c1_LIRGenerator.cpp revision 7983:0ef1d0b2fc2e
1/*
2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Defs.hpp"
27#include "c1/c1_Compilation.hpp"
28#include "c1/c1_FrameMap.hpp"
29#include "c1/c1_Instruction.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_LIRGenerator.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArrayKlass.hpp"
34#include "ci/ciInstance.hpp"
35#include "ci/ciObjArray.hpp"
36#include "memory/cardTableModRefBS.hpp"
37#include "runtime/arguments.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "runtime/vm_version.hpp"
41#include "utilities/bitMap.inline.hpp"
42#include "utilities/macros.hpp"
43#if INCLUDE_ALL_GCS
44#include "gc_implementation/g1/heapRegion.hpp"
45#endif // INCLUDE_ALL_GCS
46
47#ifdef ASSERT
48#define __ gen()->lir(__FILE__, __LINE__)->
49#else
50#define __ gen()->lir()->
51#endif
52
53#ifndef PATCHED_ADDR
54#define PATCHED_ADDR  (max_jint)
55#endif
56
57void PhiResolverState::reset(int max_vregs) {
58  // Initialize array sizes
59  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
60  _virtual_operands.trunc_to(0);
61  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
62  _other_operands.trunc_to(0);
63  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
64  _vreg_table.trunc_to(0);
65}
66
67
68
69//--------------------------------------------------------------
70// PhiResolver
71
72// Resolves cycles:
73//
74//  r1 := r2  becomes  temp := r1
75//  r2 := r1           r1 := r2
76//                     r2 := temp
77// and orders moves:
78//
79//  r2 := r3  becomes  r1 := r2
80//  r1 := r2           r2 := r3
81
82PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
83 : _gen(gen)
84 , _state(gen->resolver_state())
85 , _temp(LIR_OprFact::illegalOpr)
86{
87  // reinitialize the shared state arrays
88  _state.reset(max_vregs);
89}
90
91
92void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
93  assert(src->is_valid(), "");
94  assert(dest->is_valid(), "");
95  __ move(src, dest);
96}
97
98
99void PhiResolver::move_temp_to(LIR_Opr dest) {
100  assert(_temp->is_valid(), "");
101  emit_move(_temp, dest);
102  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
103}
104
105
106void PhiResolver::move_to_temp(LIR_Opr src) {
107  assert(_temp->is_illegal(), "");
108  _temp = _gen->new_register(src->type());
109  emit_move(src, _temp);
110}
111
112
113// Traverse assignment graph in depth first order and generate moves in post order
114// ie. two assignments: b := c, a := b start with node c:
115// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
116// Generates moves in this order: move b to a and move c to b
117// ie. cycle a := b, b := a start with node a
118// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
119// Generates moves in this order: move b to temp, move a to b, move temp to a
120void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
121  if (!dest->visited()) {
122    dest->set_visited();
123    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
124      move(dest, dest->destination_at(i));
125    }
126  } else if (!dest->start_node()) {
127    // cylce in graph detected
128    assert(_loop == NULL, "only one loop valid!");
129    _loop = dest;
130    move_to_temp(src->operand());
131    return;
132  } // else dest is a start node
133
134  if (!dest->assigned()) {
135    if (_loop == dest) {
136      move_temp_to(dest->operand());
137      dest->set_assigned();
138    } else if (src != NULL) {
139      emit_move(src->operand(), dest->operand());
140      dest->set_assigned();
141    }
142  }
143}
144
145
146PhiResolver::~PhiResolver() {
147  int i;
148  // resolve any cycles in moves from and to virtual registers
149  for (i = virtual_operands().length() - 1; i >= 0; i --) {
150    ResolveNode* node = virtual_operands()[i];
151    if (!node->visited()) {
152      _loop = NULL;
153      move(NULL, node);
154      node->set_start_node();
155      assert(_temp->is_illegal(), "move_temp_to() call missing");
156    }
157  }
158
159  // generate move for move from non virtual register to abitrary destination
160  for (i = other_operands().length() - 1; i >= 0; i --) {
161    ResolveNode* node = other_operands()[i];
162    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
163      emit_move(node->operand(), node->destination_at(j)->operand());
164    }
165  }
166}
167
168
169ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
170  ResolveNode* node;
171  if (opr->is_virtual()) {
172    int vreg_num = opr->vreg_number();
173    node = vreg_table().at_grow(vreg_num, NULL);
174    assert(node == NULL || node->operand() == opr, "");
175    if (node == NULL) {
176      node = new ResolveNode(opr);
177      vreg_table()[vreg_num] = node;
178    }
179    // Make sure that all virtual operands show up in the list when
180    // they are used as the source of a move.
181    if (source && !virtual_operands().contains(node)) {
182      virtual_operands().append(node);
183    }
184  } else {
185    assert(source, "");
186    node = new ResolveNode(opr);
187    other_operands().append(node);
188  }
189  return node;
190}
191
192
193void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
194  assert(dest->is_virtual(), "");
195  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
196  assert(src->is_valid(), "");
197  assert(dest->is_valid(), "");
198  ResolveNode* source = source_node(src);
199  source->append(destination_node(dest));
200}
201
202
203//--------------------------------------------------------------
204// LIRItem
205
206void LIRItem::set_result(LIR_Opr opr) {
207  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
208  value()->set_operand(opr);
209
210  if (opr->is_virtual()) {
211    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
212  }
213
214  _result = opr;
215}
216
217void LIRItem::load_item() {
218  if (result()->is_illegal()) {
219    // update the items result
220    _result = value()->operand();
221  }
222  if (!result()->is_register()) {
223    LIR_Opr reg = _gen->new_register(value()->type());
224    __ move(result(), reg);
225    if (result()->is_constant()) {
226      _result = reg;
227    } else {
228      set_result(reg);
229    }
230  }
231}
232
233
234void LIRItem::load_for_store(BasicType type) {
235  if (_gen->can_store_as_constant(value(), type)) {
236    _result = value()->operand();
237    if (!_result->is_constant()) {
238      _result = LIR_OprFact::value_type(value()->type());
239    }
240  } else if (type == T_BYTE || type == T_BOOLEAN) {
241    load_byte_item();
242  } else {
243    load_item();
244  }
245}
246
247void LIRItem::load_item_force(LIR_Opr reg) {
248  LIR_Opr r = result();
249  if (r != reg) {
250#if !defined(ARM) && !defined(E500V2)
251    if (r->type() != reg->type()) {
252      // moves between different types need an intervening spill slot
253      r = _gen->force_to_spill(r, reg->type());
254    }
255#endif
256    __ move(r, reg);
257    _result = reg;
258  }
259}
260
261ciObject* LIRItem::get_jobject_constant() const {
262  ObjectType* oc = type()->as_ObjectType();
263  if (oc) {
264    return oc->constant_value();
265  }
266  return NULL;
267}
268
269
270jint LIRItem::get_jint_constant() const {
271  assert(is_constant() && value() != NULL, "");
272  assert(type()->as_IntConstant() != NULL, "type check");
273  return type()->as_IntConstant()->value();
274}
275
276
277jint LIRItem::get_address_constant() const {
278  assert(is_constant() && value() != NULL, "");
279  assert(type()->as_AddressConstant() != NULL, "type check");
280  return type()->as_AddressConstant()->value();
281}
282
283
284jfloat LIRItem::get_jfloat_constant() const {
285  assert(is_constant() && value() != NULL, "");
286  assert(type()->as_FloatConstant() != NULL, "type check");
287  return type()->as_FloatConstant()->value();
288}
289
290
291jdouble LIRItem::get_jdouble_constant() const {
292  assert(is_constant() && value() != NULL, "");
293  assert(type()->as_DoubleConstant() != NULL, "type check");
294  return type()->as_DoubleConstant()->value();
295}
296
297
298jlong LIRItem::get_jlong_constant() const {
299  assert(is_constant() && value() != NULL, "");
300  assert(type()->as_LongConstant() != NULL, "type check");
301  return type()->as_LongConstant()->value();
302}
303
304
305
306//--------------------------------------------------------------
307
308
309void LIRGenerator::init() {
310  _bs = Universe::heap()->barrier_set();
311}
312
313
314void LIRGenerator::block_do_prolog(BlockBegin* block) {
315#ifndef PRODUCT
316  if (PrintIRWithLIR) {
317    block->print();
318  }
319#endif
320
321  // set up the list of LIR instructions
322  assert(block->lir() == NULL, "LIR list already computed for this block");
323  _lir = new LIR_List(compilation(), block);
324  block->set_lir(_lir);
325
326  __ branch_destination(block->label());
327
328  if (LIRTraceExecution &&
329      Compilation::current()->hir()->start()->block_id() != block->block_id() &&
330      !block->is_set(BlockBegin::exception_entry_flag)) {
331    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
332    trace_block_entry(block);
333  }
334}
335
336
337void LIRGenerator::block_do_epilog(BlockBegin* block) {
338#ifndef PRODUCT
339  if (PrintIRWithLIR) {
340    tty->cr();
341  }
342#endif
343
344  // LIR_Opr for unpinned constants shouldn't be referenced by other
345  // blocks so clear them out after processing the block.
346  for (int i = 0; i < _unpinned_constants.length(); i++) {
347    _unpinned_constants.at(i)->clear_operand();
348  }
349  _unpinned_constants.trunc_to(0);
350
351  // clear our any registers for other local constants
352  _constants.trunc_to(0);
353  _reg_for_constants.trunc_to(0);
354}
355
356
357void LIRGenerator::block_do(BlockBegin* block) {
358  CHECK_BAILOUT();
359
360  block_do_prolog(block);
361  set_block(block);
362
363  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
364    if (instr->is_pinned()) do_root(instr);
365  }
366
367  set_block(NULL);
368  block_do_epilog(block);
369}
370
371
372//-------------------------LIRGenerator-----------------------------
373
374// This is where the tree-walk starts; instr must be root;
375void LIRGenerator::do_root(Value instr) {
376  CHECK_BAILOUT();
377
378  InstructionMark im(compilation(), instr);
379
380  assert(instr->is_pinned(), "use only with roots");
381  assert(instr->subst() == instr, "shouldn't have missed substitution");
382
383  instr->visit(this);
384
385  assert(!instr->has_uses() || instr->operand()->is_valid() ||
386         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
387}
388
389
390// This is called for each node in tree; the walk stops if a root is reached
391void LIRGenerator::walk(Value instr) {
392  InstructionMark im(compilation(), instr);
393  //stop walk when encounter a root
394  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
395    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
396  } else {
397    assert(instr->subst() == instr, "shouldn't have missed substitution");
398    instr->visit(this);
399    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
400  }
401}
402
403
404CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
405  assert(state != NULL, "state must be defined");
406
407#ifndef PRODUCT
408  state->verify();
409#endif
410
411  ValueStack* s = state;
412  for_each_state(s) {
413    if (s->kind() == ValueStack::EmptyExceptionState) {
414      assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
415      continue;
416    }
417
418    int index;
419    Value value;
420    for_each_stack_value(s, index, value) {
421      assert(value->subst() == value, "missed substitution");
422      if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
423        walk(value);
424        assert(value->operand()->is_valid(), "must be evaluated now");
425      }
426    }
427
428    int bci = s->bci();
429    IRScope* scope = s->scope();
430    ciMethod* method = scope->method();
431
432    MethodLivenessResult liveness = method->liveness_at_bci(bci);
433    if (bci == SynchronizationEntryBCI) {
434      if (x->as_ExceptionObject() || x->as_Throw()) {
435        // all locals are dead on exit from the synthetic unlocker
436        liveness.clear();
437      } else {
438        assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
439      }
440    }
441    if (!liveness.is_valid()) {
442      // Degenerate or breakpointed method.
443      bailout("Degenerate or breakpointed method");
444    } else {
445      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
446      for_each_local_value(s, index, value) {
447        assert(value->subst() == value, "missed substition");
448        if (liveness.at(index) && !value->type()->is_illegal()) {
449          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
450            walk(value);
451            assert(value->operand()->is_valid(), "must be evaluated now");
452          }
453        } else {
454          // NULL out this local so that linear scan can assume that all non-NULL values are live.
455          s->invalidate_local(index);
456        }
457      }
458    }
459  }
460
461  return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
462}
463
464
465CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
466  return state_for(x, x->exception_state());
467}
468
469
470void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
471  /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
472   * is active and the class hasn't yet been resolved we need to emit a patch that resolves
473   * the class. */
474  if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
475    assert(info != NULL, "info must be set if class is not loaded");
476    __ klass2reg_patch(NULL, r, info);
477  } else {
478    // no patching needed
479    __ metadata2reg(obj->constant_encoding(), r);
480  }
481}
482
483
484void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
485                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
486  CodeStub* stub = new RangeCheckStub(range_check_info, index);
487  if (index->is_constant()) {
488    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
489                index->as_jint(), null_check_info);
490    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
491  } else {
492    cmp_reg_mem(lir_cond_aboveEqual, index, array,
493                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
494    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
495  }
496}
497
498
499void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
500  CodeStub* stub = new RangeCheckStub(info, index, true);
501  if (index->is_constant()) {
502    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
503    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
504  } else {
505    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
506                java_nio_Buffer::limit_offset(), T_INT, info);
507    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
508  }
509  __ move(index, result);
510}
511
512
513
514void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
515  LIR_Opr result_op = result;
516  LIR_Opr left_op   = left;
517  LIR_Opr right_op  = right;
518
519  if (TwoOperandLIRForm && left_op != result_op) {
520    assert(right_op != result_op, "malformed");
521    __ move(left_op, result_op);
522    left_op = result_op;
523  }
524
525  switch(code) {
526    case Bytecodes::_dadd:
527    case Bytecodes::_fadd:
528    case Bytecodes::_ladd:
529    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
530    case Bytecodes::_fmul:
531    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
532
533    case Bytecodes::_dmul:
534      {
535        if (is_strictfp) {
536          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
537        } else {
538          __ mul(left_op, right_op, result_op); break;
539        }
540      }
541      break;
542
543    case Bytecodes::_imul:
544      {
545        bool    did_strength_reduce = false;
546
547        if (right->is_constant()) {
548          int c = right->as_jint();
549          if (is_power_of_2(c)) {
550            // do not need tmp here
551            __ shift_left(left_op, exact_log2(c), result_op);
552            did_strength_reduce = true;
553          } else {
554            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
555          }
556        }
557        // we couldn't strength reduce so just emit the multiply
558        if (!did_strength_reduce) {
559          __ mul(left_op, right_op, result_op);
560        }
561      }
562      break;
563
564    case Bytecodes::_dsub:
565    case Bytecodes::_fsub:
566    case Bytecodes::_lsub:
567    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
568
569    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
570    // ldiv and lrem are implemented with a direct runtime call
571
572    case Bytecodes::_ddiv:
573      {
574        if (is_strictfp) {
575          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
576        } else {
577          __ div (left_op, right_op, result_op); break;
578        }
579      }
580      break;
581
582    case Bytecodes::_drem:
583    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
584
585    default: ShouldNotReachHere();
586  }
587}
588
589
590void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
591  arithmetic_op(code, result, left, right, false, tmp);
592}
593
594
595void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
596  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
597}
598
599
600void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
601  arithmetic_op(code, result, left, right, is_strictfp, tmp);
602}
603
604
605void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
606  if (TwoOperandLIRForm && value != result_op) {
607    assert(count != result_op, "malformed");
608    __ move(value, result_op);
609    value = result_op;
610  }
611
612  assert(count->is_constant() || count->is_register(), "must be");
613  switch(code) {
614  case Bytecodes::_ishl:
615  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
616  case Bytecodes::_ishr:
617  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
618  case Bytecodes::_iushr:
619  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
620  default: ShouldNotReachHere();
621  }
622}
623
624
625void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
626  if (TwoOperandLIRForm && left_op != result_op) {
627    assert(right_op != result_op, "malformed");
628    __ move(left_op, result_op);
629    left_op = result_op;
630  }
631
632  switch(code) {
633    case Bytecodes::_iand:
634    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
635
636    case Bytecodes::_ior:
637    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
638
639    case Bytecodes::_ixor:
640    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
641
642    default: ShouldNotReachHere();
643  }
644}
645
646
647void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
648  if (!GenerateSynchronizationCode) return;
649  // for slow path, use debug info for state after successful locking
650  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
651  __ load_stack_address_monitor(monitor_no, lock);
652  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
653  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
654}
655
656
657void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
658  if (!GenerateSynchronizationCode) return;
659  // setup registers
660  LIR_Opr hdr = lock;
661  lock = new_hdr;
662  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
663  __ load_stack_address_monitor(monitor_no, lock);
664  __ unlock_object(hdr, object, lock, scratch, slow_path);
665}
666
667#ifndef PRODUCT
668void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
669  if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
670    tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
671  } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
672    tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
673  }
674}
675#endif
676
677void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
678  klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
679  // If klass is not loaded we do not know if the klass has finalizers:
680  if (UseFastNewInstance && klass->is_loaded()
681      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
682
683    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
684
685    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
686
687    assert(klass->is_loaded(), "must be loaded");
688    // allocate space for instance
689    assert(klass->size_helper() >= 0, "illegal instance size");
690    const int instance_size = align_object_size(klass->size_helper());
691    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
692                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
693  } else {
694    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
695    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
696    __ branch_destination(slow_path->continuation());
697  }
698}
699
700
701static bool is_constant_zero(Instruction* inst) {
702  IntConstant* c = inst->type()->as_IntConstant();
703  if (c) {
704    return (c->value() == 0);
705  }
706  return false;
707}
708
709
710static bool positive_constant(Instruction* inst) {
711  IntConstant* c = inst->type()->as_IntConstant();
712  if (c) {
713    return (c->value() >= 0);
714  }
715  return false;
716}
717
718
719static ciArrayKlass* as_array_klass(ciType* type) {
720  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
721    return (ciArrayKlass*)type;
722  } else {
723    return NULL;
724  }
725}
726
727static ciType* phi_declared_type(Phi* phi) {
728  ciType* t = phi->operand_at(0)->declared_type();
729  if (t == NULL) {
730    return NULL;
731  }
732  for(int i = 1; i < phi->operand_count(); i++) {
733    if (t != phi->operand_at(i)->declared_type()) {
734      return NULL;
735    }
736  }
737  return t;
738}
739
740void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
741  Instruction* src     = x->argument_at(0);
742  Instruction* src_pos = x->argument_at(1);
743  Instruction* dst     = x->argument_at(2);
744  Instruction* dst_pos = x->argument_at(3);
745  Instruction* length  = x->argument_at(4);
746
747  // first try to identify the likely type of the arrays involved
748  ciArrayKlass* expected_type = NULL;
749  bool is_exact = false, src_objarray = false, dst_objarray = false;
750  {
751    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
752    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
753    Phi* phi;
754    if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
755      src_declared_type = as_array_klass(phi_declared_type(phi));
756    }
757    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
758    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
759    if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
760      dst_declared_type = as_array_klass(phi_declared_type(phi));
761    }
762
763    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
764      // the types exactly match so the type is fully known
765      is_exact = true;
766      expected_type = src_exact_type;
767    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
768      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
769      ciArrayKlass* src_type = NULL;
770      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
771        src_type = (ciArrayKlass*) src_exact_type;
772      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
773        src_type = (ciArrayKlass*) src_declared_type;
774      }
775      if (src_type != NULL) {
776        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
777          is_exact = true;
778          expected_type = dst_type;
779        }
780      }
781    }
782    // at least pass along a good guess
783    if (expected_type == NULL) expected_type = dst_exact_type;
784    if (expected_type == NULL) expected_type = src_declared_type;
785    if (expected_type == NULL) expected_type = dst_declared_type;
786
787    src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
788    dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
789  }
790
791  // if a probable array type has been identified, figure out if any
792  // of the required checks for a fast case can be elided.
793  int flags = LIR_OpArrayCopy::all_flags;
794
795  if (!src_objarray)
796    flags &= ~LIR_OpArrayCopy::src_objarray;
797  if (!dst_objarray)
798    flags &= ~LIR_OpArrayCopy::dst_objarray;
799
800  if (!x->arg_needs_null_check(0))
801    flags &= ~LIR_OpArrayCopy::src_null_check;
802  if (!x->arg_needs_null_check(2))
803    flags &= ~LIR_OpArrayCopy::dst_null_check;
804
805
806  if (expected_type != NULL) {
807    Value length_limit = NULL;
808
809    IfOp* ifop = length->as_IfOp();
810    if (ifop != NULL) {
811      // look for expressions like min(v, a.length) which ends up as
812      //   x > y ? y : x  or  x >= y ? y : x
813      if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
814          ifop->x() == ifop->fval() &&
815          ifop->y() == ifop->tval()) {
816        length_limit = ifop->y();
817      }
818    }
819
820    // try to skip null checks and range checks
821    NewArray* src_array = src->as_NewArray();
822    if (src_array != NULL) {
823      flags &= ~LIR_OpArrayCopy::src_null_check;
824      if (length_limit != NULL &&
825          src_array->length() == length_limit &&
826          is_constant_zero(src_pos)) {
827        flags &= ~LIR_OpArrayCopy::src_range_check;
828      }
829    }
830
831    NewArray* dst_array = dst->as_NewArray();
832    if (dst_array != NULL) {
833      flags &= ~LIR_OpArrayCopy::dst_null_check;
834      if (length_limit != NULL &&
835          dst_array->length() == length_limit &&
836          is_constant_zero(dst_pos)) {
837        flags &= ~LIR_OpArrayCopy::dst_range_check;
838      }
839    }
840
841    // check from incoming constant values
842    if (positive_constant(src_pos))
843      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
844    if (positive_constant(dst_pos))
845      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
846    if (positive_constant(length))
847      flags &= ~LIR_OpArrayCopy::length_positive_check;
848
849    // see if the range check can be elided, which might also imply
850    // that src or dst is non-null.
851    ArrayLength* al = length->as_ArrayLength();
852    if (al != NULL) {
853      if (al->array() == src) {
854        // it's the length of the source array
855        flags &= ~LIR_OpArrayCopy::length_positive_check;
856        flags &= ~LIR_OpArrayCopy::src_null_check;
857        if (is_constant_zero(src_pos))
858          flags &= ~LIR_OpArrayCopy::src_range_check;
859      }
860      if (al->array() == dst) {
861        // it's the length of the destination array
862        flags &= ~LIR_OpArrayCopy::length_positive_check;
863        flags &= ~LIR_OpArrayCopy::dst_null_check;
864        if (is_constant_zero(dst_pos))
865          flags &= ~LIR_OpArrayCopy::dst_range_check;
866      }
867    }
868    if (is_exact) {
869      flags &= ~LIR_OpArrayCopy::type_check;
870    }
871  }
872
873  IntConstant* src_int = src_pos->type()->as_IntConstant();
874  IntConstant* dst_int = dst_pos->type()->as_IntConstant();
875  if (src_int && dst_int) {
876    int s_offs = src_int->value();
877    int d_offs = dst_int->value();
878    if (src_int->value() >= dst_int->value()) {
879      flags &= ~LIR_OpArrayCopy::overlapping;
880    }
881    if (expected_type != NULL) {
882      BasicType t = expected_type->element_type()->basic_type();
883      int element_size = type2aelembytes(t);
884      if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
885          ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
886        flags &= ~LIR_OpArrayCopy::unaligned;
887      }
888    }
889  } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
890    // src and dest positions are the same, or dst is zero so assume
891    // nonoverlapping copy.
892    flags &= ~LIR_OpArrayCopy::overlapping;
893  }
894
895  if (src == dst) {
896    // moving within a single array so no type checks are needed
897    if (flags & LIR_OpArrayCopy::type_check) {
898      flags &= ~LIR_OpArrayCopy::type_check;
899    }
900  }
901  *flagsp = flags;
902  *expected_typep = (ciArrayKlass*)expected_type;
903}
904
905
906LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
907  assert(opr->is_register(), "why spill if item is not register?");
908
909  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
910    LIR_Opr result = new_register(T_FLOAT);
911    set_vreg_flag(result, must_start_in_memory);
912    assert(opr->is_register(), "only a register can be spilled");
913    assert(opr->value_type()->is_float(), "rounding only for floats available");
914    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
915    return result;
916  }
917  return opr;
918}
919
920
921LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
922  assert(type2size[t] == type2size[value->type()],
923         err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
924  if (!value->is_register()) {
925    // force into a register
926    LIR_Opr r = new_register(value->type());
927    __ move(value, r);
928    value = r;
929  }
930
931  // create a spill location
932  LIR_Opr tmp = new_register(t);
933  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
934
935  // move from register to spill
936  __ move(value, tmp);
937  return tmp;
938}
939
940void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
941  if (if_instr->should_profile()) {
942    ciMethod* method = if_instr->profiled_method();
943    assert(method != NULL, "method should be set if branch is profiled");
944    ciMethodData* md = method->method_data_or_null();
945    assert(md != NULL, "Sanity");
946    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
947    assert(data != NULL, "must have profiling data");
948    assert(data->is_BranchData(), "need BranchData for two-way branches");
949    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
950    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
951    if (if_instr->is_swapped()) {
952      int t = taken_count_offset;
953      taken_count_offset = not_taken_count_offset;
954      not_taken_count_offset = t;
955    }
956
957    LIR_Opr md_reg = new_register(T_METADATA);
958    __ metadata2reg(md->constant_encoding(), md_reg);
959
960    LIR_Opr data_offset_reg = new_pointer_register();
961    __ cmove(lir_cond(cond),
962             LIR_OprFact::intptrConst(taken_count_offset),
963             LIR_OprFact::intptrConst(not_taken_count_offset),
964             data_offset_reg, as_BasicType(if_instr->x()->type()));
965
966    // MDO cells are intptr_t, so the data_reg width is arch-dependent.
967    LIR_Opr data_reg = new_pointer_register();
968    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
969    __ move(data_addr, data_reg);
970    // Use leal instead of add to avoid destroying condition codes on x86
971    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
972    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
973    __ move(data_reg, data_addr);
974  }
975}
976
977// Phi technique:
978// This is about passing live values from one basic block to the other.
979// In code generated with Java it is rather rare that more than one
980// value is on the stack from one basic block to the other.
981// We optimize our technique for efficient passing of one value
982// (of type long, int, double..) but it can be extended.
983// When entering or leaving a basic block, all registers and all spill
984// slots are release and empty. We use the released registers
985// and spill slots to pass the live values from one block
986// to the other. The topmost value, i.e., the value on TOS of expression
987// stack is passed in registers. All other values are stored in spilling
988// area. Every Phi has an index which designates its spill slot
989// At exit of a basic block, we fill the register(s) and spill slots.
990// At entry of a basic block, the block_prolog sets up the content of phi nodes
991// and locks necessary registers and spilling slots.
992
993
994// move current value to referenced phi function
995void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
996  Phi* phi = sux_val->as_Phi();
997  // cur_val can be null without phi being null in conjunction with inlining
998  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
999    LIR_Opr operand = cur_val->operand();
1000    if (cur_val->operand()->is_illegal()) {
1001      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1002             "these can be produced lazily");
1003      operand = operand_for_instruction(cur_val);
1004    }
1005    resolver->move(operand, operand_for_instruction(phi));
1006  }
1007}
1008
1009
1010// Moves all stack values into their PHI position
1011void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1012  BlockBegin* bb = block();
1013  if (bb->number_of_sux() == 1) {
1014    BlockBegin* sux = bb->sux_at(0);
1015    assert(sux->number_of_preds() > 0, "invalid CFG");
1016
1017    // a block with only one predecessor never has phi functions
1018    if (sux->number_of_preds() > 1) {
1019      int max_phis = cur_state->stack_size() + cur_state->locals_size();
1020      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1021
1022      ValueStack* sux_state = sux->state();
1023      Value sux_value;
1024      int index;
1025
1026      assert(cur_state->scope() == sux_state->scope(), "not matching");
1027      assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1028      assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1029
1030      for_each_stack_value(sux_state, index, sux_value) {
1031        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1032      }
1033
1034      for_each_local_value(sux_state, index, sux_value) {
1035        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1036      }
1037
1038      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1039    }
1040  }
1041}
1042
1043
1044LIR_Opr LIRGenerator::new_register(BasicType type) {
1045  int vreg = _virtual_register_number;
1046  // add a little fudge factor for the bailout, since the bailout is
1047  // only checked periodically.  This gives a few extra registers to
1048  // hand out before we really run out, which helps us keep from
1049  // tripping over assertions.
1050  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1051    bailout("out of virtual registers");
1052    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1053      // wrap it around
1054      _virtual_register_number = LIR_OprDesc::vreg_base;
1055    }
1056  }
1057  _virtual_register_number += 1;
1058  return LIR_OprFact::virtual_register(vreg, type);
1059}
1060
1061
1062// Try to lock using register in hint
1063LIR_Opr LIRGenerator::rlock(Value instr) {
1064  return new_register(instr->type());
1065}
1066
1067
1068// does an rlock and sets result
1069LIR_Opr LIRGenerator::rlock_result(Value x) {
1070  LIR_Opr reg = rlock(x);
1071  set_result(x, reg);
1072  return reg;
1073}
1074
1075
1076// does an rlock and sets result
1077LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1078  LIR_Opr reg;
1079  switch (type) {
1080  case T_BYTE:
1081  case T_BOOLEAN:
1082    reg = rlock_byte(type);
1083    break;
1084  default:
1085    reg = rlock(x);
1086    break;
1087  }
1088
1089  set_result(x, reg);
1090  return reg;
1091}
1092
1093
1094//---------------------------------------------------------------------
1095ciObject* LIRGenerator::get_jobject_constant(Value value) {
1096  ObjectType* oc = value->type()->as_ObjectType();
1097  if (oc) {
1098    return oc->constant_value();
1099  }
1100  return NULL;
1101}
1102
1103
1104void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1105  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1106  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1107
1108  // no moves are created for phi functions at the begin of exception
1109  // handlers, so assign operands manually here
1110  for_each_phi_fun(block(), phi,
1111                   operand_for_instruction(phi));
1112
1113  LIR_Opr thread_reg = getThreadPointer();
1114  __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1115               exceptionOopOpr());
1116  __ move_wide(LIR_OprFact::oopConst(NULL),
1117               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1118  __ move_wide(LIR_OprFact::oopConst(NULL),
1119               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1120
1121  LIR_Opr result = new_register(T_OBJECT);
1122  __ move(exceptionOopOpr(), result);
1123  set_result(x, result);
1124}
1125
1126
1127//----------------------------------------------------------------------
1128//----------------------------------------------------------------------
1129//----------------------------------------------------------------------
1130//----------------------------------------------------------------------
1131//                        visitor functions
1132//----------------------------------------------------------------------
1133//----------------------------------------------------------------------
1134//----------------------------------------------------------------------
1135//----------------------------------------------------------------------
1136
1137void LIRGenerator::do_Phi(Phi* x) {
1138  // phi functions are never visited directly
1139  ShouldNotReachHere();
1140}
1141
1142
1143// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1144void LIRGenerator::do_Constant(Constant* x) {
1145  if (x->state_before() != NULL) {
1146    // Any constant with a ValueStack requires patching so emit the patch here
1147    LIR_Opr reg = rlock_result(x);
1148    CodeEmitInfo* info = state_for(x, x->state_before());
1149    __ oop2reg_patch(NULL, reg, info);
1150  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1151    if (!x->is_pinned()) {
1152      // unpinned constants are handled specially so that they can be
1153      // put into registers when they are used multiple times within a
1154      // block.  After the block completes their operand will be
1155      // cleared so that other blocks can't refer to that register.
1156      set_result(x, load_constant(x));
1157    } else {
1158      LIR_Opr res = x->operand();
1159      if (!res->is_valid()) {
1160        res = LIR_OprFact::value_type(x->type());
1161      }
1162      if (res->is_constant()) {
1163        LIR_Opr reg = rlock_result(x);
1164        __ move(res, reg);
1165      } else {
1166        set_result(x, res);
1167      }
1168    }
1169  } else {
1170    set_result(x, LIR_OprFact::value_type(x->type()));
1171  }
1172}
1173
1174
1175void LIRGenerator::do_Local(Local* x) {
1176  // operand_for_instruction has the side effect of setting the result
1177  // so there's no need to do it here.
1178  operand_for_instruction(x);
1179}
1180
1181
1182void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1183  Unimplemented();
1184}
1185
1186
1187void LIRGenerator::do_Return(Return* x) {
1188  if (compilation()->env()->dtrace_method_probes()) {
1189    BasicTypeList signature;
1190    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1191    signature.append(T_METADATA); // Method*
1192    LIR_OprList* args = new LIR_OprList();
1193    args->append(getThreadPointer());
1194    LIR_Opr meth = new_register(T_METADATA);
1195    __ metadata2reg(method()->constant_encoding(), meth);
1196    args->append(meth);
1197    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1198  }
1199
1200  if (x->type()->is_void()) {
1201    __ return_op(LIR_OprFact::illegalOpr);
1202  } else {
1203    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1204    LIRItem result(x->result(), this);
1205
1206    result.load_item_force(reg);
1207    __ return_op(result.result());
1208  }
1209  set_no_result(x);
1210}
1211
1212// Examble: ref.get()
1213// Combination of LoadField and g1 pre-write barrier
1214void LIRGenerator::do_Reference_get(Intrinsic* x) {
1215
1216  const int referent_offset = java_lang_ref_Reference::referent_offset;
1217  guarantee(referent_offset > 0, "referent offset not initialized");
1218
1219  assert(x->number_of_arguments() == 1, "wrong type");
1220
1221  LIRItem reference(x->argument_at(0), this);
1222  reference.load_item();
1223
1224  // need to perform the null check on the reference objecy
1225  CodeEmitInfo* info = NULL;
1226  if (x->needs_null_check()) {
1227    info = state_for(x);
1228  }
1229
1230  LIR_Address* referent_field_adr =
1231    new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1232
1233  LIR_Opr result = rlock_result(x);
1234
1235  __ load(referent_field_adr, result, info);
1236
1237  // Register the value in the referent field with the pre-barrier
1238  pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1239              result /* pre_val */,
1240              false  /* do_load */,
1241              false  /* patch */,
1242              NULL   /* info */);
1243}
1244
1245// Example: clazz.isInstance(object)
1246void LIRGenerator::do_isInstance(Intrinsic* x) {
1247  assert(x->number_of_arguments() == 2, "wrong type");
1248
1249  // TODO could try to substitute this node with an equivalent InstanceOf
1250  // if clazz is known to be a constant Class. This will pick up newly found
1251  // constants after HIR construction. I'll leave this to a future change.
1252
1253  // as a first cut, make a simple leaf call to runtime to stay platform independent.
1254  // could follow the aastore example in a future change.
1255
1256  LIRItem clazz(x->argument_at(0), this);
1257  LIRItem object(x->argument_at(1), this);
1258  clazz.load_item();
1259  object.load_item();
1260  LIR_Opr result = rlock_result(x);
1261
1262  // need to perform null check on clazz
1263  if (x->needs_null_check()) {
1264    CodeEmitInfo* info = state_for(x);
1265    __ null_check(clazz.result(), info);
1266  }
1267
1268  LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1269                                     CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1270                                     x->type(),
1271                                     NULL); // NULL CodeEmitInfo results in a leaf call
1272  __ move(call_result, result);
1273}
1274
1275// Example: object.getClass ()
1276void LIRGenerator::do_getClass(Intrinsic* x) {
1277  assert(x->number_of_arguments() == 1, "wrong type");
1278
1279  LIRItem rcvr(x->argument_at(0), this);
1280  rcvr.load_item();
1281  LIR_Opr temp = new_register(T_METADATA);
1282  LIR_Opr result = rlock_result(x);
1283
1284  // need to perform the null check on the rcvr
1285  CodeEmitInfo* info = NULL;
1286  if (x->needs_null_check()) {
1287    info = state_for(x);
1288  }
1289
1290  // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1291  // meaning of these two is mixed up (see JDK-8026837).
1292  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1293  __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1294}
1295
1296
1297// Example: Thread.currentThread()
1298void LIRGenerator::do_currentThread(Intrinsic* x) {
1299  assert(x->number_of_arguments() == 0, "wrong type");
1300  LIR_Opr reg = rlock_result(x);
1301  __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1302}
1303
1304
1305void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1306  assert(x->number_of_arguments() == 1, "wrong type");
1307  LIRItem receiver(x->argument_at(0), this);
1308
1309  receiver.load_item();
1310  BasicTypeList signature;
1311  signature.append(T_OBJECT); // receiver
1312  LIR_OprList* args = new LIR_OprList();
1313  args->append(receiver.result());
1314  CodeEmitInfo* info = state_for(x, x->state());
1315  call_runtime(&signature, args,
1316               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1317               voidType, info);
1318
1319  set_no_result(x);
1320}
1321
1322
1323//------------------------local access--------------------------------------
1324
1325LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1326  if (x->operand()->is_illegal()) {
1327    Constant* c = x->as_Constant();
1328    if (c != NULL) {
1329      x->set_operand(LIR_OprFact::value_type(c->type()));
1330    } else {
1331      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1332      // allocate a virtual register for this local or phi
1333      x->set_operand(rlock(x));
1334      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1335    }
1336  }
1337  return x->operand();
1338}
1339
1340
1341Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1342  if (opr->is_virtual()) {
1343    return instruction_for_vreg(opr->vreg_number());
1344  }
1345  return NULL;
1346}
1347
1348
1349Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1350  if (reg_num < _instruction_for_operand.length()) {
1351    return _instruction_for_operand.at(reg_num);
1352  }
1353  return NULL;
1354}
1355
1356
1357void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1358  if (_vreg_flags.size_in_bits() == 0) {
1359    BitMap2D temp(100, num_vreg_flags);
1360    temp.clear();
1361    _vreg_flags = temp;
1362  }
1363  _vreg_flags.at_put_grow(vreg_num, f, true);
1364}
1365
1366bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1367  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1368    return false;
1369  }
1370  return _vreg_flags.at(vreg_num, f);
1371}
1372
1373
1374// Block local constant handling.  This code is useful for keeping
1375// unpinned constants and constants which aren't exposed in the IR in
1376// registers.  Unpinned Constant instructions have their operands
1377// cleared when the block is finished so that other blocks can't end
1378// up referring to their registers.
1379
1380LIR_Opr LIRGenerator::load_constant(Constant* x) {
1381  assert(!x->is_pinned(), "only for unpinned constants");
1382  _unpinned_constants.append(x);
1383  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1384}
1385
1386
1387LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1388  BasicType t = c->type();
1389  for (int i = 0; i < _constants.length(); i++) {
1390    LIR_Const* other = _constants.at(i);
1391    if (t == other->type()) {
1392      switch (t) {
1393      case T_INT:
1394      case T_FLOAT:
1395        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1396        break;
1397      case T_LONG:
1398      case T_DOUBLE:
1399        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1400        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1401        break;
1402      case T_OBJECT:
1403        if (c->as_jobject() != other->as_jobject()) continue;
1404        break;
1405      }
1406      return _reg_for_constants.at(i);
1407    }
1408  }
1409
1410  LIR_Opr result = new_register(t);
1411  __ move((LIR_Opr)c, result);
1412  _constants.append(c);
1413  _reg_for_constants.append(result);
1414  return result;
1415}
1416
1417// Various barriers
1418
1419void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1420                               bool do_load, bool patch, CodeEmitInfo* info) {
1421  // Do the pre-write barrier, if any.
1422  switch (_bs->kind()) {
1423#if INCLUDE_ALL_GCS
1424    case BarrierSet::G1SATBCT:
1425    case BarrierSet::G1SATBCTLogging:
1426      G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1427      break;
1428#endif // INCLUDE_ALL_GCS
1429    case BarrierSet::CardTableModRef:
1430    case BarrierSet::CardTableExtension:
1431      // No pre barriers
1432      break;
1433    case BarrierSet::ModRef:
1434      // No pre barriers
1435      break;
1436    default      :
1437      ShouldNotReachHere();
1438
1439  }
1440}
1441
1442void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1443  switch (_bs->kind()) {
1444#if INCLUDE_ALL_GCS
1445    case BarrierSet::G1SATBCT:
1446    case BarrierSet::G1SATBCTLogging:
1447      G1SATBCardTableModRef_post_barrier(addr,  new_val);
1448      break;
1449#endif // INCLUDE_ALL_GCS
1450    case BarrierSet::CardTableModRef:
1451    case BarrierSet::CardTableExtension:
1452      CardTableModRef_post_barrier(addr,  new_val);
1453      break;
1454    case BarrierSet::ModRef:
1455      // No post barriers
1456      break;
1457    default      :
1458      ShouldNotReachHere();
1459    }
1460}
1461
1462////////////////////////////////////////////////////////////////////////
1463#if INCLUDE_ALL_GCS
1464
1465void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1466                                                     bool do_load, bool patch, CodeEmitInfo* info) {
1467  // First we test whether marking is in progress.
1468  BasicType flag_type;
1469  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1470    flag_type = T_INT;
1471  } else {
1472    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1473              "Assumption");
1474    flag_type = T_BYTE;
1475  }
1476  LIR_Opr thrd = getThreadPointer();
1477  LIR_Address* mark_active_flag_addr =
1478    new LIR_Address(thrd,
1479                    in_bytes(JavaThread::satb_mark_queue_offset() +
1480                             PtrQueue::byte_offset_of_active()),
1481                    flag_type);
1482  // Read the marking-in-progress flag.
1483  LIR_Opr flag_val = new_register(T_INT);
1484  __ load(mark_active_flag_addr, flag_val);
1485  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1486
1487  LIR_PatchCode pre_val_patch_code = lir_patch_none;
1488
1489  CodeStub* slow;
1490
1491  if (do_load) {
1492    assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1493    assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1494
1495    if (patch)
1496      pre_val_patch_code = lir_patch_normal;
1497
1498    pre_val = new_register(T_OBJECT);
1499
1500    if (!addr_opr->is_address()) {
1501      assert(addr_opr->is_register(), "must be");
1502      addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1503    }
1504    slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1505  } else {
1506    assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1507    assert(pre_val->is_register(), "must be");
1508    assert(pre_val->type() == T_OBJECT, "must be an object");
1509    assert(info == NULL, "sanity");
1510
1511    slow = new G1PreBarrierStub(pre_val);
1512  }
1513
1514  __ branch(lir_cond_notEqual, T_INT, slow);
1515  __ branch_destination(slow->continuation());
1516}
1517
1518void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1519  // If the "new_val" is a constant NULL, no barrier is necessary.
1520  if (new_val->is_constant() &&
1521      new_val->as_constant_ptr()->as_jobject() == NULL) return;
1522
1523  if (!new_val->is_register()) {
1524    LIR_Opr new_val_reg = new_register(T_OBJECT);
1525    if (new_val->is_constant()) {
1526      __ move(new_val, new_val_reg);
1527    } else {
1528      __ leal(new_val, new_val_reg);
1529    }
1530    new_val = new_val_reg;
1531  }
1532  assert(new_val->is_register(), "must be a register at this point");
1533
1534  if (addr->is_address()) {
1535    LIR_Address* address = addr->as_address_ptr();
1536    LIR_Opr ptr = new_pointer_register();
1537    if (!address->index()->is_valid() && address->disp() == 0) {
1538      __ move(address->base(), ptr);
1539    } else {
1540      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1541      __ leal(addr, ptr);
1542    }
1543    addr = ptr;
1544  }
1545  assert(addr->is_register(), "must be a register at this point");
1546
1547  LIR_Opr xor_res = new_pointer_register();
1548  LIR_Opr xor_shift_res = new_pointer_register();
1549  if (TwoOperandLIRForm ) {
1550    __ move(addr, xor_res);
1551    __ logical_xor(xor_res, new_val, xor_res);
1552    __ move(xor_res, xor_shift_res);
1553    __ unsigned_shift_right(xor_shift_res,
1554                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1555                            xor_shift_res,
1556                            LIR_OprDesc::illegalOpr());
1557  } else {
1558    __ logical_xor(addr, new_val, xor_res);
1559    __ unsigned_shift_right(xor_res,
1560                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1561                            xor_shift_res,
1562                            LIR_OprDesc::illegalOpr());
1563  }
1564
1565  if (!new_val->is_register()) {
1566    LIR_Opr new_val_reg = new_register(T_OBJECT);
1567    __ leal(new_val, new_val_reg);
1568    new_val = new_val_reg;
1569  }
1570  assert(new_val->is_register(), "must be a register at this point");
1571
1572  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1573
1574  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1575  __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1576  __ branch_destination(slow->continuation());
1577}
1578
1579#endif // INCLUDE_ALL_GCS
1580////////////////////////////////////////////////////////////////////////
1581
1582void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1583  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1584  assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1585  LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1586  if (addr->is_address()) {
1587    LIR_Address* address = addr->as_address_ptr();
1588    // ptr cannot be an object because we use this barrier for array card marks
1589    // and addr can point in the middle of an array.
1590    LIR_Opr ptr = new_pointer_register();
1591    if (!address->index()->is_valid() && address->disp() == 0) {
1592      __ move(address->base(), ptr);
1593    } else {
1594      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1595      __ leal(addr, ptr);
1596    }
1597    addr = ptr;
1598  }
1599  assert(addr->is_register(), "must be a register at this point");
1600
1601#ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1602  CardTableModRef_post_barrier_helper(addr, card_table_base);
1603#else
1604  LIR_Opr tmp = new_pointer_register();
1605  if (TwoOperandLIRForm) {
1606    __ move(addr, tmp);
1607    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1608  } else {
1609    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1610  }
1611  if (can_inline_as_constant(card_table_base)) {
1612    __ move(LIR_OprFact::intConst(0),
1613              new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1614  } else {
1615    __ move(LIR_OprFact::intConst(0),
1616              new LIR_Address(tmp, load_constant(card_table_base),
1617                              T_BYTE));
1618  }
1619#endif
1620}
1621
1622
1623//------------------------field access--------------------------------------
1624
1625// Comment copied form templateTable_i486.cpp
1626// ----------------------------------------------------------------------------
1627// Volatile variables demand their effects be made known to all CPU's in
1628// order.  Store buffers on most chips allow reads & writes to reorder; the
1629// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1630// memory barrier (i.e., it's not sufficient that the interpreter does not
1631// reorder volatile references, the hardware also must not reorder them).
1632//
1633// According to the new Java Memory Model (JMM):
1634// (1) All volatiles are serialized wrt to each other.
1635// ALSO reads & writes act as aquire & release, so:
1636// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1637// the read float up to before the read.  It's OK for non-volatile memory refs
1638// that happen before the volatile read to float down below it.
1639// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1640// that happen BEFORE the write float down to after the write.  It's OK for
1641// non-volatile memory refs that happen after the volatile write to float up
1642// before it.
1643//
1644// We only put in barriers around volatile refs (they are expensive), not
1645// _between_ memory refs (that would require us to track the flavor of the
1646// previous memory refs).  Requirements (2) and (3) require some barriers
1647// before volatile stores and after volatile loads.  These nearly cover
1648// requirement (1) but miss the volatile-store-volatile-load case.  This final
1649// case is placed after volatile-stores although it could just as well go
1650// before volatile-loads.
1651
1652
1653void LIRGenerator::do_StoreField(StoreField* x) {
1654  bool needs_patching = x->needs_patching();
1655  bool is_volatile = x->field()->is_volatile();
1656  BasicType field_type = x->field_type();
1657  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1658
1659  CodeEmitInfo* info = NULL;
1660  if (needs_patching) {
1661    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1662    info = state_for(x, x->state_before());
1663  } else if (x->needs_null_check()) {
1664    NullCheck* nc = x->explicit_null_check();
1665    if (nc == NULL) {
1666      info = state_for(x);
1667    } else {
1668      info = state_for(nc);
1669    }
1670  }
1671
1672
1673  LIRItem object(x->obj(), this);
1674  LIRItem value(x->value(),  this);
1675
1676  object.load_item();
1677
1678  if (is_volatile || needs_patching) {
1679    // load item if field is volatile (fewer special cases for volatiles)
1680    // load item if field not initialized
1681    // load item if field not constant
1682    // because of code patching we cannot inline constants
1683    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1684      value.load_byte_item();
1685    } else  {
1686      value.load_item();
1687    }
1688  } else {
1689    value.load_for_store(field_type);
1690  }
1691
1692  set_no_result(x);
1693
1694#ifndef PRODUCT
1695  if (PrintNotLoaded && needs_patching) {
1696    tty->print_cr("   ###class not loaded at store_%s bci %d",
1697                  x->is_static() ?  "static" : "field", x->printable_bci());
1698  }
1699#endif
1700
1701  if (x->needs_null_check() &&
1702      (needs_patching ||
1703       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1704    // emit an explicit null check because the offset is too large
1705    __ null_check(object.result(), new CodeEmitInfo(info));
1706  }
1707
1708  LIR_Address* address;
1709  if (needs_patching) {
1710    // we need to patch the offset in the instruction so don't allow
1711    // generate_address to try to be smart about emitting the -1.
1712    // Otherwise the patching code won't know how to find the
1713    // instruction to patch.
1714    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1715  } else {
1716    address = generate_address(object.result(), x->offset(), field_type);
1717  }
1718
1719  if (is_volatile && os::is_MP()) {
1720    __ membar_release();
1721  }
1722
1723  if (is_oop) {
1724    // Do the pre-write barrier, if any.
1725    pre_barrier(LIR_OprFact::address(address),
1726                LIR_OprFact::illegalOpr /* pre_val */,
1727                true /* do_load*/,
1728                needs_patching,
1729                (info ? new CodeEmitInfo(info) : NULL));
1730  }
1731
1732  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1733  if (needs_atomic_access && !needs_patching) {
1734    volatile_field_store(value.result(), address, info);
1735  } else {
1736    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1737    __ store(value.result(), address, info, patch_code);
1738  }
1739
1740  if (is_oop) {
1741    // Store to object so mark the card of the header
1742    post_barrier(object.result(), value.result());
1743  }
1744
1745  if (is_volatile && os::is_MP()) {
1746    __ membar();
1747  }
1748}
1749
1750
1751void LIRGenerator::do_LoadField(LoadField* x) {
1752  bool needs_patching = x->needs_patching();
1753  bool is_volatile = x->field()->is_volatile();
1754  BasicType field_type = x->field_type();
1755
1756  CodeEmitInfo* info = NULL;
1757  if (needs_patching) {
1758    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1759    info = state_for(x, x->state_before());
1760  } else if (x->needs_null_check()) {
1761    NullCheck* nc = x->explicit_null_check();
1762    if (nc == NULL) {
1763      info = state_for(x);
1764    } else {
1765      info = state_for(nc);
1766    }
1767  }
1768
1769  LIRItem object(x->obj(), this);
1770
1771  object.load_item();
1772
1773#ifndef PRODUCT
1774  if (PrintNotLoaded && needs_patching) {
1775    tty->print_cr("   ###class not loaded at load_%s bci %d",
1776                  x->is_static() ?  "static" : "field", x->printable_bci());
1777  }
1778#endif
1779
1780  bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1781  if (x->needs_null_check() &&
1782      (needs_patching ||
1783       MacroAssembler::needs_explicit_null_check(x->offset()) ||
1784       stress_deopt)) {
1785    LIR_Opr obj = object.result();
1786    if (stress_deopt) {
1787      obj = new_register(T_OBJECT);
1788      __ move(LIR_OprFact::oopConst(NULL), obj);
1789    }
1790    // emit an explicit null check because the offset is too large
1791    __ null_check(obj, new CodeEmitInfo(info));
1792  }
1793
1794  LIR_Opr reg = rlock_result(x, field_type);
1795  LIR_Address* address;
1796  if (needs_patching) {
1797    // we need to patch the offset in the instruction so don't allow
1798    // generate_address to try to be smart about emitting the -1.
1799    // Otherwise the patching code won't know how to find the
1800    // instruction to patch.
1801    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1802  } else {
1803    address = generate_address(object.result(), x->offset(), field_type);
1804  }
1805
1806  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1807  if (needs_atomic_access && !needs_patching) {
1808    volatile_field_load(address, reg, info);
1809  } else {
1810    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1811    __ load(address, reg, info, patch_code);
1812  }
1813
1814  if (is_volatile && os::is_MP()) {
1815    __ membar_acquire();
1816  }
1817}
1818
1819
1820//------------------------java.nio.Buffer.checkIndex------------------------
1821
1822// int java.nio.Buffer.checkIndex(int)
1823void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1824  // NOTE: by the time we are in checkIndex() we are guaranteed that
1825  // the buffer is non-null (because checkIndex is package-private and
1826  // only called from within other methods in the buffer).
1827  assert(x->number_of_arguments() == 2, "wrong type");
1828  LIRItem buf  (x->argument_at(0), this);
1829  LIRItem index(x->argument_at(1), this);
1830  buf.load_item();
1831  index.load_item();
1832
1833  LIR_Opr result = rlock_result(x);
1834  if (GenerateRangeChecks) {
1835    CodeEmitInfo* info = state_for(x);
1836    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1837    if (index.result()->is_constant()) {
1838      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1839      __ branch(lir_cond_belowEqual, T_INT, stub);
1840    } else {
1841      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1842                  java_nio_Buffer::limit_offset(), T_INT, info);
1843      __ branch(lir_cond_aboveEqual, T_INT, stub);
1844    }
1845    __ move(index.result(), result);
1846  } else {
1847    // Just load the index into the result register
1848    __ move(index.result(), result);
1849  }
1850}
1851
1852
1853//------------------------array access--------------------------------------
1854
1855
1856void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1857  LIRItem array(x->array(), this);
1858  array.load_item();
1859  LIR_Opr reg = rlock_result(x);
1860
1861  CodeEmitInfo* info = NULL;
1862  if (x->needs_null_check()) {
1863    NullCheck* nc = x->explicit_null_check();
1864    if (nc == NULL) {
1865      info = state_for(x);
1866    } else {
1867      info = state_for(nc);
1868    }
1869    if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1870      LIR_Opr obj = new_register(T_OBJECT);
1871      __ move(LIR_OprFact::oopConst(NULL), obj);
1872      __ null_check(obj, new CodeEmitInfo(info));
1873    }
1874  }
1875  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1876}
1877
1878
1879void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1880  bool use_length = x->length() != NULL;
1881  LIRItem array(x->array(), this);
1882  LIRItem index(x->index(), this);
1883  LIRItem length(this);
1884  bool needs_range_check = x->compute_needs_range_check();
1885
1886  if (use_length && needs_range_check) {
1887    length.set_instruction(x->length());
1888    length.load_item();
1889  }
1890
1891  array.load_item();
1892  if (index.is_constant() && can_inline_as_constant(x->index())) {
1893    // let it be a constant
1894    index.dont_load_item();
1895  } else {
1896    index.load_item();
1897  }
1898
1899  CodeEmitInfo* range_check_info = state_for(x);
1900  CodeEmitInfo* null_check_info = NULL;
1901  if (x->needs_null_check()) {
1902    NullCheck* nc = x->explicit_null_check();
1903    if (nc != NULL) {
1904      null_check_info = state_for(nc);
1905    } else {
1906      null_check_info = range_check_info;
1907    }
1908    if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1909      LIR_Opr obj = new_register(T_OBJECT);
1910      __ move(LIR_OprFact::oopConst(NULL), obj);
1911      __ null_check(obj, new CodeEmitInfo(null_check_info));
1912    }
1913  }
1914
1915  // emit array address setup early so it schedules better
1916  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1917
1918  if (GenerateRangeChecks && needs_range_check) {
1919    if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1920      __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1921    } else if (use_length) {
1922      // TODO: use a (modified) version of array_range_check that does not require a
1923      //       constant length to be loaded to a register
1924      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1925      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1926    } else {
1927      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1928      // The range check performs the null check, so clear it out for the load
1929      null_check_info = NULL;
1930    }
1931  }
1932
1933  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1934}
1935
1936
1937void LIRGenerator::do_NullCheck(NullCheck* x) {
1938  if (x->can_trap()) {
1939    LIRItem value(x->obj(), this);
1940    value.load_item();
1941    CodeEmitInfo* info = state_for(x);
1942    __ null_check(value.result(), info);
1943  }
1944}
1945
1946
1947void LIRGenerator::do_TypeCast(TypeCast* x) {
1948  LIRItem value(x->obj(), this);
1949  value.load_item();
1950  // the result is the same as from the node we are casting
1951  set_result(x, value.result());
1952}
1953
1954
1955void LIRGenerator::do_Throw(Throw* x) {
1956  LIRItem exception(x->exception(), this);
1957  exception.load_item();
1958  set_no_result(x);
1959  LIR_Opr exception_opr = exception.result();
1960  CodeEmitInfo* info = state_for(x, x->state());
1961
1962#ifndef PRODUCT
1963  if (PrintC1Statistics) {
1964    increment_counter(Runtime1::throw_count_address(), T_INT);
1965  }
1966#endif
1967
1968  // check if the instruction has an xhandler in any of the nested scopes
1969  bool unwind = false;
1970  if (info->exception_handlers()->length() == 0) {
1971    // this throw is not inside an xhandler
1972    unwind = true;
1973  } else {
1974    // get some idea of the throw type
1975    bool type_is_exact = true;
1976    ciType* throw_type = x->exception()->exact_type();
1977    if (throw_type == NULL) {
1978      type_is_exact = false;
1979      throw_type = x->exception()->declared_type();
1980    }
1981    if (throw_type != NULL && throw_type->is_instance_klass()) {
1982      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1983      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1984    }
1985  }
1986
1987  // do null check before moving exception oop into fixed register
1988  // to avoid a fixed interval with an oop during the null check.
1989  // Use a copy of the CodeEmitInfo because debug information is
1990  // different for null_check and throw.
1991  if (GenerateCompilerNullChecks &&
1992      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1993    // if the exception object wasn't created using new then it might be null.
1994    __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1995  }
1996
1997  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1998    // we need to go through the exception lookup path to get JVMTI
1999    // notification done
2000    unwind = false;
2001  }
2002
2003  // move exception oop into fixed register
2004  __ move(exception_opr, exceptionOopOpr());
2005
2006  if (unwind) {
2007    __ unwind_exception(exceptionOopOpr());
2008  } else {
2009    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2010  }
2011}
2012
2013
2014void LIRGenerator::do_RoundFP(RoundFP* x) {
2015  LIRItem input(x->input(), this);
2016  input.load_item();
2017  LIR_Opr input_opr = input.result();
2018  assert(input_opr->is_register(), "why round if value is not in a register?");
2019  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2020  if (input_opr->is_single_fpu()) {
2021    set_result(x, round_item(input_opr)); // This code path not currently taken
2022  } else {
2023    LIR_Opr result = new_register(T_DOUBLE);
2024    set_vreg_flag(result, must_start_in_memory);
2025    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2026    set_result(x, result);
2027  }
2028}
2029
2030// Here UnsafeGetRaw may have x->base() and x->index() be int or long
2031// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2032void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2033  LIRItem base(x->base(), this);
2034  LIRItem idx(this);
2035
2036  base.load_item();
2037  if (x->has_index()) {
2038    idx.set_instruction(x->index());
2039    idx.load_nonconstant();
2040  }
2041
2042  LIR_Opr reg = rlock_result(x, x->basic_type());
2043
2044  int   log2_scale = 0;
2045  if (x->has_index()) {
2046    log2_scale = x->log2_scale();
2047  }
2048
2049  assert(!x->has_index() || idx.value() == x->index(), "should match");
2050
2051  LIR_Opr base_op = base.result();
2052  LIR_Opr index_op = idx.result();
2053#ifndef _LP64
2054  if (base_op->type() == T_LONG) {
2055    base_op = new_register(T_INT);
2056    __ convert(Bytecodes::_l2i, base.result(), base_op);
2057  }
2058  if (x->has_index()) {
2059    if (index_op->type() == T_LONG) {
2060      LIR_Opr long_index_op = index_op;
2061      if (index_op->is_constant()) {
2062        long_index_op = new_register(T_LONG);
2063        __ move(index_op, long_index_op);
2064      }
2065      index_op = new_register(T_INT);
2066      __ convert(Bytecodes::_l2i, long_index_op, index_op);
2067    } else {
2068      assert(x->index()->type()->tag() == intTag, "must be");
2069    }
2070  }
2071  // At this point base and index should be all ints.
2072  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2073  assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2074#else
2075  if (x->has_index()) {
2076    if (index_op->type() == T_INT) {
2077      if (!index_op->is_constant()) {
2078        index_op = new_register(T_LONG);
2079        __ convert(Bytecodes::_i2l, idx.result(), index_op);
2080      }
2081    } else {
2082      assert(index_op->type() == T_LONG, "must be");
2083      if (index_op->is_constant()) {
2084        index_op = new_register(T_LONG);
2085        __ move(idx.result(), index_op);
2086      }
2087    }
2088  }
2089  // At this point base is a long non-constant
2090  // Index is a long register or a int constant.
2091  // We allow the constant to stay an int because that would allow us a more compact encoding by
2092  // embedding an immediate offset in the address expression. If we have a long constant, we have to
2093  // move it into a register first.
2094  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2095  assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2096                            (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2097#endif
2098
2099  BasicType dst_type = x->basic_type();
2100
2101  LIR_Address* addr;
2102  if (index_op->is_constant()) {
2103    assert(log2_scale == 0, "must not have a scale");
2104    assert(index_op->type() == T_INT, "only int constants supported");
2105    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2106  } else {
2107#ifdef X86
2108    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2109#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2110    addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2111#else
2112    if (index_op->is_illegal() || log2_scale == 0) {
2113      addr = new LIR_Address(base_op, index_op, dst_type);
2114    } else {
2115      LIR_Opr tmp = new_pointer_register();
2116      __ shift_left(index_op, log2_scale, tmp);
2117      addr = new LIR_Address(base_op, tmp, dst_type);
2118    }
2119#endif
2120  }
2121
2122  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2123    __ unaligned_move(addr, reg);
2124  } else {
2125    if (dst_type == T_OBJECT && x->is_wide()) {
2126      __ move_wide(addr, reg);
2127    } else {
2128      __ move(addr, reg);
2129    }
2130  }
2131}
2132
2133
2134void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2135  int  log2_scale = 0;
2136  BasicType type = x->basic_type();
2137
2138  if (x->has_index()) {
2139    log2_scale = x->log2_scale();
2140  }
2141
2142  LIRItem base(x->base(), this);
2143  LIRItem value(x->value(), this);
2144  LIRItem idx(this);
2145
2146  base.load_item();
2147  if (x->has_index()) {
2148    idx.set_instruction(x->index());
2149    idx.load_item();
2150  }
2151
2152  if (type == T_BYTE || type == T_BOOLEAN) {
2153    value.load_byte_item();
2154  } else {
2155    value.load_item();
2156  }
2157
2158  set_no_result(x);
2159
2160  LIR_Opr base_op = base.result();
2161  LIR_Opr index_op = idx.result();
2162
2163#ifdef GENERATE_ADDRESS_IS_PREFERRED
2164  LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2165#else
2166#ifndef _LP64
2167  if (base_op->type() == T_LONG) {
2168    base_op = new_register(T_INT);
2169    __ convert(Bytecodes::_l2i, base.result(), base_op);
2170  }
2171  if (x->has_index()) {
2172    if (index_op->type() == T_LONG) {
2173      index_op = new_register(T_INT);
2174      __ convert(Bytecodes::_l2i, idx.result(), index_op);
2175    }
2176  }
2177  // At this point base and index should be all ints and not constants
2178  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2179  assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2180#else
2181  if (x->has_index()) {
2182    if (index_op->type() == T_INT) {
2183      index_op = new_register(T_LONG);
2184      __ convert(Bytecodes::_i2l, idx.result(), index_op);
2185    }
2186  }
2187  // At this point base and index are long and non-constant
2188  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2189  assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2190#endif
2191
2192  if (log2_scale != 0) {
2193    // temporary fix (platform dependent code without shift on Intel would be better)
2194    // TODO: ARM also allows embedded shift in the address
2195    __ shift_left(index_op, log2_scale, index_op);
2196  }
2197
2198  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2199#endif // !GENERATE_ADDRESS_IS_PREFERRED
2200  __ move(value.result(), addr);
2201}
2202
2203
2204void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2205  BasicType type = x->basic_type();
2206  LIRItem src(x->object(), this);
2207  LIRItem off(x->offset(), this);
2208
2209  off.load_item();
2210  src.load_item();
2211
2212  LIR_Opr value = rlock_result(x, x->basic_type());
2213
2214  get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2215
2216#if INCLUDE_ALL_GCS
2217  // We might be reading the value of the referent field of a
2218  // Reference object in order to attach it back to the live
2219  // object graph. If G1 is enabled then we need to record
2220  // the value that is being returned in an SATB log buffer.
2221  //
2222  // We need to generate code similar to the following...
2223  //
2224  // if (offset == java_lang_ref_Reference::referent_offset) {
2225  //   if (src != NULL) {
2226  //     if (klass(src)->reference_type() != REF_NONE) {
2227  //       pre_barrier(..., value, ...);
2228  //     }
2229  //   }
2230  // }
2231
2232  if (UseG1GC && type == T_OBJECT) {
2233    bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2234    bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2235    bool gen_source_check = true;    // Assume we need to check the src object for null.
2236    bool gen_type_check = true;      // Assume we need to check the reference_type.
2237
2238    if (off.is_constant()) {
2239      jlong off_con = (off.type()->is_int() ?
2240                        (jlong) off.get_jint_constant() :
2241                        off.get_jlong_constant());
2242
2243
2244      if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2245        // The constant offset is something other than referent_offset.
2246        // We can skip generating/checking the remaining guards and
2247        // skip generation of the code stub.
2248        gen_pre_barrier = false;
2249      } else {
2250        // The constant offset is the same as referent_offset -
2251        // we do not need to generate a runtime offset check.
2252        gen_offset_check = false;
2253      }
2254    }
2255
2256    // We don't need to generate stub if the source object is an array
2257    if (gen_pre_barrier && src.type()->is_array()) {
2258      gen_pre_barrier = false;
2259    }
2260
2261    if (gen_pre_barrier) {
2262      // We still need to continue with the checks.
2263      if (src.is_constant()) {
2264        ciObject* src_con = src.get_jobject_constant();
2265        guarantee(src_con != NULL, "no source constant");
2266
2267        if (src_con->is_null_object()) {
2268          // The constant src object is null - We can skip
2269          // generating the code stub.
2270          gen_pre_barrier = false;
2271        } else {
2272          // Non-null constant source object. We still have to generate
2273          // the slow stub - but we don't need to generate the runtime
2274          // null object check.
2275          gen_source_check = false;
2276        }
2277      }
2278    }
2279    if (gen_pre_barrier && !PatchALot) {
2280      // Can the klass of object be statically determined to be
2281      // a sub-class of Reference?
2282      ciType* type = src.value()->declared_type();
2283      if ((type != NULL) && type->is_loaded()) {
2284        if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2285          gen_type_check = false;
2286        } else if (type->is_klass() &&
2287                   !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2288          // Not Reference and not Object klass.
2289          gen_pre_barrier = false;
2290        }
2291      }
2292    }
2293
2294    if (gen_pre_barrier) {
2295      LabelObj* Lcont = new LabelObj();
2296
2297      // We can have generate one runtime check here. Let's start with
2298      // the offset check.
2299      if (gen_offset_check) {
2300        // if (offset != referent_offset) -> continue
2301        // If offset is an int then we can do the comparison with the
2302        // referent_offset constant; otherwise we need to move
2303        // referent_offset into a temporary register and generate
2304        // a reg-reg compare.
2305
2306        LIR_Opr referent_off;
2307
2308        if (off.type()->is_int()) {
2309          referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2310        } else {
2311          assert(off.type()->is_long(), "what else?");
2312          referent_off = new_register(T_LONG);
2313          __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2314        }
2315        __ cmp(lir_cond_notEqual, off.result(), referent_off);
2316        __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2317      }
2318      if (gen_source_check) {
2319        // offset is a const and equals referent offset
2320        // if (source == null) -> continue
2321        __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2322        __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2323      }
2324      LIR_Opr src_klass = new_register(T_OBJECT);
2325      if (gen_type_check) {
2326        // We have determined that offset == referent_offset && src != null.
2327        // if (src->_klass->_reference_type == REF_NONE) -> continue
2328        __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2329        LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2330        LIR_Opr reference_type = new_register(T_INT);
2331        __ move(reference_type_addr, reference_type);
2332        __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2333        __ branch(lir_cond_equal, T_INT, Lcont->label());
2334      }
2335      {
2336        // We have determined that src->_klass->_reference_type != REF_NONE
2337        // so register the value in the referent field with the pre-barrier.
2338        pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2339                    value  /* pre_val */,
2340                    false  /* do_load */,
2341                    false  /* patch */,
2342                    NULL   /* info */);
2343      }
2344      __ branch_destination(Lcont->label());
2345    }
2346  }
2347#endif // INCLUDE_ALL_GCS
2348
2349  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2350}
2351
2352
2353void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2354  BasicType type = x->basic_type();
2355  LIRItem src(x->object(), this);
2356  LIRItem off(x->offset(), this);
2357  LIRItem data(x->value(), this);
2358
2359  src.load_item();
2360  if (type == T_BOOLEAN || type == T_BYTE) {
2361    data.load_byte_item();
2362  } else {
2363    data.load_item();
2364  }
2365  off.load_item();
2366
2367  set_no_result(x);
2368
2369  if (x->is_volatile() && os::is_MP()) __ membar_release();
2370  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2371  if (x->is_volatile() && os::is_MP()) __ membar();
2372}
2373
2374
2375void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2376  int lng = x->length();
2377
2378  for (int i = 0; i < lng; i++) {
2379    SwitchRange* one_range = x->at(i);
2380    int low_key = one_range->low_key();
2381    int high_key = one_range->high_key();
2382    BlockBegin* dest = one_range->sux();
2383    if (low_key == high_key) {
2384      __ cmp(lir_cond_equal, value, low_key);
2385      __ branch(lir_cond_equal, T_INT, dest);
2386    } else if (high_key - low_key == 1) {
2387      __ cmp(lir_cond_equal, value, low_key);
2388      __ branch(lir_cond_equal, T_INT, dest);
2389      __ cmp(lir_cond_equal, value, high_key);
2390      __ branch(lir_cond_equal, T_INT, dest);
2391    } else {
2392      LabelObj* L = new LabelObj();
2393      __ cmp(lir_cond_less, value, low_key);
2394      __ branch(lir_cond_less, T_INT, L->label());
2395      __ cmp(lir_cond_lessEqual, value, high_key);
2396      __ branch(lir_cond_lessEqual, T_INT, dest);
2397      __ branch_destination(L->label());
2398    }
2399  }
2400  __ jump(default_sux);
2401}
2402
2403
2404SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2405  SwitchRangeList* res = new SwitchRangeList();
2406  int len = x->length();
2407  if (len > 0) {
2408    BlockBegin* sux = x->sux_at(0);
2409    int key = x->lo_key();
2410    BlockBegin* default_sux = x->default_sux();
2411    SwitchRange* range = new SwitchRange(key, sux);
2412    for (int i = 0; i < len; i++, key++) {
2413      BlockBegin* new_sux = x->sux_at(i);
2414      if (sux == new_sux) {
2415        // still in same range
2416        range->set_high_key(key);
2417      } else {
2418        // skip tests which explicitly dispatch to the default
2419        if (sux != default_sux) {
2420          res->append(range);
2421        }
2422        range = new SwitchRange(key, new_sux);
2423      }
2424      sux = new_sux;
2425    }
2426    if (res->length() == 0 || res->last() != range)  res->append(range);
2427  }
2428  return res;
2429}
2430
2431
2432// we expect the keys to be sorted by increasing value
2433SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2434  SwitchRangeList* res = new SwitchRangeList();
2435  int len = x->length();
2436  if (len > 0) {
2437    BlockBegin* default_sux = x->default_sux();
2438    int key = x->key_at(0);
2439    BlockBegin* sux = x->sux_at(0);
2440    SwitchRange* range = new SwitchRange(key, sux);
2441    for (int i = 1; i < len; i++) {
2442      int new_key = x->key_at(i);
2443      BlockBegin* new_sux = x->sux_at(i);
2444      if (key+1 == new_key && sux == new_sux) {
2445        // still in same range
2446        range->set_high_key(new_key);
2447      } else {
2448        // skip tests which explicitly dispatch to the default
2449        if (range->sux() != default_sux) {
2450          res->append(range);
2451        }
2452        range = new SwitchRange(new_key, new_sux);
2453      }
2454      key = new_key;
2455      sux = new_sux;
2456    }
2457    if (res->length() == 0 || res->last() != range)  res->append(range);
2458  }
2459  return res;
2460}
2461
2462
2463void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2464  LIRItem tag(x->tag(), this);
2465  tag.load_item();
2466  set_no_result(x);
2467
2468  if (x->is_safepoint()) {
2469    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2470  }
2471
2472  // move values into phi locations
2473  move_to_phi(x->state());
2474
2475  int lo_key = x->lo_key();
2476  int hi_key = x->hi_key();
2477  int len = x->length();
2478  LIR_Opr value = tag.result();
2479  if (UseTableRanges) {
2480    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2481  } else {
2482    for (int i = 0; i < len; i++) {
2483      __ cmp(lir_cond_equal, value, i + lo_key);
2484      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2485    }
2486    __ jump(x->default_sux());
2487  }
2488}
2489
2490
2491void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2492  LIRItem tag(x->tag(), this);
2493  tag.load_item();
2494  set_no_result(x);
2495
2496  if (x->is_safepoint()) {
2497    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2498  }
2499
2500  // move values into phi locations
2501  move_to_phi(x->state());
2502
2503  LIR_Opr value = tag.result();
2504  if (UseTableRanges) {
2505    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2506  } else {
2507    int len = x->length();
2508    for (int i = 0; i < len; i++) {
2509      __ cmp(lir_cond_equal, value, x->key_at(i));
2510      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2511    }
2512    __ jump(x->default_sux());
2513  }
2514}
2515
2516
2517void LIRGenerator::do_Goto(Goto* x) {
2518  set_no_result(x);
2519
2520  if (block()->next()->as_OsrEntry()) {
2521    // need to free up storage used for OSR entry point
2522    LIR_Opr osrBuffer = block()->next()->operand();
2523    BasicTypeList signature;
2524    signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2525    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2526    __ move(osrBuffer, cc->args()->at(0));
2527    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2528                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2529  }
2530
2531  if (x->is_safepoint()) {
2532    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2533
2534    // increment backedge counter if needed
2535    CodeEmitInfo* info = state_for(x, state);
2536    increment_backedge_counter(info, x->profiled_bci());
2537    CodeEmitInfo* safepoint_info = state_for(x, state);
2538    __ safepoint(safepoint_poll_register(), safepoint_info);
2539  }
2540
2541  // Gotos can be folded Ifs, handle this case.
2542  if (x->should_profile()) {
2543    ciMethod* method = x->profiled_method();
2544    assert(method != NULL, "method should be set if branch is profiled");
2545    ciMethodData* md = method->method_data_or_null();
2546    assert(md != NULL, "Sanity");
2547    ciProfileData* data = md->bci_to_data(x->profiled_bci());
2548    assert(data != NULL, "must have profiling data");
2549    int offset;
2550    if (x->direction() == Goto::taken) {
2551      assert(data->is_BranchData(), "need BranchData for two-way branches");
2552      offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2553    } else if (x->direction() == Goto::not_taken) {
2554      assert(data->is_BranchData(), "need BranchData for two-way branches");
2555      offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2556    } else {
2557      assert(data->is_JumpData(), "need JumpData for branches");
2558      offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2559    }
2560    LIR_Opr md_reg = new_register(T_METADATA);
2561    __ metadata2reg(md->constant_encoding(), md_reg);
2562
2563    increment_counter(new LIR_Address(md_reg, offset,
2564                                      NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2565  }
2566
2567  // emit phi-instruction move after safepoint since this simplifies
2568  // describing the state as the safepoint.
2569  move_to_phi(x->state());
2570
2571  __ jump(x->default_sux());
2572}
2573
2574/**
2575 * Emit profiling code if needed for arguments, parameters, return value types
2576 *
2577 * @param md                    MDO the code will update at runtime
2578 * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2579 * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2580 * @param profiled_k            current profile
2581 * @param obj                   IR node for the object to be profiled
2582 * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2583 *                              Set once we find an update to make and use for next ones.
2584 * @param not_null              true if we know obj cannot be null
2585 * @param signature_at_call_k   signature at call for obj
2586 * @param callee_signature_k    signature of callee for obj
2587 *                              at call and callee signatures differ at method handle call
2588 * @return                      the only klass we know will ever be seen at this profile point
2589 */
2590ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2591                                    Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2592                                    ciKlass* callee_signature_k) {
2593  ciKlass* result = NULL;
2594  bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2595  bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2596  // known not to be null or null bit already set and already set to
2597  // unknown: nothing we can do to improve profiling
2598  if (!do_null && !do_update) {
2599    return result;
2600  }
2601
2602  ciKlass* exact_klass = NULL;
2603  Compilation* comp = Compilation::current();
2604  if (do_update) {
2605    // try to find exact type, using CHA if possible, so that loading
2606    // the klass from the object can be avoided
2607    ciType* type = obj->exact_type();
2608    if (type == NULL) {
2609      type = obj->declared_type();
2610      type = comp->cha_exact_type(type);
2611    }
2612    assert(type == NULL || type->is_klass(), "type should be class");
2613    exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2614
2615    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2616  }
2617
2618  if (!do_null && !do_update) {
2619    return result;
2620  }
2621
2622  ciKlass* exact_signature_k = NULL;
2623  if (do_update) {
2624    // Is the type from the signature exact (the only one possible)?
2625    exact_signature_k = signature_at_call_k->exact_klass();
2626    if (exact_signature_k == NULL) {
2627      exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2628    } else {
2629      result = exact_signature_k;
2630      // Known statically. No need to emit any code: prevent
2631      // LIR_Assembler::emit_profile_type() from emitting useless code
2632      profiled_k = ciTypeEntries::with_status(result, profiled_k);
2633    }
2634    // exact_klass and exact_signature_k can be both non NULL but
2635    // different if exact_klass is loaded after the ciObject for
2636    // exact_signature_k is created.
2637    if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2638      // sometimes the type of the signature is better than the best type
2639      // the compiler has
2640      exact_klass = exact_signature_k;
2641    }
2642    if (callee_signature_k != NULL &&
2643        callee_signature_k != signature_at_call_k) {
2644      ciKlass* improved_klass = callee_signature_k->exact_klass();
2645      if (improved_klass == NULL) {
2646        improved_klass = comp->cha_exact_type(callee_signature_k);
2647      }
2648      if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2649        exact_klass = exact_signature_k;
2650      }
2651    }
2652    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2653  }
2654
2655  if (!do_null && !do_update) {
2656    return result;
2657  }
2658
2659  if (mdp == LIR_OprFact::illegalOpr) {
2660    mdp = new_register(T_METADATA);
2661    __ metadata2reg(md->constant_encoding(), mdp);
2662    if (md_base_offset != 0) {
2663      LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2664      mdp = new_pointer_register();
2665      __ leal(LIR_OprFact::address(base_type_address), mdp);
2666    }
2667  }
2668  LIRItem value(obj, this);
2669  value.load_item();
2670  __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2671                  value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2672  return result;
2673}
2674
2675// profile parameters on entry to the root of the compilation
2676void LIRGenerator::profile_parameters(Base* x) {
2677  if (compilation()->profile_parameters()) {
2678    CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2679    ciMethodData* md = scope()->method()->method_data_or_null();
2680    assert(md != NULL, "Sanity");
2681
2682    if (md->parameters_type_data() != NULL) {
2683      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2684      ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2685      LIR_Opr mdp = LIR_OprFact::illegalOpr;
2686      for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2687        LIR_Opr src = args->at(i);
2688        assert(!src->is_illegal(), "check");
2689        BasicType t = src->type();
2690        if (t == T_OBJECT || t == T_ARRAY) {
2691          intptr_t profiled_k = parameters->type(j);
2692          Local* local = x->state()->local_at(java_index)->as_Local();
2693          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2694                                        in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2695                                        profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2696          // If the profile is known statically set it once for all and do not emit any code
2697          if (exact != NULL) {
2698            md->set_parameter_type(j, exact);
2699          }
2700          j++;
2701        }
2702        java_index += type2size[t];
2703      }
2704    }
2705  }
2706}
2707
2708void LIRGenerator::do_Base(Base* x) {
2709  __ std_entry(LIR_OprFact::illegalOpr);
2710  // Emit moves from physical registers / stack slots to virtual registers
2711  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2712  IRScope* irScope = compilation()->hir()->top_scope();
2713  int java_index = 0;
2714  for (int i = 0; i < args->length(); i++) {
2715    LIR_Opr src = args->at(i);
2716    assert(!src->is_illegal(), "check");
2717    BasicType t = src->type();
2718
2719    // Types which are smaller than int are passed as int, so
2720    // correct the type which passed.
2721    switch (t) {
2722    case T_BYTE:
2723    case T_BOOLEAN:
2724    case T_SHORT:
2725    case T_CHAR:
2726      t = T_INT;
2727      break;
2728    }
2729
2730    LIR_Opr dest = new_register(t);
2731    __ move(src, dest);
2732
2733    // Assign new location to Local instruction for this local
2734    Local* local = x->state()->local_at(java_index)->as_Local();
2735    assert(local != NULL, "Locals for incoming arguments must have been created");
2736#ifndef __SOFTFP__
2737    // The java calling convention passes double as long and float as int.
2738    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2739#endif // __SOFTFP__
2740    local->set_operand(dest);
2741    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2742    java_index += type2size[t];
2743  }
2744
2745  if (compilation()->env()->dtrace_method_probes()) {
2746    BasicTypeList signature;
2747    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2748    signature.append(T_METADATA); // Method*
2749    LIR_OprList* args = new LIR_OprList();
2750    args->append(getThreadPointer());
2751    LIR_Opr meth = new_register(T_METADATA);
2752    __ metadata2reg(method()->constant_encoding(), meth);
2753    args->append(meth);
2754    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2755  }
2756
2757  if (method()->is_synchronized()) {
2758    LIR_Opr obj;
2759    if (method()->is_static()) {
2760      obj = new_register(T_OBJECT);
2761      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2762    } else {
2763      Local* receiver = x->state()->local_at(0)->as_Local();
2764      assert(receiver != NULL, "must already exist");
2765      obj = receiver->operand();
2766    }
2767    assert(obj->is_valid(), "must be valid");
2768
2769    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2770      LIR_Opr lock = new_register(T_INT);
2771      __ load_stack_address_monitor(0, lock);
2772
2773      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2774      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2775
2776      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2777      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2778    }
2779  }
2780  if (compilation()->age_code()) {
2781    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2782    decrement_age(info);
2783  }
2784  // increment invocation counters if needed
2785  if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2786    profile_parameters(x);
2787    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2788    increment_invocation_counter(info);
2789  }
2790
2791  // all blocks with a successor must end with an unconditional jump
2792  // to the successor even if they are consecutive
2793  __ jump(x->default_sux());
2794}
2795
2796
2797void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2798  // construct our frame and model the production of incoming pointer
2799  // to the OSR buffer.
2800  __ osr_entry(LIR_Assembler::osrBufferPointer());
2801  LIR_Opr result = rlock_result(x);
2802  __ move(LIR_Assembler::osrBufferPointer(), result);
2803}
2804
2805
2806void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2807  assert(args->length() == arg_list->length(),
2808         err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2809  for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2810    LIRItem* param = args->at(i);
2811    LIR_Opr loc = arg_list->at(i);
2812    if (loc->is_register()) {
2813      param->load_item_force(loc);
2814    } else {
2815      LIR_Address* addr = loc->as_address_ptr();
2816      param->load_for_store(addr->type());
2817      if (addr->type() == T_OBJECT) {
2818        __ move_wide(param->result(), addr);
2819      } else
2820        if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2821          __ unaligned_move(param->result(), addr);
2822        } else {
2823          __ move(param->result(), addr);
2824        }
2825    }
2826  }
2827
2828  if (x->has_receiver()) {
2829    LIRItem* receiver = args->at(0);
2830    LIR_Opr loc = arg_list->at(0);
2831    if (loc->is_register()) {
2832      receiver->load_item_force(loc);
2833    } else {
2834      assert(loc->is_address(), "just checking");
2835      receiver->load_for_store(T_OBJECT);
2836      __ move_wide(receiver->result(), loc->as_address_ptr());
2837    }
2838  }
2839}
2840
2841
2842// Visits all arguments, returns appropriate items without loading them
2843LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2844  LIRItemList* argument_items = new LIRItemList();
2845  if (x->has_receiver()) {
2846    LIRItem* receiver = new LIRItem(x->receiver(), this);
2847    argument_items->append(receiver);
2848  }
2849  for (int i = 0; i < x->number_of_arguments(); i++) {
2850    LIRItem* param = new LIRItem(x->argument_at(i), this);
2851    argument_items->append(param);
2852  }
2853  return argument_items;
2854}
2855
2856
2857// The invoke with receiver has following phases:
2858//   a) traverse and load/lock receiver;
2859//   b) traverse all arguments -> item-array (invoke_visit_argument)
2860//   c) push receiver on stack
2861//   d) load each of the items and push on stack
2862//   e) unlock receiver
2863//   f) move receiver into receiver-register %o0
2864//   g) lock result registers and emit call operation
2865//
2866// Before issuing a call, we must spill-save all values on stack
2867// that are in caller-save register. "spill-save" moves thos registers
2868// either in a free callee-save register or spills them if no free
2869// callee save register is available.
2870//
2871// The problem is where to invoke spill-save.
2872// - if invoked between e) and f), we may lock callee save
2873//   register in "spill-save" that destroys the receiver register
2874//   before f) is executed
2875// - if we rearange the f) to be earlier, by loading %o0, it
2876//   may destroy a value on the stack that is currently in %o0
2877//   and is waiting to be spilled
2878// - if we keep the receiver locked while doing spill-save,
2879//   we cannot spill it as it is spill-locked
2880//
2881void LIRGenerator::do_Invoke(Invoke* x) {
2882  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2883
2884  LIR_OprList* arg_list = cc->args();
2885  LIRItemList* args = invoke_visit_arguments(x);
2886  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2887
2888  // setup result register
2889  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2890  if (x->type() != voidType) {
2891    result_register = result_register_for(x->type());
2892  }
2893
2894  CodeEmitInfo* info = state_for(x, x->state());
2895
2896  invoke_load_arguments(x, args, arg_list);
2897
2898  if (x->has_receiver()) {
2899    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2900    receiver = args->at(0)->result();
2901  }
2902
2903  // emit invoke code
2904  bool optimized = x->target_is_loaded() && x->target_is_final();
2905  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2906
2907  // JSR 292
2908  // Preserve the SP over MethodHandle call sites.
2909  ciMethod* target = x->target();
2910  bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2911                                  target->is_method_handle_intrinsic() ||
2912                                  target->is_compiled_lambda_form());
2913  if (is_method_handle_invoke) {
2914    info->set_is_method_handle_invoke(true);
2915    __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2916  }
2917
2918  switch (x->code()) {
2919    case Bytecodes::_invokestatic:
2920      __ call_static(target, result_register,
2921                     SharedRuntime::get_resolve_static_call_stub(),
2922                     arg_list, info);
2923      break;
2924    case Bytecodes::_invokespecial:
2925    case Bytecodes::_invokevirtual:
2926    case Bytecodes::_invokeinterface:
2927      // for final target we still produce an inline cache, in order
2928      // to be able to call mixed mode
2929      if (x->code() == Bytecodes::_invokespecial || optimized) {
2930        __ call_opt_virtual(target, receiver, result_register,
2931                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2932                            arg_list, info);
2933      } else if (x->vtable_index() < 0) {
2934        __ call_icvirtual(target, receiver, result_register,
2935                          SharedRuntime::get_resolve_virtual_call_stub(),
2936                          arg_list, info);
2937      } else {
2938        int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2939        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2940        __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2941      }
2942      break;
2943    case Bytecodes::_invokedynamic: {
2944      __ call_dynamic(target, receiver, result_register,
2945                      SharedRuntime::get_resolve_static_call_stub(),
2946                      arg_list, info);
2947      break;
2948    }
2949    default:
2950      fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2951      break;
2952  }
2953
2954  // JSR 292
2955  // Restore the SP after MethodHandle call sites.
2956  if (is_method_handle_invoke) {
2957    __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2958  }
2959
2960  if (x->type()->is_float() || x->type()->is_double()) {
2961    // Force rounding of results from non-strictfp when in strictfp
2962    // scope (or when we don't know the strictness of the callee, to
2963    // be safe.)
2964    if (method()->is_strict()) {
2965      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2966        result_register = round_item(result_register);
2967      }
2968    }
2969  }
2970
2971  if (result_register->is_valid()) {
2972    LIR_Opr result = rlock_result(x);
2973    __ move(result_register, result);
2974  }
2975}
2976
2977
2978void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2979  assert(x->number_of_arguments() == 1, "wrong type");
2980  LIRItem value       (x->argument_at(0), this);
2981  LIR_Opr reg = rlock_result(x);
2982  value.load_item();
2983  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2984  __ move(tmp, reg);
2985}
2986
2987
2988
2989// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2990void LIRGenerator::do_IfOp(IfOp* x) {
2991#ifdef ASSERT
2992  {
2993    ValueTag xtag = x->x()->type()->tag();
2994    ValueTag ttag = x->tval()->type()->tag();
2995    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2996    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2997    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2998  }
2999#endif
3000
3001  LIRItem left(x->x(), this);
3002  LIRItem right(x->y(), this);
3003  left.load_item();
3004  if (can_inline_as_constant(right.value())) {
3005    right.dont_load_item();
3006  } else {
3007    right.load_item();
3008  }
3009
3010  LIRItem t_val(x->tval(), this);
3011  LIRItem f_val(x->fval(), this);
3012  t_val.dont_load_item();
3013  f_val.dont_load_item();
3014  LIR_Opr reg = rlock_result(x);
3015
3016  __ cmp(lir_cond(x->cond()), left.result(), right.result());
3017  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3018}
3019
3020void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3021    assert(x->number_of_arguments() == expected_arguments, "wrong type");
3022    LIR_Opr reg = result_register_for(x->type());
3023    __ call_runtime_leaf(routine, getThreadTemp(),
3024                         reg, new LIR_OprList());
3025    LIR_Opr result = rlock_result(x);
3026    __ move(reg, result);
3027}
3028
3029#ifdef TRACE_HAVE_INTRINSICS
3030void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3031    LIR_Opr thread = getThreadPointer();
3032    LIR_Opr osthread = new_pointer_register();
3033    __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3034    size_t thread_id_size = OSThread::thread_id_size();
3035    if (thread_id_size == (size_t) BytesPerLong) {
3036      LIR_Opr id = new_register(T_LONG);
3037      __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3038      __ convert(Bytecodes::_l2i, id, rlock_result(x));
3039    } else if (thread_id_size == (size_t) BytesPerInt) {
3040      __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3041    } else {
3042      ShouldNotReachHere();
3043    }
3044}
3045
3046void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3047    CodeEmitInfo* info = state_for(x);
3048    CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3049    BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3050    assert(info != NULL, "must have info");
3051    LIRItem arg(x->argument_at(1), this);
3052    arg.load_item();
3053    LIR_Opr klass = new_pointer_register();
3054    __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3055    LIR_Opr id = new_register(T_LONG);
3056    ByteSize offset = TRACE_ID_OFFSET;
3057    LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3058    __ move(trace_id_addr, id);
3059    __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3060    __ store(id, trace_id_addr);
3061    __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3062    __ move(id, rlock_result(x));
3063}
3064#endif
3065
3066void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3067  switch (x->id()) {
3068  case vmIntrinsics::_intBitsToFloat      :
3069  case vmIntrinsics::_doubleToRawLongBits :
3070  case vmIntrinsics::_longBitsToDouble    :
3071  case vmIntrinsics::_floatToRawIntBits   : {
3072    do_FPIntrinsics(x);
3073    break;
3074  }
3075
3076#ifdef TRACE_HAVE_INTRINSICS
3077  case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3078  case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3079  case vmIntrinsics::_counterTime:
3080    do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3081    break;
3082#endif
3083
3084  case vmIntrinsics::_currentTimeMillis:
3085    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3086    break;
3087
3088  case vmIntrinsics::_nanoTime:
3089    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3090    break;
3091
3092  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3093  case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3094  case vmIntrinsics::_getClass:       do_getClass(x);      break;
3095  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3096
3097  case vmIntrinsics::_dlog:           // fall through
3098  case vmIntrinsics::_dlog10:         // fall through
3099  case vmIntrinsics::_dabs:           // fall through
3100  case vmIntrinsics::_dsqrt:          // fall through
3101  case vmIntrinsics::_dtan:           // fall through
3102  case vmIntrinsics::_dsin :          // fall through
3103  case vmIntrinsics::_dcos :          // fall through
3104  case vmIntrinsics::_dexp :          // fall through
3105  case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3106  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3107
3108  // java.nio.Buffer.checkIndex
3109  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3110
3111  case vmIntrinsics::_compareAndSwapObject:
3112    do_CompareAndSwap(x, objectType);
3113    break;
3114  case vmIntrinsics::_compareAndSwapInt:
3115    do_CompareAndSwap(x, intType);
3116    break;
3117  case vmIntrinsics::_compareAndSwapLong:
3118    do_CompareAndSwap(x, longType);
3119    break;
3120
3121  case vmIntrinsics::_loadFence :
3122    if (os::is_MP()) __ membar_acquire();
3123    break;
3124  case vmIntrinsics::_storeFence:
3125    if (os::is_MP()) __ membar_release();
3126    break;
3127  case vmIntrinsics::_fullFence :
3128    if (os::is_MP()) __ membar();
3129    break;
3130
3131  case vmIntrinsics::_Reference_get:
3132    do_Reference_get(x);
3133    break;
3134
3135  case vmIntrinsics::_updateCRC32:
3136  case vmIntrinsics::_updateBytesCRC32:
3137  case vmIntrinsics::_updateByteBufferCRC32:
3138    do_update_CRC32(x);
3139    break;
3140
3141  default: ShouldNotReachHere(); break;
3142  }
3143}
3144
3145void LIRGenerator::profile_arguments(ProfileCall* x) {
3146  if (compilation()->profile_arguments()) {
3147    int bci = x->bci_of_invoke();
3148    ciMethodData* md = x->method()->method_data_or_null();
3149    ciProfileData* data = md->bci_to_data(bci);
3150    if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3151        (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3152      ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3153      int base_offset = md->byte_offset_of_slot(data, extra);
3154      LIR_Opr mdp = LIR_OprFact::illegalOpr;
3155      ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3156
3157      Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3158      int start = 0;
3159      int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3160      if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3161        // first argument is not profiled at call (method handle invoke)
3162        assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3163        start = 1;
3164      }
3165      ciSignature* callee_signature = x->callee()->signature();
3166      // method handle call to virtual method
3167      bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3168      ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3169
3170      bool ignored_will_link;
3171      ciSignature* signature_at_call = NULL;
3172      x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3173      ciSignatureStream signature_at_call_stream(signature_at_call);
3174
3175      // if called through method handle invoke, some arguments may have been popped
3176      for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3177        int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3178        ciKlass* exact = profile_type(md, base_offset, off,
3179                                      args->type(i), x->profiled_arg_at(i+start), mdp,
3180                                      !x->arg_needs_null_check(i+start),
3181                                      signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3182        if (exact != NULL) {
3183          md->set_argument_type(bci, i, exact);
3184        }
3185      }
3186    } else {
3187#ifdef ASSERT
3188      Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3189      int n = x->nb_profiled_args();
3190      assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3191                                                  (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3192             "only at JSR292 bytecodes");
3193#endif
3194    }
3195  }
3196}
3197
3198// profile parameters on entry to an inlined method
3199void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3200  if (compilation()->profile_parameters() && x->inlined()) {
3201    ciMethodData* md = x->callee()->method_data_or_null();
3202    if (md != NULL) {
3203      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3204      if (parameters_type_data != NULL) {
3205        ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3206        LIR_Opr mdp = LIR_OprFact::illegalOpr;
3207        bool has_receiver = !x->callee()->is_static();
3208        ciSignature* sig = x->callee()->signature();
3209        ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3210        int i = 0; // to iterate on the Instructions
3211        Value arg = x->recv();
3212        bool not_null = false;
3213        int bci = x->bci_of_invoke();
3214        Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3215        // The first parameter is the receiver so that's what we start
3216        // with if it exists. One exception is method handle call to
3217        // virtual method: the receiver is in the args list
3218        if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3219          i = 1;
3220          arg = x->profiled_arg_at(0);
3221          not_null = !x->arg_needs_null_check(0);
3222        }
3223        int k = 0; // to iterate on the profile data
3224        for (;;) {
3225          intptr_t profiled_k = parameters->type(k);
3226          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3227                                        in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3228                                        profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3229          // If the profile is known statically set it once for all and do not emit any code
3230          if (exact != NULL) {
3231            md->set_parameter_type(k, exact);
3232          }
3233          k++;
3234          if (k >= parameters_type_data->number_of_parameters()) {
3235#ifdef ASSERT
3236            int extra = 0;
3237            if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3238                x->nb_profiled_args() >= TypeProfileParmsLimit &&
3239                x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3240              extra += 1;
3241            }
3242            assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3243#endif
3244            break;
3245          }
3246          arg = x->profiled_arg_at(i);
3247          not_null = !x->arg_needs_null_check(i);
3248          i++;
3249        }
3250      }
3251    }
3252  }
3253}
3254
3255void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3256  // Need recv in a temporary register so it interferes with the other temporaries
3257  LIR_Opr recv = LIR_OprFact::illegalOpr;
3258  LIR_Opr mdo = new_register(T_OBJECT);
3259  // tmp is used to hold the counters on SPARC
3260  LIR_Opr tmp = new_pointer_register();
3261
3262  if (x->nb_profiled_args() > 0) {
3263    profile_arguments(x);
3264  }
3265
3266  // profile parameters on inlined method entry including receiver
3267  if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3268    profile_parameters_at_call(x);
3269  }
3270
3271  if (x->recv() != NULL) {
3272    LIRItem value(x->recv(), this);
3273    value.load_item();
3274    recv = new_register(T_OBJECT);
3275    __ move(value.result(), recv);
3276  }
3277  __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3278}
3279
3280void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3281  int bci = x->bci_of_invoke();
3282  ciMethodData* md = x->method()->method_data_or_null();
3283  ciProfileData* data = md->bci_to_data(bci);
3284  assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3285  ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3286  LIR_Opr mdp = LIR_OprFact::illegalOpr;
3287
3288  bool ignored_will_link;
3289  ciSignature* signature_at_call = NULL;
3290  x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3291
3292  // The offset within the MDO of the entry to update may be too large
3293  // to be used in load/store instructions on some platforms. So have
3294  // profile_type() compute the address of the profile in a register.
3295  ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3296                                ret->type(), x->ret(), mdp,
3297                                !x->needs_null_check(),
3298                                signature_at_call->return_type()->as_klass(),
3299                                x->callee()->signature()->return_type()->as_klass());
3300  if (exact != NULL) {
3301    md->set_return_type(bci, exact);
3302  }
3303}
3304
3305void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3306  // We can safely ignore accessors here, since c2 will inline them anyway,
3307  // accessors are also always mature.
3308  if (!x->inlinee()->is_accessor()) {
3309    CodeEmitInfo* info = state_for(x, x->state(), true);
3310    // Notify the runtime very infrequently only to take care of counter overflows
3311    int freq_log = Tier23InlineeNotifyFreqLog;
3312    double scale;
3313    if (_method->has_option_value("CompileThresholdScaling", scale)) {
3314      freq_log = Arguments::scaled_freq_log(freq_log, scale);
3315    }
3316    increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3317  }
3318}
3319
3320void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3321  int freq_log;
3322  int level = compilation()->env()->comp_level();
3323  if (level == CompLevel_limited_profile) {
3324    freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3325  } else if (level == CompLevel_full_profile) {
3326    freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3327  } else {
3328    ShouldNotReachHere();
3329  }
3330  // Increment the appropriate invocation/backedge counter and notify the runtime.
3331  double scale;
3332  if (_method->has_option_value("CompileThresholdScaling", scale)) {
3333    freq_log = Arguments::scaled_freq_log(freq_log, scale);
3334  }
3335  increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3336}
3337
3338void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3339  ciMethod* method = info->scope()->method();
3340  MethodCounters* mc_adr = method->ensure_method_counters();
3341  if (mc_adr != NULL) {
3342    LIR_Opr mc = new_pointer_register();
3343    __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3344    int offset = in_bytes(MethodCounters::nmethod_age_offset());
3345    LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3346    LIR_Opr result = new_register(T_INT);
3347    __ load(counter, result);
3348    __ sub(result, LIR_OprFact::intConst(1), result);
3349    __ store(result, counter);
3350    // DeoptimizeStub will reexecute from the current state in code info.
3351    CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3352                                         Deoptimization::Action_make_not_entrant);
3353    __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3354    __ branch(lir_cond_lessEqual, T_INT, deopt);
3355  }
3356}
3357
3358
3359void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3360                                                ciMethod *method, int frequency,
3361                                                int bci, bool backedge, bool notify) {
3362  assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3363  int level = _compilation->env()->comp_level();
3364  assert(level > CompLevel_simple, "Shouldn't be here");
3365
3366  int offset = -1;
3367  LIR_Opr counter_holder;
3368  if (level == CompLevel_limited_profile) {
3369    MethodCounters* counters_adr = method->ensure_method_counters();
3370    if (counters_adr == NULL) {
3371      bailout("method counters allocation failed");
3372      return;
3373    }
3374    counter_holder = new_pointer_register();
3375    __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3376    offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3377                                 MethodCounters::invocation_counter_offset());
3378  } else if (level == CompLevel_full_profile) {
3379    counter_holder = new_register(T_METADATA);
3380    offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3381                                 MethodData::invocation_counter_offset());
3382    ciMethodData* md = method->method_data_or_null();
3383    assert(md != NULL, "Sanity");
3384    __ metadata2reg(md->constant_encoding(), counter_holder);
3385  } else {
3386    ShouldNotReachHere();
3387  }
3388  LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3389  LIR_Opr result = new_register(T_INT);
3390  __ load(counter, result);
3391  __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3392  __ store(result, counter);
3393  if (notify) {
3394    LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3395    LIR_Opr meth = new_register(T_METADATA);
3396    __ metadata2reg(method->constant_encoding(), meth);
3397    __ logical_and(result, mask, result);
3398    __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3399    // The bci for info can point to cmp for if's we want the if bci
3400    CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3401    __ branch(lir_cond_equal, T_INT, overflow);
3402    __ branch_destination(overflow->continuation());
3403  }
3404}
3405
3406void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3407  LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3408  BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3409
3410  if (x->pass_thread()) {
3411    signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3412    args->append(getThreadPointer());
3413  }
3414
3415  for (int i = 0; i < x->number_of_arguments(); i++) {
3416    Value a = x->argument_at(i);
3417    LIRItem* item = new LIRItem(a, this);
3418    item->load_item();
3419    args->append(item->result());
3420    signature->append(as_BasicType(a->type()));
3421  }
3422
3423  LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3424  if (x->type() == voidType) {
3425    set_no_result(x);
3426  } else {
3427    __ move(result, rlock_result(x));
3428  }
3429}
3430
3431#ifdef ASSERT
3432void LIRGenerator::do_Assert(Assert *x) {
3433  ValueTag tag = x->x()->type()->tag();
3434  If::Condition cond = x->cond();
3435
3436  LIRItem xitem(x->x(), this);
3437  LIRItem yitem(x->y(), this);
3438  LIRItem* xin = &xitem;
3439  LIRItem* yin = &yitem;
3440
3441  assert(tag == intTag, "Only integer assertions are valid!");
3442
3443  xin->load_item();
3444  yin->dont_load_item();
3445
3446  set_no_result(x);
3447
3448  LIR_Opr left = xin->result();
3449  LIR_Opr right = yin->result();
3450
3451  __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3452}
3453#endif
3454
3455void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3456
3457
3458  Instruction *a = x->x();
3459  Instruction *b = x->y();
3460  if (!a || StressRangeCheckElimination) {
3461    assert(!b || StressRangeCheckElimination, "B must also be null");
3462
3463    CodeEmitInfo *info = state_for(x, x->state());
3464    CodeStub* stub = new PredicateFailedStub(info);
3465
3466    __ jump(stub);
3467  } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3468    int a_int = a->type()->as_IntConstant()->value();
3469    int b_int = b->type()->as_IntConstant()->value();
3470
3471    bool ok = false;
3472
3473    switch(x->cond()) {
3474      case Instruction::eql: ok = (a_int == b_int); break;
3475      case Instruction::neq: ok = (a_int != b_int); break;
3476      case Instruction::lss: ok = (a_int < b_int); break;
3477      case Instruction::leq: ok = (a_int <= b_int); break;
3478      case Instruction::gtr: ok = (a_int > b_int); break;
3479      case Instruction::geq: ok = (a_int >= b_int); break;
3480      case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3481      case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3482      default: ShouldNotReachHere();
3483    }
3484
3485    if (ok) {
3486
3487      CodeEmitInfo *info = state_for(x, x->state());
3488      CodeStub* stub = new PredicateFailedStub(info);
3489
3490      __ jump(stub);
3491    }
3492  } else {
3493
3494    ValueTag tag = x->x()->type()->tag();
3495    If::Condition cond = x->cond();
3496    LIRItem xitem(x->x(), this);
3497    LIRItem yitem(x->y(), this);
3498    LIRItem* xin = &xitem;
3499    LIRItem* yin = &yitem;
3500
3501    assert(tag == intTag, "Only integer deoptimizations are valid!");
3502
3503    xin->load_item();
3504    yin->dont_load_item();
3505    set_no_result(x);
3506
3507    LIR_Opr left = xin->result();
3508    LIR_Opr right = yin->result();
3509
3510    CodeEmitInfo *info = state_for(x, x->state());
3511    CodeStub* stub = new PredicateFailedStub(info);
3512
3513    __ cmp(lir_cond(cond), left, right);
3514    __ branch(lir_cond(cond), right->type(), stub);
3515  }
3516}
3517
3518
3519LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3520  LIRItemList args(1);
3521  LIRItem value(arg1, this);
3522  args.append(&value);
3523  BasicTypeList signature;
3524  signature.append(as_BasicType(arg1->type()));
3525
3526  return call_runtime(&signature, &args, entry, result_type, info);
3527}
3528
3529
3530LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3531  LIRItemList args(2);
3532  LIRItem value1(arg1, this);
3533  LIRItem value2(arg2, this);
3534  args.append(&value1);
3535  args.append(&value2);
3536  BasicTypeList signature;
3537  signature.append(as_BasicType(arg1->type()));
3538  signature.append(as_BasicType(arg2->type()));
3539
3540  return call_runtime(&signature, &args, entry, result_type, info);
3541}
3542
3543
3544LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3545                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3546  // get a result register
3547  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3548  LIR_Opr result = LIR_OprFact::illegalOpr;
3549  if (result_type->tag() != voidTag) {
3550    result = new_register(result_type);
3551    phys_reg = result_register_for(result_type);
3552  }
3553
3554  // move the arguments into the correct location
3555  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3556  assert(cc->length() == args->length(), "argument mismatch");
3557  for (int i = 0; i < args->length(); i++) {
3558    LIR_Opr arg = args->at(i);
3559    LIR_Opr loc = cc->at(i);
3560    if (loc->is_register()) {
3561      __ move(arg, loc);
3562    } else {
3563      LIR_Address* addr = loc->as_address_ptr();
3564//           if (!can_store_as_constant(arg)) {
3565//             LIR_Opr tmp = new_register(arg->type());
3566//             __ move(arg, tmp);
3567//             arg = tmp;
3568//           }
3569      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3570        __ unaligned_move(arg, addr);
3571      } else {
3572        __ move(arg, addr);
3573      }
3574    }
3575  }
3576
3577  if (info) {
3578    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3579  } else {
3580    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3581  }
3582  if (result->is_valid()) {
3583    __ move(phys_reg, result);
3584  }
3585  return result;
3586}
3587
3588
3589LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3590                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3591  // get a result register
3592  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3593  LIR_Opr result = LIR_OprFact::illegalOpr;
3594  if (result_type->tag() != voidTag) {
3595    result = new_register(result_type);
3596    phys_reg = result_register_for(result_type);
3597  }
3598
3599  // move the arguments into the correct location
3600  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3601
3602  assert(cc->length() == args->length(), "argument mismatch");
3603  for (int i = 0; i < args->length(); i++) {
3604    LIRItem* arg = args->at(i);
3605    LIR_Opr loc = cc->at(i);
3606    if (loc->is_register()) {
3607      arg->load_item_force(loc);
3608    } else {
3609      LIR_Address* addr = loc->as_address_ptr();
3610      arg->load_for_store(addr->type());
3611      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3612        __ unaligned_move(arg->result(), addr);
3613      } else {
3614        __ move(arg->result(), addr);
3615      }
3616    }
3617  }
3618
3619  if (info) {
3620    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3621  } else {
3622    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3623  }
3624  if (result->is_valid()) {
3625    __ move(phys_reg, result);
3626  }
3627  return result;
3628}
3629
3630void LIRGenerator::do_MemBar(MemBar* x) {
3631  if (os::is_MP()) {
3632    LIR_Code code = x->code();
3633    switch(code) {
3634      case lir_membar_acquire   : __ membar_acquire(); break;
3635      case lir_membar_release   : __ membar_release(); break;
3636      case lir_membar           : __ membar(); break;
3637      case lir_membar_loadload  : __ membar_loadload(); break;
3638      case lir_membar_storestore: __ membar_storestore(); break;
3639      case lir_membar_loadstore : __ membar_loadstore(); break;
3640      case lir_membar_storeload : __ membar_storeload(); break;
3641      default                   : ShouldNotReachHere(); break;
3642    }
3643  }
3644}
3645