------
307
308
309void LIRGenerator::init() {
310  _bs = Universe::heap()->barrier_set();
311}
312
313
314void LIRGenerator::block_do_prolog(BlockBegin* block) {
315#ifndef PRODUCT
316  if (PrintIRWithLIR) {
317    block->print();
318  }
319#endif
320
321  // set up the list of LIR instructions
322  assert(block->lir() == NULL, "LIR list already computed for this block");
323  _lir = new LIR_List(compilation(), block);
324  block->set_lir(_lir);
325
326  __ branch_destination(block->label());
327
328  if (LIRTraceExecution &&
329      Compilation::current()->hir()->start()->block_id() != block->block_id() &&
330      !block->is_set(BlockBegin::exception_entry_flag)) {
331    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
332    trace_block_entry(block);
333  }
334}
335
336
337void LIRGenerator::block_do_epilog(BlockBegin* block) {
338#ifndef PRODUCT
339  if (PrintIRWithLIR) {
340    tty->cr();
341  }
342#endif
343
344  // LIR_Opr for unpinned constants shouldn't be referenced by other
345  // blocks so clear them out after processing the block.
346  for (int i = 0; i < _unpinned_constants.length(); i++) {
347    _unpinned_constants.at(i)->clear_operand();
348  }
349  _unpinned_constants.trunc_to(0);
350
351  // clear our any registers for other local constants
352  _constants.trunc_to(0);
353  _reg_for_constants.trunc_to(0);
354}
355
356
357void LIRGenerator::block_do(BlockBegin* block) {
358  CHECK_BAILOUT();
359
360  block_do_prolog(block);
361  set_block(block);
362
363  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
364    if (instr->is_pinned()) do_root(instr);
365  }
366
367  set_block(NULL);
368  block_do_epilog(block);
369}
370
371
372//-------------------------LIRGenerator-----------------------------
373
374// This is where the tree-walk starts; instr must be root;
375void LIRGenerator::do_root(Value instr) {
376  CHECK_BAILOUT();
377
378  InstructionMark im(compilation(), instr);
379
380  assert(instr->is_pinned(), "use only with roots");
381  assert(instr->subst() == instr, "shouldn't have missed substitution");
382
383  instr->visit(this);
384
385  assert(!instr->has_uses() || instr->operand()->is_valid() ||
386         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
387}
388
389
390// This is called for each node in tree; the walk stops if a root is reached
391void LIRGenerator::walk(Value instr) {
392  InstructionMark im(compilation(), instr);
393  //stop walk when encounter a root
394  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
395    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
396  } else {
397    assert(instr->subst() == instr, "shouldn't have missed substitution");
398    instr->visit(this);
399    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
400  }
401}
402
403
404CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
405  assert(state != NULL, "state must be defined");
406
407#ifndef PRODUCT
408  state->verify();
409#endif
410
411  ValueStack* s = state;
412  for_each_state(s) {
413    if (s->kind() == ValueStack::EmptyExceptionState) {
414      assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
415      continue;
416    }
417
418    int index;
419    Value value;
420    for_each_stack_value(s, index, value) {
421      assert(value->subst() == value, "missed substitution");
422      if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
423        walk(value);
424        assert(value->operand()->is_valid(), "must be evaluated now");
425      }
426    }
427
428    int bci = s->bci();
429    IRScope* scope = s->scope();
430    ciMethod* method = scope->method();
431
432    MethodLivenessResult liveness = method->liveness_at_bci(bci);
433    if (bci == SynchronizationEntryBCI) {
434      if (x->as_ExceptionObject() || x->as_Throw()) {
435        // all locals are dead on exit from the synthetic unlocker
436        liveness.clear();
437      } else {
438        assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
439      }
440    }
441    if (!liveness.is_valid()) {
442      // Degenerate or breakpointed method.
443      bailout("Degenerate or breakpointed method");
444    } else {
445      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
446      for_each_local_value(s, index, value) {
447        assert(value->subst() == value, "missed substition");
448        if (liveness.at(index) && !value->type()->is_illegal()) {
449          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
450            walk(value);
451            assert(value->operand()->is_valid(), "must be evaluated now");
452          }
453        } else {
454          // NULL out this local so that linear scan can assume that all non-NULL values are live.
455          s->invalidate_local(index);
456        }
457      }
458    }
459  }
460
461  return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
462}
463
464
465CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
466  return state_for(x, x->exception_state());
467}
468
469
470void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
471  /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
472   * is active and the class hasn't yet been resolved we need to emit a patch that resolves
473   * the class. */
474  if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
475    assert(info != NULL, "info must be set if class is not loaded");
476    __ klass2reg_patch(NULL, r, info);
477  } else {
478    // no patching needed
479    __ metadata2reg(obj->constant_encoding(), r);
480  }
481}
482
483
484void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
485                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
486  CodeStub* stub = new RangeCheckStub(range_check_info, index);
487  if (index->is_constant()) {
488    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
489                index->as_jint(), null_check_info);
490    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
491  } else {
492    cmp_reg_mem(lir_cond_aboveEqual, index, array,
493                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
494    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
495  }
496}
497
498
499void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
500  CodeStub* stub = new RangeCheckStub(info, index, true);
501  if (index->is_constant()) {
502    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
503    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
504  } else {
505    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
506                java_nio_Buffer::limit_offset(), T_INT, info);
507    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
508  }
509  __ move(index, result);
510}
511
512
513
514void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
515  LIR_Opr result_op = result;
516  LIR_Opr left_op   = left;
517  LIR_Opr right_op  = right;
518
519  if (TwoOperandLIRForm && left_op != result_op) {
520    assert(right_op != result_op, "malformed");
521    __ move(left_op, result_op);
522    left_op = result_op;
523  }
524
525  switch(code) {
526    case Bytecodes::_dadd:
527    case Bytecodes::_fadd:
528    case Bytecodes::_ladd:
529    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
530    case Bytecodes::_fmul:
531    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
532
533    case Bytecodes::_dmul:
534      {
535        if (is_strictfp) {
536          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
537        } else {
538          __ mul(left_op, right_op, result_op); break;
539        }
540      }
541      break;
542
543    case Bytecodes::_imul:
544      {
545        bool    did_strength_reduce = false;
546
547        if (right->is_constant()) {
548          int c = right->as_jint();
549          if (is_power_of_2(c)) {
550            // do not need tmp here
551            __ shift_left(left_op, exact_log2(c), result_op);
552            did_strength_reduce = true;
553          } else {
554            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
555          }
556        }
557        // we couldn't strength reduce so just emit the multiply
558        if (!did_strength_reduce) {
559          __ mul(left_op, right_op, result_op);
560        }
561      }
562      break;
563
564    case Bytecodes::_dsub:
565    case Bytecodes::_fsub:
566    case Bytecodes::_lsub:
567    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
568
569    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
570    // ldiv and lrem are implemented with a direct runtime call
571
572    case Bytecodes::_ddiv:
573      {
574        if (is_strictfp) {
575          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
576        } else {
577          __ div (left_op, right_op, result_op); break;
578        }
579      }
580      break;
581
582    case Bytecodes::_drem:
583    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
584
585    default: ShouldNotReachHere();
586  }
587}
588
589
590void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
591  arithmetic_op(code, result, left, right, false, tmp);
592}
593
594
595void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
596  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
597}
598
599
600void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
601  arithmetic_op(code, result, left, right, is_strictfp, tmp);
602}
603
604
605void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
606  if (TwoOperandLIRForm && value != result_op) {
607    assert(count != result_op, "malformed");
608    __ move(value, result_op);
609    value = result_op;
610  }
611
612  assert(count->is_constant() || count->is_register(), "must be");
613  switch(code) {
614  case Bytecodes::_ishl:
615  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
616  case Bytecodes::_ishr:
617  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
618  case Bytecodes::_iushr:
619  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
620  default: ShouldNotReachHere();
621  }
622}
623
624
625void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
626  if (TwoOperandLIRForm && left_op != result_op) {
627    assert(right_op != result_op, "malformed");
628    __ move(left_op, result_op);
629    left_op = result_op;
630  }
631
632  switch(code) {
633    case Bytecodes::_iand:
634    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
635
636    case Bytecodes::_ior:
637    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
638
639    case Bytecodes::_ixor:
640    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
641
642    default: ShouldNotReachHere();
643  }
644}
645
646
647void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
648  if (!GenerateSynchronizationCode) return;
649  // for slow path, use debug info for state after successful locking
650  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
651  __ load_stack_address_monitor(monitor_no, lock);
652  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
653  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
654}
655
656
657void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
658  if (!GenerateSynchronizationCode) return;
659  // setup registers
660  LIR_Opr hdr = lock;
661  lock = new_hdr;
662  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
663  __ load_stack_address_monitor(monitor_no, lock);
664  __ unlock_object(hdr, object, lock, scratch, slow_path);
665}
666
667#ifndef PRODUCT
668void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
669  if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
670    tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
671  } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
672    tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
673  }
674}
675#endif
676
677void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
678  klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
679  // If klass is not loaded we do not know if the klass has finalizers:
680  if (UseFastNewInstance && klass->is_loaded()
681      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
682
683    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
684
685    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
686
687    assert(klass->is_loaded(), "must be loaded");
688    // allocate space for instance
689    assert(klass->size_helper() >= 0, "illegal instance size");
690    const int instance_size = align_object_size(klass->size_helper());
691    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
692                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
693  } else {
694    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
695    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
696    __ branch_destination(slow_path->continuation());
697  }
698}
699
700
701static bool is_constant_zero(Instruction* inst) {
702  IntConstant* c = inst->type()->as_IntConstant();
703  if (c) {
704    return (c->value() == 0);
705  }
706  return false;
707}
708
709
710static bool positive_constant(Instruction* inst) {
711  IntConstant* c = inst->type()->as_IntConstant();
712  if (c) {
713    return (c->value() >= 0);
714  }
715  return false;
716}
717
718
719static ciArrayKlass* as_array_klass(ciType* type) {
720  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
721    return (ciArrayKlass*)type;
722  } else {
723    return NULL;
724  }
725}
726
727static ciType* phi_declared_type(Phi* phi) {
728  ciType* t = phi->operand_at(0)->declared_type();
729  if (t == NULL) {
730    return NULL;
731  }
732  for(int i = 1; i < phi->operand_count(); i++) {
733    if (t != phi->operand_at(i)->declared_type()) {
734      return NULL;
735    }
736  }
737  return t;
738}
739
740void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
741  Instruction* src     = x->argument_at(0);
742  Instruction* src_pos = x->argument_at(1);
743  Instruction* dst     = x->argument_at(2);
744  Instruction* dst_pos = x->argument_at(3);
745  Instruction* length  = x->argument_at(4);
746
747  // first try to identify the likely type of the arrays involved
748  ciArrayKlass* expected_type = NULL;
749  bool is_exact = false, src_objarray = false, dst_objarray = false;
750  {
751    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
752    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
753    Phi* phi;
754    if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
755      src_declared_type = as_array_klass(phi_declared_type(phi));
756    }
757    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
758    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
759    if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
760      dst_declared_type = as_array_klass(phi_declared_type(phi));
761    }
762
763    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
764      // the types exactly match so the type is fully known
765      is_exact = true;
766      expected_type = src_exact_type;
767    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
768      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
769      ciArrayKlass* src_type = NULL;
770      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
771        src_type = (ciArrayKlass*) src_exact_type;
772      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
773        src_type = (ciArrayKlass*) src_declared_type;
774      }
775      if (src_type != NULL) {
776        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
777          is_exact = true;
778          expected_type = dst_type;
779        }
780      }
781    }
782    // at least pass along a good guess
783    if (expected_type == NULL) expected_type = dst_exact_type;
784    if (expected_type == NULL) expected_type = src_declared_type;
785    if (expected_type == NULL) expected_type = dst_declared_type;
786
787    src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
788    dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
789  }
790
791  // if a probable array type has been identified, figure out if any
792  // of the required checks for a fast case can be elided.
793  int flags = LIR_OpArrayCopy::all_flags;
794
795  if (!src_objarray)
796    flags &= ~LIR_OpArrayCopy::src_objarray;
797  if (!dst_objarray)
798    flags &= ~LIR_OpArrayCopy::dst_objarray;
799
800  if (!x->arg_needs_null_check(0))
801    flags &= ~LIR_OpArrayCopy::src_null_check;
802  if (!x->arg_needs_null_check(2))
803    flags &= ~LIR_OpArrayCopy::dst_null_check;
804
805
806  if (expected_type != NULL) {
807    Value length_limit = NULL;
808
809    IfOp* ifop = length->as_IfOp();
810    if (ifop != NULL) {
811      // look for expressions like min(v, a.length) which ends up as
812      //   x > y ? y : x  or  x >= y ? y : x
813      if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
814          ifop->x() == ifop->fval() &&
815          ifop->y() == ifop->tval()) {
816        length_limit = ifop->y();
817      }
818    }
819
820    // try to skip null checks and range checks
821    NewArray* src_array = src->as_NewArray();
822    if (src_array != NULL) {
823      flags &= ~LIR_OpArrayCopy::src_null_check;
824      if (length_limit != NULL &&
825          src_array->length() == length_limit &&
826          is_constant_zero(src_pos)) {
827        flags &= ~LIR_OpArrayCopy::src_range_check;
828      }
829    }
830
831    NewArray* dst_array = dst->as_NewArray();
832    if (dst_array != NULL) {
833      flags &= ~LIR_OpArrayCopy::dst_null_check;
834      if (length_limit != NULL &&
835          dst_array->length() == length_limit &&
836          is_constant_zero(dst_pos)) {
837        flags &= ~LIR_OpArrayCopy::dst_range_check;
838      }
839    }
840
841    // check from incoming constant values
842    if (positive_constant(src_pos))
843      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
844    if (positive_constant(dst_pos))
845      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
846    if (positive_constant(length))
847      flags &= ~LIR_OpArrayCopy::length_positive_check;
848
849    // see if the range check can be elided, which might also imply
850    // that src or dst is non-null.
851    ArrayLength* al = length->as_ArrayLength();
852    if (al != NULL) {
853      if (al->array() == src) {
854        // it's the length of the source array
855        flags &= ~LIR_OpArrayCopy::length_positive_check;
856        flags &= ~LIR_OpArrayCopy::src_null_check;
857        if (is_constant_zero(src_pos))
858          flags &= ~LIR_OpArrayCopy::src_range_check;
859      }
860      if (al->array() == dst) {
861        // it's the length of the destination array
862        flags &= ~LIR_OpArrayCopy::length_positive_check;
863        flags &= ~LIR_OpArrayCopy::dst_null_check;
864        if (is_constant_zero(dst_pos))
865          flags &= ~LIR_OpArrayCopy::dst_range_check;
866      }
867    }
868    if (is_exact) {
869      flags &= ~LIR_OpArrayCopy::type_check;
870    }
871  }
872
873  IntConstant* src_int = src_pos->type()->as_IntConstant();
874  IntConstant* dst_int = dst_pos->type()->as_IntConstant();
875  if (src_int && dst_int) {
876    int s_offs = src_int->value();
877    int d_offs = dst_int->value();
878    if (src_int->value() >= dst_int->value()) {
879      flags &= ~LIR_OpArrayCopy::overlapping;
880    }
881    if (expected_type != NULL) {
882      BasicType t = expected_type->element_type()->basic_type();
883      int element_size = type2aelembytes(t);
884      if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
885          ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
886        flags &= ~LIR_OpArrayCopy::unaligned;
887      }
888    }
889  } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
890    // src and dest positions are the same, or dst is zero so assume
891    // nonoverlapping copy.
892    flags &= ~LIR_OpArrayCopy::overlapping;
893  }
894
895  if (src == dst) {
896    // moving within a single array so no type checks are needed
897    if (flags & LIR_OpArrayCopy::type_check) {
898      flags &= ~LIR_OpArrayCopy::type_check;
899    }
900  }
901  *flagsp = flags;
902  *expected_typep = (ciArrayKlass*)expected_type;
903}
904
905
906LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
907  assert(opr->is_register(), "why spill if item is not register?");
908
909  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
910    LIR_Opr result = new_register(T_FLOAT);
911    set_vreg_flag(result, must_start_in_memory);
912    assert(opr->is_register(), "only a register can be spilled");
913    assert(opr->value_type()->is_float(), "rounding only for floats available");
914    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
915    return result;
916  }
917  return opr;
918}
919
920
921LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
922  assert(type2size[t] == type2size[value->type()],
923         err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
924  if (!value->is_register()) {
925    // force into a register
926    LIR_Opr r = new_register(value->type());
927    __ move(value, r);
928    value = r;
929  }
930
931  // create a spill location
932  LIR_Opr tmp = new_register(t);
933  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
934
935  // move from register to spill
936  __ move(value, tmp);
937  return tmp;
938}
939
940void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
941  if (if_instr->should_profile()) {
942    ciMethod* method = if_instr->profiled_method();
943    assert(method != NULL, "method should be set if branch is profiled");
944    ciMethodData* md = method->method_data_or_null();
945    assert(md != NULL, "Sanity");
946    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
947    assert(data != NULL, "must have profiling data");
948    assert(data->is_BranchData(), "need BranchData for two-way branches");
949    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
950    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
951    if (if_instr->is_swapped()) {
952      int t = taken_count_offset;
953      taken_count_offset = not_taken_count_offset;
954      not_taken_count_offset = t;
955    }
956
957    LIR_Opr md_reg = new_register(T_METADATA);
958    __ metadata2reg(md->constant_encoding(), md_reg);
959
960    LIR_Opr data_offset_reg = new_pointer_register();
961    __ cmove(lir_cond(cond),
962             LIR_OprFact::intptrConst(taken_count_offset),
963             LIR_OprFact::intptrConst(not_taken_count_offset),
964             data_offset_reg, as_BasicType(if_instr->x()->type()));
965
966    // MDO cells are intptr_t, so the data_reg width is arch-dependent.
967    LIR_Opr data_reg = new_pointer_register();
968    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
969    __ move(data_addr, data_reg);
970    // Use leal instead of add to avoid destroying condition codes on x86
971    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
972    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
973    __ move(data_reg, data_addr);
974  }
975}
976
977// Phi technique:
978// This is about passing live values from one basic block to the other.
979// In code generated with Java it is rather rare that more than one
980// value is on the stack from one basic block to the other.
981// We optimize our technique for efficient passing of one value
982// (of type long, int, double..) but it can be extended.
983// When entering or leaving a basic block, all registers and all spill
984// slots are release and empty. We use the released registers
985// and spill slots to pass the live values from one block
986// to the other. The topmost value, i.e., the value on TOS of expression
987// stack is passed in registers. All other values are stored in spilling
988// area. Every Phi has an index which designates its spill slot
989// At exit of a basic block, we fill the register(s) and spill slots.
990// At entry of a basic block, the block_prolog sets up the content of phi nodes
991// and locks necessary registers and spilling slots.
992
993
994// move current value to referenced phi function
995void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
996  Phi* phi = sux_val->as_Phi();
997  // cur_val can be null without phi being null in conjunction with inlining
998  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
999    LIR_Opr operand = cur_val->operand();
1000    if (cur_val->operand()->is_illegal()) {
1001      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002             "these can be produced lazily");
1003      operand = operand_for_instruction(cur_val);
1004    }
1005    resolver->move(operand, operand_for_instruction(phi));
1006  }
1007}
1008
1009
1010// Moves all stack values into their PHI position
1011void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012  BlockBegin* bb = block();
1013  if (bb->number_of_sux() == 1) {
1014    BlockBegin* sux = bb->sux_at(0);
1015    assert(sux->number_of_preds() > 0, "invalid CFG");
1016
1017    // a block with only one predecessor never has phi functions
1018    if (sux->number_of_preds() > 1) {
1019      int max_phis = cur_state->stack_size() + cur_state->locals_size();
1020      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1021
1022      ValueStack* sux_state = sux->state();
1023      Value sux_value;
1024      int index;
1025
1026      assert(cur_state->scope() == sux_state->scope(), "not matching");
1027      assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1028      assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1029
1030      for_each_stack_value(sux_state, index, sux_value) {
1031        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1032      }
1033
1034      for_each_local_value(sux_state, index, sux_value) {
1035        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1036      }
1037
1038      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1039    }
1040  }
1041}
1042
1043
1044LIR_Opr LIRGenerator::new_register(BasicType type) {
1045  int vreg = _virtual_register_number;
1046  // add a little fudge factor for the bailout, since the bailout is
1047  // only checked periodically.  This gives a few extra registers to
1048  // hand out before we really run out, which helps us keep from
1049  // tripping over assertions.
1050  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1051    bailout("out of virtual registers");
1052    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1053      // wrap it around
1054      _virtual_register_number = LIR_OprDesc::vreg_base;
1055    }
1056  }
1057  _virtual_register_number += 1;
1058  return LIR_OprFact::virtual_register(vreg, type);
1059}
1060
1061
1062// Try to lock using register in hint
1063LIR_Opr LIRGenerator::rlock(Value instr) {
1064  return new_register(instr->type());
1065}
1066
1067
1068// does an rlock and sets result
1069LIR_Opr LIRGenerator::rlock_result(Value x) {
1070  LIR_Opr reg = rlock(x);
1071  set_result(x, reg);
1072  return reg;
1073}
1074
1075
1076// does an rlock and sets result
1077LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078  LIR_Opr reg;
1079  switch (type) {
1080  case T_BYTE:
1081  case T_BOOLEAN:
1082    reg = rlock_byte(type);
1083    break;
1084  default:
1085    reg = rlock(x);
1086    break;
1087  }
1088
1089  set_result(x, reg);
1090  return reg;
1091}
1092
1093
1094//---------------------------------------------------------------------
1095ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096  ObjectType* oc = value->type()->as_ObjectType();
1097  if (oc) {
1098    return oc->constant_value();
1099  }
1100  return NULL;
1101}
1102
1103
1104void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107
1108  // no moves are created for phi functions at the begin of exception
1109  // handlers, so assign operands manually here
1110  for_each_phi_fun(block(), phi,
1111                   operand_for_instruction(phi));
1112
1113  LIR_Opr thread_reg = getThreadPointer();
1114  __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115               exceptionOopOpr());
1116  __ move_wide(LIR_OprFact::oopConst(NULL),
1117               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118  __ move_wide(LIR_OprFact::oopConst(NULL),
1119               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120
1121  LIR_Opr result = new_register(T_OBJECT);
1122  __ move(exceptionOopOpr(), result);
1123  set_result(x, result);
1124}
1125
1126
1127//----------------------------------------------------------------------
1128//----------------------------------------------------------------------
1129//----------------------------------------------------------------------
1130//----------------------------------------------------------------------
1131//                        visitor functions
1132//----------------------------------------------------------------------
1133//----------------------------------------------------------------------
1134//----------------------------------------------------------------------
1135//----------------------------------------------------------------------
1136
1137void LIRGenerator::do_Phi(Phi* x) {
1138  // phi functions are never visited directly
1139  ShouldNotReachHere();
1140}
1141
1142
1143// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144void LIRGenerator::do_Constant(Constant* x) {
1145  if (x->state_before() != NULL) {
1146    // Any constant with a ValueStack requires patching so emit the patch here
1147    LIR_Opr reg = rlock_result(x);
1148    CodeEmitInfo* info = state_for(x, x->state_before());
1149    __ oop2reg_patch(NULL, reg, info);
1150  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151    if (!x->is_pinned()) {
1152      // unpinned constants are handled specially so that they can be
1153      // put into registers when they are used multiple times within a
1154      // block.  After the block completes their operand will be
1155      // cleared so that other blocks can't refer to that register.
1156      set_result(x, load_constant(x));
1157    } else {
1158      LIR_Opr res = x->operand();
1159      if (!res->is_valid()) {
1160        res = LIR_OprFact::value_type(x->type());
1161      }
1162      if (res->is_constant()) {
1163        LIR_Opr reg = rlock_result(x);
1164        __ move(res, reg);
1165      } else {
1166        set_result(x, res);
1167      }
1168    }
1169  } else {
1170    set_result(x, LIR_OprFact::value_type(x->type()));
1171  }
1172}
1173
1174
1175void LIRGenerator::do_Local(Local* x) {
1176  // operand_for_instruction has the side effect of setting the result
1177  // so there's no need to do it here.
1178  operand_for_instruction(x);
1179}
1180
1181
1182void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1183  Unimplemented();
1184}
1185
1186
1187void LIRGenerator::do_Return(Return* x) {
1188  if (compilation()->env()->dtrace_method_probes()) {
1189    BasicTypeList signature;
1190    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1191    signature.append(T_METADATA); // Method*
1192    LIR_OprList* args = new LIR_OprList();
1193    args->append(getThreadPointer());
1194    LIR_Opr meth = new_register(T_METADATA);
1195    __ metadata2reg(method()->constant_encoding(), meth);
1196    args->append(meth);
1197    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1198  }
1199
1200  if (x->type()->is_void()) {
1201    __ return_op(LIR_OprFact::illegalOpr);
1202  } else {
1203    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1204    LIRItem result(x->result(), this);
1205
1206    result.load_item_force(reg);
1207    __ return_op(result.result());
1208  }
1209  set_no_result(x);
1210}
1211
1212// Examble: ref.get()
1213// Combination of LoadField and g1 pre-write barrier
1214void LIRGenerator::do_Reference_get(Intrinsic* x) {
1215
1216  const int referent_offset = java_lang_ref_Reference::referent_offset;
1217  guarantee(referent_offset > 0, "referent offset not initialized");
1218
1219  assert(x->number_of_arguments() == 1, "wrong type");
1220
1221  LIRItem reference(x->argument_at(0), this);
1222  reference.load_item();
1223
1224  // need to perform the null check on the reference objecy
1225  CodeEmitInfo* info = NULL;
1226  if (x->needs_null_check()) {
1227    info = state_for(x);
1228  }
1229
1230  LIR_Address* referent_field_adr =
1231    new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1232
1233  LIR_Opr result = rlock_result(x);
1234
1235  __ load(referent_field_adr, result, info);
1236
1237  // Register the value in the referent field with the pre-barrier
1238  pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1239              result /* pre_val */,
1240              false  /* do_load */,
1241              false  /* patch */,
1242              NULL   /* info */);
1243}
1244
1245// Example: clazz.isInstance(object)
1246void LIRGenerator::do_isInstance(Intrinsic* x) {
1247  assert(x->number_of_arguments() == 2, "wrong type");
1248
1249  // TODO could try to substitute this node with an equivalent InstanceOf
1250  // if clazz is known to be a constant Class. This will pick up newly found
1251  // constants after HIR construction. I'll leave this to a future change.
1252
1253  // as a first cut, make a simple leaf call to runtime to stay platform independent.
1254  // could follow the aastore example in a future change.
1255
1256  LIRItem clazz(x->argument_at(0), this);
1257  LIRItem object(x->argument_at(1), this);
1258  clazz.load_item();
1259  object.load_item();
1260  LIR_Opr result = rlock_result(x);
1261
1262  // need to perform null check on clazz
1263  if (x->needs_null_check()) {
1264    CodeEmitInfo* info = state_for(x);
1265    __ null_check(clazz.result(), info);
1266  }
1267
1268  LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1269                                     CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1270                                     x->type(),
1271                                     NULL); // NULL CodeEmitInfo results in a leaf call
1272  __ move(call_result, result);
1273}
1274
1275// Example: object.getClass ()
1276void LIRGenerator::do_getClass(Intrinsic* x) {
1277  assert(x->number_of_arguments() == 1, "wrong type");
1278
1279  LIRItem rcvr(x->argument_at(0), this);
1280  rcvr.load_item();
1281  LIR_Opr temp = new_register(T_METADATA);
1282  LIR_Opr result = rlock_result(x);
1283
1284  // need to perform the null check on the rcvr
1285  CodeEmitInfo* info = NULL;
1286  if (x->needs_null_check()) {
1287    info = state_for(x);
1288  }
1289
1290  // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1291  // meaning of these two is mixed up (see JDK-8026837).
1292  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1293  __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1294}
1295
1296
1297// Example: Thread.currentThread()
1298void LIRGenerator::do_currentThread(Intrinsic* x) {
1299  assert(x->number_of_arguments() == 0, "wrong type");
1300  LIR_Opr reg = rlock_result(x);
1301  __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1302}
1303
1304
1305void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1306  assert(x->number_of_arguments() == 1, "wrong type");
1307  LIRItem receiver(x->argument_at(0), this);
1308
1309  receiver.load_item();
1310  BasicTypeList signature;
1311  signature.append(T_OBJECT); // receiver
1312  LIR_OprList* args = new LIR_OprList();
1313  args->append(receiver.result());
1314  CodeEmitInfo* info = state_for(x, x->state());
1315  call_runtime(&signature, args,
1316               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1317               voidType, info);
1318
1319  set_no_result(x);
1320}
1321
1322
1323//------------------------local access--------------------------------------
1324
1325LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1326  if (x->operand()->is_illegal()) {
1327    Constant* c = x->as_Constant();
1328    if (c != NULL) {
1329      x->set_operand(LIR_OprFact::value_type(c->type()));
1330    } else {
1331      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1332      // allocate a virtual register for this local or phi
1333      x->set_operand(rlock(x));
1334      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1335    }
1336  }
1337  return x->operand();
1338}
1339
1340
1341Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1342  if (opr->is_virtual()) {
1343    return instruction_for_vreg(opr->vreg_number());
1344  }
1345  return NULL;
1346}
1347
1348
1349Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1350  if (reg_num < _instruction_for_operand.length()) {
1351    return _instruction_for_operand.at(reg_num);
1352  }
1353  return NULL;
1354}
1355
1356
1357void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1358  if (_vreg_flags.size_in_bits() == 0) {
1359    BitMap2D temp(100, num_vreg_flags);
1360    temp.clear();
1361    _vreg_flags = temp;
1362  }
1363  _vreg_flags.at_put_grow(vreg_num, f, true);
1364}
1365
1366bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1367  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1368    return false;
1369  }
1370  return _vreg_flags.at(vreg_num, f);
1371}
1372
1373
1374// Block local constant handling.  This code is useful for keeping
1375// unpinned constants and constants which aren't exposed in the IR in
1376// registers.  Unpinned Constant instructions have their operands
1377// cleared when the block is finished so that other blocks can't end
1378// up referring to their registers.
1379
1380LIR_Opr LIRGenerator::load_constant(Constant* x) {
1381  assert(!x->is_pinned(), "only for unpinned constants");
1382  _unpinned_constants.append(x);
1383  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1384}
1385
1386
1387LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1388  BasicType t = c->type();
1389  for (int i = 0; i < _constants.length(); i++) {
1390    LIR_Const* other = _constants.at(i);
1391    if (t == other->type()) {
1392      switch (t) {
1393      case T_INT:
1394      case T_FLOAT:
1395        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1396        break;
1397      case T_LONG:
1398      case T_DOUBLE:
1399        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1400        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1401        break;
1402      case T_OBJECT:
1403        if (c->as_jobject() != other->as_jobject()) continue;
1404        break;
1405      }
1406      return _reg_for_constants.at(i);
1407    }
1408  }
1409
1410  LIR_Opr result = new_register(t);
1411  __ move((LIR_Opr)c, result);
1412  _constants.append(c);
1413  _reg_for_constants.append(result);
1414  return result;
1415}
1416
1417// Various barriers
1418
1419void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1420                               bool do_load, bool patch, CodeEmitInfo* info) {
1421  // Do the pre-write barrier, if any.
1422  switch (_bs->kind()) {
1423#if INCLUDE_ALL_GCS
1424    case BarrierSet::G1SATBCTLogging:
1425      G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1426      break;
1427#endif // INCLUDE_ALL_GCS
1428    case BarrierSet::CardTableModRef:
1429    case BarrierSet::CardTableExtension:
1430      // No pre barriers
1431      break;
1432    case BarrierSet::ModRef:
1433      // No pre barriers
1434      break;
1435    default      :
1436      ShouldNotReachHere();
1437
1438  }
1439}
1440
1441void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1442  switch (_bs->kind()) {
1443#if INCLUDE_ALL_GCS
1444    case BarrierSet::G1SATBCTLogging:
1445      G1SATBCardTableModRef_post_barrier(addr,  new_val);
1446      break;
1447#endif // INCLUDE_ALL_GCS
1448    case BarrierSet::CardTableModRef:
1449    case BarrierSet::CardTableExtension:
1450      CardTableModRef_post_barrier(addr,  new_val);
1451      break;
1452    case BarrierSet::ModRef:
1453      // No post barriers
1454      break;
1455    default      :
1456      ShouldNotReachHere();
1457    }
1458}
1459
1460////////////////////////////////////////////////////////////////////////
1461#if INCLUDE_ALL_GCS
1462
1463void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1464                                                     bool do_load, bool patch, CodeEmitInfo* info) {
1465  // First we test whether marking is in progress.
1466  BasicType flag_type;
1467  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1468    flag_type = T_INT;
1469  } else {
1470    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1471              "Assumption");
1472    // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1473    // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1474    flag_type = T_BOOLEAN;
1475  }
1476  LIR_Opr thrd = getThreadPointer();
1477  LIR_Address* mark_active_flag_addr =
1478    new LIR_Address(thrd,
1479                    in_bytes(JavaThread::satb_mark_queue_offset() +
1480                             PtrQueue::byte_offset_of_active()),
1481                    flag_type);
1482  // Read the marking-in-progress flag.
1483  LIR_Opr flag_val = new_register(T_INT);
1484  __ load(mark_active_flag_addr, flag_val);
1485  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1486
1487  LIR_PatchCode pre_val_patch_code = lir_patch_none;
1488
1489  CodeStub* slow;
1490
1491  if (do_load) {
1492    assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1493    assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1494
1495    if (patch)
1496      pre_val_patch_code = lir_patch_normal;
1497
1498    pre_val = new_register(T_OBJECT);
1499
1500    if (!addr_opr->is_address()) {
1501      assert(addr_opr->is_register(), "must be");
1502      addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1503    }
1504    slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1505  } else {
1506    assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1507    assert(pre_val->is_register(), "must be");
1508    assert(pre_val->type() == T_OBJECT, "must be an object");
1509    assert(info == NULL, "sanity");
1510
1511    slow = new G1PreBarrierStub(pre_val);
1512  }
1513
1514  __ branch(lir_cond_notEqual, T_INT, slow);
1515  __ branch_destination(slow->continuation());
1516}
1517
1518void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1519  // If the "new_val" is a constant NULL, no barrier is necessary.
1520  if (new_val->is_constant() &&
1521      new_val->as_constant_ptr()->as_jobject() == NULL) return;
1522
1523  if (!new_val->is_register()) {
1524    LIR_Opr new_val_reg = new_register(T_OBJECT);
1525    if (new_val->is_constant()) {
1526      __ move(new_val, new_val_reg);
1527    } else {
1528      __ leal(new_val, new_val_reg);
1529    }
1530    new_val = new_val_reg;
1531  }
1532  assert(new_val->is_register(), "must be a register at this point");
1533
1534  if (addr->is_address()) {
1535    LIR_Address* address = addr->as_address_ptr();
1536    LIR_Opr ptr = new_pointer_register();
1537    if (!address->index()->is_valid() && address->disp() == 0) {
1538      __ move(address->base(), ptr);
1539    } else {
1540      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1541      __ leal(addr, ptr);
1542    }
1543    addr = ptr;
1544  }
1545  assert(addr->is_register(), "must be a register at this point");
1546
1547  LIR_Opr xor_res = new_pointer_register();
1548  LIR_Opr xor_shift_res = new_pointer_register();
1549  if (TwoOperandLIRForm ) {
1550    __ move(addr, xor_res);
1551    __ logical_xor(xor_res, new_val, xor_res);
1552    __ move(xor_res, xor_shift_res);
1553    __ unsigned_shift_right(xor_shift_res,
1554                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1555                            xor_shift_res,
1556                            LIR_OprDesc::illegalOpr());
1557  } else {
1558    __ logical_xor(addr, new_val, xor_res);
1559    __ unsigned_shift_right(xor_res,
1560                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1561                            xor_shift_res,
1562                            LIR_OprDesc::illegalOpr());
1563  }
1564
1565  if (!new_val->is_register()) {
1566    LIR_Opr new_val_reg = new_register(T_OBJECT);
1567    __ leal(new_val, new_val_reg);
1568    new_val = new_val_reg;
1569  }
1570  assert(new_val->is_register(), "must be a register at this point");
1571
1572  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1573
1574  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1575  __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1576  __ branch_destination(slow->continuation());
1577}
1578
1579#endif // INCLUDE_ALL_GCS
1580////////////////////////////////////////////////////////////////////////
1581
1582void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1583  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1584  assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1585  LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1586  if (addr->is_address()) {
1587    LIR_Address* address = addr->as_address_ptr();
1588    // ptr cannot be an object because we use this barrier for array card marks
1589    // and addr can point in the middle of an array.
1590    LIR_Opr ptr = new_pointer_register();
1591    if (!address->index()->is_valid() && address->disp() == 0) {
1592      __ move(address->base(), ptr);
1593    } else {
1594      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1595      __ leal(addr, ptr);
1596    }
1597    addr = ptr;
1598  }
1599  assert(addr->is_register(), "must be a register at this point");
1600
1601#ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1602  CardTableModRef_post_barrier_helper(addr, card_table_base);
1603#else
1604  LIR_Opr tmp = new_pointer_register();
1605  if (TwoOperandLIRForm) {
1606    __ move(addr, tmp);
1607    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1608  } else {
1609    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1610  }
1611
1612  LIR_Address* card_addr;
1613  if (can_inline_as_constant(card_table_base)) {
1614    card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1615  } else {
1616    card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1617  }
1618
1619  LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1620  if (UseCondCardMark) {
1621    LIR_Opr cur_value = new_register(T_INT);
1622    if (UseConcMarkSweepGC) {
1623      __ membar_storeload();
1624    }
1625    __ move(card_addr, cur_value);
1626
1627    LabelObj* L_already_dirty = new LabelObj();
1628    __ cmp(lir_cond_equal, cur_value, dirty);
1629    __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1630    __ move(dirty, card_addr);
1631    __ branch_destination(L_already_dirty->label());
1632  } else {
1633    __ move(dirty, card_addr);
1634  }
1635#endif
1636}
1637
1638
1639//------------------------field access--------------------------------------
1640
1641// Comment copied form templateTable_i486.cpp
1642// ----------------------------------------------------------------------------
1643// Volatile variables demand their effects be made known to all CPU's in
1644// order.  Store buffers on most chips allow reads & writes to reorder; the
1645// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1646// memory barrier (i.e., it's not sufficient that the interpreter does not
1647// reorder volatile references, the hardware also must not reorder them).
1648//
1649// According to the new Java Memory Model (JMM):
1650// (1) All volatiles are serialized wrt to each other.
1651// ALSO reads & writes act as aquire & release, so:
1652// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1653// the read float up to before the read.  It's OK for non-volatile memory refs
1654// that happen before the volatile read to float down below it.
1655// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1656// that happen BEFORE the write float down to after the write.  It's OK for
1657// non-volatile memory refs that happen after the volatile write to float up
1658// before it.
1659//
1660// We only put in barriers around volatile refs (they are expensive), not
1661// _between_ memory refs (that would require us to track the flavor of the
1662// previous memory refs).  Requirements (2) and (3) require some barriers
1663// before volatile stores and after volatile loads.  These nearly cover
1664// requirement (1) but miss the volatile-store-volatile-load case.  This final
1665// case is placed after volatile-stores although it could just as well go
1666// before volatile-loads.
1667
1668
1669void LIRGenerator::do_StoreField(StoreField* x) {
1670  bool needs_patching = x->needs_patching();
1671  bool is_volatile = x->field()->is_volatile();
1672  BasicType field_type = x->field_type();
1673  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1674
1675  CodeEmitInfo* info = NULL;
1676  if (needs_patching) {
1677    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1678    info = state_for(x, x->state_before());
1679  } else if (x->needs_null_check()) {
1680    NullCheck* nc = x->explicit_null_check();
1681    if (nc == NULL) {
1682      info = state_for(x);
1683    } else {
1684      info = state_for(nc);
1685    }
1686  }
1687
1688
1689  LIRItem object(x->obj(), this);
1690  LIRItem value(x->value(),  this);
1691
1692  object.load_item();
1693
1694  if (is_volatile || needs_patching) {
1695    // load item if field is volatile (fewer special cases for volatiles)
1696    // load item if field not initialized
1697    // load item if field not constant
1698    // because of code patching we cannot inline constants
1699    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1700      value.load_byte_item();
1701    } else  {
1702      value.load_item();
1703    }
1704  } else {
1705    value.load_for_store(field_type);
1706  }
1707
1708  set_no_result(x);
1709
1710#ifndef PRODUCT
1711  if (PrintNotLoaded && needs_patching) {
1712    tty->print_cr("   ###class not loaded at store_%s bci %d",
1713                  x->is_static() ?  "static" : "field", x->printable_bci());
1714  }
1715#endif
1716
1717  if (x->needs_null_check() &&
1718      (needs_patching ||
1719       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1720    // emit an explicit null check because the offset is too large
1721    __ null_check(object.result(), new CodeEmitInfo(info));
1722  }
1723
1724  LIR_Address* address;
1725  if (needs_patching) {
1726    // we need to patch the offset in the instruction so don't allow
1727    // generate_address to try to be smart about emitting the -1.
1728    // Otherwise the patching code won't know how to find the
1729    // instruction to patch.
1730    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1731  } else {
1732    address = generate_address(object.result(), x->offset(), field_type);
1733  }
1734
1735  if (is_volatile && os::is_MP()) {
1736    __ membar_release();
1737  }
1738
1739  if (is_oop) {
1740    // Do the pre-write barrier, if any.
1741    pre_barrier(LIR_OprFact::address(address),
1742                LIR_OprFact::illegalOpr /* pre_val */,
1743                true /* do_load*/,
1744                needs_patching,
1745                (info ? new CodeEmitInfo(info) : NULL));
1746  }
1747
1748  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1749  if (needs_atomic_access && !needs_patching) {
1750    volatile_field_store(value.result(), address, info);
1751  } else {
1752    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1753    __ store(value.result(), address, info, patch_code);
1754  }
1755
1756  if (is_oop) {
1757    // Store to object so mark the card of the header
1758    post_barrier(object.result(), value.result());
1759  }
1760
1761  if (is_volatile && os::is_MP()) {
1762    __ membar();
1763  }
1764}
1765
1766
1767void LIRGenerator::do_LoadField(LoadField* x) {
1768  bool needs_patching = x->needs_patching();
1769  bool is_volatile = x->field()->is_volatile();
1770  BasicType field_type = x->field_type();
1771
1772  CodeEmitInfo* info = NULL;
1773  if (needs_patching) {
1774    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1775    info = state_for(x, x->state_before());
1776  } else if (x->needs_null_check()) {
1777    NullCheck* nc = x->explicit_null_check();
1778    if (nc == NULL) {
1779      info = state_for(x);
1780    } else {
1781      info = state_for(nc);
1782    }
1783  }
1784
1785  LIRItem object(x->obj(), this);
1786
1787  object.load_item();
1788
1789#ifndef PRODUCT
1790  if (PrintNotLoaded && needs_patching) {
1791    tty->print_cr("   ###class not loaded at load_%s bci %d",
1792                  x->is_static() ?  "static" : "field", x->printable_bci());
1793  }
1794#endif
1795
1796  bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1797  if (x->needs_null_check() &&
1798      (needs_patching ||
1799       MacroAssembler::needs_explicit_null_check(x->offset()) ||
1800       stress_deopt)) {
1801    LIR_Opr obj = object.result();
1802    if (stress_deopt) {
1803      obj = new_register(T_OBJECT);
1804      __ move(LIR_OprFact::oopConst(NULL), obj);
1805    }
1806    // emit an explicit null check because the offset is too large
1807    __ null_check(obj, new CodeEmitInfo(info));
1808  }
1809
1810  LIR_Opr reg = rlock_result(x, field_type);
1811  LIR_Address* address;
1812  if (needs_patching) {
1813    // we need to patch the offset in the instruction so don't allow
1814    // generate_address to try to be smart about emitting the -1.
1815    // Otherwise the patching code won't know how to find the
1816    // instruction to patch.
1817    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1818  } else {
1819    address = generate_address(object.result(), x->offset(), field_type);
1820  }
1821
1822  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1823  if (needs_atomic_access && !needs_patching) {
1824    volatile_field_load(address, reg, info);
1825  } else {
1826    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1827    __ load(address, reg, info, patch_code);
1828  }
1829
1830  if (is_volatile && os::is_MP()) {
1831    __ membar_acquire();
1832  }
1833}
1834
1835
1836//------------------------java.nio.Buffer.checkIndex------------------------
1837
1838// int java.nio.Buffer.checkIndex(int)
1839void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1840  // NOTE: by the time we are in checkIndex() we are guaranteed that
1841  // the buffer is non-null (because checkIndex is package-private and
1842  // only called from within other methods in the buffer).
1843  assert(x->number_of_arguments() == 2, "wrong type");
1844  LIRItem buf  (x->argument_at(0), this);
1845  LIRItem index(x->argument_at(1), this);
1846  buf.load_item();
1847  index.load_item();
1848
1849  LIR_Opr result = rlock_result(x);
1850  if (GenerateRangeChecks) {
1851    CodeEmitInfo* info = state_for(x);
1852    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1853    if (index.result()->is_constant()) {
1854      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1855      __ branch(lir_cond_belowEqual, T_INT, stub);
1856    } else {
1857      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1858                  java_nio_Buffer::limit_offset(), T_INT, info);
1859      __ branch(lir_cond_aboveEqual, T_INT, stub);
1860    }
1861    __ move(index.result(), result);
1862  } else {
1863    // Just load the index into the result register
1864    __ move(index.result(), result);
1865  }
1866}
1867
1868
1869//------------------------array access--------------------------------------
1870
1871
1872void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1873  LIRItem array(x->array(), this);
1874  array.load_item();
1875  LIR_Opr reg = rlock_result(x);
1876
1877  CodeEmitInfo* info = NULL;
1878  if (x->needs_null_check()) {
1879    NullCheck* nc = x->explicit_null_check();
1880    if (nc == NULL) {
1881      info = state_for(x);
1882    } else {
1883      info = state_for(nc);
1884    }
1885    if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1886      LIR_Opr obj = new_register(T_OBJECT);
1887      __ move(LIR_OprFact::oopConst(NULL), obj);
1888      __ null_check(obj, new CodeEmitInfo(info));
1889    }
1890  }
1891  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1892}
1893
1894
1895void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1896  bool use_length = x->length() != NULL;
1897  LIRItem array(x->array(), this);
1898  LIRItem index(x->index(), this);
1899  LIRItem length(this);
1900  bool needs_range_check = x->compute_needs_range_check();
1901
1902  if (use_length && needs_range_check) {
1903    length.set_instruction(x->length());
1904    length.load_item();
1905  }
1906
1907  array.load_item();
1908  if (index.is_constant() && can_inline_as_constant(x->index())) {
1909    // let it be a constant
1910    index.dont_load_item();
1911  } else {
1912    index.load_item();
1913  }
1914
1915  CodeEmitInfo* range_check_info = state_for(x);
1916  CodeEmitInfo* null_check_info = NULL;
1917  if (x->needs_null_check()) {
1918    NullCheck* nc = x->explicit_null_check();
1919    if (nc != NULL) {
1920      null_check_info = state_for(nc);
1921    } else {
1922      null_check_info = range_check_info;
1923    }
1924    if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1925      LIR_Opr obj = new_register(T_OBJECT);
1926      __ move(LIR_OprFact::oopConst(NULL), obj);
1927      __ null_check(obj, new CodeEmitInfo(null_check_info));
1928    }
1929  }
1930
1931  // emit array address setup early so it schedules better
1932  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1933
1934  if (GenerateRangeChecks && needs_range_check) {
1935    if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1936      __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1937    } else if (use_length) {
1938      // TODO: use a (modified) version of array_range_check that does not require a
1939      //       constant length to be loaded to a register
1940      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1941      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1942    } else {
1943      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1944      // The range check performs the null check, so clear it out for the load
1945      null_check_info = NULL;
1946    }
1947  }
1948
1949  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1950}
1951
1952
1953void LIRGenerator::do_NullCheck(NullCheck* x) {
1954  if (x->can_trap()) {
1955    LIRItem value(x->obj(), this);
1956    value.load_item();
1957    CodeEmitInfo* info = state_for(x);
1958    __ null_check(value.result(), info);
1959  }
1960}
1961
1962
1963void LIRGenerator::do_TypeCast(TypeCast* x) {
1964  LIRItem value(x->obj(), this);
1965  value.load_item();
1966  // the result is the same as from the node we are casting
1967  set_result(x, value.result());
1968}
1969
1970
1971void LIRGenerator::do_Throw(Throw* x) {
1972  LIRItem exception(x->exception(), this);
1973  exception.load_item();
1974  set_no_result(x);
1975  LIR_Opr exception_opr = exception.result();
1976  CodeEmitInfo* info = state_for(x, x->state());
1977
1978#ifndef PRODUCT
1979  if (PrintC1Statistics) {
1980    increment_counter(Runtime1::throw_count_address(), T_INT);
1981  }
1982#endif
1983
1984  // check if the instruction has an xhandler in any of the nested scopes
1985  bool unwind = false;
1986  if (info->exception_handlers()->length() == 0) {
1987    // this throw is not inside an xhandler
1988    unwind = true;
1989  } else {
1990    // get some idea of the throw type
1991    bool type_is_exact = true;
1992    ciType* throw_type = x->exception()->exact_type();
1993    if (throw_type == NULL) {
1994      type_is_exact = false;
1995      throw_type = x->exception()->declared_type();
1996    }
1997    if (throw_type != NULL && throw_type->is_instance_klass()) {
1998      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1999      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2000    }
2001  }
2002
2003  // do null check before moving exception oop into fixed register
2004  // to avoid a fixed interval with an oop during the null check.
2005  // Use a copy of the CodeEmitInfo because debug information is
2006  // different for null_check and throw.
2007  if (GenerateCompilerNullChecks &&
2008      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2009    // if the exception object wasn't created using new then it might be null.
2010    __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2011  }
2012
2013  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2014    // we need to go through the exception lookup path to get JVMTI
2015    // notification done
2016    unwind = false;
2017  }
2018
2019  // move exception oop into fixed register
2020  __ move(exception_opr, exceptionOopOpr());
2021
2022  if (unwind) {
2023    __ unwind_exception(exceptionOopOpr());
2024  } else {
2025    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2026  }
2027}
2028
2029
2030void LIRGenerator::do_RoundFP(RoundFP* x) {
2031  LIRItem input(x->input(), this);
2032  input.load_item();
2033  LIR_Opr input_opr = input.result();
2034  assert(input_opr->is_register(), "why round if value is not in a register?");
2035  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2036  if (input_opr->is_single_fpu()) {
2037    set_result(x, round_item(input_opr)); // This code path not currently taken
2038  } else {
2039    LIR_Opr result = new_register(T_DOUBLE);
2040    set_vreg_flag(result, must_start_in_memory);
2041    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2042    set_result(x, result);
2043  }
2044}
2045
2046// Here UnsafeGetRaw may have x->base() and x->index() be int or long
2047// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2048void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2049  LIRItem base(x->base(), this);
2050  LIRItem idx(this);
2051
2052  base.load_item();
2053  if (x->has_index()) {
2054    idx.set_instruction(x->index());
2055    idx.load_nonconstant();
2056  }
2057
2058  LIR_Opr reg = rlock_result(x, x->basic_type());
2059
2060  int   log2_scale = 0;
2061  if (x->has_index()) {
2062    log2_scale = x->log2_scale();
2063  }
2064
2065  assert(!x->has_index() || idx.value() == x->index(), "should match");
2066
2067  LIR_Opr base_op = base.result();
2068  LIR_Opr index_op = idx.result();
2069#ifndef _LP64
2070  if (base_op->type() == T_LONG) {
2071    base_op = new_register(T_INT);
2072    __ convert(Bytecodes::_l2i, base.result(), base_op);
2073  }
2074  if (x->has_index()) {
2075    if (index_op->type() == T_LONG) {
2076      LIR_Opr long_index_op = index_op;
2077      if (index_op->is_constant()) {
2078        long_index_op = new_register(T_LONG);
2079        __ move(index_op, long_index_op);
2080      }
2081      index_op = new_register(T_INT);
2082      __ convert(Bytecodes::_l2i, long_index_op, index_op);
2083    } else {
2084      assert(x->index()->type()->tag() == intTag, "must be");
2085    }
2086  }
2087  // At this point base and index should be all ints.
2088  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2089  assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2090#else
2091  if (x->has_index()) {
2092    if (index_op->type() == T_INT) {
2093      if (!index_op->is_constant()) {
2094        index_op = new_register(T_LONG);
2095        __ convert(Bytecodes::_i2l, idx.result(), index_op);
2096      }
2097    } else {
2098      assert(index_op->type() == T_LONG, "must be");
2099      if (index_op->is_constant()) {
2100        index_op = new_register(T_LONG);
2101        __ move(idx.result(), index_op);
2102      }
2103    }
2104  }
2105  // At this point base is a long non-constant
2106  // Index is a long register or a int constant.
2107  // We allow the constant to stay an int because that would allow us a more compact encoding by
2108  // embedding an immediate offset in the address expression. If we have a long constant, we have to
2109  // move it into a register first.
2110  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2111  assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2112                            (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2113#endif
2114
2115  BasicType dst_type = x->basic_type();
2116
2117  LIR_Address* addr;
2118  if (index_op->is_constant()) {
2119    assert(log2_scale == 0, "must not have a scale");
2120    assert(index_op->type() == T_INT, "only int constants supported");
2121    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2122  } else {
2123#ifdef X86
2124    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2125#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2126    addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2127#else
2128    if (index_op->is_illegal() || log2_scale == 0) {
2129      addr = new LIR_Address(base_op, index_op, dst_type);
2130    } else {
2131      LIR_Opr tmp = new_pointer_register();
2132      __ shift_left(index_op, log2_scale, tmp);
2133      addr = new LIR_Address(base_op, tmp, dst_type);
2134    }
2135#endif
2136  }
2137
2138  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2139    __ unaligned_move(addr, reg);
2140  } else {
2141    if (dst_type == T_OBJECT && x->is_wide()) {
2142      __ move_wide(addr, reg);
2143    } else {
2144      __ move(addr, reg);
2145    }
2146  }
2147}
2148
2149
2150void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2151  int  log2_scale = 0;
2152  BasicType type = x->basic_type();
2153
2154  if (x->has_index()) {
2155    log2_scale = x->log2_scale();
2156  }
2157
2158  LIRItem base(x->base(), this);
2159  LIRItem value(x->value(), this);
2160  LIRItem idx(this);
2161
2162  base.load_item();
2163  if (x->has_index()) {
2164    idx.set_instruction(x->index());
2165    idx.load_item();
2166  }
2167
2168  if (type == T_BYTE || type == T_BOOLEAN) {
2169    value.load_byte_item();
2170  } else {
2171    value.load_item();
2172  }
2173
2174  set_no_result(x);
2175
2176  LIR_Opr base_op = base.result();
2177  LIR_Opr index_op = idx.result();
2178
2179#ifdef GENERATE_ADDRESS_IS_PREFERRED
2180  LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2181#else
2182#ifndef _LP64
2183  if (base_op->type() == T_LONG) {
2184    base_op = new_register(T_INT);
2185    __ convert(Bytecodes::_l2i, base.result(), base_op);
2186  }
2187  if (x->has_index()) {
2188    if (index_op->type() == T_LONG) {
2189      index_op = new_register(T_INT);
2190      __ convert(Bytecodes::_l2i, idx.result(), index_op);
2191    }
2192  }
2193  // At this point base and index should be all ints and not constants
2194  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2195  assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2196#else
2197  if (x->has_index()) {
2198    if (index_op->type() == T_INT) {
2199      index_op = new_register(T_LONG);
2200      __ convert(Bytecodes::_i2l, idx.result(), index_op);
2201    }
2202  }
2203  // At this point base and index are long and non-constant
2204  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2205  assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2206#endif
2207
2208  if (log2_scale != 0) {
2209    // temporary fix (platform dependent code without shift on Intel would be better)
2210    // TODO: ARM also allows embedded shift in the address
2211    LIR_Opr tmp = new_pointer_register();
2212    if (TwoOperandLIRForm) {
2213      __ move(index_op, tmp);
2214      index_op = tmp;
2215    }
2216    __ shift_left(index_op, log2_scale, tmp);
2217    if (!TwoOperandLIRForm) {
2218      index_op = tmp;
2219    }
2220  }
2221
2222  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2223#endif // !GENERATE_ADDRESS_IS_PREFERRED
2224  __ move(value.result(), addr);
2225}
2226
2227
2228void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2229  BasicType type = x->basic_type();
2230  LIRItem src(x->object(), this);
2231  LIRItem off(x->offset(), this);
2232
2233  off.load_item();
2234  src.load_item();
2235
2236  LIR_Opr value = rlock_result(x, x->basic_type());
2237
2238  get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2239
2240#if INCLUDE_ALL_GCS
2241  // We might be reading the value of the referent field of a
2242  // Reference object in order to attach it back to the live
2243  // object graph. If G1 is enabled then we need to record
2244  // the value that is being returned in an SATB log buffer.
2245  //
2246  // We need to generate code similar to the following...
2247  //
2248  // if (offset == java_lang_ref_Reference::referent_offset) {
2249  //   if (src != NULL) {
2250  //     if (klass(src)->reference_type() != REF_NONE) {
2251  //       pre_barrier(..., value, ...);
2252  //     }
2253  //   }
2254  // }
2255
2256  if (UseG1GC && type == T_OBJECT) {
2257    bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2258    bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2259    bool gen_source_check = true;    // Assume we need to check the src object for null.
2260    bool gen_type_check = true;      // Assume we need to check the reference_type.
2261
2262    if (off.is_constant()) {
2263      jlong off_con = (off.type()->is_int() ?
2264                        (jlong) off.get_jint_constant() :
2265                        off.get_jlong_constant());
2266
2267
2268      if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2269        // The constant offset is something other than referent_offset.
2270        // We can skip generating/checking the remaining guards and
2271        // skip generation of the code stub.
2272        gen_pre_barrier = false;
2273      } else {
2274        // The constant offset is the same as referent_offset -
2275        // we do not need to generate a runtime offset check.
2276        gen_offset_check = false;
2277      }
2278    }
2279
2280    // We don't need to generate stub if the source object is an array
2281    if (gen_pre_barrier && src.type()->is_array()) {
2282      gen_pre_barrier = false;
2283    }
2284
2285    if (gen_pre_barrier) {
2286      // We still need to continue with the checks.
2287      if (src.is_constant()) {
2288        ciObject* src_con = src.get_jobject_constant();
2289        guarantee(src_con != NULL, "no source constant");
2290
2291        if (src_con->is_null_object()) {
2292          // The constant src object is null - We can skip
2293          // generating the code stub.
2294          gen_pre_barrier = false;
2295        } else {
2296          // Non-null constant source object. We still have to generate
2297          // the slow stub - but we don't need to generate the runtime
2298          // null object check.
2299          gen_source_check = false;
2300        }
2301      }
2302    }
2303    if (gen_pre_barrier && !PatchALot) {
2304      // Can the klass of object be statically determined to be
2305      // a sub-class of Reference?
2306      ciType* type = src.value()->declared_type();
2307      if ((type != NULL) && type->is_loaded()) {
2308        if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2309          gen_type_check = false;
2310        } else if (type->is_klass() &&
2311                   !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2312          // Not Reference and not Object klass.
2313          gen_pre_barrier = false;
2314        }
2315      }
2316    }
2317
2318    if (gen_pre_barrier) {
2319      LabelObj* Lcont = new LabelObj();
2320
2321      // We can have generate one runtime check here. Let's start with
2322      // the offset check.
2323      if (gen_offset_check) {
2324        // if (offset != referent_offset) -> continue
2325        // If offset is an int then we can do the comparison with the
2326        // referent_offset constant; otherwise we need to move
2327        // referent_offset into a temporary register and generate
2328        // a reg-reg compare.
2329
2330        LIR_Opr referent_off;
2331
2332        if (off.type()->is_int()) {
2333          referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2334        } else {
2335          assert(off.type()->is_long(), "what else?");
2336          referent_off = new_register(T_LONG);
2337          __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2338        }
2339        __ cmp(lir_cond_notEqual, off.result(), referent_off);
2340        __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2341      }
2342      if (gen_source_check) {
2343        // offset is a const and equals referent offset
2344        // if (source == null) -> continue
2345        __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2346        __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2347      }
2348      LIR_Opr src_klass = new_register(T_OBJECT);
2349      if (gen_type_check) {
2350        // We have determined that offset == referent_offset && src != null.
2351        // if (src->_klass->_reference_type == REF_NONE) -> continue
2352        __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2353        LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2354        LIR_Opr reference_type = new_register(T_INT);
2355        __ move(reference_type_addr, reference_type);
2356        __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2357        __ branch(lir_cond_equal, T_INT, Lcont->label());
2358      }
2359      {
2360        // We have determined that src->_klass->_reference_type != REF_NONE
2361        // so register the value in the referent field with the pre-barrier.
2362        pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2363                    value  /* pre_val */,
2364                    false  /* do_load */,
2365                    false  /* patch */,
2366                    NULL   /* info */);
2367      }
2368      __ branch_destination(Lcont->label());
2369    }
2370  }
2371#endif // INCLUDE_ALL_GCS
2372
2373  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2374}
2375
2376
2377void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2378  BasicType type = x->basic_type();
2379  LIRItem src(x->object(), this);
2380  LIRItem off(x->offset(), this);
2381  LIRItem data(x->value(), this);
2382
2383  src.load_item();
2384  if (type == T_BOOLEAN || type == T_BYTE) {
2385    data.load_byte_item();
2386  } else {
2387    data.load_item();
2388  }
2389  off.load_item();
2390
2391  set_no_result(x);
2392
2393  if (x->is_volatile() && os::is_MP()) __ membar_release();
2394  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2395  if (x->is_volatile() && os::is_MP()) __ membar();
2396}
2397
2398
2399void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2400  int lng = x->length();
2401
2402  for (int i = 0; i < lng; i++) {
2403    SwitchRange* one_range = x->at(i);
2404    int low_key = one_range->low_key();
2405    int high_key = one_range->high_key();
2406    BlockBegin* dest = one_range->sux();
2407    if (low_key == high_key) {
2408      __ cmp(lir_cond_equal, value, low_key);
2409      __ branch(lir_cond_equal, T_INT, dest);
2410    } else if (high_key - low_key == 1) {
2411      __ cmp(lir_cond_equal, value, low_key);
2412      __ branch(lir_cond_equal, T_INT, dest);
2413      __ cmp(lir_cond_equal, value, high_key);
2414      __ branch(lir_cond_equal, T_INT, dest);
2415    } else {
2416      LabelObj* L = new LabelObj();
2417      __ cmp(lir_cond_less, value, low_key);
2418      __ branch(lir_cond_less, T_INT, L->label());
2419      __ cmp(lir_cond_lessEqual, value, high_key);
2420      __ branch(lir_cond_lessEqual, T_INT, dest);
2421      __ branch_destination(L->label());
2422    }
2423  }
2424  __ jump(default_sux);
2425}
2426
2427
2428SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2429  SwitchRangeList* res = new SwitchRangeList();
2430  int len = x->length();
2431  if (len > 0) {
2432    BlockBegin* sux = x->sux_at(0);
2433    int key = x->lo_key();
2434    BlockBegin* default_sux = x->default_sux();
2435    SwitchRange* range = new SwitchRange(key, sux);
2436    for (int i = 0; i < len; i++, key++) {
2437      BlockBegin* new_sux = x->sux_at(i);
2438      if (sux == new_sux) {
2439        // still in same range
2440        range->set_high_key(key);
2441      } else {
2442        // skip tests which explicitly dispatch to the default
2443        if (sux != default_sux) {
2444          res->append(range);
2445        }
2446        range = new SwitchRange(key, new_sux);
2447      }
2448      sux = new_sux;
2449    }
2450    if (res->length() == 0 || res->last() != range)  res->append(range);
2451  }
2452  return res;
2453}
2454
2455
2456// we expect the keys to be sorted by increasing value
2457SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2458  SwitchRangeList* res = new SwitchRangeList();
2459  int len = x->length();
2460  if (len > 0) {
2461    BlockBegin* default_sux = x->default_sux();
2462    int key = x->key_at(0);
2463    BlockBegin* sux = x->sux_at(0);
2464    SwitchRange* range = new SwitchRange(key, sux);
2465    for (int i = 1; i < len; i++) {
2466      int new_key = x->key_at(i);
2467      BlockBegin* new_sux = x->sux_at(i);
2468      if (key+1 == new_key && sux == new_sux) {
2469        // still in same range
2470        range->set_high_key(new_key);
2471      } else {
2472        // skip tests which explicitly dispatch to the default
2473        if (range->sux() != default_sux) {
2474          res->append(range);
2475        }
2476        range = new SwitchRange(new_key, new_sux);
2477      }
2478      key = new_key;
2479      sux = new_sux;
2480    }
2481    if (res->length() == 0 || res->last() != range)  res->append(range);
2482  }
2483  return res;
2484}
2485
2486
2487void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2488  LIRItem tag(x->tag(), this);
2489  tag.load_item();
2490  set_no_result(x);
2491
2492  if (x->is_safepoint()) {
2493    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2494  }
2495
2496  // move values into phi locations
2497  move_to_phi(x->state());
2498
2499  int lo_key = x->lo_key();
2500  int hi_key = x->hi_key();
2501  int len = x->length();
2502  LIR_Opr value = tag.result();
2503  if (UseTableRanges) {
2504    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2505  } else {
2506    for (int i = 0; i < len; i++) {
2507      __ cmp(lir_cond_equal, value, i + lo_key);
2508      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2509    }
2510    __ jump(x->default_sux());
2511  }
2512}
2513
2514
2515void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2516  LIRItem tag(x->tag(), this);
2517  tag.load_item();
2518  set_no_result(x);
2519
2520  if (x->is_safepoint()) {
2521    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2522  }
2523
2524  // move values into phi locations
2525  move_to_phi(x->state());
2526
2527  LIR_Opr value = tag.result();
2528  if (UseTableRanges) {
2529    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2530  } else {
2531    int len = x->length();
2532    for (int i = 0; i < len; i++) {
2533      __ cmp(lir_cond_equal, value, x->key_at(i));
2534      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2535    }
2536    __ jump(x->default_sux());
2537  }
2538}
2539
2540
2541void LIRGenerator::do_Goto(Goto* x) {
2542  set_no_result(x);
2543
2544  if (block()->next()->as_OsrEntry()) {
2545    // need to free up storage used for OSR entry point
2546    LIR_Opr osrBuffer = block()->next()->operand();
2547    BasicTypeList signature;
2548    signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2549    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2550    __ move(osrBuffer, cc->args()->at(0));
2551    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2552                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2553  }
2554
2555  if (x->is_safepoint()) {
2556    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2557
2558    // increment backedge counter if needed
2559    CodeEmitInfo* info = state_for(x, state);
2560    increment_backedge_counter(info, x->profiled_bci());
2561    CodeEmitInfo* safepoint_info = state_for(x, state);
2562    __ safepoint(safepoint_poll_register(), safepoint_info);
2563  }
2564
2565  // Gotos can be folded Ifs, handle this case.
2566  if (x->should_profile()) {
2567    ciMethod* method = x->profiled_method();
2568    assert(method != NULL, "method should be set if branch is profiled");
2569    ciMethodData* md = method->method_data_or_null();
2570    assert(md != NULL, "Sanity");
2571    ciProfileData* data = md->bci_to_data(x->profiled_bci());
2572    assert(data != NULL, "must have profiling data");
2573    int offset;
2574    if (x->direction() == Goto::taken) {
2575      assert(data->is_BranchData(), "need BranchData for two-way branches");
2576      offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2577    } else if (x->direction() == Goto::not_taken) {
2578      assert(data->is_BranchData(), "need BranchData for two-way branches");
2579      offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2580    } else {
2581      assert(data->is_JumpData(), "need JumpData for branches");
2582      offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2583    }
2584    LIR_Opr md_reg = new_register(T_METADATA);
2585    __ metadata2reg(md->constant_encoding(), md_reg);
2586
2587    increment_counter(new LIR_Address(md_reg, offset,
2588                                      NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2589  }
2590
2591  // emit phi-instruction move after safepoint since this simplifies
2592  // describing the state as the safepoint.
2593  move_to_phi(x->state());
2594
2595  __ jump(x->default_sux());
2596}
2597
2598/**
2599 * Emit profiling code if needed for arguments, parameters, return value types
2600 *
2601 * @param md                    MDO the code will update at runtime
2602 * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2603 * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2604 * @param profiled_k            current profile
2605 * @param obj                   IR node for the object to be profiled
2606 * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2607 *                              Set once we find an update to make and use for next ones.
2608 * @param not_null              true if we know obj cannot be null
2609 * @param signature_at_call_k   signature at call for obj
2610 * @param callee_signature_k    signature of callee for obj
2611 *                              at call and callee signatures differ at method handle call
2612 * @return                      the only klass we know will ever be seen at this profile point
2613 */
2614ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2615                                    Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2616                                    ciKlass* callee_signature_k) {
2617  ciKlass* result = NULL;
2618  bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2619  bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2620  // known not to be null or null bit already set and already set to
2621  // unknown: nothing we can do to improve profiling
2622  if (!do_null && !do_update) {
2623    return result;
2624  }
2625
2626  ciKlass* exact_klass = NULL;
2627  Compilation* comp = Compilation::current();
2628  if (do_update) {
2629    // try to find exact type, using CHA if possible, so that loading
2630    // the klass from the object can be avoided
2631    ciType* type = obj->exact_type();
2632    if (type == NULL) {
2633      type = obj->declared_type();
2634      type = comp->cha_exact_type(type);
2635    }
2636    assert(type == NULL || type->is_klass(), "type should be class");
2637    exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2638
2639    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2640  }
2641
2642  if (!do_null && !do_update) {
2643    return result;
2644  }
2645
2646  ciKlass* exact_signature_k = NULL;
2647  if (do_update) {
2648    // Is the type from the signature exact (the only one possible)?
2649    exact_signature_k = signature_at_call_k->exact_klass();
2650    if (exact_signature_k == NULL) {
2651      exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2652    } else {
2653      result = exact_signature_k;
2654      // Known statically. No need to emit any code: prevent
2655      // LIR_Assembler::emit_profile_type() from emitting useless code
2656      profiled_k = ciTypeEntries::with_status(result, profiled_k);
2657    }
2658    // exact_klass and exact_signature_k can be both non NULL but
2659    // different if exact_klass is loaded after the ciObject for
2660    // exact_signature_k is created.
2661    if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2662      // sometimes the type of the signature is better than the best type
2663      // the compiler has
2664      exact_klass = exact_signature_k;
2665    }
2666    if (callee_signature_k != NULL &&
2667        callee_signature_k != signature_at_call_k) {
2668      ciKlass* improved_klass = callee_signature_k->exact_klass();
2669      if (improved_klass == NULL) {
2670        improved_klass = comp->cha_exact_type(callee_signature_k);
2671      }
2672      if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2673        exact_klass = exact_signature_k;
2674      }
2675    }
2676    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2677  }
2678
2679  if (!do_null && !do_update) {
2680    return result;
2681  }
2682
2683  if (mdp == LIR_OprFact::illegalOpr) {
2684    mdp = new_register(T_METADATA);
2685    __ metadata2reg(md->constant_encoding(), mdp);
2686    if (md_base_offset != 0) {
2687      LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2688      mdp = new_pointer_register();
2689      __ leal(LIR_OprFact::address(base_type_address), mdp);
2690    }
2691  }
2692  LIRItem value(obj, this);
2693  value.load_item();
2694  __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2695                  value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2696  return result;
2697}
2698
2699// profile parameters on entry to the root of the compilation
2700void LIRGenerator::profile_parameters(Base* x) {
2701  if (compilation()->profile_parameters()) {
2702    CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2703    ciMethodData* md = scope()->method()->method_data_or_null();
2704    assert(md != NULL, "Sanity");
2705
2706    if (md->parameters_type_data() != NULL) {
2707      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2708      ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2709      LIR_Opr mdp = LIR_OprFact::illegalOpr;
2710      for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2711        LIR_Opr src = args->at(i);
2712        assert(!src->is_illegal(), "check");
2713        BasicType t = src->type();
2714        if (t == T_OBJECT || t == T_ARRAY) {
2715          intptr_t profiled_k = parameters->type(j);
2716          Local* local = x->state()->local_at(java_index)->as_Local();
2717          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2718                                        in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2719                                        profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2720          // If the profile is known statically set it once for all and do not emit any code
2721          if (exact != NULL) {
2722            md->set_parameter_type(j, exact);
2723          }
2724          j++;
2725        }
2726        java_index += type2size[t];
2727      }
2728    }
2729  }
2730}
2731
2732void LIRGenerator::do_Base(Base* x) {
2733  __ std_entry(LIR_OprFact::illegalOpr);
2734  // Emit moves from physical registers / stack slots to virtual registers
2735  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2736  IRScope* irScope = compilation()->hir()->top_scope();
2737  int java_index = 0;
2738  for (int i = 0; i < args->length(); i++) {
2739    LIR_Opr src = args->at(i);
2740    assert(!src->is_illegal(), "check");
2741    BasicType t = src->type();
2742
2743    // Types which are smaller than int are passed as int, so
2744    // correct the type which passed.
2745    switch (t) {
2746    case T_BYTE:
2747    case T_BOOLEAN:
2748    case T_SHORT:
2749    case T_CHAR:
2750      t = T_INT;
2751      break;
2752    }
2753
2754    LIR_Opr dest = new_register(t);
2755    __ move(src, dest);
2756
2757    // Assign new location to Local instruction for this local
2758    Local* local = x->state()->local_at(java_index)->as_Local();
2759    assert(local != NULL, "Locals for incoming arguments must have been created");
2760#ifndef __SOFTFP__
2761    // The java calling convention passes double as long and float as int.
2762    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2763#endif // __SOFTFP__
2764    local->set_operand(dest);
2765    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2766    java_index += type2size[t];
2767  }
2768
2769  if (compilation()->env()->dtrace_method_probes()) {
2770    BasicTypeList signature;
2771    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2772    signature.append(T_METADATA); // Method*
2773    LIR_OprList* args = new LIR_OprList();
2774    args->append(getThreadPointer());
2775    LIR_Opr meth = new_register(T_METADATA);
2776    __ metadata2reg(method()->constant_encoding(), meth);
2777    args->append(meth);
2778    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2779  }
2780
2781  if (method()->is_synchronized()) {
2782    LIR_Opr obj;
2783    if (method()->is_static()) {
2784      obj = new_register(T_OBJECT);
2785      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2786    } else {
2787      Local* receiver = x->state()->local_at(0)->as_Local();
2788      assert(receiver != NULL, "must already exist");
2789      obj = receiver->operand();
2790    }
2791    assert(obj->is_valid(), "must be valid");
2792
2793    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2794      LIR_Opr lock = new_register(T_INT);
2795      __ load_stack_address_monitor(0, lock);
2796
2797      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2798      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2799
2800      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2801      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2802    }
2803  }
2804  if (compilation()->age_code()) {
2805    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2806    decrement_age(info);
2807  }
2808  // increment invocation counters if needed
2809  if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2810    profile_parameters(x);
2811    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2812    increment_invocation_counter(info);
2813  }
2814
2815  // all blocks with a successor must end with an unconditional jump
2816  // to the successor even if they are consecutive
2817  __ jump(x->default_sux());
2818}
2819
2820
2821void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2822  // construct our frame and model the production of incoming pointer
2823  // to the OSR buffer.
2824  __ osr_entry(LIR_Assembler::osrBufferPointer());
2825  LIR_Opr result = rlock_result(x);
2826  __ move(LIR_Assembler::osrBufferPointer(), result);
2827}
2828
2829
2830void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2831  assert(args->length() == arg_list->length(),
2832         err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2833  for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2834    LIRItem* param = args->at(i);
2835    LIR_Opr loc = arg_list->at(i);
2836    if (loc->is_register()) {
2837      param->load_item_force(loc);
2838    } else {
2839      LIR_Address* addr = loc->as_address_ptr();
2840      param->load_for_store(addr->type());
2841      if (addr->type() == T_OBJECT) {
2842        __ move_wide(param->result(), addr);
2843      } else
2844        if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2845          __ unaligned_move(param->result(), addr);
2846        } else {
2847          __ move(param->result(), addr);
2848        }
2849    }
2850  }
2851
2852  if (x->has_receiver()) {
2853    LIRItem* receiver = args->at(0);
2854    LIR_Opr loc = arg_list->at(0);
2855    if (loc->is_register()) {
2856      receiver->load_item_force(loc);
2857    } else {
2858      assert(loc->is_address(), "just checking");
2859      receiver->load_for_store(T_OBJECT);
2860      __ move_wide(receiver->result(), loc->as_address_ptr());
2861    }
2862  }
2863}
2864
2865
2866// Visits all arguments, returns appropriate items without loading them
2867LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2868  LIRItemList* argument_items = new LIRItemList();
2869  if (x->has_receiver()) {
2870    LIRItem* receiver = new LIRItem(x->receiver(), this);
2871    argument_items->append(receiver);
2872  }
2873  for (int i = 0; i < x->number_of_arguments(); i++) {
2874    LIRItem* param = new LIRItem(x->argument_at(i), this);
2875    argument_items->append(param);
2876  }
2877  return argument_items;
2878}
2879
2880
2881// The invoke with receiver has following phases:
2882//   a) traverse and load/lock receiver;
2883//   b) traverse all arguments -> item-array (invoke_visit_argument)
2884//   c) push receiver on stack
2885//   d) load each of the items and push on stack
2886//   e) unlock receiver
2887//   f) move receiver into receiver-register %o0
2888//   g) lock result registers and emit call operation
2889//
2890// Before issuing a call, we must spill-save all values on stack
2891// that are in caller-save register. "spill-save" moves those registers
2892// either in a free callee-save register or spills them if no free
2893// callee save register is available.
2894//
2895// The problem is where to invoke spill-save.
2896// - if invoked between e) and f), we may lock callee save
2897//   register in "spill-save" that destroys the receiver register
2898//   before f) is executed
2899// - if we rearrange f) to be earlier (by loading %o0) it
2900//   may destroy a value on the stack that is currently in %o0
2901//   and is waiting to be spilled
2902// - if we keep the receiver locked while doing spill-save,
2903//   we cannot spill it as it is spill-locked
2904//
2905void LIRGenerator::do_Invoke(Invoke* x) {
2906  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2907
2908  LIR_OprList* arg_list = cc->args();
2909  LIRItemList* args = invoke_visit_arguments(x);
2910  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2911
2912  // setup result register
2913  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2914  if (x->type() != voidType) {
2915    result_register = result_register_for(x->type());
2916  }
2917
2918  CodeEmitInfo* info = state_for(x, x->state());
2919
2920  invoke_load_arguments(x, args, arg_list);
2921
2922  if (x->has_receiver()) {
2923    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2924    receiver = args->at(0)->result();
2925  }
2926
2927  // emit invoke code
2928  bool optimized = x->target_is_loaded() && x->target_is_final();
2929  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2930
2931  // JSR 292
2932  // Preserve the SP over MethodHandle call sites, if needed.
2933  ciMethod* target = x->target();
2934  bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2935                                  target->is_method_handle_intrinsic() ||
2936                                  target->is_compiled_lambda_form());
2937  if (is_method_handle_invoke) {
2938    info->set_is_method_handle_invoke(true);
2939    if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2940        __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2941    }
2942  }
2943
2944  switch (x->code()) {
2945    case Bytecodes::_invokestatic:
2946      __ call_static(target, result_register,
2947                     SharedRuntime::get_resolve_static_call_stub(),
2948                     arg_list, info);
2949      break;
2950    case Bytecodes::_invokespecial:
2951    case Bytecodes::_invokevirtual:
2952    case Bytecodes::_invokeinterface:
2953      // for final target we still produce an inline cache, in order
2954      // to be able to call mixed mode
2955      if (x->code() == Bytecodes::_invokespecial || optimized) {
2956        __ call_opt_virtual(target, receiver, result_register,
2957                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2958                            arg_list, info);
2959      } else if (x->vtable_index() < 0) {
2960        __ call_icvirtual(target, receiver, result_register,
2961                          SharedRuntime::get_resolve_virtual_call_stub(),
2962                          arg_list, info);
2963      } else {
2964        int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2965        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2966        __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2967      }
2968      break;
2969    case Bytecodes::_invokedynamic: {
2970      __ call_dynamic(target, receiver, result_register,
2971                      SharedRuntime::get_resolve_static_call_stub(),
2972                      arg_list, info);
2973      break;
2974    }
2975    default:
2976      fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2977      break;
2978  }
2979
2980  // JSR 292
2981  // Restore the SP after MethodHandle call sites, if needed.
2982  if (is_method_handle_invoke
2983      && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2984    __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2985  }
2986
2987  if (x->type()->is_float() || x->type()->is_double()) {
2988    // Force rounding of results from non-strictfp when in strictfp
2989    // scope (or when we don't know the strictness of the callee, to
2990    // be safe.)
2991    if (method()->is_strict()) {
2992      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2993        result_register = round_item(result_register);
2994      }
2995    }
2996  }
2997
2998  if (result_register->is_valid()) {
2999    LIR_Opr result = rlock_result(x);
3000    __ move(result_register, result);
3001  }
3002}
3003
3004
3005void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3006  assert(x->number_of_arguments() == 1, "wrong type");
3007  LIRItem value       (x->argument_at(0), this);
3008  LIR_Opr reg = rlock_result(x);
3009  value.load_item();
3010  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3011  __ move(tmp, reg);
3012}
3013
3014
3015
3016// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3017void LIRGenerator::do_IfOp(IfOp* x) {
3018#ifdef ASSERT
3019  {
3020    ValueTag xtag = x->x()->type()->tag();
3021    ValueTag ttag = x->tval()->type()->tag();
3022    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3023    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3024    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3025  }
3026#endif
3027
3028  LIRItem left(x->x(), this);
3029  LIRItem right(x->y(), this);
3030  left.load_item();
3031  if (can_inline_as_constant(right.value())) {
3032    right.dont_load_item();
3033  } else {
3034    right.load_item();
3035  }
3036
3037  LIRItem t_val(x->tval(), this);
3038  LIRItem f_val(x->fval(), this);
3039  t_val.dont_load_item();
3040  f_val.dont_load_item();
3041  LIR_Opr reg = rlock_result(x);
3042
3043  __ cmp(lir_cond(x->cond()), left.result(), right.result());
3044  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3045}
3046
3047void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3048    assert(x->number_of_arguments() == expected_arguments, "wrong type");
3049    LIR_Opr reg = result_register_for(x->type());
3050    __ call_runtime_leaf(routine, getThreadTemp(),
3051                         reg, new LIR_OprList());
3052    LIR_Opr result = rlock_result(x);
3053    __ move(reg, result);
3054}
3055
3056#ifdef TRACE_HAVE_INTRINSICS
3057void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3058    LIR_Opr thread = getThreadPointer();
3059    LIR_Opr osthread = new_pointer_register();
3060    __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3061    size_t thread_id_size = OSThread::thread_id_size();
3062    if (thread_id_size == (size_t) BytesPerLong) {
3063      LIR_Opr id = new_register(T_LONG);
3064      __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3065      __ convert(Bytecodes::_l2i, id, rlock_result(x));
3066    } else if (thread_id_size == (size_t) BytesPerInt) {
3067      __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3068    } else {
3069      ShouldNotReachHere();
3070    }
3071}
3072
3073void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3074    CodeEmitInfo* info = state_for(x);
3075    CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3076    BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3077    assert(info != NULL, "must have info");
3078    LIRItem arg(x->argument_at(1), this);
3079    arg.load_item();
3080    LIR_Opr klass = new_pointer_register();
3081    __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3082    LIR_Opr id = new_register(T_LONG);
3083    ByteSize offset = TRACE_ID_OFFSET;
3084    LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3085    __ move(trace_id_addr, id);
3086    __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3087    __ store(id, trace_id_addr);
3088    __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3089    __ move(id, rlock_result(x));
3090}
3091#endif
3092
3093void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3094  switch (x->id()) {
3095  case vmIntrinsics::_intBitsToFloat      :
3096  case vmIntrinsics::_doubleToRawLongBits :
3097  case vmIntrinsics::_longBitsToDouble    :
3098  case vmIntrinsics::_floatToRawIntBits   : {
3099    do_FPIntrinsics(x);
3100    break;
3101  }
3102
3103#ifdef TRACE_HAVE_INTRINSICS
3104  case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3105  case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3106  case vmIntrinsics::_counterTime:
3107    do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3108    break;
3109#endif
3110
3111  case vmIntrinsics::_currentTimeMillis:
3112    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3113    break;
3114
3115  case vmIntrinsics::_nanoTime:
3116    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3117    break;
3118
3119  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3120  case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3121  case vmIntrinsics::_getClass:       do_getClass(x);      break;
3122  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3123
3124  case vmIntrinsics::_dlog:           // fall through
3125  case vmIntrinsics::_dlog10:         // fall through
3126  case vmIntrinsics::_dabs:           // fall through
3127  case vmIntrinsics::_dsqrt:          // fall through
3128  case vmIntrinsics::_dtan:           // fall through
3129  case vmIntrinsics::_dsin :          // fall through
3130  case vmIntrinsics::_dcos :          // fall through
3131  case vmIntrinsics::_dexp :          // fall through
3132  case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3133  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3134
3135  // java.nio.Buffer.checkIndex
3136  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3137
3138  case vmIntrinsics::_compareAndSwapObject:
3139    do_CompareAndSwap(x, objectType);
3140    break;
3141  case vmIntrinsics::_compareAndSwapInt:
3142    do_CompareAndSwap(x, intType);
3143    break;
3144  case vmIntrinsics::_compareAndSwapLong:
3145    do_CompareAndSwap(x, longType);
3146    break;
3147
3148  case vmIntrinsics::_loadFence :
3149    if (os::is_MP()) __ membar_acquire();
3150    break;
3151  case vmIntrinsics::_storeFence:
3152    if (os::is_MP()) __ membar_release();
3153    break;
3154  case vmIntrinsics::_fullFence :
3155    if (os::is_MP()) __ membar();
3156    break;
3157
3158  case vmIntrinsics::_Reference_get:
3159    do_Reference_get(x);
3160    break;
3161
3162  case vmIntrinsics::_updateCRC32:
3163  case vmIntrinsics::_updateBytesCRC32:
3164  case vmIntrinsics::_updateByteBufferCRC32:
3165    do_update_CRC32(x);
3166    break;
3167
3168  default: ShouldNotReachHere(); break;
3169  }
3170}
3171
3172void LIRGenerator::profile_arguments(ProfileCall* x) {
3173  if (compilation()->profile_arguments()) {
3174    int bci = x->bci_of_invoke();
3175    ciMethodData* md = x->method()->method_data_or_null();
3176    ciProfileData* data = md->bci_to_data(bci);
3177    if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3178        (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3179      ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3180      int base_offset = md->byte_offset_of_slot(data, extra);
3181      LIR_Opr mdp = LIR_OprFact::illegalOpr;
3182      ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3183
3184      Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3185      int start = 0;
3186      int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3187      if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3188        // first argument is not profiled at call (method handle invoke)
3189        assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3190        start = 1;
3191      }
3192      ciSignature* callee_signature = x->callee()->signature();
3193      // method handle call to virtual method
3194      bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3195      ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3196
3197      bool ignored_will_link;
3198      ciSignature* signature_at_call = NULL;
3199      x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3200      ciSignatureStream signature_at_call_stream(signature_at_call);
3201
3202      // if called through method handle invoke, some arguments may have been popped
3203      for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3204        int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3205        ciKlass* exact = profile_type(md, base_offset, off,
3206                                      args->type(i), x->profiled_arg_at(i+start), mdp,
3207                                      !x->arg_needs_null_check(i+start),
3208                                      signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3209        if (exact != NULL) {
3210          md->set_argument_type(bci, i, exact);
3211        }
3212      }
3213    } else {
3214#ifdef ASSERT
3215      Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3216      int n = x->nb_profiled_args();
3217      assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3218                                                  (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3219             "only at JSR292 bytecodes");
3220#endif
3221    }
3222  }
3223}
3224
3225// profile parameters on entry to an inlined method
3226void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3227  if (compilation()->profile_parameters() && x->inlined()) {
3228    ciMethodData* md = x->callee()->method_data_or_null();
3229    if (md != NULL) {
3230      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3231      if (parameters_type_data != NULL) {
3232        ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3233        LIR_Opr mdp = LIR_OprFact::illegalOpr;
3234        bool has_receiver = !x->callee()->is_static();
3235        ciSignature* sig = x->callee()->signature();
3236        ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3237        int i = 0; // to iterate on the Instructions
3238        Value arg = x->recv();
3239        bool not_null = false;
3240        int bci = x->bci_of_invoke();
3241        Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3242        // The first parameter is the receiver so that's what we start
3243        // with if it exists. One exception is method handle call to
3244        // virtual method: the receiver is in the args list
3245        if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3246          i = 1;
3247          arg = x->profiled_arg_at(0);
3248          not_null = !x->arg_needs_null_check(0);
3249        }
3250        int k = 0; // to iterate on the profile data
3251        for (;;) {
3252          intptr_t profiled_k = parameters->type(k);
3253          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3254                                        in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3255                                        profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3256          // If the profile is known statically set it once for all and do not emit any code
3257          if (exact != NULL) {
3258            md->set_parameter_type(k, exact);
3259          }
3260          k++;
3261          if (k >= parameters_type_data->number_of_parameters()) {
3262#ifdef ASSERT
3263            int extra = 0;
3264            if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3265                x->nb_profiled_args() >= TypeProfileParmsLimit &&
3266                x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3267              extra += 1;
3268            }
3269            assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3270#endif
3271            break;
3272          }
3273          arg = x->profiled_arg_at(i);
3274          not_null = !x->arg_needs_null_check(i);
3275          i++;
3276        }
3277      }
3278    }
3279  }
3280}
3281
3282void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3283  // Need recv in a temporary register so it interferes with the other temporaries
3284  LIR_Opr recv = LIR_OprFact::illegalOpr;
3285  LIR_Opr mdo = new_register(T_OBJECT);
3286  // tmp is used to hold the counters on SPARC
3287  LIR_Opr tmp = new_pointer_register();
3288
3289  if (x->nb_profiled_args() > 0) {
3290    profile_arguments(x);
3291  }
3292
3293  // profile parameters on inlined method entry including receiver
3294  if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3295    profile_parameters_at_call(x);
3296  }
3297
3298  if (x->recv() != NULL) {
3299    LIRItem value(x->recv(), this);
3300    value.load_item();
3301    recv = new_register(T_OBJECT);
3302    __ move(value.result(), recv);
3303  }
3304  __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3305}
3306
3307void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3308  int bci = x->bci_of_invoke();
3309  ciMethodData* md = x->method()->method_data_or_null();
3310  ciProfileData* data = md->bci_to_data(bci);
3311  assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3312  ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3313  LIR_Opr mdp = LIR_OprFact::illegalOpr;
3314
3315  bool ignored_will_link;
3316  ciSignature* signature_at_call = NULL;
3317  x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3318
3319  // The offset within the MDO of the entry to update may be too large
3320  // to be used in load/store instructions on some platforms. So have
3321  // profile_type() compute the address of the profile in a register.
3322  ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3323                                ret->type(), x->ret(), mdp,
3324                                !x->needs_null_check(),
3325                                signature_at_call->return_type()->as_klass(),
3326                                x->callee()->signature()->return_type()->as_klass());
3327  if (exact != NULL) {
3328    md->set_return_type(bci, exact);
3329  }
3330}
3331
3332void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3333  // We can safely ignore accessors here, since c2 will inline them anyway,
3334  // accessors are also always mature.
3335  if (!x->inlinee()->is_accessor()) {
3336    CodeEmitInfo* info = state_for(x, x->state(), true);
3337    // Notify the runtime very infrequently only to take care of counter overflows
3338    int freq_log = Tier23InlineeNotifyFreqLog;
3339    double scale;
3340    if (_method->has_option_value("CompileThresholdScaling", scale)) {
3341      freq_log = Arguments::scaled_freq_log(freq_log, scale);
3342    }
3343    increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3344  }
3345}
3346
3347void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3348  int freq_log;
3349  int level = compilation()->env()->comp_level();
3350  if (level == CompLevel_limited_profile) {
3351    freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3352  } else if (level == CompLevel_full_profile) {
3353    freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3354  } else {
3355    ShouldNotReachHere();
3356  }
3357  // Increment the appropriate invocation/backedge counter and notify the runtime.
3358  double scale;
3359  if (_method->has_option_value("CompileThresholdScaling", scale)) {
3360    freq_log = Arguments::scaled_freq_log(freq_log, scale);
3361  }
3362  increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3363}
3364
3365void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3366  ciMethod* method = info->scope()->method();
3367  MethodCounters* mc_adr = method->ensure_method_counters();
3368  if (mc_adr != NULL) {
3369    LIR_Opr mc = new_pointer_register();
3370    __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3371    int offset = in_bytes(MethodCounters::nmethod_age_offset());
3372    LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3373    LIR_Opr result = new_register(T_INT);
3374    __ load(counter, result);
3375    __ sub(result, LIR_OprFact::intConst(1), result);
3376    __ store(result, counter);
3377    // DeoptimizeStub will reexecute from the current state in code info.
3378    CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3379                                         Deoptimization::Action_make_not_entrant);
3380    __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3381    __ branch(lir_cond_lessEqual, T_INT, deopt);
3382  }
3383}
3384
3385
3386void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3387                                                ciMethod *method, int frequency,
3388                                                int bci, bool backedge, bool notify) {
3389  assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3390  int level = _compilation->env()->comp_level();
3391  assert(level > CompLevel_simple, "Shouldn't be here");
3392
3393  int offset = -1;
3394  LIR_Opr counter_holder;
3395  if (level == CompLevel_limited_profile) {
3396    MethodCounters* counters_adr = method->ensure_method_counters();
3397    if (counters_adr == NULL) {
3398      bailout("method counters allocation failed");
3399      return;
3400    }
3401    counter_holder = new_pointer_register();
3402    __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3403    offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3404                                 MethodCounters::invocation_counter_offset());
3405  } else if (level == CompLevel_full_profile) {
3406    counter_holder = new_register(T_METADATA);
3407    offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3408                                 MethodData::invocation_counter_offset());
3409    ciMethodData* md = method->method_data_or_null();
3410    assert(md != NULL, "Sanity");
3411    __ metadata2reg(md->constant_encoding(), counter_holder);
3412  } else {
3413    ShouldNotReachHere();
3414  }
3415  LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3416  LIR_Opr result = new_register(T_INT);
3417  __ load(counter, result);
3418  __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3419  __ store(result, counter);
3420  if (notify) {
3421    LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3422    LIR_Opr meth = new_register(T_METADATA);
3423    __ metadata2reg(method->constant_encoding(), meth);
3424    __ logical_and(result, mask, result);
3425    __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3426    // The bci for info can point to cmp for if's we want the if bci
3427    CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3428    __ branch(lir_cond_equal, T_INT, overflow);
3429    __ branch_destination(overflow->continuation());
3430  }
3431}
3432
3433void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3434  LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3435  BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3436
3437  if (x->pass_thread()) {
3438    signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3439    args->append(getThreadPointer());
3440  }
3441
3442  for (int i = 0; i < x->number_of_arguments(); i++) {
3443    Value a = x->argument_at(i);
3444    LIRItem* item = new LIRItem(a, this);
3445    item->load_item();
3446    args->append(item->result());
3447    signature->append(as_BasicType(a->type()));
3448  }
3449
3450  LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3451  if (x->type() == voidType) {
3452    set_no_result(x);
3453  } else {
3454    __ move(result, rlock_result(x));
3455  }
3456}
3457
3458#ifdef ASSERT
3459void LIRGenerator::do_Assert(Assert *x) {
3460  ValueTag tag = x->x()->type()->tag();
3461  If::Condition cond = x->cond();
3462
3463  LIRItem xitem(x->x(), this);
3464  LIRItem yitem(x->y(), this);
3465  LIRItem* xin = &xitem;
3466  LIRItem* yin = &yitem;
3467
3468  assert(tag == intTag, "Only integer assertions are valid!");
3469
3470  xin->load_item();
3471  yin->dont_load_item();
3472
3473  set_no_result(x);
3474
3475  LIR_Opr left = xin->result();
3476  LIR_Opr right = yin->result();
3477
3478  __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3479}
3480#endif
3481
3482void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3483
3484
3485  Instruction *a = x->x();
3486  Instruction *b = x->y();
3487  if (!a || StressRangeCheckElimination) {
3488    assert(!b || StressRangeCheckElimination, "B must also be null");
3489
3490    CodeEmitInfo *info = state_for(x, x->state());
3491    CodeStub* stub = new PredicateFailedStub(info);
3492
3493    __ jump(stub);
3494  } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3495    int a_int = a->type()->as_IntConstant()->value();
3496    int b_int = b->type()->as_IntConstant()->value();
3497
3498    bool ok = false;
3499
3500    switch(x->cond()) {
3501      case Instruction::eql: ok = (a_int == b_int); break;
3502      case Instruction::neq: ok = (a_int != b_int); break;
3503      case Instruction::lss: ok = (a_int < b_int); break;
3504      case Instruction::leq: ok = (a_int <= b_int); break;
3505      case Instruction::gtr: ok = (a_int > b_int); break;
3506      case Instruction::geq: ok = (a_int >= b_int); break;
3507      case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3508      case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3509      default: ShouldNotReachHere();
3510    }
3511
3512    if (ok) {
3513
3514      CodeEmitInfo *info = state_for(x, x->state());
3515      CodeStub* stub = new PredicateFailedStub(info);
3516
3517      __ jump(stub);
3518    }
3519  } else {
3520
3521    ValueTag tag = x->x()->type()->tag();
3522    If::Condition cond = x->cond();
3523    LIRItem xitem(x->x(), this);
3524    LIRItem yitem(x->y(), this);
3525    LIRItem* xin = &xitem;
3526    LIRItem* yin = &yitem;
3527
3528    assert(tag == intTag, "Only integer deoptimizations are valid!");
3529
3530    xin->load_item();
3531    yin->dont_load_item();
3532    set_no_result(x);
3533
3534    LIR_Opr left = xin->result();
3535    LIR_Opr right = yin->result();
3536
3537    CodeEmitInfo *info = state_for(x, x->state());
3538    CodeStub* stub = new PredicateFailedStub(info);
3539
3540    __ cmp(lir_cond(cond), left, right);
3541    __ branch(lir_cond(cond), right->type(), stub);
3542  }
3543}
3544
3545
3546LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3547  LIRItemList args(1);
3548  LIRItem value(arg1, this);
3549  args.append(&value);
3550  BasicTypeList signature;
3551  signature.append(as_BasicType(arg1->type()));
3552
3553  return call_runtime(&signature, &args, entry, result_type, info);
3554}
3555
3556
3557LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3558  LIRItemList args(2);
3559  LIRItem value1(arg1, this);
3560  LIRItem value2(arg2, this);
3561  args.append(&value1);
3562  args.append(&value2);
3563  BasicTypeList signature;
3564  signature.append(as_BasicType(arg1->type()));
3565  signature.append(as_BasicType(arg2->type()));
3566
3567  return call_runtime(&signature, &args, entry, result_type, info);
3568}
3569
3570
3571LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3572                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3573  // get a result register
3574  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3575  LIR_Opr result = LIR_OprFact::illegalOpr;
3576  if (result_type->tag() != voidTag) {
3577    result = new_register(result_type);
3578    phys_reg = result_register_for(result_type);
3579  }
3580
3581  // move the arguments into the correct location
3582  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3583  assert(cc->length() == args->length(), "argument mismatch");
3584  for (int i = 0; i < args->length(); i++) {
3585    LIR_Opr arg = args->at(i);
3586    LIR_Opr loc = cc->at(i);
3587    if (loc->is_register()) {
3588      __ move(arg, loc);
3589    } else {
3590      LIR_Address* addr = loc->as_address_ptr();
3591//           if (!can_store_as_constant(arg)) {
3592//             LIR_Opr tmp = new_register(arg->type());
3593//             __ move(arg, tmp);
3594//             arg = tmp;
3595//           }
3596      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3597        __ unaligned_move(arg, addr);
3598      } else {
3599        __ move(arg, addr);
3600      }
3601    }
3602  }
3603
3604  if (info) {
3605    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3606  } else {
3607    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3608  }
3609  if (result->is_valid()) {
3610    __ move(phys_reg, result);
3611  }
3612  return result;
3613}
3614
3615
3616LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3617                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3618  // get a result register
3619  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3620  LIR_Opr result = LIR_OprFact::illegalOpr;
3621  if (result_type->tag() != voidTag) {
3622    result = new_register(result_type);
3623    phys_reg = result_register_for(result_type);
3624  }
3625
3626  // move the arguments into the correct location
3627  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3628
3629  assert(cc->length() == args->length(), "argument mismatch");
3630  for (int i = 0; i < args->length(); i++) {
3631    LIRItem* arg = args->at(i);
3632    LIR_Opr loc = cc->at(i);
3633    if (loc->is_register()) {
3634      arg->load_item_force(loc);
3635    } else {
3636      LIR_Address* addr = loc->as_address_ptr();
3637      arg->load_for_store(addr->type());
3638      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3639        __ unaligned_move(arg->result(), addr);
3640      } else {
3641        __ move(arg->result(), addr);
3642      }
3643    }
3644  }
3645
3646  if (info) {
3647    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3648  } else {
3649    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3650  }
3651  if (result->is_valid()) {
3652    __ move(phys_reg, result);
3653  }
3654  return result;
3655}
3656
3657void LIRGenerator::do_MemBar(MemBar* x) {
3658  if (os::is_MP()) {
3659    LIR_Code code = x->code();
3660    switch(code) {
3661      case lir_membar_acquire   : __ membar_acquire(); break;
3662      case lir_membar_release   : __ membar_release(); break;
3663      case lir_membar           : __ membar(); break;
3664      case lir_membar_loadload  : __ membar_loadload(); break;
3665      case lir_membar_storestore: __ membar_storestore(); break;
3666      case lir_membar_loadstore : __ membar_loadstore(); break;
3667      case lir_membar_storeload : __ membar_storeload(); break;
3668      default                   : ShouldNotReachHere(); break;
3669    }
3670  }
3671}
3672