c1_LIRGenerator.cpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_Defs.hpp"
28#include "c1/c1_FrameMap.hpp"
29#include "c1/c1_Instruction.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_LIRGenerator.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArrayKlass.hpp"
34#include "ci/ciInstance.hpp"
35#include "ci/ciObjArray.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "runtime/arguments.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "runtime/vm_version.hpp"
41#include "utilities/bitMap.inline.hpp"
42#include "utilities/macros.hpp"
43#if INCLUDE_ALL_GCS
44#include "gc/g1/heapRegion.hpp"
45#endif // INCLUDE_ALL_GCS
46
47#ifdef ASSERT
48#define __ gen()->lir(__FILE__, __LINE__)->
49#else
50#define __ gen()->lir()->
51#endif
52
53#ifndef PATCHED_ADDR
54#define PATCHED_ADDR  (max_jint)
55#endif
56
57void PhiResolverState::reset(int max_vregs) {
58  // Initialize array sizes
59  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
60  _virtual_operands.trunc_to(0);
61  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
62  _other_operands.trunc_to(0);
63  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
64  _vreg_table.trunc_to(0);
65}
66
67
68
69//--------------------------------------------------------------
70// PhiResolver
71
72// Resolves cycles:
73//
74//  r1 := r2  becomes  temp := r1
75//  r2 := r1           r1 := r2
76//                     r2 := temp
77// and orders moves:
78//
79//  r2 := r3  becomes  r1 := r2
80//  r1 := r2           r2 := r3
81
82PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
83 : _gen(gen)
84 , _state(gen->resolver_state())
85 , _temp(LIR_OprFact::illegalOpr)
86{
87  // reinitialize the shared state arrays
88  _state.reset(max_vregs);
89}
90
91
92void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
93  assert(src->is_valid(), "");
94  assert(dest->is_valid(), "");
95  __ move(src, dest);
96}
97
98
99void PhiResolver::move_temp_to(LIR_Opr dest) {
100  assert(_temp->is_valid(), "");
101  emit_move(_temp, dest);
102  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
103}
104
105
106void PhiResolver::move_to_temp(LIR_Opr src) {
107  assert(_temp->is_illegal(), "");
108  _temp = _gen->new_register(src->type());
109  emit_move(src, _temp);
110}
111
112
113// Traverse assignment graph in depth first order and generate moves in post order
114// ie. two assignments: b := c, a := b start with node c:
115// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
116// Generates moves in this order: move b to a and move c to b
117// ie. cycle a := b, b := a start with node a
118// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
119// Generates moves in this order: move b to temp, move a to b, move temp to a
120void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
121  if (!dest->visited()) {
122    dest->set_visited();
123    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
124      move(dest, dest->destination_at(i));
125    }
126  } else if (!dest->start_node()) {
127    // cylce in graph detected
128    assert(_loop == NULL, "only one loop valid!");
129    _loop = dest;
130    move_to_temp(src->operand());
131    return;
132  } // else dest is a start node
133
134  if (!dest->assigned()) {
135    if (_loop == dest) {
136      move_temp_to(dest->operand());
137      dest->set_assigned();
138    } else if (src != NULL) {
139      emit_move(src->operand(), dest->operand());
140      dest->set_assigned();
141    }
142  }
143}
144
145
146PhiResolver::~PhiResolver() {
147  int i;
148  // resolve any cycles in moves from and to virtual registers
149  for (i = virtual_operands().length() - 1; i >= 0; i --) {
150    ResolveNode* node = virtual_operands()[i];
151    if (!node->visited()) {
152      _loop = NULL;
153      move(NULL, node);
154      node->set_start_node();
155      assert(_temp->is_illegal(), "move_temp_to() call missing");
156    }
157  }
158
159  // generate move for move from non virtual register to abitrary destination
160  for (i = other_operands().length() - 1; i >= 0; i --) {
161    ResolveNode* node = other_operands()[i];
162    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
163      emit_move(node->operand(), node->destination_at(j)->operand());
164    }
165  }
166}
167
168
169ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
170  ResolveNode* node;
171  if (opr->is_virtual()) {
172    int vreg_num = opr->vreg_number();
173    node = vreg_table().at_grow(vreg_num, NULL);
174    assert(node == NULL || node->operand() == opr, "");
175    if (node == NULL) {
176      node = new ResolveNode(opr);
177      vreg_table()[vreg_num] = node;
178    }
179    // Make sure that all virtual operands show up in the list when
180    // they are used as the source of a move.
181    if (source && !virtual_operands().contains(node)) {
182      virtual_operands().append(node);
183    }
184  } else {
185    assert(source, "");
186    node = new ResolveNode(opr);
187    other_operands().append(node);
188  }
189  return node;
190}
191
192
193void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
194  assert(dest->is_virtual(), "");
195  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
196  assert(src->is_valid(), "");
197  assert(dest->is_valid(), "");
198  ResolveNode* source = source_node(src);
199  source->append(destination_node(dest));
200}
201
202
203//--------------------------------------------------------------
204// LIRItem
205
206void LIRItem::set_result(LIR_Opr opr) {
207  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
208  value()->set_operand(opr);
209
210  if (opr->is_virtual()) {
211    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
212  }
213
214  _result = opr;
215}
216
217void LIRItem::load_item() {
218  if (result()->is_illegal()) {
219    // update the items result
220    _result = value()->operand();
221  }
222  if (!result()->is_register()) {
223    LIR_Opr reg = _gen->new_register(value()->type());
224    __ move(result(), reg);
225    if (result()->is_constant()) {
226      _result = reg;
227    } else {
228      set_result(reg);
229    }
230  }
231}
232
233
234void LIRItem::load_for_store(BasicType type) {
235  if (_gen->can_store_as_constant(value(), type)) {
236    _result = value()->operand();
237    if (!_result->is_constant()) {
238      _result = LIR_OprFact::value_type(value()->type());
239    }
240  } else if (type == T_BYTE || type == T_BOOLEAN) {
241    load_byte_item();
242  } else {
243    load_item();
244  }
245}
246
247void LIRItem::load_item_force(LIR_Opr reg) {
248  LIR_Opr r = result();
249  if (r != reg) {
250#if !defined(ARM) && !defined(E500V2)
251    if (r->type() != reg->type()) {
252      // moves between different types need an intervening spill slot
253      r = _gen->force_to_spill(r, reg->type());
254    }
255#endif
256    __ move(r, reg);
257    _result = reg;
258  }
259}
260
261ciObject* LIRItem::get_jobject_constant() const {
262  ObjectType* oc = type()->as_ObjectType();
263  if (oc) {
264    return oc->constant_value();
265  }
266  return NULL;
267}
268
269
270jint LIRItem::get_jint_constant() const {
271  assert(is_constant() && value() != NULL, "");
272  assert(type()->as_IntConstant() != NULL, "type check");
273  return type()->as_IntConstant()->value();
274}
275
276
277jint LIRItem::get_address_constant() const {
278  assert(is_constant() && value() != NULL, "");
279  assert(type()->as_AddressConstant() != NULL, "type check");
280  return type()->as_AddressConstant()->value();
281}
282
283
284jfloat LIRItem::get_jfloat_constant() const {
285  assert(is_constant() && value() != NULL, "");
286  assert(type()->as_FloatConstant() != NULL, "type check");
287  return type()->as_FloatConstant()->value();
288}
289
290
291jdouble LIRItem::get_jdouble_constant() const {
292  assert(is_constant() && value() != NULL, "");
293  assert(type()->as_DoubleConstant() != NULL, "type check");
294  return type()->as_DoubleConstant()->value();
295}
296
297
298jlong LIRItem::get_jlong_constant() const {
299  assert(is_constant() && value() != NULL, "");
300  assert(type()->as_LongConstant() != NULL, "type check");
301  return type()->as_LongConstant()->value();
302}
303
304
305
306//--------------------------------------------------------------
307
308
309void LIRGenerator::init() {
310  _bs = Universe::heap()->barrier_set();
311}
312
313
314void LIRGenerator::block_do_prolog(BlockBegin* block) {
315#ifndef PRODUCT
316  if (PrintIRWithLIR) {
317    block->print();
318  }
319#endif
320
321  // set up the list of LIR instructions
322  assert(block->lir() == NULL, "LIR list already computed for this block");
323  _lir = new LIR_List(compilation(), block);
324  block->set_lir(_lir);
325
326  __ branch_destination(block->label());
327
328  if (LIRTraceExecution &&
329      Compilation::current()->hir()->start()->block_id() != block->block_id() &&
330      !block->is_set(BlockBegin::exception_entry_flag)) {
331    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
332    trace_block_entry(block);
333  }
334}
335
336
337void LIRGenerator::block_do_epilog(BlockBegin* block) {
338#ifndef PRODUCT
339  if (PrintIRWithLIR) {
340    tty->cr();
341  }
342#endif
343
344  // LIR_Opr for unpinned constants shouldn't be referenced by other
345  // blocks so clear them out after processing the block.
346  for (int i = 0; i < _unpinned_constants.length(); i++) {
347    _unpinned_constants.at(i)->clear_operand();
348  }
349  _unpinned_constants.trunc_to(0);
350
351  // clear our any registers for other local constants
352  _constants.trunc_to(0);
353  _reg_for_constants.trunc_to(0);
354}
355
356
357void LIRGenerator::block_do(BlockBegin* block) {
358  CHECK_BAILOUT();
359
360  block_do_prolog(block);
361  set_block(block);
362
363  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
364    if (instr->is_pinned()) do_root(instr);
365  }
366
367  set_block(NULL);
368  block_do_epilog(block);
369}
370
371
372//-------------------------LIRGenerator-----------------------------
373
374// This is where the tree-walk starts; instr must be root;
375void LIRGenerator::do_root(Value instr) {
376  CHECK_BAILOUT();
377
378  InstructionMark im(compilation(), instr);
379
380  assert(instr->is_pinned(), "use only with roots");
381  assert(instr->subst() == instr, "shouldn't have missed substitution");
382
383  instr->visit(this);
384
385  assert(!instr->has_uses() || instr->operand()->is_valid() ||
386         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
387}
388
389
390// This is called for each node in tree; the walk stops if a root is reached
391void LIRGenerator::walk(Value instr) {
392  InstructionMark im(compilation(), instr);
393  //stop walk when encounter a root
394  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
395    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
396  } else {
397    assert(instr->subst() == instr, "shouldn't have missed substitution");
398    instr->visit(this);
399    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
400  }
401}
402
403
404CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
405  assert(state != NULL, "state must be defined");
406
407#ifndef PRODUCT
408  state->verify();
409#endif
410
411  ValueStack* s = state;
412  for_each_state(s) {
413    if (s->kind() == ValueStack::EmptyExceptionState) {
414      assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
415      continue;
416    }
417
418    int index;
419    Value value;
420    for_each_stack_value(s, index, value) {
421      assert(value->subst() == value, "missed substitution");
422      if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
423        walk(value);
424        assert(value->operand()->is_valid(), "must be evaluated now");
425      }
426    }
427
428    int bci = s->bci();
429    IRScope* scope = s->scope();
430    ciMethod* method = scope->method();
431
432    MethodLivenessResult liveness = method->liveness_at_bci(bci);
433    if (bci == SynchronizationEntryBCI) {
434      if (x->as_ExceptionObject() || x->as_Throw()) {
435        // all locals are dead on exit from the synthetic unlocker
436        liveness.clear();
437      } else {
438        assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
439      }
440    }
441    if (!liveness.is_valid()) {
442      // Degenerate or breakpointed method.
443      bailout("Degenerate or breakpointed method");
444    } else {
445      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
446      for_each_local_value(s, index, value) {
447        assert(value->subst() == value, "missed substition");
448        if (liveness.at(index) && !value->type()->is_illegal()) {
449          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
450            walk(value);
451            assert(value->operand()->is_valid(), "must be evaluated now");
452          }
453        } else {
454          // NULL out this local so that linear scan can assume that all non-NULL values are live.
455          s->invalidate_local(index);
456        }
457      }
458    }
459  }
460
461  return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
462}
463
464
465CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
466  return state_for(x, x->exception_state());
467}
468
469
470void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
471  /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
472   * is active and the class hasn't yet been resolved we need to emit a patch that resolves
473   * the class. */
474  if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
475    assert(info != NULL, "info must be set if class is not loaded");
476    __ klass2reg_patch(NULL, r, info);
477  } else {
478    // no patching needed
479    __ metadata2reg(obj->constant_encoding(), r);
480  }
481}
482
483
484void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
485                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
486  CodeStub* stub = new RangeCheckStub(range_check_info, index);
487  if (index->is_constant()) {
488    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
489                index->as_jint(), null_check_info);
490    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
491  } else {
492    cmp_reg_mem(lir_cond_aboveEqual, index, array,
493                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
494    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
495  }
496}
497
498
499void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
500  CodeStub* stub = new RangeCheckStub(info, index, true);
501  if (index->is_constant()) {
502    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
503    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
504  } else {
505    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
506                java_nio_Buffer::limit_offset(), T_INT, info);
507    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
508  }
509  __ move(index, result);
510}
511
512
513
514void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
515  LIR_Opr result_op = result;
516  LIR_Opr left_op   = left;
517  LIR_Opr right_op  = right;
518
519  if (TwoOperandLIRForm && left_op != result_op) {
520    assert(right_op != result_op, "malformed");
521    __ move(left_op, result_op);
522    left_op = result_op;
523  }
524
525  switch(code) {
526    case Bytecodes::_dadd:
527    case Bytecodes::_fadd:
528    case Bytecodes::_ladd:
529    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
530    case Bytecodes::_fmul:
531    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
532
533    case Bytecodes::_dmul:
534      {
535        if (is_strictfp) {
536          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
537        } else {
538          __ mul(left_op, right_op, result_op); break;
539        }
540      }
541      break;
542
543    case Bytecodes::_imul:
544      {
545        bool    did_strength_reduce = false;
546
547        if (right->is_constant()) {
548          int c = right->as_jint();
549          if (is_power_of_2(c)) {
550            // do not need tmp here
551            __ shift_left(left_op, exact_log2(c), result_op);
552            did_strength_reduce = true;
553          } else {
554            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
555          }
556        }
557        // we couldn't strength reduce so just emit the multiply
558        if (!did_strength_reduce) {
559          __ mul(left_op, right_op, result_op);
560        }
561      }
562      break;
563
564    case Bytecodes::_dsub:
565    case Bytecodes::_fsub:
566    case Bytecodes::_lsub:
567    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
568
569    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
570    // ldiv and lrem are implemented with a direct runtime call
571
572    case Bytecodes::_ddiv:
573      {
574        if (is_strictfp) {
575          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
576        } else {
577          __ div (left_op, right_op, result_op); break;
578        }
579      }
580      break;
581
582    case Bytecodes::_drem:
583    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
584
585    default: ShouldNotReachHere();
586  }
587}
588
589
590void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
591  arithmetic_op(code, result, left, right, false, tmp);
592}
593
594
595void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
596  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
597}
598
599
600void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
601  arithmetic_op(code, result, left, right, is_strictfp, tmp);
602}
603
604
605void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
606  if (TwoOperandLIRForm && value != result_op) {
607    assert(count != result_op, "malformed");
608    __ move(value, result_op);
609    value = result_op;
610  }
611
612  assert(count->is_constant() || count->is_register(), "must be");
613  switch(code) {
614  case Bytecodes::_ishl:
615  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
616  case Bytecodes::_ishr:
617  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
618  case Bytecodes::_iushr:
619  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
620  default: ShouldNotReachHere();
621  }
622}
623
624
625void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
626  if (TwoOperandLIRForm && left_op != result_op) {
627    assert(right_op != result_op, "malformed");
628    __ move(left_op, result_op);
629    left_op = result_op;
630  }
631
632  switch(code) {
633    case Bytecodes::_iand:
634    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
635
636    case Bytecodes::_ior:
637    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
638
639    case Bytecodes::_ixor:
640    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
641
642    default: ShouldNotReachHere();
643  }
644}
645
646
647void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
648  if (!GenerateSynchronizationCode) return;
649  // for slow path, use debug info for state after successful locking
650  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
651  __ load_stack_address_monitor(monitor_no, lock);
652  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
653  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
654}
655
656
657void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
658  if (!GenerateSynchronizationCode) return;
659  // setup registers
660  LIR_Opr hdr = lock;
661  lock = new_hdr;
662  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
663  __ load_stack_address_monitor(monitor_no, lock);
664  __ unlock_object(hdr, object, lock, scratch, slow_path);
665}
666
667#ifndef PRODUCT
668void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
669  if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
670    tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
671  } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
672    tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
673  }
674}
675#endif
676
677void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
678  klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
679  // If klass is not loaded we do not know if the klass has finalizers:
680  if (UseFastNewInstance && klass->is_loaded()
681      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
682
683    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
684
685    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
686
687    assert(klass->is_loaded(), "must be loaded");
688    // allocate space for instance
689    assert(klass->size_helper() >= 0, "illegal instance size");
690    const int instance_size = align_object_size(klass->size_helper());
691    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
692                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
693  } else {
694    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
695    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
696    __ branch_destination(slow_path->continuation());
697  }
698}
699
700
701static bool is_constant_zero(Instruction* inst) {
702  IntConstant* c = inst->type()->as_IntConstant();
703  if (c) {
704    return (c->value() == 0);
705  }
706  return false;
707}
708
709
710static bool positive_constant(Instruction* inst) {
711  IntConstant* c = inst->type()->as_IntConstant();
712  if (c) {
713    return (c->value() >= 0);
714  }
715  return false;
716}
717
718
719static ciArrayKlass* as_array_klass(ciType* type) {
720  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
721    return (ciArrayKlass*)type;
722  } else {
723    return NULL;
724  }
725}
726
727static ciType* phi_declared_type(Phi* phi) {
728  ciType* t = phi->operand_at(0)->declared_type();
729  if (t == NULL) {
730    return NULL;
731  }
732  for(int i = 1; i < phi->operand_count(); i++) {
733    if (t != phi->operand_at(i)->declared_type()) {
734      return NULL;
735    }
736  }
737  return t;
738}
739
740void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
741  Instruction* src     = x->argument_at(0);
742  Instruction* src_pos = x->argument_at(1);
743  Instruction* dst     = x->argument_at(2);
744  Instruction* dst_pos = x->argument_at(3);
745  Instruction* length  = x->argument_at(4);
746
747  // first try to identify the likely type of the arrays involved
748  ciArrayKlass* expected_type = NULL;
749  bool is_exact = false, src_objarray = false, dst_objarray = false;
750  {
751    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
752    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
753    Phi* phi;
754    if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
755      src_declared_type = as_array_klass(phi_declared_type(phi));
756    }
757    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
758    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
759    if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
760      dst_declared_type = as_array_klass(phi_declared_type(phi));
761    }
762
763    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
764      // the types exactly match so the type is fully known
765      is_exact = true;
766      expected_type = src_exact_type;
767    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
768      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
769      ciArrayKlass* src_type = NULL;
770      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
771        src_type = (ciArrayKlass*) src_exact_type;
772      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
773        src_type = (ciArrayKlass*) src_declared_type;
774      }
775      if (src_type != NULL) {
776        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
777          is_exact = true;
778          expected_type = dst_type;
779        }
780      }
781    }
782    // at least pass along a good guess
783    if (expected_type == NULL) expected_type = dst_exact_type;
784    if (expected_type == NULL) expected_type = src_declared_type;
785    if (expected_type == NULL) expected_type = dst_declared_type;
786
787    src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
788    dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
789  }
790
791  // if a probable array type has been identified, figure out if any
792  // of the required checks for a fast case can be elided.
793  int flags = LIR_OpArrayCopy::all_flags;
794
795  if (!src_objarray)
796    flags &= ~LIR_OpArrayCopy::src_objarray;
797  if (!dst_objarray)
798    flags &= ~LIR_OpArrayCopy::dst_objarray;
799
800  if (!x->arg_needs_null_check(0))
801    flags &= ~LIR_OpArrayCopy::src_null_check;
802  if (!x->arg_needs_null_check(2))
803    flags &= ~LIR_OpArrayCopy::dst_null_check;
804
805
806  if (expected_type != NULL) {
807    Value length_limit = NULL;
808
809    IfOp* ifop = length->as_IfOp();
810    if (ifop != NULL) {
811      // look for expressions like min(v, a.length) which ends up as
812      //   x > y ? y : x  or  x >= y ? y : x
813      if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
814          ifop->x() == ifop->fval() &&
815          ifop->y() == ifop->tval()) {
816        length_limit = ifop->y();
817      }
818    }
819
820    // try to skip null checks and range checks
821    NewArray* src_array = src->as_NewArray();
822    if (src_array != NULL) {
823      flags &= ~LIR_OpArrayCopy::src_null_check;
824      if (length_limit != NULL &&
825          src_array->length() == length_limit &&
826          is_constant_zero(src_pos)) {
827        flags &= ~LIR_OpArrayCopy::src_range_check;
828      }
829    }
830
831    NewArray* dst_array = dst->as_NewArray();
832    if (dst_array != NULL) {
833      flags &= ~LIR_OpArrayCopy::dst_null_check;
834      if (length_limit != NULL &&
835          dst_array->length() == length_limit &&
836          is_constant_zero(dst_pos)) {
837        flags &= ~LIR_OpArrayCopy::dst_range_check;
838      }
839    }
840
841    // check from incoming constant values
842    if (positive_constant(src_pos))
843      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
844    if (positive_constant(dst_pos))
845      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
846    if (positive_constant(length))
847      flags &= ~LIR_OpArrayCopy::length_positive_check;
848
849    // see if the range check can be elided, which might also imply
850    // that src or dst is non-null.
851    ArrayLength* al = length->as_ArrayLength();
852    if (al != NULL) {
853      if (al->array() == src) {
854        // it's the length of the source array
855        flags &= ~LIR_OpArrayCopy::length_positive_check;
856        flags &= ~LIR_OpArrayCopy::src_null_check;
857        if (is_constant_zero(src_pos))
858          flags &= ~LIR_OpArrayCopy::src_range_check;
859      }
860      if (al->array() == dst) {
861        // it's the length of the destination array
862        flags &= ~LIR_OpArrayCopy::length_positive_check;
863        flags &= ~LIR_OpArrayCopy::dst_null_check;
864        if (is_constant_zero(dst_pos))
865          flags &= ~LIR_OpArrayCopy::dst_range_check;
866      }
867    }
868    if (is_exact) {
869      flags &= ~LIR_OpArrayCopy::type_check;
870    }
871  }
872
873  IntConstant* src_int = src_pos->type()->as_IntConstant();
874  IntConstant* dst_int = dst_pos->type()->as_IntConstant();
875  if (src_int && dst_int) {
876    int s_offs = src_int->value();
877    int d_offs = dst_int->value();
878    if (src_int->value() >= dst_int->value()) {
879      flags &= ~LIR_OpArrayCopy::overlapping;
880    }
881    if (expected_type != NULL) {
882      BasicType t = expected_type->element_type()->basic_type();
883      int element_size = type2aelembytes(t);
884      if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
885          ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
886        flags &= ~LIR_OpArrayCopy::unaligned;
887      }
888    }
889  } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
890    // src and dest positions are the same, or dst is zero so assume
891    // nonoverlapping copy.
892    flags &= ~LIR_OpArrayCopy::overlapping;
893  }
894
895  if (src == dst) {
896    // moving within a single array so no type checks are needed
897    if (flags & LIR_OpArrayCopy::type_check) {
898      flags &= ~LIR_OpArrayCopy::type_check;
899    }
900  }
901  *flagsp = flags;
902  *expected_typep = (ciArrayKlass*)expected_type;
903}
904
905
906LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
907  assert(opr->is_register(), "why spill if item is not register?");
908
909  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
910    LIR_Opr result = new_register(T_FLOAT);
911    set_vreg_flag(result, must_start_in_memory);
912    assert(opr->is_register(), "only a register can be spilled");
913    assert(opr->value_type()->is_float(), "rounding only for floats available");
914    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
915    return result;
916  }
917  return opr;
918}
919
920
921LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
922  assert(type2size[t] == type2size[value->type()],
923         err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
924  if (!value->is_register()) {
925    // force into a register
926    LIR_Opr r = new_register(value->type());
927    __ move(value, r);
928    value = r;
929  }
930
931  // create a spill location
932  LIR_Opr tmp = new_register(t);
933  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
934
935  // move from register to spill
936  __ move(value, tmp);
937  return tmp;
938}
939
940void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
941  if (if_instr->should_profile()) {
942    ciMethod* method = if_instr->profiled_method();
943    assert(method != NULL, "method should be set if branch is profiled");
944    ciMethodData* md = method->method_data_or_null();
945    assert(md != NULL, "Sanity");
946    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
947    assert(data != NULL, "must have profiling data");
948    assert(data->is_BranchData(), "need BranchData for two-way branches");
949    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
950    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
951    if (if_instr->is_swapped()) {
952      int t = taken_count_offset;
953      taken_count_offset = not_taken_count_offset;
954      not_taken_count_offset = t;
955    }
956
957    LIR_Opr md_reg = new_register(T_METADATA);
958    __ metadata2reg(md->constant_encoding(), md_reg);
959
960    LIR_Opr data_offset_reg = new_pointer_register();
961    __ cmove(lir_cond(cond),
962             LIR_OprFact::intptrConst(taken_count_offset),
963             LIR_OprFact::intptrConst(not_taken_count_offset),
964             data_offset_reg, as_BasicType(if_instr->x()->type()));
965
966    // MDO cells are intptr_t, so the data_reg width is arch-dependent.
967    LIR_Opr data_reg = new_pointer_register();
968    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
969    __ move(data_addr, data_reg);
970    // Use leal instead of add to avoid destroying condition codes on x86
971    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
972    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
973    __ move(data_reg, data_addr);
974  }
975}
976
977// Phi technique:
978// This is about passing live values from one basic block to the other.
979// In code generated with Java it is rather rare that more than one
980// value is on the stack from one basic block to the other.
981// We optimize our technique for efficient passing of one value
982// (of type long, int, double..) but it can be extended.
983// When entering or leaving a basic block, all registers and all spill
984// slots are release and empty. We use the released registers
985// and spill slots to pass the live values from one block
986// to the other. The topmost value, i.e., the value on TOS of expression
987// stack is passed in registers. All other values are stored in spilling
988// area. Every Phi has an index which designates its spill slot
989// At exit of a basic block, we fill the register(s) and spill slots.
990// At entry of a basic block, the block_prolog sets up the content of phi nodes
991// and locks necessary registers and spilling slots.
992
993
994// move current value to referenced phi function
995void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
996  Phi* phi = sux_val->as_Phi();
997  // cur_val can be null without phi being null in conjunction with inlining
998  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
999    LIR_Opr operand = cur_val->operand();
1000    if (cur_val->operand()->is_illegal()) {
1001      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002             "these can be produced lazily");
1003      operand = operand_for_instruction(cur_val);
1004    }
1005    resolver->move(operand, operand_for_instruction(phi));
1006  }
1007}
1008
1009
1010// Moves all stack values into their PHI position
1011void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012  BlockBegin* bb = block();
1013  if (bb->number_of_sux() == 1) {
1014    BlockBegin* sux = bb->sux_at(0);
1015    assert(sux->number_of_preds() > 0, "invalid CFG");
1016
1017    // a block with only one predecessor never has phi functions
1018    if (sux->number_of_preds() > 1) {
1019      int max_phis = cur_state->stack_size() + cur_state->locals_size();
1020      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1021
1022      ValueStack* sux_state = sux->state();
1023      Value sux_value;
1024      int index;
1025
1026      assert(cur_state->scope() == sux_state->scope(), "not matching");
1027      assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1028      assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1029
1030      for_each_stack_value(sux_state, index, sux_value) {
1031        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1032      }
1033
1034      for_each_local_value(sux_state, index, sux_value) {
1035        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1036      }
1037
1038      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1039    }
1040  }
1041}
1042
1043
1044LIR_Opr LIRGenerator::new_register(BasicType type) {
1045  int vreg = _virtual_register_number;
1046  // add a little fudge factor for the bailout, since the bailout is
1047  // only checked periodically.  This gives a few extra registers to
1048  // hand out before we really run out, which helps us keep from
1049  // tripping over assertions.
1050  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1051    bailout("out of virtual registers");
1052    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1053      // wrap it around
1054      _virtual_register_number = LIR_OprDesc::vreg_base;
1055    }
1056  }
1057  _virtual_register_number += 1;
1058  return LIR_OprFact::virtual_register(vreg, type);
1059}
1060
1061
1062// Try to lock using register in hint
1063LIR_Opr LIRGenerator::rlock(Value instr) {
1064  return new_register(instr->type());
1065}
1066
1067
1068// does an rlock and sets result
1069LIR_Opr LIRGenerator::rlock_result(Value x) {
1070  LIR_Opr reg = rlock(x);
1071  set_result(x, reg);
1072  return reg;
1073}
1074
1075
1076// does an rlock and sets result
1077LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078  LIR_Opr reg;
1079  switch (type) {
1080  case T_BYTE:
1081  case T_BOOLEAN:
1082    reg = rlock_byte(type);
1083    break;
1084  default:
1085    reg = rlock(x);
1086    break;
1087  }
1088
1089  set_result(x, reg);
1090  return reg;
1091}
1092
1093
1094//---------------------------------------------------------------------
1095ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096  ObjectType* oc = value->type()->as_ObjectType();
1097  if (oc) {
1098    return oc->constant_value();
1099  }
1100  return NULL;
1101}
1102
1103
1104void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107
1108  // no moves are created for phi functions at the begin of exception
1109  // handlers, so assign operands manually here
1110  for_each_phi_fun(block(), phi,
1111                   operand_for_instruction(phi));
1112
1113  LIR_Opr thread_reg = getThreadPointer();
1114  __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115               exceptionOopOpr());
1116  __ move_wide(LIR_OprFact::oopConst(NULL),
1117               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118  __ move_wide(LIR_OprFact::oopConst(NULL),
1119               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120
1121  LIR_Opr result = new_register(T_OBJECT);
1122  __ move(exceptionOopOpr(), result);
1123  set_result(x, result);
1124}
1125
1126
1127//----------------------------------------------------------------------
1128//----------------------------------------------------------------------
1129//----------------------------------------------------------------------
1130//----------------------------------------------------------------------
1131//                        visitor functions
1132//----------------------------------------------------------------------
1133//----------------------------------------------------------------------
1134//----------------------------------------------------------------------
1135//----------------------------------------------------------------------
1136
1137void LIRGenerator::do_Phi(Phi* x) {
1138  // phi functions are never visited directly
1139  ShouldNotReachHere();
1140}
1141
1142
1143// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144void LIRGenerator::do_Constant(Constant* x) {
1145  if (x->state_before() != NULL) {
1146    // Any constant with a ValueStack requires patching so emit the patch here
1147    LIR_Opr reg = rlock_result(x);
1148    CodeEmitInfo* info = state_for(x, x->state_before());
1149    __ oop2reg_patch(NULL, reg, info);
1150  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151    if (!x->is_pinned()) {
1152      // unpinned constants are handled specially so that they can be
1153      // put into registers when they are used multiple times within a
1154      // block.  After the block completes their operand will be
1155      // cleared so that other blocks can't refer to that register.
1156      set_result(x, load_constant(x));
1157    } else {
1158      LIR_Opr res = x->operand();
1159      if (!res->is_valid()) {
1160        res = LIR_OprFact::value_type(x->type());
1161      }
1162      if (res->is_constant()) {
1163        LIR_Opr reg = rlock_result(x);
1164        __ move(res, reg);
1165      } else {
1166        set_result(x, res);
1167      }
1168    }
1169  } else {
1170    set_result(x, LIR_OprFact::value_type(x->type()));
1171  }
1172}
1173
1174
1175void LIRGenerator::do_Local(Local* x) {
1176  // operand_for_instruction has the side effect of setting the result
1177  // so there's no need to do it here.
1178  operand_for_instruction(x);
1179}
1180
1181
1182void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1183  Unimplemented();
1184}
1185
1186
1187void LIRGenerator::do_Return(Return* x) {
1188  if (compilation()->env()->dtrace_method_probes()) {
1189    BasicTypeList signature;
1190    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1191    signature.append(T_METADATA); // Method*
1192    LIR_OprList* args = new LIR_OprList();
1193    args->append(getThreadPointer());
1194    LIR_Opr meth = new_register(T_METADATA);
1195    __ metadata2reg(method()->constant_encoding(), meth);
1196    args->append(meth);
1197    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1198  }
1199
1200  if (x->type()->is_void()) {
1201    __ return_op(LIR_OprFact::illegalOpr);
1202  } else {
1203    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1204    LIRItem result(x->result(), this);
1205
1206    result.load_item_force(reg);
1207    __ return_op(result.result());
1208  }
1209  set_no_result(x);
1210}
1211
1212// Examble: ref.get()
1213// Combination of LoadField and g1 pre-write barrier
1214void LIRGenerator::do_Reference_get(Intrinsic* x) {
1215
1216  const int referent_offset = java_lang_ref_Reference::referent_offset;
1217  guarantee(referent_offset > 0, "referent offset not initialized");
1218
1219  assert(x->number_of_arguments() == 1, "wrong type");
1220
1221  LIRItem reference(x->argument_at(0), this);
1222  reference.load_item();
1223
1224  // need to perform the null check on the reference objecy
1225  CodeEmitInfo* info = NULL;
1226  if (x->needs_null_check()) {
1227    info = state_for(x);
1228  }
1229
1230  LIR_Address* referent_field_adr =
1231    new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1232
1233  LIR_Opr result = rlock_result(x);
1234
1235  __ load(referent_field_adr, result, info);
1236
1237  // Register the value in the referent field with the pre-barrier
1238  pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1239              result /* pre_val */,
1240              false  /* do_load */,
1241              false  /* patch */,
1242              NULL   /* info */);
1243}
1244
1245// Example: clazz.isInstance(object)
1246void LIRGenerator::do_isInstance(Intrinsic* x) {
1247  assert(x->number_of_arguments() == 2, "wrong type");
1248
1249  // TODO could try to substitute this node with an equivalent InstanceOf
1250  // if clazz is known to be a constant Class. This will pick up newly found
1251  // constants after HIR construction. I'll leave this to a future change.
1252
1253  // as a first cut, make a simple leaf call to runtime to stay platform independent.
1254  // could follow the aastore example in a future change.
1255
1256  LIRItem clazz(x->argument_at(0), this);
1257  LIRItem object(x->argument_at(1), this);
1258  clazz.load_item();
1259  object.load_item();
1260  LIR_Opr result = rlock_result(x);
1261
1262  // need to perform null check on clazz
1263  if (x->needs_null_check()) {
1264    CodeEmitInfo* info = state_for(x);
1265    __ null_check(clazz.result(), info);
1266  }
1267
1268  LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1269                                     CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1270                                     x->type(),
1271                                     NULL); // NULL CodeEmitInfo results in a leaf call
1272  __ move(call_result, result);
1273}
1274
1275// Example: object.getClass ()
1276void LIRGenerator::do_getClass(Intrinsic* x) {
1277  assert(x->number_of_arguments() == 1, "wrong type");
1278
1279  LIRItem rcvr(x->argument_at(0), this);
1280  rcvr.load_item();
1281  LIR_Opr temp = new_register(T_METADATA);
1282  LIR_Opr result = rlock_result(x);
1283
1284  // need to perform the null check on the rcvr
1285  CodeEmitInfo* info = NULL;
1286  if (x->needs_null_check()) {
1287    info = state_for(x);
1288  }
1289
1290  // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1291  // meaning of these two is mixed up (see JDK-8026837).
1292  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1293  __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1294}
1295
1296
1297// Example: Thread.currentThread()
1298void LIRGenerator::do_currentThread(Intrinsic* x) {
1299  assert(x->number_of_arguments() == 0, "wrong type");
1300  LIR_Opr reg = rlock_result(x);
1301  __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1302}
1303
1304
1305void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1306  assert(x->number_of_arguments() == 1, "wrong type");
1307  LIRItem receiver(x->argument_at(0), this);
1308
1309  receiver.load_item();
1310  BasicTypeList signature;
1311  signature.append(T_OBJECT); // receiver
1312  LIR_OprList* args = new LIR_OprList();
1313  args->append(receiver.result());
1314  CodeEmitInfo* info = state_for(x, x->state());
1315  call_runtime(&signature, args,
1316               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1317               voidType, info);
1318
1319  set_no_result(x);
1320}
1321
1322
1323//------------------------local access--------------------------------------
1324
1325LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1326  if (x->operand()->is_illegal()) {
1327    Constant* c = x->as_Constant();
1328    if (c != NULL) {
1329      x->set_operand(LIR_OprFact::value_type(c->type()));
1330    } else {
1331      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1332      // allocate a virtual register for this local or phi
1333      x->set_operand(rlock(x));
1334      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1335    }
1336  }
1337  return x->operand();
1338}
1339
1340
1341Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1342  if (opr->is_virtual()) {
1343    return instruction_for_vreg(opr->vreg_number());
1344  }
1345  return NULL;
1346}
1347
1348
1349Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1350  if (reg_num < _instruction_for_operand.length()) {
1351    return _instruction_for_operand.at(reg_num);
1352  }
1353  return NULL;
1354}
1355
1356
1357void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1358  if (_vreg_flags.size_in_bits() == 0) {
1359    BitMap2D temp(100, num_vreg_flags);
1360    temp.clear();
1361    _vreg_flags = temp;
1362  }
1363  _vreg_flags.at_put_grow(vreg_num, f, true);
1364}
1365
1366bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1367  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1368    return false;
1369  }
1370  return _vreg_flags.at(vreg_num, f);
1371}
1372
1373
1374// Block local constant handling.  This code is useful for keeping
1375// unpinned constants and constants which aren't exposed in the IR in
1376// registers.  Unpinned Constant instructions have their operands
1377// cleared when the block is finished so that other blocks can't end
1378// up referring to their registers.
1379
1380LIR_Opr LIRGenerator::load_constant(Constant* x) {
1381  assert(!x->is_pinned(), "only for unpinned constants");
1382  _unpinned_constants.append(x);
1383  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1384}
1385
1386
1387LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1388  BasicType t = c->type();
1389  for (int i = 0; i < _constants.length(); i++) {
1390    LIR_Const* other = _constants.at(i);
1391    if (t == other->type()) {
1392      switch (t) {
1393      case T_INT:
1394      case T_FLOAT:
1395        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1396        break;
1397      case T_LONG:
1398      case T_DOUBLE:
1399        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1400        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1401        break;
1402      case T_OBJECT:
1403        if (c->as_jobject() != other->as_jobject()) continue;
1404        break;
1405      }
1406      return _reg_for_constants.at(i);
1407    }
1408  }
1409
1410  LIR_Opr result = new_register(t);
1411  __ move((LIR_Opr)c, result);
1412  _constants.append(c);
1413  _reg_for_constants.append(result);
1414  return result;
1415}
1416
1417// Various barriers
1418
1419void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1420                               bool do_load, bool patch, CodeEmitInfo* info) {
1421  // Do the pre-write barrier, if any.
1422  switch (_bs->kind()) {
1423#if INCLUDE_ALL_GCS
1424    case BarrierSet::G1SATBCTLogging:
1425      G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1426      break;
1427#endif // INCLUDE_ALL_GCS
1428    case BarrierSet::CardTableModRef:
1429    case BarrierSet::CardTableExtension:
1430      // No pre barriers
1431      break;
1432    case BarrierSet::ModRef:
1433      // No pre barriers
1434      break;
1435    default      :
1436      ShouldNotReachHere();
1437
1438  }
1439}
1440
1441void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1442  switch (_bs->kind()) {
1443#if INCLUDE_ALL_GCS
1444    case BarrierSet::G1SATBCTLogging:
1445      G1SATBCardTableModRef_post_barrier(addr,  new_val);
1446      break;
1447#endif // INCLUDE_ALL_GCS
1448    case BarrierSet::CardTableModRef:
1449    case BarrierSet::CardTableExtension:
1450      CardTableModRef_post_barrier(addr,  new_val);
1451      break;
1452    case BarrierSet::ModRef:
1453      // No post barriers
1454      break;
1455    default      :
1456      ShouldNotReachHere();
1457    }
1458}
1459
1460////////////////////////////////////////////////////////////////////////
1461#if INCLUDE_ALL_GCS
1462
1463void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1464                                                     bool do_load, bool patch, CodeEmitInfo* info) {
1465  // First we test whether marking is in progress.
1466  BasicType flag_type;
1467  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1468    flag_type = T_INT;
1469  } else {
1470    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1471              "Assumption");
1472    flag_type = T_BYTE;
1473  }
1474  LIR_Opr thrd = getThreadPointer();
1475  LIR_Address* mark_active_flag_addr =
1476    new LIR_Address(thrd,
1477                    in_bytes(JavaThread::satb_mark_queue_offset() +
1478                             PtrQueue::byte_offset_of_active()),
1479                    flag_type);
1480  // Read the marking-in-progress flag.
1481  LIR_Opr flag_val = new_register(T_INT);
1482  __ load(mark_active_flag_addr, flag_val);
1483  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1484
1485  LIR_PatchCode pre_val_patch_code = lir_patch_none;
1486
1487  CodeStub* slow;
1488
1489  if (do_load) {
1490    assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1491    assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1492
1493    if (patch)
1494      pre_val_patch_code = lir_patch_normal;
1495
1496    pre_val = new_register(T_OBJECT);
1497
1498    if (!addr_opr->is_address()) {
1499      assert(addr_opr->is_register(), "must be");
1500      addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1501    }
1502    slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1503  } else {
1504    assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1505    assert(pre_val->is_register(), "must be");
1506    assert(pre_val->type() == T_OBJECT, "must be an object");
1507    assert(info == NULL, "sanity");
1508
1509    slow = new G1PreBarrierStub(pre_val);
1510  }
1511
1512  __ branch(lir_cond_notEqual, T_INT, slow);
1513  __ branch_destination(slow->continuation());
1514}
1515
1516void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1517  // If the "new_val" is a constant NULL, no barrier is necessary.
1518  if (new_val->is_constant() &&
1519      new_val->as_constant_ptr()->as_jobject() == NULL) return;
1520
1521  if (!new_val->is_register()) {
1522    LIR_Opr new_val_reg = new_register(T_OBJECT);
1523    if (new_val->is_constant()) {
1524      __ move(new_val, new_val_reg);
1525    } else {
1526      __ leal(new_val, new_val_reg);
1527    }
1528    new_val = new_val_reg;
1529  }
1530  assert(new_val->is_register(), "must be a register at this point");
1531
1532  if (addr->is_address()) {
1533    LIR_Address* address = addr->as_address_ptr();
1534    LIR_Opr ptr = new_pointer_register();
1535    if (!address->index()->is_valid() && address->disp() == 0) {
1536      __ move(address->base(), ptr);
1537    } else {
1538      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1539      __ leal(addr, ptr);
1540    }
1541    addr = ptr;
1542  }
1543  assert(addr->is_register(), "must be a register at this point");
1544
1545  LIR_Opr xor_res = new_pointer_register();
1546  LIR_Opr xor_shift_res = new_pointer_register();
1547  if (TwoOperandLIRForm ) {
1548    __ move(addr, xor_res);
1549    __ logical_xor(xor_res, new_val, xor_res);
1550    __ move(xor_res, xor_shift_res);
1551    __ unsigned_shift_right(xor_shift_res,
1552                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1553                            xor_shift_res,
1554                            LIR_OprDesc::illegalOpr());
1555  } else {
1556    __ logical_xor(addr, new_val, xor_res);
1557    __ unsigned_shift_right(xor_res,
1558                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1559                            xor_shift_res,
1560                            LIR_OprDesc::illegalOpr());
1561  }
1562
1563  if (!new_val->is_register()) {
1564    LIR_Opr new_val_reg = new_register(T_OBJECT);
1565    __ leal(new_val, new_val_reg);
1566    new_val = new_val_reg;
1567  }
1568  assert(new_val->is_register(), "must be a register at this point");
1569
1570  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1571
1572  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1573  __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1574  __ branch_destination(slow->continuation());
1575}
1576
1577#endif // INCLUDE_ALL_GCS
1578////////////////////////////////////////////////////////////////////////
1579
1580void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1581  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1582  assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1583  LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1584  if (addr->is_address()) {
1585    LIR_Address* address = addr->as_address_ptr();
1586    // ptr cannot be an object because we use this barrier for array card marks
1587    // and addr can point in the middle of an array.
1588    LIR_Opr ptr = new_pointer_register();
1589    if (!address->index()->is_valid() && address->disp() == 0) {
1590      __ move(address->base(), ptr);
1591    } else {
1592      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1593      __ leal(addr, ptr);
1594    }
1595    addr = ptr;
1596  }
1597  assert(addr->is_register(), "must be a register at this point");
1598
1599#ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1600  CardTableModRef_post_barrier_helper(addr, card_table_base);
1601#else
1602  LIR_Opr tmp = new_pointer_register();
1603  if (TwoOperandLIRForm) {
1604    __ move(addr, tmp);
1605    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1606  } else {
1607    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1608  }
1609
1610  LIR_Address* card_addr;
1611  if (can_inline_as_constant(card_table_base)) {
1612    card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1613  } else {
1614    card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1615  }
1616
1617  LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1618  if (UseCondCardMark) {
1619    LIR_Opr cur_value = new_register(T_INT);
1620    __ move(card_addr, cur_value);
1621
1622    LabelObj* L_already_dirty = new LabelObj();
1623    __ cmp(lir_cond_equal, cur_value, dirty);
1624    __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1625    __ move(dirty, card_addr);
1626    __ branch_destination(L_already_dirty->label());
1627  } else {
1628    __ move(dirty, card_addr);
1629  }
1630#endif
1631}
1632
1633
1634//------------------------field access--------------------------------------
1635
1636// Comment copied form templateTable_i486.cpp
1637// ----------------------------------------------------------------------------
1638// Volatile variables demand their effects be made known to all CPU's in
1639// order.  Store buffers on most chips allow reads & writes to reorder; the
1640// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1641// memory barrier (i.e., it's not sufficient that the interpreter does not
1642// reorder volatile references, the hardware also must not reorder them).
1643//
1644// According to the new Java Memory Model (JMM):
1645// (1) All volatiles are serialized wrt to each other.
1646// ALSO reads & writes act as aquire & release, so:
1647// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1648// the read float up to before the read.  It's OK for non-volatile memory refs
1649// that happen before the volatile read to float down below it.
1650// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1651// that happen BEFORE the write float down to after the write.  It's OK for
1652// non-volatile memory refs that happen after the volatile write to float up
1653// before it.
1654//
1655// We only put in barriers around volatile refs (they are expensive), not
1656// _between_ memory refs (that would require us to track the flavor of the
1657// previous memory refs).  Requirements (2) and (3) require some barriers
1658// before volatile stores and after volatile loads.  These nearly cover
1659// requirement (1) but miss the volatile-store-volatile-load case.  This final
1660// case is placed after volatile-stores although it could just as well go
1661// before volatile-loads.
1662
1663
1664void LIRGenerator::do_StoreField(StoreField* x) {
1665  bool needs_patching = x->needs_patching();
1666  bool is_volatile = x->field()->is_volatile();
1667  BasicType field_type = x->field_type();
1668  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1669
1670  CodeEmitInfo* info = NULL;
1671  if (needs_patching) {
1672    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1673    info = state_for(x, x->state_before());
1674  } else if (x->needs_null_check()) {
1675    NullCheck* nc = x->explicit_null_check();
1676    if (nc == NULL) {
1677      info = state_for(x);
1678    } else {
1679      info = state_for(nc);
1680    }
1681  }
1682
1683
1684  LIRItem object(x->obj(), this);
1685  LIRItem value(x->value(),  this);
1686
1687  object.load_item();
1688
1689  if (is_volatile || needs_patching) {
1690    // load item if field is volatile (fewer special cases for volatiles)
1691    // load item if field not initialized
1692    // load item if field not constant
1693    // because of code patching we cannot inline constants
1694    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1695      value.load_byte_item();
1696    } else  {
1697      value.load_item();
1698    }
1699  } else {
1700    value.load_for_store(field_type);
1701  }
1702
1703  set_no_result(x);
1704
1705#ifndef PRODUCT
1706  if (PrintNotLoaded && needs_patching) {
1707    tty->print_cr("   ###class not loaded at store_%s bci %d",
1708                  x->is_static() ?  "static" : "field", x->printable_bci());
1709  }
1710#endif
1711
1712  if (x->needs_null_check() &&
1713      (needs_patching ||
1714       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1715    // emit an explicit null check because the offset is too large
1716    __ null_check(object.result(), new CodeEmitInfo(info));
1717  }
1718
1719  LIR_Address* address;
1720  if (needs_patching) {
1721    // we need to patch the offset in the instruction so don't allow
1722    // generate_address to try to be smart about emitting the -1.
1723    // Otherwise the patching code won't know how to find the
1724    // instruction to patch.
1725    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1726  } else {
1727    address = generate_address(object.result(), x->offset(), field_type);
1728  }
1729
1730  if (is_volatile && os::is_MP()) {
1731    __ membar_release();
1732  }
1733
1734  if (is_oop) {
1735    // Do the pre-write barrier, if any.
1736    pre_barrier(LIR_OprFact::address(address),
1737                LIR_OprFact::illegalOpr /* pre_val */,
1738                true /* do_load*/,
1739                needs_patching,
1740                (info ? new CodeEmitInfo(info) : NULL));
1741  }
1742
1743  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1744  if (needs_atomic_access && !needs_patching) {
1745    volatile_field_store(value.result(), address, info);
1746  } else {
1747    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1748    __ store(value.result(), address, info, patch_code);
1749  }
1750
1751  if (is_oop) {
1752    // Store to object so mark the card of the header
1753    post_barrier(object.result(), value.result());
1754  }
1755
1756  if (is_volatile && os::is_MP()) {
1757    __ membar();
1758  }
1759}
1760
1761
1762void LIRGenerator::do_LoadField(LoadField* x) {
1763  bool needs_patching = x->needs_patching();
1764  bool is_volatile = x->field()->is_volatile();
1765  BasicType field_type = x->field_type();
1766
1767  CodeEmitInfo* info = NULL;
1768  if (needs_patching) {
1769    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1770    info = state_for(x, x->state_before());
1771  } else if (x->needs_null_check()) {
1772    NullCheck* nc = x->explicit_null_check();
1773    if (nc == NULL) {
1774      info = state_for(x);
1775    } else {
1776      info = state_for(nc);
1777    }
1778  }
1779
1780  LIRItem object(x->obj(), this);
1781
1782  object.load_item();
1783
1784#ifndef PRODUCT
1785  if (PrintNotLoaded && needs_patching) {
1786    tty->print_cr("   ###class not loaded at load_%s bci %d",
1787                  x->is_static() ?  "static" : "field", x->printable_bci());
1788  }
1789#endif
1790
1791  bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1792  if (x->needs_null_check() &&
1793      (needs_patching ||
1794       MacroAssembler::needs_explicit_null_check(x->offset()) ||
1795       stress_deopt)) {
1796    LIR_Opr obj = object.result();
1797    if (stress_deopt) {
1798      obj = new_register(T_OBJECT);
1799      __ move(LIR_OprFact::oopConst(NULL), obj);
1800    }
1801    // emit an explicit null check because the offset is too large
1802    __ null_check(obj, new CodeEmitInfo(info));
1803  }
1804
1805  LIR_Opr reg = rlock_result(x, field_type);
1806  LIR_Address* address;
1807  if (needs_patching) {
1808    // we need to patch the offset in the instruction so don't allow
1809    // generate_address to try to be smart about emitting the -1.
1810    // Otherwise the patching code won't know how to find the
1811    // instruction to patch.
1812    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1813  } else {
1814    address = generate_address(object.result(), x->offset(), field_type);
1815  }
1816
1817  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1818  if (needs_atomic_access && !needs_patching) {
1819    volatile_field_load(address, reg, info);
1820  } else {
1821    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1822    __ load(address, reg, info, patch_code);
1823  }
1824
1825  if (is_volatile && os::is_MP()) {
1826    __ membar_acquire();
1827  }
1828}
1829
1830
1831//------------------------java.nio.Buffer.checkIndex------------------------
1832
1833// int java.nio.Buffer.checkIndex(int)
1834void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1835  // NOTE: by the time we are in checkIndex() we are guaranteed that
1836  // the buffer is non-null (because checkIndex is package-private and
1837  // only called from within other methods in the buffer).
1838  assert(x->number_of_arguments() == 2, "wrong type");
1839  LIRItem buf  (x->argument_at(0), this);
1840  LIRItem index(x->argument_at(1), this);
1841  buf.load_item();
1842  index.load_item();
1843
1844  LIR_Opr result = rlock_result(x);
1845  if (GenerateRangeChecks) {
1846    CodeEmitInfo* info = state_for(x);
1847    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1848    if (index.result()->is_constant()) {
1849      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1850      __ branch(lir_cond_belowEqual, T_INT, stub);
1851    } else {
1852      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1853                  java_nio_Buffer::limit_offset(), T_INT, info);
1854      __ branch(lir_cond_aboveEqual, T_INT, stub);
1855    }
1856    __ move(index.result(), result);
1857  } else {
1858    // Just load the index into the result register
1859    __ move(index.result(), result);
1860  }
1861}
1862
1863
1864//------------------------array access--------------------------------------
1865
1866
1867void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1868  LIRItem array(x->array(), this);
1869  array.load_item();
1870  LIR_Opr reg = rlock_result(x);
1871
1872  CodeEmitInfo* info = NULL;
1873  if (x->needs_null_check()) {
1874    NullCheck* nc = x->explicit_null_check();
1875    if (nc == NULL) {
1876      info = state_for(x);
1877    } else {
1878      info = state_for(nc);
1879    }
1880    if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1881      LIR_Opr obj = new_register(T_OBJECT);
1882      __ move(LIR_OprFact::oopConst(NULL), obj);
1883      __ null_check(obj, new CodeEmitInfo(info));
1884    }
1885  }
1886  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1887}
1888
1889
1890void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1891  bool use_length = x->length() != NULL;
1892  LIRItem array(x->array(), this);
1893  LIRItem index(x->index(), this);
1894  LIRItem length(this);
1895  bool needs_range_check = x->compute_needs_range_check();
1896
1897  if (use_length && needs_range_check) {
1898    length.set_instruction(x->length());
1899    length.load_item();
1900  }
1901
1902  array.load_item();
1903  if (index.is_constant() && can_inline_as_constant(x->index())) {
1904    // let it be a constant
1905    index.dont_load_item();
1906  } else {
1907    index.load_item();
1908  }
1909
1910  CodeEmitInfo* range_check_info = state_for(x);
1911  CodeEmitInfo* null_check_info = NULL;
1912  if (x->needs_null_check()) {
1913    NullCheck* nc = x->explicit_null_check();
1914    if (nc != NULL) {
1915      null_check_info = state_for(nc);
1916    } else {
1917      null_check_info = range_check_info;
1918    }
1919    if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1920      LIR_Opr obj = new_register(T_OBJECT);
1921      __ move(LIR_OprFact::oopConst(NULL), obj);
1922      __ null_check(obj, new CodeEmitInfo(null_check_info));
1923    }
1924  }
1925
1926  // emit array address setup early so it schedules better
1927  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1928
1929  if (GenerateRangeChecks && needs_range_check) {
1930    if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1931      __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1932    } else if (use_length) {
1933      // TODO: use a (modified) version of array_range_check that does not require a
1934      //       constant length to be loaded to a register
1935      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1936      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1937    } else {
1938      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1939      // The range check performs the null check, so clear it out for the load
1940      null_check_info = NULL;
1941    }
1942  }
1943
1944  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1945}
1946
1947
1948void LIRGenerator::do_NullCheck(NullCheck* x) {
1949  if (x->can_trap()) {
1950    LIRItem value(x->obj(), this);
1951    value.load_item();
1952    CodeEmitInfo* info = state_for(x);
1953    __ null_check(value.result(), info);
1954  }
1955}
1956
1957
1958void LIRGenerator::do_TypeCast(TypeCast* x) {
1959  LIRItem value(x->obj(), this);
1960  value.load_item();
1961  // the result is the same as from the node we are casting
1962  set_result(x, value.result());
1963}
1964
1965
1966void LIRGenerator::do_Throw(Throw* x) {
1967  LIRItem exception(x->exception(), this);
1968  exception.load_item();
1969  set_no_result(x);
1970  LIR_Opr exception_opr = exception.result();
1971  CodeEmitInfo* info = state_for(x, x->state());
1972
1973#ifndef PRODUCT
1974  if (PrintC1Statistics) {
1975    increment_counter(Runtime1::throw_count_address(), T_INT);
1976  }
1977#endif
1978
1979  // check if the instruction has an xhandler in any of the nested scopes
1980  bool unwind = false;
1981  if (info->exception_handlers()->length() == 0) {
1982    // this throw is not inside an xhandler
1983    unwind = true;
1984  } else {
1985    // get some idea of the throw type
1986    bool type_is_exact = true;
1987    ciType* throw_type = x->exception()->exact_type();
1988    if (throw_type == NULL) {
1989      type_is_exact = false;
1990      throw_type = x->exception()->declared_type();
1991    }
1992    if (throw_type != NULL && throw_type->is_instance_klass()) {
1993      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1994      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1995    }
1996  }
1997
1998  // do null check before moving exception oop into fixed register
1999  // to avoid a fixed interval with an oop during the null check.
2000  // Use a copy of the CodeEmitInfo because debug information is
2001  // different for null_check and throw.
2002  if (GenerateCompilerNullChecks &&
2003      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2004    // if the exception object wasn't created using new then it might be null.
2005    __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2006  }
2007
2008  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2009    // we need to go through the exception lookup path to get JVMTI
2010    // notification done
2011    unwind = false;
2012  }
2013
2014  // move exception oop into fixed register
2015  __ move(exception_opr, exceptionOopOpr());
2016
2017  if (unwind) {
2018    __ unwind_exception(exceptionOopOpr());
2019  } else {
2020    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2021  }
2022}
2023
2024
2025void LIRGenerator::do_RoundFP(RoundFP* x) {
2026  LIRItem input(x->input(), this);
2027  input.load_item();
2028  LIR_Opr input_opr = input.result();
2029  assert(input_opr->is_register(), "why round if value is not in a register?");
2030  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2031  if (input_opr->is_single_fpu()) {
2032    set_result(x, round_item(input_opr)); // This code path not currently taken
2033  } else {
2034    LIR_Opr result = new_register(T_DOUBLE);
2035    set_vreg_flag(result, must_start_in_memory);
2036    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2037    set_result(x, result);
2038  }
2039}
2040
2041// Here UnsafeGetRaw may have x->base() and x->index() be int or long
2042// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2043void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2044  LIRItem base(x->base(), this);
2045  LIRItem idx(this);
2046
2047  base.load_item();
2048  if (x->has_index()) {
2049    idx.set_instruction(x->index());
2050    idx.load_nonconstant();
2051  }
2052
2053  LIR_Opr reg = rlock_result(x, x->basic_type());
2054
2055  int   log2_scale = 0;
2056  if (x->has_index()) {
2057    log2_scale = x->log2_scale();
2058  }
2059
2060  assert(!x->has_index() || idx.value() == x->index(), "should match");
2061
2062  LIR_Opr base_op = base.result();
2063  LIR_Opr index_op = idx.result();
2064#ifndef _LP64
2065  if (base_op->type() == T_LONG) {
2066    base_op = new_register(T_INT);
2067    __ convert(Bytecodes::_l2i, base.result(), base_op);
2068  }
2069  if (x->has_index()) {
2070    if (index_op->type() == T_LONG) {
2071      LIR_Opr long_index_op = index_op;
2072      if (index_op->is_constant()) {
2073        long_index_op = new_register(T_LONG);
2074        __ move(index_op, long_index_op);
2075      }
2076      index_op = new_register(T_INT);
2077      __ convert(Bytecodes::_l2i, long_index_op, index_op);
2078    } else {
2079      assert(x->index()->type()->tag() == intTag, "must be");
2080    }
2081  }
2082  // At this point base and index should be all ints.
2083  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2084  assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2085#else
2086  if (x->has_index()) {
2087    if (index_op->type() == T_INT) {
2088      if (!index_op->is_constant()) {
2089        index_op = new_register(T_LONG);
2090        __ convert(Bytecodes::_i2l, idx.result(), index_op);
2091      }
2092    } else {
2093      assert(index_op->type() == T_LONG, "must be");
2094      if (index_op->is_constant()) {
2095        index_op = new_register(T_LONG);
2096        __ move(idx.result(), index_op);
2097      }
2098    }
2099  }
2100  // At this point base is a long non-constant
2101  // Index is a long register or a int constant.
2102  // We allow the constant to stay an int because that would allow us a more compact encoding by
2103  // embedding an immediate offset in the address expression. If we have a long constant, we have to
2104  // move it into a register first.
2105  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2106  assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2107                            (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2108#endif
2109
2110  BasicType dst_type = x->basic_type();
2111
2112  LIR_Address* addr;
2113  if (index_op->is_constant()) {
2114    assert(log2_scale == 0, "must not have a scale");
2115    assert(index_op->type() == T_INT, "only int constants supported");
2116    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2117  } else {
2118#ifdef X86
2119    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2120#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2121    addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2122#else
2123    if (index_op->is_illegal() || log2_scale == 0) {
2124      addr = new LIR_Address(base_op, index_op, dst_type);
2125    } else {
2126      LIR_Opr tmp = new_pointer_register();
2127      __ shift_left(index_op, log2_scale, tmp);
2128      addr = new LIR_Address(base_op, tmp, dst_type);
2129    }
2130#endif
2131  }
2132
2133  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2134    __ unaligned_move(addr, reg);
2135  } else {
2136    if (dst_type == T_OBJECT && x->is_wide()) {
2137      __ move_wide(addr, reg);
2138    } else {
2139      __ move(addr, reg);
2140    }
2141  }
2142}
2143
2144
2145void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2146  int  log2_scale = 0;
2147  BasicType type = x->basic_type();
2148
2149  if (x->has_index()) {
2150    log2_scale = x->log2_scale();
2151  }
2152
2153  LIRItem base(x->base(), this);
2154  LIRItem value(x->value(), this);
2155  LIRItem idx(this);
2156
2157  base.load_item();
2158  if (x->has_index()) {
2159    idx.set_instruction(x->index());
2160    idx.load_item();
2161  }
2162
2163  if (type == T_BYTE || type == T_BOOLEAN) {
2164    value.load_byte_item();
2165  } else {
2166    value.load_item();
2167  }
2168
2169  set_no_result(x);
2170
2171  LIR_Opr base_op = base.result();
2172  LIR_Opr index_op = idx.result();
2173
2174#ifdef GENERATE_ADDRESS_IS_PREFERRED
2175  LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2176#else
2177#ifndef _LP64
2178  if (base_op->type() == T_LONG) {
2179    base_op = new_register(T_INT);
2180    __ convert(Bytecodes::_l2i, base.result(), base_op);
2181  }
2182  if (x->has_index()) {
2183    if (index_op->type() == T_LONG) {
2184      index_op = new_register(T_INT);
2185      __ convert(Bytecodes::_l2i, idx.result(), index_op);
2186    }
2187  }
2188  // At this point base and index should be all ints and not constants
2189  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2190  assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2191#else
2192  if (x->has_index()) {
2193    if (index_op->type() == T_INT) {
2194      index_op = new_register(T_LONG);
2195      __ convert(Bytecodes::_i2l, idx.result(), index_op);
2196    }
2197  }
2198  // At this point base and index are long and non-constant
2199  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2200  assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2201#endif
2202
2203  if (log2_scale != 0) {
2204    // temporary fix (platform dependent code without shift on Intel would be better)
2205    // TODO: ARM also allows embedded shift in the address
2206    __ shift_left(index_op, log2_scale, index_op);
2207  }
2208
2209  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2210#endif // !GENERATE_ADDRESS_IS_PREFERRED
2211  __ move(value.result(), addr);
2212}
2213
2214
2215void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2216  BasicType type = x->basic_type();
2217  LIRItem src(x->object(), this);
2218  LIRItem off(x->offset(), this);
2219
2220  off.load_item();
2221  src.load_item();
2222
2223  LIR_Opr value = rlock_result(x, x->basic_type());
2224
2225  get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2226
2227#if INCLUDE_ALL_GCS
2228  // We might be reading the value of the referent field of a
2229  // Reference object in order to attach it back to the live
2230  // object graph. If G1 is enabled then we need to record
2231  // the value that is being returned in an SATB log buffer.
2232  //
2233  // We need to generate code similar to the following...
2234  //
2235  // if (offset == java_lang_ref_Reference::referent_offset) {
2236  //   if (src != NULL) {
2237  //     if (klass(src)->reference_type() != REF_NONE) {
2238  //       pre_barrier(..., value, ...);
2239  //     }
2240  //   }
2241  // }
2242
2243  if (UseG1GC && type == T_OBJECT) {
2244    bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2245    bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2246    bool gen_source_check = true;    // Assume we need to check the src object for null.
2247    bool gen_type_check = true;      // Assume we need to check the reference_type.
2248
2249    if (off.is_constant()) {
2250      jlong off_con = (off.type()->is_int() ?
2251                        (jlong) off.get_jint_constant() :
2252                        off.get_jlong_constant());
2253
2254
2255      if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2256        // The constant offset is something other than referent_offset.
2257        // We can skip generating/checking the remaining guards and
2258        // skip generation of the code stub.
2259        gen_pre_barrier = false;
2260      } else {
2261        // The constant offset is the same as referent_offset -
2262        // we do not need to generate a runtime offset check.
2263        gen_offset_check = false;
2264      }
2265    }
2266
2267    // We don't need to generate stub if the source object is an array
2268    if (gen_pre_barrier && src.type()->is_array()) {
2269      gen_pre_barrier = false;
2270    }
2271
2272    if (gen_pre_barrier) {
2273      // We still need to continue with the checks.
2274      if (src.is_constant()) {
2275        ciObject* src_con = src.get_jobject_constant();
2276        guarantee(src_con != NULL, "no source constant");
2277
2278        if (src_con->is_null_object()) {
2279          // The constant src object is null - We can skip
2280          // generating the code stub.
2281          gen_pre_barrier = false;
2282        } else {
2283          // Non-null constant source object. We still have to generate
2284          // the slow stub - but we don't need to generate the runtime
2285          // null object check.
2286          gen_source_check = false;
2287        }
2288      }
2289    }
2290    if (gen_pre_barrier && !PatchALot) {
2291      // Can the klass of object be statically determined to be
2292      // a sub-class of Reference?
2293      ciType* type = src.value()->declared_type();
2294      if ((type != NULL) && type->is_loaded()) {
2295        if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2296          gen_type_check = false;
2297        } else if (type->is_klass() &&
2298                   !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2299          // Not Reference and not Object klass.
2300          gen_pre_barrier = false;
2301        }
2302      }
2303    }
2304
2305    if (gen_pre_barrier) {
2306      LabelObj* Lcont = new LabelObj();
2307
2308      // We can have generate one runtime check here. Let's start with
2309      // the offset check.
2310      if (gen_offset_check) {
2311        // if (offset != referent_offset) -> continue
2312        // If offset is an int then we can do the comparison with the
2313        // referent_offset constant; otherwise we need to move
2314        // referent_offset into a temporary register and generate
2315        // a reg-reg compare.
2316
2317        LIR_Opr referent_off;
2318
2319        if (off.type()->is_int()) {
2320          referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2321        } else {
2322          assert(off.type()->is_long(), "what else?");
2323          referent_off = new_register(T_LONG);
2324          __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2325        }
2326        __ cmp(lir_cond_notEqual, off.result(), referent_off);
2327        __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2328      }
2329      if (gen_source_check) {
2330        // offset is a const and equals referent offset
2331        // if (source == null) -> continue
2332        __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2333        __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2334      }
2335      LIR_Opr src_klass = new_register(T_OBJECT);
2336      if (gen_type_check) {
2337        // We have determined that offset == referent_offset && src != null.
2338        // if (src->_klass->_reference_type == REF_NONE) -> continue
2339        __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2340        LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2341        LIR_Opr reference_type = new_register(T_INT);
2342        __ move(reference_type_addr, reference_type);
2343        __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2344        __ branch(lir_cond_equal, T_INT, Lcont->label());
2345      }
2346      {
2347        // We have determined that src->_klass->_reference_type != REF_NONE
2348        // so register the value in the referent field with the pre-barrier.
2349        pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2350                    value  /* pre_val */,
2351                    false  /* do_load */,
2352                    false  /* patch */,
2353                    NULL   /* info */);
2354      }
2355      __ branch_destination(Lcont->label());
2356    }
2357  }
2358#endif // INCLUDE_ALL_GCS
2359
2360  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2361}
2362
2363
2364void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2365  BasicType type = x->basic_type();
2366  LIRItem src(x->object(), this);
2367  LIRItem off(x->offset(), this);
2368  LIRItem data(x->value(), this);
2369
2370  src.load_item();
2371  if (type == T_BOOLEAN || type == T_BYTE) {
2372    data.load_byte_item();
2373  } else {
2374    data.load_item();
2375  }
2376  off.load_item();
2377
2378  set_no_result(x);
2379
2380  if (x->is_volatile() && os::is_MP()) __ membar_release();
2381  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2382  if (x->is_volatile() && os::is_MP()) __ membar();
2383}
2384
2385
2386void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2387  int lng = x->length();
2388
2389  for (int i = 0; i < lng; i++) {
2390    SwitchRange* one_range = x->at(i);
2391    int low_key = one_range->low_key();
2392    int high_key = one_range->high_key();
2393    BlockBegin* dest = one_range->sux();
2394    if (low_key == high_key) {
2395      __ cmp(lir_cond_equal, value, low_key);
2396      __ branch(lir_cond_equal, T_INT, dest);
2397    } else if (high_key - low_key == 1) {
2398      __ cmp(lir_cond_equal, value, low_key);
2399      __ branch(lir_cond_equal, T_INT, dest);
2400      __ cmp(lir_cond_equal, value, high_key);
2401      __ branch(lir_cond_equal, T_INT, dest);
2402    } else {
2403      LabelObj* L = new LabelObj();
2404      __ cmp(lir_cond_less, value, low_key);
2405      __ branch(lir_cond_less, T_INT, L->label());
2406      __ cmp(lir_cond_lessEqual, value, high_key);
2407      __ branch(lir_cond_lessEqual, T_INT, dest);
2408      __ branch_destination(L->label());
2409    }
2410  }
2411  __ jump(default_sux);
2412}
2413
2414
2415SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2416  SwitchRangeList* res = new SwitchRangeList();
2417  int len = x->length();
2418  if (len > 0) {
2419    BlockBegin* sux = x->sux_at(0);
2420    int key = x->lo_key();
2421    BlockBegin* default_sux = x->default_sux();
2422    SwitchRange* range = new SwitchRange(key, sux);
2423    for (int i = 0; i < len; i++, key++) {
2424      BlockBegin* new_sux = x->sux_at(i);
2425      if (sux == new_sux) {
2426        // still in same range
2427        range->set_high_key(key);
2428      } else {
2429        // skip tests which explicitly dispatch to the default
2430        if (sux != default_sux) {
2431          res->append(range);
2432        }
2433        range = new SwitchRange(key, new_sux);
2434      }
2435      sux = new_sux;
2436    }
2437    if (res->length() == 0 || res->last() != range)  res->append(range);
2438  }
2439  return res;
2440}
2441
2442
2443// we expect the keys to be sorted by increasing value
2444SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2445  SwitchRangeList* res = new SwitchRangeList();
2446  int len = x->length();
2447  if (len > 0) {
2448    BlockBegin* default_sux = x->default_sux();
2449    int key = x->key_at(0);
2450    BlockBegin* sux = x->sux_at(0);
2451    SwitchRange* range = new SwitchRange(key, sux);
2452    for (int i = 1; i < len; i++) {
2453      int new_key = x->key_at(i);
2454      BlockBegin* new_sux = x->sux_at(i);
2455      if (key+1 == new_key && sux == new_sux) {
2456        // still in same range
2457        range->set_high_key(new_key);
2458      } else {
2459        // skip tests which explicitly dispatch to the default
2460        if (range->sux() != default_sux) {
2461          res->append(range);
2462        }
2463        range = new SwitchRange(new_key, new_sux);
2464      }
2465      key = new_key;
2466      sux = new_sux;
2467    }
2468    if (res->length() == 0 || res->last() != range)  res->append(range);
2469  }
2470  return res;
2471}
2472
2473
2474void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2475  LIRItem tag(x->tag(), this);
2476  tag.load_item();
2477  set_no_result(x);
2478
2479  if (x->is_safepoint()) {
2480    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2481  }
2482
2483  // move values into phi locations
2484  move_to_phi(x->state());
2485
2486  int lo_key = x->lo_key();
2487  int hi_key = x->hi_key();
2488  int len = x->length();
2489  LIR_Opr value = tag.result();
2490  if (UseTableRanges) {
2491    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2492  } else {
2493    for (int i = 0; i < len; i++) {
2494      __ cmp(lir_cond_equal, value, i + lo_key);
2495      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2496    }
2497    __ jump(x->default_sux());
2498  }
2499}
2500
2501
2502void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2503  LIRItem tag(x->tag(), this);
2504  tag.load_item();
2505  set_no_result(x);
2506
2507  if (x->is_safepoint()) {
2508    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2509  }
2510
2511  // move values into phi locations
2512  move_to_phi(x->state());
2513
2514  LIR_Opr value = tag.result();
2515  if (UseTableRanges) {
2516    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2517  } else {
2518    int len = x->length();
2519    for (int i = 0; i < len; i++) {
2520      __ cmp(lir_cond_equal, value, x->key_at(i));
2521      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2522    }
2523    __ jump(x->default_sux());
2524  }
2525}
2526
2527
2528void LIRGenerator::do_Goto(Goto* x) {
2529  set_no_result(x);
2530
2531  if (block()->next()->as_OsrEntry()) {
2532    // need to free up storage used for OSR entry point
2533    LIR_Opr osrBuffer = block()->next()->operand();
2534    BasicTypeList signature;
2535    signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2536    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2537    __ move(osrBuffer, cc->args()->at(0));
2538    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2539                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2540  }
2541
2542  if (x->is_safepoint()) {
2543    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2544
2545    // increment backedge counter if needed
2546    CodeEmitInfo* info = state_for(x, state);
2547    increment_backedge_counter(info, x->profiled_bci());
2548    CodeEmitInfo* safepoint_info = state_for(x, state);
2549    __ safepoint(safepoint_poll_register(), safepoint_info);
2550  }
2551
2552  // Gotos can be folded Ifs, handle this case.
2553  if (x->should_profile()) {
2554    ciMethod* method = x->profiled_method();
2555    assert(method != NULL, "method should be set if branch is profiled");
2556    ciMethodData* md = method->method_data_or_null();
2557    assert(md != NULL, "Sanity");
2558    ciProfileData* data = md->bci_to_data(x->profiled_bci());
2559    assert(data != NULL, "must have profiling data");
2560    int offset;
2561    if (x->direction() == Goto::taken) {
2562      assert(data->is_BranchData(), "need BranchData for two-way branches");
2563      offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2564    } else if (x->direction() == Goto::not_taken) {
2565      assert(data->is_BranchData(), "need BranchData for two-way branches");
2566      offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2567    } else {
2568      assert(data->is_JumpData(), "need JumpData for branches");
2569      offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2570    }
2571    LIR_Opr md_reg = new_register(T_METADATA);
2572    __ metadata2reg(md->constant_encoding(), md_reg);
2573
2574    increment_counter(new LIR_Address(md_reg, offset,
2575                                      NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2576  }
2577
2578  // emit phi-instruction move after safepoint since this simplifies
2579  // describing the state as the safepoint.
2580  move_to_phi(x->state());
2581
2582  __ jump(x->default_sux());
2583}
2584
2585/**
2586 * Emit profiling code if needed for arguments, parameters, return value types
2587 *
2588 * @param md                    MDO the code will update at runtime
2589 * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2590 * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2591 * @param profiled_k            current profile
2592 * @param obj                   IR node for the object to be profiled
2593 * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2594 *                              Set once we find an update to make and use for next ones.
2595 * @param not_null              true if we know obj cannot be null
2596 * @param signature_at_call_k   signature at call for obj
2597 * @param callee_signature_k    signature of callee for obj
2598 *                              at call and callee signatures differ at method handle call
2599 * @return                      the only klass we know will ever be seen at this profile point
2600 */
2601ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2602                                    Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2603                                    ciKlass* callee_signature_k) {
2604  ciKlass* result = NULL;
2605  bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2606  bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2607  // known not to be null or null bit already set and already set to
2608  // unknown: nothing we can do to improve profiling
2609  if (!do_null && !do_update) {
2610    return result;
2611  }
2612
2613  ciKlass* exact_klass = NULL;
2614  Compilation* comp = Compilation::current();
2615  if (do_update) {
2616    // try to find exact type, using CHA if possible, so that loading
2617    // the klass from the object can be avoided
2618    ciType* type = obj->exact_type();
2619    if (type == NULL) {
2620      type = obj->declared_type();
2621      type = comp->cha_exact_type(type);
2622    }
2623    assert(type == NULL || type->is_klass(), "type should be class");
2624    exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2625
2626    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2627  }
2628
2629  if (!do_null && !do_update) {
2630    return result;
2631  }
2632
2633  ciKlass* exact_signature_k = NULL;
2634  if (do_update) {
2635    // Is the type from the signature exact (the only one possible)?
2636    exact_signature_k = signature_at_call_k->exact_klass();
2637    if (exact_signature_k == NULL) {
2638      exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2639    } else {
2640      result = exact_signature_k;
2641      // Known statically. No need to emit any code: prevent
2642      // LIR_Assembler::emit_profile_type() from emitting useless code
2643      profiled_k = ciTypeEntries::with_status(result, profiled_k);
2644    }
2645    // exact_klass and exact_signature_k can be both non NULL but
2646    // different if exact_klass is loaded after the ciObject for
2647    // exact_signature_k is created.
2648    if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2649      // sometimes the type of the signature is better than the best type
2650      // the compiler has
2651      exact_klass = exact_signature_k;
2652    }
2653    if (callee_signature_k != NULL &&
2654        callee_signature_k != signature_at_call_k) {
2655      ciKlass* improved_klass = callee_signature_k->exact_klass();
2656      if (improved_klass == NULL) {
2657        improved_klass = comp->cha_exact_type(callee_signature_k);
2658      }
2659      if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2660        exact_klass = exact_signature_k;
2661      }
2662    }
2663    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2664  }
2665
2666  if (!do_null && !do_update) {
2667    return result;
2668  }
2669
2670  if (mdp == LIR_OprFact::illegalOpr) {
2671    mdp = new_register(T_METADATA);
2672    __ metadata2reg(md->constant_encoding(), mdp);
2673    if (md_base_offset != 0) {
2674      LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2675      mdp = new_pointer_register();
2676      __ leal(LIR_OprFact::address(base_type_address), mdp);
2677    }
2678  }
2679  LIRItem value(obj, this);
2680  value.load_item();
2681  __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2682                  value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2683  return result;
2684}
2685
2686// profile parameters on entry to the root of the compilation
2687void LIRGenerator::profile_parameters(Base* x) {
2688  if (compilation()->profile_parameters()) {
2689    CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2690    ciMethodData* md = scope()->method()->method_data_or_null();
2691    assert(md != NULL, "Sanity");
2692
2693    if (md->parameters_type_data() != NULL) {
2694      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2695      ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2696      LIR_Opr mdp = LIR_OprFact::illegalOpr;
2697      for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2698        LIR_Opr src = args->at(i);
2699        assert(!src->is_illegal(), "check");
2700        BasicType t = src->type();
2701        if (t == T_OBJECT || t == T_ARRAY) {
2702          intptr_t profiled_k = parameters->type(j);
2703          Local* local = x->state()->local_at(java_index)->as_Local();
2704          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2705                                        in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2706                                        profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2707          // If the profile is known statically set it once for all and do not emit any code
2708          if (exact != NULL) {
2709            md->set_parameter_type(j, exact);
2710          }
2711          j++;
2712        }
2713        java_index += type2size[t];
2714      }
2715    }
2716  }
2717}
2718
2719void LIRGenerator::do_Base(Base* x) {
2720  __ std_entry(LIR_OprFact::illegalOpr);
2721  // Emit moves from physical registers / stack slots to virtual registers
2722  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2723  IRScope* irScope = compilation()->hir()->top_scope();
2724  int java_index = 0;
2725  for (int i = 0; i < args->length(); i++) {
2726    LIR_Opr src = args->at(i);
2727    assert(!src->is_illegal(), "check");
2728    BasicType t = src->type();
2729
2730    // Types which are smaller than int are passed as int, so
2731    // correct the type which passed.
2732    switch (t) {
2733    case T_BYTE:
2734    case T_BOOLEAN:
2735    case T_SHORT:
2736    case T_CHAR:
2737      t = T_INT;
2738      break;
2739    }
2740
2741    LIR_Opr dest = new_register(t);
2742    __ move(src, dest);
2743
2744    // Assign new location to Local instruction for this local
2745    Local* local = x->state()->local_at(java_index)->as_Local();
2746    assert(local != NULL, "Locals for incoming arguments must have been created");
2747#ifndef __SOFTFP__
2748    // The java calling convention passes double as long and float as int.
2749    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2750#endif // __SOFTFP__
2751    local->set_operand(dest);
2752    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2753    java_index += type2size[t];
2754  }
2755
2756  if (compilation()->env()->dtrace_method_probes()) {
2757    BasicTypeList signature;
2758    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2759    signature.append(T_METADATA); // Method*
2760    LIR_OprList* args = new LIR_OprList();
2761    args->append(getThreadPointer());
2762    LIR_Opr meth = new_register(T_METADATA);
2763    __ metadata2reg(method()->constant_encoding(), meth);
2764    args->append(meth);
2765    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2766  }
2767
2768  if (method()->is_synchronized()) {
2769    LIR_Opr obj;
2770    if (method()->is_static()) {
2771      obj = new_register(T_OBJECT);
2772      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2773    } else {
2774      Local* receiver = x->state()->local_at(0)->as_Local();
2775      assert(receiver != NULL, "must already exist");
2776      obj = receiver->operand();
2777    }
2778    assert(obj->is_valid(), "must be valid");
2779
2780    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2781      LIR_Opr lock = new_register(T_INT);
2782      __ load_stack_address_monitor(0, lock);
2783
2784      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2785      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2786
2787      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2788      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2789    }
2790  }
2791  if (compilation()->age_code()) {
2792    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2793    decrement_age(info);
2794  }
2795  // increment invocation counters if needed
2796  if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2797    profile_parameters(x);
2798    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2799    increment_invocation_counter(info);
2800  }
2801
2802  // all blocks with a successor must end with an unconditional jump
2803  // to the successor even if they are consecutive
2804  __ jump(x->default_sux());
2805}
2806
2807
2808void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2809  // construct our frame and model the production of incoming pointer
2810  // to the OSR buffer.
2811  __ osr_entry(LIR_Assembler::osrBufferPointer());
2812  LIR_Opr result = rlock_result(x);
2813  __ move(LIR_Assembler::osrBufferPointer(), result);
2814}
2815
2816
2817void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2818  assert(args->length() == arg_list->length(),
2819         err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2820  for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2821    LIRItem* param = args->at(i);
2822    LIR_Opr loc = arg_list->at(i);
2823    if (loc->is_register()) {
2824      param->load_item_force(loc);
2825    } else {
2826      LIR_Address* addr = loc->as_address_ptr();
2827      param->load_for_store(addr->type());
2828      if (addr->type() == T_OBJECT) {
2829        __ move_wide(param->result(), addr);
2830      } else
2831        if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2832          __ unaligned_move(param->result(), addr);
2833        } else {
2834          __ move(param->result(), addr);
2835        }
2836    }
2837  }
2838
2839  if (x->has_receiver()) {
2840    LIRItem* receiver = args->at(0);
2841    LIR_Opr loc = arg_list->at(0);
2842    if (loc->is_register()) {
2843      receiver->load_item_force(loc);
2844    } else {
2845      assert(loc->is_address(), "just checking");
2846      receiver->load_for_store(T_OBJECT);
2847      __ move_wide(receiver->result(), loc->as_address_ptr());
2848    }
2849  }
2850}
2851
2852
2853// Visits all arguments, returns appropriate items without loading them
2854LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2855  LIRItemList* argument_items = new LIRItemList();
2856  if (x->has_receiver()) {
2857    LIRItem* receiver = new LIRItem(x->receiver(), this);
2858    argument_items->append(receiver);
2859  }
2860  for (int i = 0; i < x->number_of_arguments(); i++) {
2861    LIRItem* param = new LIRItem(x->argument_at(i), this);
2862    argument_items->append(param);
2863  }
2864  return argument_items;
2865}
2866
2867
2868// The invoke with receiver has following phases:
2869//   a) traverse and load/lock receiver;
2870//   b) traverse all arguments -> item-array (invoke_visit_argument)
2871//   c) push receiver on stack
2872//   d) load each of the items and push on stack
2873//   e) unlock receiver
2874//   f) move receiver into receiver-register %o0
2875//   g) lock result registers and emit call operation
2876//
2877// Before issuing a call, we must spill-save all values on stack
2878// that are in caller-save register. "spill-save" moves those registers
2879// either in a free callee-save register or spills them if no free
2880// callee save register is available.
2881//
2882// The problem is where to invoke spill-save.
2883// - if invoked between e) and f), we may lock callee save
2884//   register in "spill-save" that destroys the receiver register
2885//   before f) is executed
2886// - if we rearrange f) to be earlier (by loading %o0) it
2887//   may destroy a value on the stack that is currently in %o0
2888//   and is waiting to be spilled
2889// - if we keep the receiver locked while doing spill-save,
2890//   we cannot spill it as it is spill-locked
2891//
2892void LIRGenerator::do_Invoke(Invoke* x) {
2893  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2894
2895  LIR_OprList* arg_list = cc->args();
2896  LIRItemList* args = invoke_visit_arguments(x);
2897  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2898
2899  // setup result register
2900  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2901  if (x->type() != voidType) {
2902    result_register = result_register_for(x->type());
2903  }
2904
2905  CodeEmitInfo* info = state_for(x, x->state());
2906
2907  invoke_load_arguments(x, args, arg_list);
2908
2909  if (x->has_receiver()) {
2910    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2911    receiver = args->at(0)->result();
2912  }
2913
2914  // emit invoke code
2915  bool optimized = x->target_is_loaded() && x->target_is_final();
2916  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2917
2918  // JSR 292
2919  // Preserve the SP over MethodHandle call sites, if needed.
2920  ciMethod* target = x->target();
2921  bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2922                                  target->is_method_handle_intrinsic() ||
2923                                  target->is_compiled_lambda_form());
2924  if (is_method_handle_invoke) {
2925    info->set_is_method_handle_invoke(true);
2926    if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2927        __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2928    }
2929  }
2930
2931  switch (x->code()) {
2932    case Bytecodes::_invokestatic:
2933      __ call_static(target, result_register,
2934                     SharedRuntime::get_resolve_static_call_stub(),
2935                     arg_list, info);
2936      break;
2937    case Bytecodes::_invokespecial:
2938    case Bytecodes::_invokevirtual:
2939    case Bytecodes::_invokeinterface:
2940      // for final target we still produce an inline cache, in order
2941      // to be able to call mixed mode
2942      if (x->code() == Bytecodes::_invokespecial || optimized) {
2943        __ call_opt_virtual(target, receiver, result_register,
2944                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2945                            arg_list, info);
2946      } else if (x->vtable_index() < 0) {
2947        __ call_icvirtual(target, receiver, result_register,
2948                          SharedRuntime::get_resolve_virtual_call_stub(),
2949                          arg_list, info);
2950      } else {
2951        int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2952        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2953        __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2954      }
2955      break;
2956    case Bytecodes::_invokedynamic: {
2957      __ call_dynamic(target, receiver, result_register,
2958                      SharedRuntime::get_resolve_static_call_stub(),
2959                      arg_list, info);
2960      break;
2961    }
2962    default:
2963      fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2964      break;
2965  }
2966
2967  // JSR 292
2968  // Restore the SP after MethodHandle call sites, if needed.
2969  if (is_method_handle_invoke
2970      && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2971    __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2972  }
2973
2974  if (x->type()->is_float() || x->type()->is_double()) {
2975    // Force rounding of results from non-strictfp when in strictfp
2976    // scope (or when we don't know the strictness of the callee, to
2977    // be safe.)
2978    if (method()->is_strict()) {
2979      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2980        result_register = round_item(result_register);
2981      }
2982    }
2983  }
2984
2985  if (result_register->is_valid()) {
2986    LIR_Opr result = rlock_result(x);
2987    __ move(result_register, result);
2988  }
2989}
2990
2991
2992void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2993  assert(x->number_of_arguments() == 1, "wrong type");
2994  LIRItem value       (x->argument_at(0), this);
2995  LIR_Opr reg = rlock_result(x);
2996  value.load_item();
2997  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2998  __ move(tmp, reg);
2999}
3000
3001
3002
3003// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3004void LIRGenerator::do_IfOp(IfOp* x) {
3005#ifdef ASSERT
3006  {
3007    ValueTag xtag = x->x()->type()->tag();
3008    ValueTag ttag = x->tval()->type()->tag();
3009    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3010    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3011    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3012  }
3013#endif
3014
3015  LIRItem left(x->x(), this);
3016  LIRItem right(x->y(), this);
3017  left.load_item();
3018  if (can_inline_as_constant(right.value())) {
3019    right.dont_load_item();
3020  } else {
3021    right.load_item();
3022  }
3023
3024  LIRItem t_val(x->tval(), this);
3025  LIRItem f_val(x->fval(), this);
3026  t_val.dont_load_item();
3027  f_val.dont_load_item();
3028  LIR_Opr reg = rlock_result(x);
3029
3030  __ cmp(lir_cond(x->cond()), left.result(), right.result());
3031  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3032}
3033
3034void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3035    assert(x->number_of_arguments() == expected_arguments, "wrong type");
3036    LIR_Opr reg = result_register_for(x->type());
3037    __ call_runtime_leaf(routine, getThreadTemp(),
3038                         reg, new LIR_OprList());
3039    LIR_Opr result = rlock_result(x);
3040    __ move(reg, result);
3041}
3042
3043#ifdef TRACE_HAVE_INTRINSICS
3044void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3045    LIR_Opr thread = getThreadPointer();
3046    LIR_Opr osthread = new_pointer_register();
3047    __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3048    size_t thread_id_size = OSThread::thread_id_size();
3049    if (thread_id_size == (size_t) BytesPerLong) {
3050      LIR_Opr id = new_register(T_LONG);
3051      __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3052      __ convert(Bytecodes::_l2i, id, rlock_result(x));
3053    } else if (thread_id_size == (size_t) BytesPerInt) {
3054      __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3055    } else {
3056      ShouldNotReachHere();
3057    }
3058}
3059
3060void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3061    CodeEmitInfo* info = state_for(x);
3062    CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3063    BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3064    assert(info != NULL, "must have info");
3065    LIRItem arg(x->argument_at(1), this);
3066    arg.load_item();
3067    LIR_Opr klass = new_pointer_register();
3068    __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3069    LIR_Opr id = new_register(T_LONG);
3070    ByteSize offset = TRACE_ID_OFFSET;
3071    LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3072    __ move(trace_id_addr, id);
3073    __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3074    __ store(id, trace_id_addr);
3075    __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3076    __ move(id, rlock_result(x));
3077}
3078#endif
3079
3080void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3081  switch (x->id()) {
3082  case vmIntrinsics::_intBitsToFloat      :
3083  case vmIntrinsics::_doubleToRawLongBits :
3084  case vmIntrinsics::_longBitsToDouble    :
3085  case vmIntrinsics::_floatToRawIntBits   : {
3086    do_FPIntrinsics(x);
3087    break;
3088  }
3089
3090#ifdef TRACE_HAVE_INTRINSICS
3091  case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3092  case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3093  case vmIntrinsics::_counterTime:
3094    do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3095    break;
3096#endif
3097
3098  case vmIntrinsics::_currentTimeMillis:
3099    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3100    break;
3101
3102  case vmIntrinsics::_nanoTime:
3103    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3104    break;
3105
3106  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3107  case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3108  case vmIntrinsics::_getClass:       do_getClass(x);      break;
3109  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3110
3111  case vmIntrinsics::_dlog:           // fall through
3112  case vmIntrinsics::_dlog10:         // fall through
3113  case vmIntrinsics::_dabs:           // fall through
3114  case vmIntrinsics::_dsqrt:          // fall through
3115  case vmIntrinsics::_dtan:           // fall through
3116  case vmIntrinsics::_dsin :          // fall through
3117  case vmIntrinsics::_dcos :          // fall through
3118  case vmIntrinsics::_dexp :          // fall through
3119  case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3120  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3121
3122  // java.nio.Buffer.checkIndex
3123  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3124
3125  case vmIntrinsics::_compareAndSwapObject:
3126    do_CompareAndSwap(x, objectType);
3127    break;
3128  case vmIntrinsics::_compareAndSwapInt:
3129    do_CompareAndSwap(x, intType);
3130    break;
3131  case vmIntrinsics::_compareAndSwapLong:
3132    do_CompareAndSwap(x, longType);
3133    break;
3134
3135  case vmIntrinsics::_loadFence :
3136    if (os::is_MP()) __ membar_acquire();
3137    break;
3138  case vmIntrinsics::_storeFence:
3139    if (os::is_MP()) __ membar_release();
3140    break;
3141  case vmIntrinsics::_fullFence :
3142    if (os::is_MP()) __ membar();
3143    break;
3144
3145  case vmIntrinsics::_Reference_get:
3146    do_Reference_get(x);
3147    break;
3148
3149  case vmIntrinsics::_updateCRC32:
3150  case vmIntrinsics::_updateBytesCRC32:
3151  case vmIntrinsics::_updateByteBufferCRC32:
3152    do_update_CRC32(x);
3153    break;
3154
3155  default: ShouldNotReachHere(); break;
3156  }
3157}
3158
3159void LIRGenerator::profile_arguments(ProfileCall* x) {
3160  if (compilation()->profile_arguments()) {
3161    int bci = x->bci_of_invoke();
3162    ciMethodData* md = x->method()->method_data_or_null();
3163    ciProfileData* data = md->bci_to_data(bci);
3164    if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3165        (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3166      ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3167      int base_offset = md->byte_offset_of_slot(data, extra);
3168      LIR_Opr mdp = LIR_OprFact::illegalOpr;
3169      ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3170
3171      Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3172      int start = 0;
3173      int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3174      if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3175        // first argument is not profiled at call (method handle invoke)
3176        assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3177        start = 1;
3178      }
3179      ciSignature* callee_signature = x->callee()->signature();
3180      // method handle call to virtual method
3181      bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3182      ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3183
3184      bool ignored_will_link;
3185      ciSignature* signature_at_call = NULL;
3186      x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3187      ciSignatureStream signature_at_call_stream(signature_at_call);
3188
3189      // if called through method handle invoke, some arguments may have been popped
3190      for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3191        int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3192        ciKlass* exact = profile_type(md, base_offset, off,
3193                                      args->type(i), x->profiled_arg_at(i+start), mdp,
3194                                      !x->arg_needs_null_check(i+start),
3195                                      signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3196        if (exact != NULL) {
3197          md->set_argument_type(bci, i, exact);
3198        }
3199      }
3200    } else {
3201#ifdef ASSERT
3202      Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3203      int n = x->nb_profiled_args();
3204      assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3205                                                  (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3206             "only at JSR292 bytecodes");
3207#endif
3208    }
3209  }
3210}
3211
3212// profile parameters on entry to an inlined method
3213void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3214  if (compilation()->profile_parameters() && x->inlined()) {
3215    ciMethodData* md = x->callee()->method_data_or_null();
3216    if (md != NULL) {
3217      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3218      if (parameters_type_data != NULL) {
3219        ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3220        LIR_Opr mdp = LIR_OprFact::illegalOpr;
3221        bool has_receiver = !x->callee()->is_static();
3222        ciSignature* sig = x->callee()->signature();
3223        ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3224        int i = 0; // to iterate on the Instructions
3225        Value arg = x->recv();
3226        bool not_null = false;
3227        int bci = x->bci_of_invoke();
3228        Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3229        // The first parameter is the receiver so that's what we start
3230        // with if it exists. One exception is method handle call to
3231        // virtual method: the receiver is in the args list
3232        if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3233          i = 1;
3234          arg = x->profiled_arg_at(0);
3235          not_null = !x->arg_needs_null_check(0);
3236        }
3237        int k = 0; // to iterate on the profile data
3238        for (;;) {
3239          intptr_t profiled_k = parameters->type(k);
3240          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3241                                        in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3242                                        profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3243          // If the profile is known statically set it once for all and do not emit any code
3244          if (exact != NULL) {
3245            md->set_parameter_type(k, exact);
3246          }
3247          k++;
3248          if (k >= parameters_type_data->number_of_parameters()) {
3249#ifdef ASSERT
3250            int extra = 0;
3251            if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3252                x->nb_profiled_args() >= TypeProfileParmsLimit &&
3253                x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3254              extra += 1;
3255            }
3256            assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3257#endif
3258            break;
3259          }
3260          arg = x->profiled_arg_at(i);
3261          not_null = !x->arg_needs_null_check(i);
3262          i++;
3263        }
3264      }
3265    }
3266  }
3267}
3268
3269void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3270  // Need recv in a temporary register so it interferes with the other temporaries
3271  LIR_Opr recv = LIR_OprFact::illegalOpr;
3272  LIR_Opr mdo = new_register(T_OBJECT);
3273  // tmp is used to hold the counters on SPARC
3274  LIR_Opr tmp = new_pointer_register();
3275
3276  if (x->nb_profiled_args() > 0) {
3277    profile_arguments(x);
3278  }
3279
3280  // profile parameters on inlined method entry including receiver
3281  if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3282    profile_parameters_at_call(x);
3283  }
3284
3285  if (x->recv() != NULL) {
3286    LIRItem value(x->recv(), this);
3287    value.load_item();
3288    recv = new_register(T_OBJECT);
3289    __ move(value.result(), recv);
3290  }
3291  __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3292}
3293
3294void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3295  int bci = x->bci_of_invoke();
3296  ciMethodData* md = x->method()->method_data_or_null();
3297  ciProfileData* data = md->bci_to_data(bci);
3298  assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3299  ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3300  LIR_Opr mdp = LIR_OprFact::illegalOpr;
3301
3302  bool ignored_will_link;
3303  ciSignature* signature_at_call = NULL;
3304  x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3305
3306  // The offset within the MDO of the entry to update may be too large
3307  // to be used in load/store instructions on some platforms. So have
3308  // profile_type() compute the address of the profile in a register.
3309  ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3310                                ret->type(), x->ret(), mdp,
3311                                !x->needs_null_check(),
3312                                signature_at_call->return_type()->as_klass(),
3313                                x->callee()->signature()->return_type()->as_klass());
3314  if (exact != NULL) {
3315    md->set_return_type(bci, exact);
3316  }
3317}
3318
3319void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3320  // We can safely ignore accessors here, since c2 will inline them anyway,
3321  // accessors are also always mature.
3322  if (!x->inlinee()->is_accessor()) {
3323    CodeEmitInfo* info = state_for(x, x->state(), true);
3324    // Notify the runtime very infrequently only to take care of counter overflows
3325    int freq_log = Tier23InlineeNotifyFreqLog;
3326    double scale;
3327    if (_method->has_option_value("CompileThresholdScaling", scale)) {
3328      freq_log = Arguments::scaled_freq_log(freq_log, scale);
3329    }
3330    increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3331  }
3332}
3333
3334void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3335  int freq_log;
3336  int level = compilation()->env()->comp_level();
3337  if (level == CompLevel_limited_profile) {
3338    freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3339  } else if (level == CompLevel_full_profile) {
3340    freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3341  } else {
3342    ShouldNotReachHere();
3343  }
3344  // Increment the appropriate invocation/backedge counter and notify the runtime.
3345  double scale;
3346  if (_method->has_option_value("CompileThresholdScaling", scale)) {
3347    freq_log = Arguments::scaled_freq_log(freq_log, scale);
3348  }
3349  increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3350}
3351
3352void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3353  ciMethod* method = info->scope()->method();
3354  MethodCounters* mc_adr = method->ensure_method_counters();
3355  if (mc_adr != NULL) {
3356    LIR_Opr mc = new_pointer_register();
3357    __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3358    int offset = in_bytes(MethodCounters::nmethod_age_offset());
3359    LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3360    LIR_Opr result = new_register(T_INT);
3361    __ load(counter, result);
3362    __ sub(result, LIR_OprFact::intConst(1), result);
3363    __ store(result, counter);
3364    // DeoptimizeStub will reexecute from the current state in code info.
3365    CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3366                                         Deoptimization::Action_make_not_entrant);
3367    __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3368    __ branch(lir_cond_lessEqual, T_INT, deopt);
3369  }
3370}
3371
3372
3373void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3374                                                ciMethod *method, int frequency,
3375                                                int bci, bool backedge, bool notify) {
3376  assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3377  int level = _compilation->env()->comp_level();
3378  assert(level > CompLevel_simple, "Shouldn't be here");
3379
3380  int offset = -1;
3381  LIR_Opr counter_holder;
3382  if (level == CompLevel_limited_profile) {
3383    MethodCounters* counters_adr = method->ensure_method_counters();
3384    if (counters_adr == NULL) {
3385      bailout("method counters allocation failed");
3386      return;
3387    }
3388    counter_holder = new_pointer_register();
3389    __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3390    offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3391                                 MethodCounters::invocation_counter_offset());
3392  } else if (level == CompLevel_full_profile) {
3393    counter_holder = new_register(T_METADATA);
3394    offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3395                                 MethodData::invocation_counter_offset());
3396    ciMethodData* md = method->method_data_or_null();
3397    assert(md != NULL, "Sanity");
3398    __ metadata2reg(md->constant_encoding(), counter_holder);
3399  } else {
3400    ShouldNotReachHere();
3401  }
3402  LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3403  LIR_Opr result = new_register(T_INT);
3404  __ load(counter, result);
3405  __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3406  __ store(result, counter);
3407  if (notify) {
3408    LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3409    LIR_Opr meth = new_register(T_METADATA);
3410    __ metadata2reg(method->constant_encoding(), meth);
3411    __ logical_and(result, mask, result);
3412    __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3413    // The bci for info can point to cmp for if's we want the if bci
3414    CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3415    __ branch(lir_cond_equal, T_INT, overflow);
3416    __ branch_destination(overflow->continuation());
3417  }
3418}
3419
3420void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3421  LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3422  BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3423
3424  if (x->pass_thread()) {
3425    signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3426    args->append(getThreadPointer());
3427  }
3428
3429  for (int i = 0; i < x->number_of_arguments(); i++) {
3430    Value a = x->argument_at(i);
3431    LIRItem* item = new LIRItem(a, this);
3432    item->load_item();
3433    args->append(item->result());
3434    signature->append(as_BasicType(a->type()));
3435  }
3436
3437  LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3438  if (x->type() == voidType) {
3439    set_no_result(x);
3440  } else {
3441    __ move(result, rlock_result(x));
3442  }
3443}
3444
3445#ifdef ASSERT
3446void LIRGenerator::do_Assert(Assert *x) {
3447  ValueTag tag = x->x()->type()->tag();
3448  If::Condition cond = x->cond();
3449
3450  LIRItem xitem(x->x(), this);
3451  LIRItem yitem(x->y(), this);
3452  LIRItem* xin = &xitem;
3453  LIRItem* yin = &yitem;
3454
3455  assert(tag == intTag, "Only integer assertions are valid!");
3456
3457  xin->load_item();
3458  yin->dont_load_item();
3459
3460  set_no_result(x);
3461
3462  LIR_Opr left = xin->result();
3463  LIR_Opr right = yin->result();
3464
3465  __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3466}
3467#endif
3468
3469void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3470
3471
3472  Instruction *a = x->x();
3473  Instruction *b = x->y();
3474  if (!a || StressRangeCheckElimination) {
3475    assert(!b || StressRangeCheckElimination, "B must also be null");
3476
3477    CodeEmitInfo *info = state_for(x, x->state());
3478    CodeStub* stub = new PredicateFailedStub(info);
3479
3480    __ jump(stub);
3481  } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3482    int a_int = a->type()->as_IntConstant()->value();
3483    int b_int = b->type()->as_IntConstant()->value();
3484
3485    bool ok = false;
3486
3487    switch(x->cond()) {
3488      case Instruction::eql: ok = (a_int == b_int); break;
3489      case Instruction::neq: ok = (a_int != b_int); break;
3490      case Instruction::lss: ok = (a_int < b_int); break;
3491      case Instruction::leq: ok = (a_int <= b_int); break;
3492      case Instruction::gtr: ok = (a_int > b_int); break;
3493      case Instruction::geq: ok = (a_int >= b_int); break;
3494      case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3495      case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3496      default: ShouldNotReachHere();
3497    }
3498
3499    if (ok) {
3500
3501      CodeEmitInfo *info = state_for(x, x->state());
3502      CodeStub* stub = new PredicateFailedStub(info);
3503
3504      __ jump(stub);
3505    }
3506  } else {
3507
3508    ValueTag tag = x->x()->type()->tag();
3509    If::Condition cond = x->cond();
3510    LIRItem xitem(x->x(), this);
3511    LIRItem yitem(x->y(), this);
3512    LIRItem* xin = &xitem;
3513    LIRItem* yin = &yitem;
3514
3515    assert(tag == intTag, "Only integer deoptimizations are valid!");
3516
3517    xin->load_item();
3518    yin->dont_load_item();
3519    set_no_result(x);
3520
3521    LIR_Opr left = xin->result();
3522    LIR_Opr right = yin->result();
3523
3524    CodeEmitInfo *info = state_for(x, x->state());
3525    CodeStub* stub = new PredicateFailedStub(info);
3526
3527    __ cmp(lir_cond(cond), left, right);
3528    __ branch(lir_cond(cond), right->type(), stub);
3529  }
3530}
3531
3532
3533LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3534  LIRItemList args(1);
3535  LIRItem value(arg1, this);
3536  args.append(&value);
3537  BasicTypeList signature;
3538  signature.append(as_BasicType(arg1->type()));
3539
3540  return call_runtime(&signature, &args, entry, result_type, info);
3541}
3542
3543
3544LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3545  LIRItemList args(2);
3546  LIRItem value1(arg1, this);
3547  LIRItem value2(arg2, this);
3548  args.append(&value1);
3549  args.append(&value2);
3550  BasicTypeList signature;
3551  signature.append(as_BasicType(arg1->type()));
3552  signature.append(as_BasicType(arg2->type()));
3553
3554  return call_runtime(&signature, &args, entry, result_type, info);
3555}
3556
3557
3558LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3559                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3560  // get a result register
3561  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3562  LIR_Opr result = LIR_OprFact::illegalOpr;
3563  if (result_type->tag() != voidTag) {
3564    result = new_register(result_type);
3565    phys_reg = result_register_for(result_type);
3566  }
3567
3568  // move the arguments into the correct location
3569  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3570  assert(cc->length() == args->length(), "argument mismatch");
3571  for (int i = 0; i < args->length(); i++) {
3572    LIR_Opr arg = args->at(i);
3573    LIR_Opr loc = cc->at(i);
3574    if (loc->is_register()) {
3575      __ move(arg, loc);
3576    } else {
3577      LIR_Address* addr = loc->as_address_ptr();
3578//           if (!can_store_as_constant(arg)) {
3579//             LIR_Opr tmp = new_register(arg->type());
3580//             __ move(arg, tmp);
3581//             arg = tmp;
3582//           }
3583      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3584        __ unaligned_move(arg, addr);
3585      } else {
3586        __ move(arg, addr);
3587      }
3588    }
3589  }
3590
3591  if (info) {
3592    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3593  } else {
3594    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3595  }
3596  if (result->is_valid()) {
3597    __ move(phys_reg, result);
3598  }
3599  return result;
3600}
3601
3602
3603LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3604                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3605  // get a result register
3606  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3607  LIR_Opr result = LIR_OprFact::illegalOpr;
3608  if (result_type->tag() != voidTag) {
3609    result = new_register(result_type);
3610    phys_reg = result_register_for(result_type);
3611  }
3612
3613  // move the arguments into the correct location
3614  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3615
3616  assert(cc->length() == args->length(), "argument mismatch");
3617  for (int i = 0; i < args->length(); i++) {
3618    LIRItem* arg = args->at(i);
3619    LIR_Opr loc = cc->at(i);
3620    if (loc->is_register()) {
3621      arg->load_item_force(loc);
3622    } else {
3623      LIR_Address* addr = loc->as_address_ptr();
3624      arg->load_for_store(addr->type());
3625      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3626        __ unaligned_move(arg->result(), addr);
3627      } else {
3628        __ move(arg->result(), addr);
3629      }
3630    }
3631  }
3632
3633  if (info) {
3634    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3635  } else {
3636    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3637  }
3638  if (result->is_valid()) {
3639    __ move(phys_reg, result);
3640  }
3641  return result;
3642}
3643
3644void LIRGenerator::do_MemBar(MemBar* x) {
3645  if (os::is_MP()) {
3646    LIR_Code code = x->code();
3647    switch(code) {
3648      case lir_membar_acquire   : __ membar_acquire(); break;
3649      case lir_membar_release   : __ membar_release(); break;
3650      case lir_membar           : __ membar(); break;
3651      case lir_membar_loadload  : __ membar_loadload(); break;
3652      case lir_membar_storestore: __ membar_storestore(); break;
3653      case lir_membar_loadstore : __ membar_loadstore(); break;
3654      case lir_membar_storeload : __ membar_storeload(); break;
3655      default                   : ShouldNotReachHere(); break;
3656    }
3657  }
3658}
3659