c1_LIRGenerator.cpp revision 4456:8be1318fbe77
1/*
2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_ValueStack.hpp"
32#include "ci/ciArrayKlass.hpp"
33#include "ci/ciInstance.hpp"
34#include "ci/ciObjArray.hpp"
35#include "runtime/sharedRuntime.hpp"
36#include "runtime/stubRoutines.hpp"
37#include "utilities/bitMap.inline.hpp"
38#include "utilities/macros.hpp"
39#if INCLUDE_ALL_GCS
40#include "gc_implementation/g1/heapRegion.hpp"
41#endif // INCLUDE_ALL_GCS
42
43#ifdef ASSERT
44#define __ gen()->lir(__FILE__, __LINE__)->
45#else
46#define __ gen()->lir()->
47#endif
48
49// TODO: ARM - Use some recognizable constant which still fits architectural constraints
50#ifdef ARM
51#define PATCHED_ADDR  (204)
52#else
53#define PATCHED_ADDR  (max_jint)
54#endif
55
56void PhiResolverState::reset(int max_vregs) {
57  // Initialize array sizes
58  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
59  _virtual_operands.trunc_to(0);
60  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
61  _other_operands.trunc_to(0);
62  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
63  _vreg_table.trunc_to(0);
64}
65
66
67
68//--------------------------------------------------------------
69// PhiResolver
70
71// Resolves cycles:
72//
73//  r1 := r2  becomes  temp := r1
74//  r2 := r1           r1 := r2
75//                     r2 := temp
76// and orders moves:
77//
78//  r2 := r3  becomes  r1 := r2
79//  r1 := r2           r2 := r3
80
81PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
82 : _gen(gen)
83 , _state(gen->resolver_state())
84 , _temp(LIR_OprFact::illegalOpr)
85{
86  // reinitialize the shared state arrays
87  _state.reset(max_vregs);
88}
89
90
91void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
92  assert(src->is_valid(), "");
93  assert(dest->is_valid(), "");
94  __ move(src, dest);
95}
96
97
98void PhiResolver::move_temp_to(LIR_Opr dest) {
99  assert(_temp->is_valid(), "");
100  emit_move(_temp, dest);
101  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
102}
103
104
105void PhiResolver::move_to_temp(LIR_Opr src) {
106  assert(_temp->is_illegal(), "");
107  _temp = _gen->new_register(src->type());
108  emit_move(src, _temp);
109}
110
111
112// Traverse assignment graph in depth first order and generate moves in post order
113// ie. two assignments: b := c, a := b start with node c:
114// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
115// Generates moves in this order: move b to a and move c to b
116// ie. cycle a := b, b := a start with node a
117// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
118// Generates moves in this order: move b to temp, move a to b, move temp to a
119void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
120  if (!dest->visited()) {
121    dest->set_visited();
122    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
123      move(dest, dest->destination_at(i));
124    }
125  } else if (!dest->start_node()) {
126    // cylce in graph detected
127    assert(_loop == NULL, "only one loop valid!");
128    _loop = dest;
129    move_to_temp(src->operand());
130    return;
131  } // else dest is a start node
132
133  if (!dest->assigned()) {
134    if (_loop == dest) {
135      move_temp_to(dest->operand());
136      dest->set_assigned();
137    } else if (src != NULL) {
138      emit_move(src->operand(), dest->operand());
139      dest->set_assigned();
140    }
141  }
142}
143
144
145PhiResolver::~PhiResolver() {
146  int i;
147  // resolve any cycles in moves from and to virtual registers
148  for (i = virtual_operands().length() - 1; i >= 0; i --) {
149    ResolveNode* node = virtual_operands()[i];
150    if (!node->visited()) {
151      _loop = NULL;
152      move(NULL, node);
153      node->set_start_node();
154      assert(_temp->is_illegal(), "move_temp_to() call missing");
155    }
156  }
157
158  // generate move for move from non virtual register to abitrary destination
159  for (i = other_operands().length() - 1; i >= 0; i --) {
160    ResolveNode* node = other_operands()[i];
161    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
162      emit_move(node->operand(), node->destination_at(j)->operand());
163    }
164  }
165}
166
167
168ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
169  ResolveNode* node;
170  if (opr->is_virtual()) {
171    int vreg_num = opr->vreg_number();
172    node = vreg_table().at_grow(vreg_num, NULL);
173    assert(node == NULL || node->operand() == opr, "");
174    if (node == NULL) {
175      node = new ResolveNode(opr);
176      vreg_table()[vreg_num] = node;
177    }
178    // Make sure that all virtual operands show up in the list when
179    // they are used as the source of a move.
180    if (source && !virtual_operands().contains(node)) {
181      virtual_operands().append(node);
182    }
183  } else {
184    assert(source, "");
185    node = new ResolveNode(opr);
186    other_operands().append(node);
187  }
188  return node;
189}
190
191
192void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
193  assert(dest->is_virtual(), "");
194  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
195  assert(src->is_valid(), "");
196  assert(dest->is_valid(), "");
197  ResolveNode* source = source_node(src);
198  source->append(destination_node(dest));
199}
200
201
202//--------------------------------------------------------------
203// LIRItem
204
205void LIRItem::set_result(LIR_Opr opr) {
206  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
207  value()->set_operand(opr);
208
209  if (opr->is_virtual()) {
210    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
211  }
212
213  _result = opr;
214}
215
216void LIRItem::load_item() {
217  if (result()->is_illegal()) {
218    // update the items result
219    _result = value()->operand();
220  }
221  if (!result()->is_register()) {
222    LIR_Opr reg = _gen->new_register(value()->type());
223    __ move(result(), reg);
224    if (result()->is_constant()) {
225      _result = reg;
226    } else {
227      set_result(reg);
228    }
229  }
230}
231
232
233void LIRItem::load_for_store(BasicType type) {
234  if (_gen->can_store_as_constant(value(), type)) {
235    _result = value()->operand();
236    if (!_result->is_constant()) {
237      _result = LIR_OprFact::value_type(value()->type());
238    }
239  } else if (type == T_BYTE || type == T_BOOLEAN) {
240    load_byte_item();
241  } else {
242    load_item();
243  }
244}
245
246void LIRItem::load_item_force(LIR_Opr reg) {
247  LIR_Opr r = result();
248  if (r != reg) {
249#if !defined(ARM) && !defined(E500V2)
250    if (r->type() != reg->type()) {
251      // moves between different types need an intervening spill slot
252      r = _gen->force_to_spill(r, reg->type());
253    }
254#endif
255    __ move(r, reg);
256    _result = reg;
257  }
258}
259
260ciObject* LIRItem::get_jobject_constant() const {
261  ObjectType* oc = type()->as_ObjectType();
262  if (oc) {
263    return oc->constant_value();
264  }
265  return NULL;
266}
267
268
269jint LIRItem::get_jint_constant() const {
270  assert(is_constant() && value() != NULL, "");
271  assert(type()->as_IntConstant() != NULL, "type check");
272  return type()->as_IntConstant()->value();
273}
274
275
276jint LIRItem::get_address_constant() const {
277  assert(is_constant() && value() != NULL, "");
278  assert(type()->as_AddressConstant() != NULL, "type check");
279  return type()->as_AddressConstant()->value();
280}
281
282
283jfloat LIRItem::get_jfloat_constant() const {
284  assert(is_constant() && value() != NULL, "");
285  assert(type()->as_FloatConstant() != NULL, "type check");
286  return type()->as_FloatConstant()->value();
287}
288
289
290jdouble LIRItem::get_jdouble_constant() const {
291  assert(is_constant() && value() != NULL, "");
292  assert(type()->as_DoubleConstant() != NULL, "type check");
293  return type()->as_DoubleConstant()->value();
294}
295
296
297jlong LIRItem::get_jlong_constant() const {
298  assert(is_constant() && value() != NULL, "");
299  assert(type()->as_LongConstant() != NULL, "type check");
300  return type()->as_LongConstant()->value();
301}
302
303
304
305//--------------------------------------------------------------
306
307
308void LIRGenerator::init() {
309  _bs = Universe::heap()->barrier_set();
310}
311
312
313void LIRGenerator::block_do_prolog(BlockBegin* block) {
314#ifndef PRODUCT
315  if (PrintIRWithLIR) {
316    block->print();
317  }
318#endif
319
320  // set up the list of LIR instructions
321  assert(block->lir() == NULL, "LIR list already computed for this block");
322  _lir = new LIR_List(compilation(), block);
323  block->set_lir(_lir);
324
325  __ branch_destination(block->label());
326
327  if (LIRTraceExecution &&
328      Compilation::current()->hir()->start()->block_id() != block->block_id() &&
329      !block->is_set(BlockBegin::exception_entry_flag)) {
330    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
331    trace_block_entry(block);
332  }
333}
334
335
336void LIRGenerator::block_do_epilog(BlockBegin* block) {
337#ifndef PRODUCT
338  if (PrintIRWithLIR) {
339    tty->cr();
340  }
341#endif
342
343  // LIR_Opr for unpinned constants shouldn't be referenced by other
344  // blocks so clear them out after processing the block.
345  for (int i = 0; i < _unpinned_constants.length(); i++) {
346    _unpinned_constants.at(i)->clear_operand();
347  }
348  _unpinned_constants.trunc_to(0);
349
350  // clear our any registers for other local constants
351  _constants.trunc_to(0);
352  _reg_for_constants.trunc_to(0);
353}
354
355
356void LIRGenerator::block_do(BlockBegin* block) {
357  CHECK_BAILOUT();
358
359  block_do_prolog(block);
360  set_block(block);
361
362  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
363    if (instr->is_pinned()) do_root(instr);
364  }
365
366  set_block(NULL);
367  block_do_epilog(block);
368}
369
370
371//-------------------------LIRGenerator-----------------------------
372
373// This is where the tree-walk starts; instr must be root;
374void LIRGenerator::do_root(Value instr) {
375  CHECK_BAILOUT();
376
377  InstructionMark im(compilation(), instr);
378
379  assert(instr->is_pinned(), "use only with roots");
380  assert(instr->subst() == instr, "shouldn't have missed substitution");
381
382  instr->visit(this);
383
384  assert(!instr->has_uses() || instr->operand()->is_valid() ||
385         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
386}
387
388
389// This is called for each node in tree; the walk stops if a root is reached
390void LIRGenerator::walk(Value instr) {
391  InstructionMark im(compilation(), instr);
392  //stop walk when encounter a root
393  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
394    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
395  } else {
396    assert(instr->subst() == instr, "shouldn't have missed substitution");
397    instr->visit(this);
398    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
399  }
400}
401
402
403CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
404  assert(state != NULL, "state must be defined");
405
406#ifndef PRODUCT
407  state->verify();
408#endif
409
410  ValueStack* s = state;
411  for_each_state(s) {
412    if (s->kind() == ValueStack::EmptyExceptionState) {
413      assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
414      continue;
415    }
416
417    int index;
418    Value value;
419    for_each_stack_value(s, index, value) {
420      assert(value->subst() == value, "missed substitution");
421      if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
422        walk(value);
423        assert(value->operand()->is_valid(), "must be evaluated now");
424      }
425    }
426
427    int bci = s->bci();
428    IRScope* scope = s->scope();
429    ciMethod* method = scope->method();
430
431    MethodLivenessResult liveness = method->liveness_at_bci(bci);
432    if (bci == SynchronizationEntryBCI) {
433      if (x->as_ExceptionObject() || x->as_Throw()) {
434        // all locals are dead on exit from the synthetic unlocker
435        liveness.clear();
436      } else {
437        assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
438      }
439    }
440    if (!liveness.is_valid()) {
441      // Degenerate or breakpointed method.
442      bailout("Degenerate or breakpointed method");
443    } else {
444      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
445      for_each_local_value(s, index, value) {
446        assert(value->subst() == value, "missed substition");
447        if (liveness.at(index) && !value->type()->is_illegal()) {
448          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
449            walk(value);
450            assert(value->operand()->is_valid(), "must be evaluated now");
451          }
452        } else {
453          // NULL out this local so that linear scan can assume that all non-NULL values are live.
454          s->invalidate_local(index);
455        }
456      }
457    }
458  }
459
460  return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
461}
462
463
464CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
465  return state_for(x, x->exception_state());
466}
467
468
469void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
470  if (!obj->is_loaded() || PatchALot) {
471    assert(info != NULL, "info must be set if class is not loaded");
472    __ klass2reg_patch(NULL, r, info);
473  } else {
474    // no patching needed
475    __ metadata2reg(obj->constant_encoding(), r);
476  }
477}
478
479
480void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
481                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
482  CodeStub* stub = new RangeCheckStub(range_check_info, index);
483  if (index->is_constant()) {
484    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
485                index->as_jint(), null_check_info);
486    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
487  } else {
488    cmp_reg_mem(lir_cond_aboveEqual, index, array,
489                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
490    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
491  }
492}
493
494
495void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
496  CodeStub* stub = new RangeCheckStub(info, index, true);
497  if (index->is_constant()) {
498    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
499    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
500  } else {
501    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
502                java_nio_Buffer::limit_offset(), T_INT, info);
503    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
504  }
505  __ move(index, result);
506}
507
508
509
510void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
511  LIR_Opr result_op = result;
512  LIR_Opr left_op   = left;
513  LIR_Opr right_op  = right;
514
515  if (TwoOperandLIRForm && left_op != result_op) {
516    assert(right_op != result_op, "malformed");
517    __ move(left_op, result_op);
518    left_op = result_op;
519  }
520
521  switch(code) {
522    case Bytecodes::_dadd:
523    case Bytecodes::_fadd:
524    case Bytecodes::_ladd:
525    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
526    case Bytecodes::_fmul:
527    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
528
529    case Bytecodes::_dmul:
530      {
531        if (is_strictfp) {
532          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
533        } else {
534          __ mul(left_op, right_op, result_op); break;
535        }
536      }
537      break;
538
539    case Bytecodes::_imul:
540      {
541        bool    did_strength_reduce = false;
542
543        if (right->is_constant()) {
544          int c = right->as_jint();
545          if (is_power_of_2(c)) {
546            // do not need tmp here
547            __ shift_left(left_op, exact_log2(c), result_op);
548            did_strength_reduce = true;
549          } else {
550            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
551          }
552        }
553        // we couldn't strength reduce so just emit the multiply
554        if (!did_strength_reduce) {
555          __ mul(left_op, right_op, result_op);
556        }
557      }
558      break;
559
560    case Bytecodes::_dsub:
561    case Bytecodes::_fsub:
562    case Bytecodes::_lsub:
563    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
564
565    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
566    // ldiv and lrem are implemented with a direct runtime call
567
568    case Bytecodes::_ddiv:
569      {
570        if (is_strictfp) {
571          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
572        } else {
573          __ div (left_op, right_op, result_op); break;
574        }
575      }
576      break;
577
578    case Bytecodes::_drem:
579    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
580
581    default: ShouldNotReachHere();
582  }
583}
584
585
586void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
587  arithmetic_op(code, result, left, right, false, tmp);
588}
589
590
591void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
592  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
593}
594
595
596void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
597  arithmetic_op(code, result, left, right, is_strictfp, tmp);
598}
599
600
601void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
602  if (TwoOperandLIRForm && value != result_op) {
603    assert(count != result_op, "malformed");
604    __ move(value, result_op);
605    value = result_op;
606  }
607
608  assert(count->is_constant() || count->is_register(), "must be");
609  switch(code) {
610  case Bytecodes::_ishl:
611  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
612  case Bytecodes::_ishr:
613  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
614  case Bytecodes::_iushr:
615  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
616  default: ShouldNotReachHere();
617  }
618}
619
620
621void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
622  if (TwoOperandLIRForm && left_op != result_op) {
623    assert(right_op != result_op, "malformed");
624    __ move(left_op, result_op);
625    left_op = result_op;
626  }
627
628  switch(code) {
629    case Bytecodes::_iand:
630    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
631
632    case Bytecodes::_ior:
633    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
634
635    case Bytecodes::_ixor:
636    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
637
638    default: ShouldNotReachHere();
639  }
640}
641
642
643void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
644  if (!GenerateSynchronizationCode) return;
645  // for slow path, use debug info for state after successful locking
646  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
647  __ load_stack_address_monitor(monitor_no, lock);
648  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
649  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
650}
651
652
653void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
654  if (!GenerateSynchronizationCode) return;
655  // setup registers
656  LIR_Opr hdr = lock;
657  lock = new_hdr;
658  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
659  __ load_stack_address_monitor(monitor_no, lock);
660  __ unlock_object(hdr, object, lock, scratch, slow_path);
661}
662
663
664void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
665  klass2reg_with_patching(klass_reg, klass, info);
666  // If klass is not loaded we do not know if the klass has finalizers:
667  if (UseFastNewInstance && klass->is_loaded()
668      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
669
670    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
671
672    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
673
674    assert(klass->is_loaded(), "must be loaded");
675    // allocate space for instance
676    assert(klass->size_helper() >= 0, "illegal instance size");
677    const int instance_size = align_object_size(klass->size_helper());
678    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
679                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
680  } else {
681    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
682    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
683    __ branch_destination(slow_path->continuation());
684  }
685}
686
687
688static bool is_constant_zero(Instruction* inst) {
689  IntConstant* c = inst->type()->as_IntConstant();
690  if (c) {
691    return (c->value() == 0);
692  }
693  return false;
694}
695
696
697static bool positive_constant(Instruction* inst) {
698  IntConstant* c = inst->type()->as_IntConstant();
699  if (c) {
700    return (c->value() >= 0);
701  }
702  return false;
703}
704
705
706static ciArrayKlass* as_array_klass(ciType* type) {
707  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
708    return (ciArrayKlass*)type;
709  } else {
710    return NULL;
711  }
712}
713
714static ciType* phi_declared_type(Phi* phi) {
715  ciType* t = phi->operand_at(0)->declared_type();
716  if (t == NULL) {
717    return NULL;
718  }
719  for(int i = 1; i < phi->operand_count(); i++) {
720    if (t != phi->operand_at(i)->declared_type()) {
721      return NULL;
722    }
723  }
724  return t;
725}
726
727void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
728  Instruction* src     = x->argument_at(0);
729  Instruction* src_pos = x->argument_at(1);
730  Instruction* dst     = x->argument_at(2);
731  Instruction* dst_pos = x->argument_at(3);
732  Instruction* length  = x->argument_at(4);
733
734  // first try to identify the likely type of the arrays involved
735  ciArrayKlass* expected_type = NULL;
736  bool is_exact = false, src_objarray = false, dst_objarray = false;
737  {
738    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
739    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
740    Phi* phi;
741    if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
742      src_declared_type = as_array_klass(phi_declared_type(phi));
743    }
744    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
745    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
746    if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
747      dst_declared_type = as_array_klass(phi_declared_type(phi));
748    }
749
750    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
751      // the types exactly match so the type is fully known
752      is_exact = true;
753      expected_type = src_exact_type;
754    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
755      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
756      ciArrayKlass* src_type = NULL;
757      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
758        src_type = (ciArrayKlass*) src_exact_type;
759      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
760        src_type = (ciArrayKlass*) src_declared_type;
761      }
762      if (src_type != NULL) {
763        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
764          is_exact = true;
765          expected_type = dst_type;
766        }
767      }
768    }
769    // at least pass along a good guess
770    if (expected_type == NULL) expected_type = dst_exact_type;
771    if (expected_type == NULL) expected_type = src_declared_type;
772    if (expected_type == NULL) expected_type = dst_declared_type;
773
774    src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
775    dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
776  }
777
778  // if a probable array type has been identified, figure out if any
779  // of the required checks for a fast case can be elided.
780  int flags = LIR_OpArrayCopy::all_flags;
781
782  if (!src_objarray)
783    flags &= ~LIR_OpArrayCopy::src_objarray;
784  if (!dst_objarray)
785    flags &= ~LIR_OpArrayCopy::dst_objarray;
786
787  if (!x->arg_needs_null_check(0))
788    flags &= ~LIR_OpArrayCopy::src_null_check;
789  if (!x->arg_needs_null_check(2))
790    flags &= ~LIR_OpArrayCopy::dst_null_check;
791
792
793  if (expected_type != NULL) {
794    Value length_limit = NULL;
795
796    IfOp* ifop = length->as_IfOp();
797    if (ifop != NULL) {
798      // look for expressions like min(v, a.length) which ends up as
799      //   x > y ? y : x  or  x >= y ? y : x
800      if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
801          ifop->x() == ifop->fval() &&
802          ifop->y() == ifop->tval()) {
803        length_limit = ifop->y();
804      }
805    }
806
807    // try to skip null checks and range checks
808    NewArray* src_array = src->as_NewArray();
809    if (src_array != NULL) {
810      flags &= ~LIR_OpArrayCopy::src_null_check;
811      if (length_limit != NULL &&
812          src_array->length() == length_limit &&
813          is_constant_zero(src_pos)) {
814        flags &= ~LIR_OpArrayCopy::src_range_check;
815      }
816    }
817
818    NewArray* dst_array = dst->as_NewArray();
819    if (dst_array != NULL) {
820      flags &= ~LIR_OpArrayCopy::dst_null_check;
821      if (length_limit != NULL &&
822          dst_array->length() == length_limit &&
823          is_constant_zero(dst_pos)) {
824        flags &= ~LIR_OpArrayCopy::dst_range_check;
825      }
826    }
827
828    // check from incoming constant values
829    if (positive_constant(src_pos))
830      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
831    if (positive_constant(dst_pos))
832      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
833    if (positive_constant(length))
834      flags &= ~LIR_OpArrayCopy::length_positive_check;
835
836    // see if the range check can be elided, which might also imply
837    // that src or dst is non-null.
838    ArrayLength* al = length->as_ArrayLength();
839    if (al != NULL) {
840      if (al->array() == src) {
841        // it's the length of the source array
842        flags &= ~LIR_OpArrayCopy::length_positive_check;
843        flags &= ~LIR_OpArrayCopy::src_null_check;
844        if (is_constant_zero(src_pos))
845          flags &= ~LIR_OpArrayCopy::src_range_check;
846      }
847      if (al->array() == dst) {
848        // it's the length of the destination array
849        flags &= ~LIR_OpArrayCopy::length_positive_check;
850        flags &= ~LIR_OpArrayCopy::dst_null_check;
851        if (is_constant_zero(dst_pos))
852          flags &= ~LIR_OpArrayCopy::dst_range_check;
853      }
854    }
855    if (is_exact) {
856      flags &= ~LIR_OpArrayCopy::type_check;
857    }
858  }
859
860  IntConstant* src_int = src_pos->type()->as_IntConstant();
861  IntConstant* dst_int = dst_pos->type()->as_IntConstant();
862  if (src_int && dst_int) {
863    int s_offs = src_int->value();
864    int d_offs = dst_int->value();
865    if (src_int->value() >= dst_int->value()) {
866      flags &= ~LIR_OpArrayCopy::overlapping;
867    }
868    if (expected_type != NULL) {
869      BasicType t = expected_type->element_type()->basic_type();
870      int element_size = type2aelembytes(t);
871      if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
872          ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
873        flags &= ~LIR_OpArrayCopy::unaligned;
874      }
875    }
876  } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
877    // src and dest positions are the same, or dst is zero so assume
878    // nonoverlapping copy.
879    flags &= ~LIR_OpArrayCopy::overlapping;
880  }
881
882  if (src == dst) {
883    // moving within a single array so no type checks are needed
884    if (flags & LIR_OpArrayCopy::type_check) {
885      flags &= ~LIR_OpArrayCopy::type_check;
886    }
887  }
888  *flagsp = flags;
889  *expected_typep = (ciArrayKlass*)expected_type;
890}
891
892
893LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
894  assert(opr->is_register(), "why spill if item is not register?");
895
896  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
897    LIR_Opr result = new_register(T_FLOAT);
898    set_vreg_flag(result, must_start_in_memory);
899    assert(opr->is_register(), "only a register can be spilled");
900    assert(opr->value_type()->is_float(), "rounding only for floats available");
901    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
902    return result;
903  }
904  return opr;
905}
906
907
908LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
909  assert(type2size[t] == type2size[value->type()],
910         err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
911  if (!value->is_register()) {
912    // force into a register
913    LIR_Opr r = new_register(value->type());
914    __ move(value, r);
915    value = r;
916  }
917
918  // create a spill location
919  LIR_Opr tmp = new_register(t);
920  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
921
922  // move from register to spill
923  __ move(value, tmp);
924  return tmp;
925}
926
927void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
928  if (if_instr->should_profile()) {
929    ciMethod* method = if_instr->profiled_method();
930    assert(method != NULL, "method should be set if branch is profiled");
931    ciMethodData* md = method->method_data_or_null();
932    assert(md != NULL, "Sanity");
933    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
934    assert(data != NULL, "must have profiling data");
935    assert(data->is_BranchData(), "need BranchData for two-way branches");
936    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
937    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
938    if (if_instr->is_swapped()) {
939      int t = taken_count_offset;
940      taken_count_offset = not_taken_count_offset;
941      not_taken_count_offset = t;
942    }
943
944    LIR_Opr md_reg = new_register(T_METADATA);
945    __ metadata2reg(md->constant_encoding(), md_reg);
946
947    LIR_Opr data_offset_reg = new_pointer_register();
948    __ cmove(lir_cond(cond),
949             LIR_OprFact::intptrConst(taken_count_offset),
950             LIR_OprFact::intptrConst(not_taken_count_offset),
951             data_offset_reg, as_BasicType(if_instr->x()->type()));
952
953    // MDO cells are intptr_t, so the data_reg width is arch-dependent.
954    LIR_Opr data_reg = new_pointer_register();
955    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
956    __ move(data_addr, data_reg);
957    // Use leal instead of add to avoid destroying condition codes on x86
958    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
959    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
960    __ move(data_reg, data_addr);
961  }
962}
963
964// Phi technique:
965// This is about passing live values from one basic block to the other.
966// In code generated with Java it is rather rare that more than one
967// value is on the stack from one basic block to the other.
968// We optimize our technique for efficient passing of one value
969// (of type long, int, double..) but it can be extended.
970// When entering or leaving a basic block, all registers and all spill
971// slots are release and empty. We use the released registers
972// and spill slots to pass the live values from one block
973// to the other. The topmost value, i.e., the value on TOS of expression
974// stack is passed in registers. All other values are stored in spilling
975// area. Every Phi has an index which designates its spill slot
976// At exit of a basic block, we fill the register(s) and spill slots.
977// At entry of a basic block, the block_prolog sets up the content of phi nodes
978// and locks necessary registers and spilling slots.
979
980
981// move current value to referenced phi function
982void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
983  Phi* phi = sux_val->as_Phi();
984  // cur_val can be null without phi being null in conjunction with inlining
985  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
986    LIR_Opr operand = cur_val->operand();
987    if (cur_val->operand()->is_illegal()) {
988      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
989             "these can be produced lazily");
990      operand = operand_for_instruction(cur_val);
991    }
992    resolver->move(operand, operand_for_instruction(phi));
993  }
994}
995
996
997// Moves all stack values into their PHI position
998void LIRGenerator::move_to_phi(ValueStack* cur_state) {
999  BlockBegin* bb = block();
1000  if (bb->number_of_sux() == 1) {
1001    BlockBegin* sux = bb->sux_at(0);
1002    assert(sux->number_of_preds() > 0, "invalid CFG");
1003
1004    // a block with only one predecessor never has phi functions
1005    if (sux->number_of_preds() > 1) {
1006      int max_phis = cur_state->stack_size() + cur_state->locals_size();
1007      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1008
1009      ValueStack* sux_state = sux->state();
1010      Value sux_value;
1011      int index;
1012
1013      assert(cur_state->scope() == sux_state->scope(), "not matching");
1014      assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1015      assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1016
1017      for_each_stack_value(sux_state, index, sux_value) {
1018        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1019      }
1020
1021      for_each_local_value(sux_state, index, sux_value) {
1022        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1023      }
1024
1025      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1026    }
1027  }
1028}
1029
1030
1031LIR_Opr LIRGenerator::new_register(BasicType type) {
1032  int vreg = _virtual_register_number;
1033  // add a little fudge factor for the bailout, since the bailout is
1034  // only checked periodically.  This gives a few extra registers to
1035  // hand out before we really run out, which helps us keep from
1036  // tripping over assertions.
1037  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1038    bailout("out of virtual registers");
1039    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1040      // wrap it around
1041      _virtual_register_number = LIR_OprDesc::vreg_base;
1042    }
1043  }
1044  _virtual_register_number += 1;
1045  return LIR_OprFact::virtual_register(vreg, type);
1046}
1047
1048
1049// Try to lock using register in hint
1050LIR_Opr LIRGenerator::rlock(Value instr) {
1051  return new_register(instr->type());
1052}
1053
1054
1055// does an rlock and sets result
1056LIR_Opr LIRGenerator::rlock_result(Value x) {
1057  LIR_Opr reg = rlock(x);
1058  set_result(x, reg);
1059  return reg;
1060}
1061
1062
1063// does an rlock and sets result
1064LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1065  LIR_Opr reg;
1066  switch (type) {
1067  case T_BYTE:
1068  case T_BOOLEAN:
1069    reg = rlock_byte(type);
1070    break;
1071  default:
1072    reg = rlock(x);
1073    break;
1074  }
1075
1076  set_result(x, reg);
1077  return reg;
1078}
1079
1080
1081//---------------------------------------------------------------------
1082ciObject* LIRGenerator::get_jobject_constant(Value value) {
1083  ObjectType* oc = value->type()->as_ObjectType();
1084  if (oc) {
1085    return oc->constant_value();
1086  }
1087  return NULL;
1088}
1089
1090
1091void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1092  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1093  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1094
1095  // no moves are created for phi functions at the begin of exception
1096  // handlers, so assign operands manually here
1097  for_each_phi_fun(block(), phi,
1098                   operand_for_instruction(phi));
1099
1100  LIR_Opr thread_reg = getThreadPointer();
1101  __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1102               exceptionOopOpr());
1103  __ move_wide(LIR_OprFact::oopConst(NULL),
1104               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1105  __ move_wide(LIR_OprFact::oopConst(NULL),
1106               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1107
1108  LIR_Opr result = new_register(T_OBJECT);
1109  __ move(exceptionOopOpr(), result);
1110  set_result(x, result);
1111}
1112
1113
1114//----------------------------------------------------------------------
1115//----------------------------------------------------------------------
1116//----------------------------------------------------------------------
1117//----------------------------------------------------------------------
1118//                        visitor functions
1119//----------------------------------------------------------------------
1120//----------------------------------------------------------------------
1121//----------------------------------------------------------------------
1122//----------------------------------------------------------------------
1123
1124void LIRGenerator::do_Phi(Phi* x) {
1125  // phi functions are never visited directly
1126  ShouldNotReachHere();
1127}
1128
1129
1130// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1131void LIRGenerator::do_Constant(Constant* x) {
1132  if (x->state_before() != NULL) {
1133    // Any constant with a ValueStack requires patching so emit the patch here
1134    LIR_Opr reg = rlock_result(x);
1135    CodeEmitInfo* info = state_for(x, x->state_before());
1136    __ oop2reg_patch(NULL, reg, info);
1137  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1138    if (!x->is_pinned()) {
1139      // unpinned constants are handled specially so that they can be
1140      // put into registers when they are used multiple times within a
1141      // block.  After the block completes their operand will be
1142      // cleared so that other blocks can't refer to that register.
1143      set_result(x, load_constant(x));
1144    } else {
1145      LIR_Opr res = x->operand();
1146      if (!res->is_valid()) {
1147        res = LIR_OprFact::value_type(x->type());
1148      }
1149      if (res->is_constant()) {
1150        LIR_Opr reg = rlock_result(x);
1151        __ move(res, reg);
1152      } else {
1153        set_result(x, res);
1154      }
1155    }
1156  } else {
1157    set_result(x, LIR_OprFact::value_type(x->type()));
1158  }
1159}
1160
1161
1162void LIRGenerator::do_Local(Local* x) {
1163  // operand_for_instruction has the side effect of setting the result
1164  // so there's no need to do it here.
1165  operand_for_instruction(x);
1166}
1167
1168
1169void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1170  Unimplemented();
1171}
1172
1173
1174void LIRGenerator::do_Return(Return* x) {
1175  if (compilation()->env()->dtrace_method_probes()) {
1176    BasicTypeList signature;
1177    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1178    signature.append(T_OBJECT); // Method*
1179    LIR_OprList* args = new LIR_OprList();
1180    args->append(getThreadPointer());
1181    LIR_Opr meth = new_register(T_METADATA);
1182    __ metadata2reg(method()->constant_encoding(), meth);
1183    args->append(meth);
1184    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1185  }
1186
1187  if (x->type()->is_void()) {
1188    __ return_op(LIR_OprFact::illegalOpr);
1189  } else {
1190    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1191    LIRItem result(x->result(), this);
1192
1193    result.load_item_force(reg);
1194    __ return_op(result.result());
1195  }
1196  set_no_result(x);
1197}
1198
1199// Examble: ref.get()
1200// Combination of LoadField and g1 pre-write barrier
1201void LIRGenerator::do_Reference_get(Intrinsic* x) {
1202
1203  const int referent_offset = java_lang_ref_Reference::referent_offset;
1204  guarantee(referent_offset > 0, "referent offset not initialized");
1205
1206  assert(x->number_of_arguments() == 1, "wrong type");
1207
1208  LIRItem reference(x->argument_at(0), this);
1209  reference.load_item();
1210
1211  // need to perform the null check on the reference objecy
1212  CodeEmitInfo* info = NULL;
1213  if (x->needs_null_check()) {
1214    info = state_for(x);
1215  }
1216
1217  LIR_Address* referent_field_adr =
1218    new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1219
1220  LIR_Opr result = rlock_result(x);
1221
1222  __ load(referent_field_adr, result, info);
1223
1224  // Register the value in the referent field with the pre-barrier
1225  pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1226              result /* pre_val */,
1227              false  /* do_load */,
1228              false  /* patch */,
1229              NULL   /* info */);
1230}
1231
1232// Example: clazz.isInstance(object)
1233void LIRGenerator::do_isInstance(Intrinsic* x) {
1234  assert(x->number_of_arguments() == 2, "wrong type");
1235
1236  // TODO could try to substitute this node with an equivalent InstanceOf
1237  // if clazz is known to be a constant Class. This will pick up newly found
1238  // constants after HIR construction. I'll leave this to a future change.
1239
1240  // as a first cut, make a simple leaf call to runtime to stay platform independent.
1241  // could follow the aastore example in a future change.
1242
1243  LIRItem clazz(x->argument_at(0), this);
1244  LIRItem object(x->argument_at(1), this);
1245  clazz.load_item();
1246  object.load_item();
1247  LIR_Opr result = rlock_result(x);
1248
1249  // need to perform null check on clazz
1250  if (x->needs_null_check()) {
1251    CodeEmitInfo* info = state_for(x);
1252    __ null_check(clazz.result(), info);
1253  }
1254
1255  LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1256                                     CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1257                                     x->type(),
1258                                     NULL); // NULL CodeEmitInfo results in a leaf call
1259  __ move(call_result, result);
1260}
1261
1262// Example: object.getClass ()
1263void LIRGenerator::do_getClass(Intrinsic* x) {
1264  assert(x->number_of_arguments() == 1, "wrong type");
1265
1266  LIRItem rcvr(x->argument_at(0), this);
1267  rcvr.load_item();
1268  LIR_Opr result = rlock_result(x);
1269
1270  // need to perform the null check on the rcvr
1271  CodeEmitInfo* info = NULL;
1272  if (x->needs_null_check()) {
1273    info = state_for(x);
1274  }
1275  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
1276  __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1277}
1278
1279
1280// Example: Thread.currentThread()
1281void LIRGenerator::do_currentThread(Intrinsic* x) {
1282  assert(x->number_of_arguments() == 0, "wrong type");
1283  LIR_Opr reg = rlock_result(x);
1284  __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1285}
1286
1287
1288void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1289  assert(x->number_of_arguments() == 1, "wrong type");
1290  LIRItem receiver(x->argument_at(0), this);
1291
1292  receiver.load_item();
1293  BasicTypeList signature;
1294  signature.append(T_OBJECT); // receiver
1295  LIR_OprList* args = new LIR_OprList();
1296  args->append(receiver.result());
1297  CodeEmitInfo* info = state_for(x, x->state());
1298  call_runtime(&signature, args,
1299               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1300               voidType, info);
1301
1302  set_no_result(x);
1303}
1304
1305
1306//------------------------local access--------------------------------------
1307
1308LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1309  if (x->operand()->is_illegal()) {
1310    Constant* c = x->as_Constant();
1311    if (c != NULL) {
1312      x->set_operand(LIR_OprFact::value_type(c->type()));
1313    } else {
1314      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1315      // allocate a virtual register for this local or phi
1316      x->set_operand(rlock(x));
1317      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1318    }
1319  }
1320  return x->operand();
1321}
1322
1323
1324Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1325  if (opr->is_virtual()) {
1326    return instruction_for_vreg(opr->vreg_number());
1327  }
1328  return NULL;
1329}
1330
1331
1332Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1333  if (reg_num < _instruction_for_operand.length()) {
1334    return _instruction_for_operand.at(reg_num);
1335  }
1336  return NULL;
1337}
1338
1339
1340void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1341  if (_vreg_flags.size_in_bits() == 0) {
1342    BitMap2D temp(100, num_vreg_flags);
1343    temp.clear();
1344    _vreg_flags = temp;
1345  }
1346  _vreg_flags.at_put_grow(vreg_num, f, true);
1347}
1348
1349bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1350  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1351    return false;
1352  }
1353  return _vreg_flags.at(vreg_num, f);
1354}
1355
1356
1357// Block local constant handling.  This code is useful for keeping
1358// unpinned constants and constants which aren't exposed in the IR in
1359// registers.  Unpinned Constant instructions have their operands
1360// cleared when the block is finished so that other blocks can't end
1361// up referring to their registers.
1362
1363LIR_Opr LIRGenerator::load_constant(Constant* x) {
1364  assert(!x->is_pinned(), "only for unpinned constants");
1365  _unpinned_constants.append(x);
1366  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1367}
1368
1369
1370LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1371  BasicType t = c->type();
1372  for (int i = 0; i < _constants.length(); i++) {
1373    LIR_Const* other = _constants.at(i);
1374    if (t == other->type()) {
1375      switch (t) {
1376      case T_INT:
1377      case T_FLOAT:
1378        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1379        break;
1380      case T_LONG:
1381      case T_DOUBLE:
1382        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1383        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1384        break;
1385      case T_OBJECT:
1386        if (c->as_jobject() != other->as_jobject()) continue;
1387        break;
1388      }
1389      return _reg_for_constants.at(i);
1390    }
1391  }
1392
1393  LIR_Opr result = new_register(t);
1394  __ move((LIR_Opr)c, result);
1395  _constants.append(c);
1396  _reg_for_constants.append(result);
1397  return result;
1398}
1399
1400// Various barriers
1401
1402void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1403                               bool do_load, bool patch, CodeEmitInfo* info) {
1404  // Do the pre-write barrier, if any.
1405  switch (_bs->kind()) {
1406#if INCLUDE_ALL_GCS
1407    case BarrierSet::G1SATBCT:
1408    case BarrierSet::G1SATBCTLogging:
1409      G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1410      break;
1411#endif // INCLUDE_ALL_GCS
1412    case BarrierSet::CardTableModRef:
1413    case BarrierSet::CardTableExtension:
1414      // No pre barriers
1415      break;
1416    case BarrierSet::ModRef:
1417    case BarrierSet::Other:
1418      // No pre barriers
1419      break;
1420    default      :
1421      ShouldNotReachHere();
1422
1423  }
1424}
1425
1426void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1427  switch (_bs->kind()) {
1428#if INCLUDE_ALL_GCS
1429    case BarrierSet::G1SATBCT:
1430    case BarrierSet::G1SATBCTLogging:
1431      G1SATBCardTableModRef_post_barrier(addr,  new_val);
1432      break;
1433#endif // INCLUDE_ALL_GCS
1434    case BarrierSet::CardTableModRef:
1435    case BarrierSet::CardTableExtension:
1436      CardTableModRef_post_barrier(addr,  new_val);
1437      break;
1438    case BarrierSet::ModRef:
1439    case BarrierSet::Other:
1440      // No post barriers
1441      break;
1442    default      :
1443      ShouldNotReachHere();
1444    }
1445}
1446
1447////////////////////////////////////////////////////////////////////////
1448#if INCLUDE_ALL_GCS
1449
1450void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1451                                                     bool do_load, bool patch, CodeEmitInfo* info) {
1452  // First we test whether marking is in progress.
1453  BasicType flag_type;
1454  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1455    flag_type = T_INT;
1456  } else {
1457    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1458              "Assumption");
1459    flag_type = T_BYTE;
1460  }
1461  LIR_Opr thrd = getThreadPointer();
1462  LIR_Address* mark_active_flag_addr =
1463    new LIR_Address(thrd,
1464                    in_bytes(JavaThread::satb_mark_queue_offset() +
1465                             PtrQueue::byte_offset_of_active()),
1466                    flag_type);
1467  // Read the marking-in-progress flag.
1468  LIR_Opr flag_val = new_register(T_INT);
1469  __ load(mark_active_flag_addr, flag_val);
1470  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1471
1472  LIR_PatchCode pre_val_patch_code = lir_patch_none;
1473
1474  CodeStub* slow;
1475
1476  if (do_load) {
1477    assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1478    assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1479
1480    if (patch)
1481      pre_val_patch_code = lir_patch_normal;
1482
1483    pre_val = new_register(T_OBJECT);
1484
1485    if (!addr_opr->is_address()) {
1486      assert(addr_opr->is_register(), "must be");
1487      addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1488    }
1489    slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1490  } else {
1491    assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1492    assert(pre_val->is_register(), "must be");
1493    assert(pre_val->type() == T_OBJECT, "must be an object");
1494    assert(info == NULL, "sanity");
1495
1496    slow = new G1PreBarrierStub(pre_val);
1497  }
1498
1499  __ branch(lir_cond_notEqual, T_INT, slow);
1500  __ branch_destination(slow->continuation());
1501}
1502
1503void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1504  // If the "new_val" is a constant NULL, no barrier is necessary.
1505  if (new_val->is_constant() &&
1506      new_val->as_constant_ptr()->as_jobject() == NULL) return;
1507
1508  if (!new_val->is_register()) {
1509    LIR_Opr new_val_reg = new_register(T_OBJECT);
1510    if (new_val->is_constant()) {
1511      __ move(new_val, new_val_reg);
1512    } else {
1513      __ leal(new_val, new_val_reg);
1514    }
1515    new_val = new_val_reg;
1516  }
1517  assert(new_val->is_register(), "must be a register at this point");
1518
1519  if (addr->is_address()) {
1520    LIR_Address* address = addr->as_address_ptr();
1521    LIR_Opr ptr = new_pointer_register();
1522    if (!address->index()->is_valid() && address->disp() == 0) {
1523      __ move(address->base(), ptr);
1524    } else {
1525      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1526      __ leal(addr, ptr);
1527    }
1528    addr = ptr;
1529  }
1530  assert(addr->is_register(), "must be a register at this point");
1531
1532  LIR_Opr xor_res = new_pointer_register();
1533  LIR_Opr xor_shift_res = new_pointer_register();
1534  if (TwoOperandLIRForm ) {
1535    __ move(addr, xor_res);
1536    __ logical_xor(xor_res, new_val, xor_res);
1537    __ move(xor_res, xor_shift_res);
1538    __ unsigned_shift_right(xor_shift_res,
1539                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1540                            xor_shift_res,
1541                            LIR_OprDesc::illegalOpr());
1542  } else {
1543    __ logical_xor(addr, new_val, xor_res);
1544    __ unsigned_shift_right(xor_res,
1545                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1546                            xor_shift_res,
1547                            LIR_OprDesc::illegalOpr());
1548  }
1549
1550  if (!new_val->is_register()) {
1551    LIR_Opr new_val_reg = new_register(T_OBJECT);
1552    __ leal(new_val, new_val_reg);
1553    new_val = new_val_reg;
1554  }
1555  assert(new_val->is_register(), "must be a register at this point");
1556
1557  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1558
1559  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1560  __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1561  __ branch_destination(slow->continuation());
1562}
1563
1564#endif // INCLUDE_ALL_GCS
1565////////////////////////////////////////////////////////////////////////
1566
1567void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1568
1569  assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1570  LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1571  if (addr->is_address()) {
1572    LIR_Address* address = addr->as_address_ptr();
1573    // ptr cannot be an object because we use this barrier for array card marks
1574    // and addr can point in the middle of an array.
1575    LIR_Opr ptr = new_pointer_register();
1576    if (!address->index()->is_valid() && address->disp() == 0) {
1577      __ move(address->base(), ptr);
1578    } else {
1579      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1580      __ leal(addr, ptr);
1581    }
1582    addr = ptr;
1583  }
1584  assert(addr->is_register(), "must be a register at this point");
1585
1586#ifdef ARM
1587  // TODO: ARM - move to platform-dependent code
1588  LIR_Opr tmp = FrameMap::R14_opr;
1589  if (VM_Version::supports_movw()) {
1590    __ move((LIR_Opr)card_table_base, tmp);
1591  } else {
1592    __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1593  }
1594
1595  CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1596  LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1597  if(((int)ct->byte_map_base & 0xff) == 0) {
1598    __ move(tmp, card_addr);
1599  } else {
1600    LIR_Opr tmp_zero = new_register(T_INT);
1601    __ move(LIR_OprFact::intConst(0), tmp_zero);
1602    __ move(tmp_zero, card_addr);
1603  }
1604#else // ARM
1605  LIR_Opr tmp = new_pointer_register();
1606  if (TwoOperandLIRForm) {
1607    __ move(addr, tmp);
1608    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1609  } else {
1610    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1611  }
1612  if (can_inline_as_constant(card_table_base)) {
1613    __ move(LIR_OprFact::intConst(0),
1614              new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1615  } else {
1616    __ move(LIR_OprFact::intConst(0),
1617              new LIR_Address(tmp, load_constant(card_table_base),
1618                              T_BYTE));
1619  }
1620#endif // ARM
1621}
1622
1623
1624//------------------------field access--------------------------------------
1625
1626// Comment copied form templateTable_i486.cpp
1627// ----------------------------------------------------------------------------
1628// Volatile variables demand their effects be made known to all CPU's in
1629// order.  Store buffers on most chips allow reads & writes to reorder; the
1630// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1631// memory barrier (i.e., it's not sufficient that the interpreter does not
1632// reorder volatile references, the hardware also must not reorder them).
1633//
1634// According to the new Java Memory Model (JMM):
1635// (1) All volatiles are serialized wrt to each other.
1636// ALSO reads & writes act as aquire & release, so:
1637// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1638// the read float up to before the read.  It's OK for non-volatile memory refs
1639// that happen before the volatile read to float down below it.
1640// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1641// that happen BEFORE the write float down to after the write.  It's OK for
1642// non-volatile memory refs that happen after the volatile write to float up
1643// before it.
1644//
1645// We only put in barriers around volatile refs (they are expensive), not
1646// _between_ memory refs (that would require us to track the flavor of the
1647// previous memory refs).  Requirements (2) and (3) require some barriers
1648// before volatile stores and after volatile loads.  These nearly cover
1649// requirement (1) but miss the volatile-store-volatile-load case.  This final
1650// case is placed after volatile-stores although it could just as well go
1651// before volatile-loads.
1652
1653
1654void LIRGenerator::do_StoreField(StoreField* x) {
1655  bool needs_patching = x->needs_patching();
1656  bool is_volatile = x->field()->is_volatile();
1657  BasicType field_type = x->field_type();
1658  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1659
1660  CodeEmitInfo* info = NULL;
1661  if (needs_patching) {
1662    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1663    info = state_for(x, x->state_before());
1664  } else if (x->needs_null_check()) {
1665    NullCheck* nc = x->explicit_null_check();
1666    if (nc == NULL) {
1667      info = state_for(x);
1668    } else {
1669      info = state_for(nc);
1670    }
1671  }
1672
1673
1674  LIRItem object(x->obj(), this);
1675  LIRItem value(x->value(),  this);
1676
1677  object.load_item();
1678
1679  if (is_volatile || needs_patching) {
1680    // load item if field is volatile (fewer special cases for volatiles)
1681    // load item if field not initialized
1682    // load item if field not constant
1683    // because of code patching we cannot inline constants
1684    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1685      value.load_byte_item();
1686    } else  {
1687      value.load_item();
1688    }
1689  } else {
1690    value.load_for_store(field_type);
1691  }
1692
1693  set_no_result(x);
1694
1695#ifndef PRODUCT
1696  if (PrintNotLoaded && needs_patching) {
1697    tty->print_cr("   ###class not loaded at store_%s bci %d",
1698                  x->is_static() ?  "static" : "field", x->printable_bci());
1699  }
1700#endif
1701
1702  if (x->needs_null_check() &&
1703      (needs_patching ||
1704       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1705    // emit an explicit null check because the offset is too large
1706    __ null_check(object.result(), new CodeEmitInfo(info));
1707  }
1708
1709  LIR_Address* address;
1710  if (needs_patching) {
1711    // we need to patch the offset in the instruction so don't allow
1712    // generate_address to try to be smart about emitting the -1.
1713    // Otherwise the patching code won't know how to find the
1714    // instruction to patch.
1715    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1716  } else {
1717    address = generate_address(object.result(), x->offset(), field_type);
1718  }
1719
1720  if (is_volatile && os::is_MP()) {
1721    __ membar_release();
1722  }
1723
1724  if (is_oop) {
1725    // Do the pre-write barrier, if any.
1726    pre_barrier(LIR_OprFact::address(address),
1727                LIR_OprFact::illegalOpr /* pre_val */,
1728                true /* do_load*/,
1729                needs_patching,
1730                (info ? new CodeEmitInfo(info) : NULL));
1731  }
1732
1733  if (is_volatile && !needs_patching) {
1734    volatile_field_store(value.result(), address, info);
1735  } else {
1736    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1737    __ store(value.result(), address, info, patch_code);
1738  }
1739
1740  if (is_oop) {
1741    // Store to object so mark the card of the header
1742    post_barrier(object.result(), value.result());
1743  }
1744
1745  if (is_volatile && os::is_MP()) {
1746    __ membar();
1747  }
1748}
1749
1750
1751void LIRGenerator::do_LoadField(LoadField* x) {
1752  bool needs_patching = x->needs_patching();
1753  bool is_volatile = x->field()->is_volatile();
1754  BasicType field_type = x->field_type();
1755
1756  CodeEmitInfo* info = NULL;
1757  if (needs_patching) {
1758    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1759    info = state_for(x, x->state_before());
1760  } else if (x->needs_null_check()) {
1761    NullCheck* nc = x->explicit_null_check();
1762    if (nc == NULL) {
1763      info = state_for(x);
1764    } else {
1765      info = state_for(nc);
1766    }
1767  }
1768
1769  LIRItem object(x->obj(), this);
1770
1771  object.load_item();
1772
1773#ifndef PRODUCT
1774  if (PrintNotLoaded && needs_patching) {
1775    tty->print_cr("   ###class not loaded at load_%s bci %d",
1776                  x->is_static() ?  "static" : "field", x->printable_bci());
1777  }
1778#endif
1779
1780  bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1781  if (x->needs_null_check() &&
1782      (needs_patching ||
1783       MacroAssembler::needs_explicit_null_check(x->offset()) ||
1784       stress_deopt)) {
1785    LIR_Opr obj = object.result();
1786    if (stress_deopt) {
1787      obj = new_register(T_OBJECT);
1788      __ move(LIR_OprFact::oopConst(NULL), obj);
1789    }
1790    // emit an explicit null check because the offset is too large
1791    __ null_check(obj, new CodeEmitInfo(info));
1792  }
1793
1794  LIR_Opr reg = rlock_result(x, field_type);
1795  LIR_Address* address;
1796  if (needs_patching) {
1797    // we need to patch the offset in the instruction so don't allow
1798    // generate_address to try to be smart about emitting the -1.
1799    // Otherwise the patching code won't know how to find the
1800    // instruction to patch.
1801    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1802  } else {
1803    address = generate_address(object.result(), x->offset(), field_type);
1804  }
1805
1806  if (is_volatile && !needs_patching) {
1807    volatile_field_load(address, reg, info);
1808  } else {
1809    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1810    __ load(address, reg, info, patch_code);
1811  }
1812
1813  if (is_volatile && os::is_MP()) {
1814    __ membar_acquire();
1815  }
1816}
1817
1818
1819//------------------------java.nio.Buffer.checkIndex------------------------
1820
1821// int java.nio.Buffer.checkIndex(int)
1822void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1823  // NOTE: by the time we are in checkIndex() we are guaranteed that
1824  // the buffer is non-null (because checkIndex is package-private and
1825  // only called from within other methods in the buffer).
1826  assert(x->number_of_arguments() == 2, "wrong type");
1827  LIRItem buf  (x->argument_at(0), this);
1828  LIRItem index(x->argument_at(1), this);
1829  buf.load_item();
1830  index.load_item();
1831
1832  LIR_Opr result = rlock_result(x);
1833  if (GenerateRangeChecks) {
1834    CodeEmitInfo* info = state_for(x);
1835    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1836    if (index.result()->is_constant()) {
1837      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1838      __ branch(lir_cond_belowEqual, T_INT, stub);
1839    } else {
1840      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1841                  java_nio_Buffer::limit_offset(), T_INT, info);
1842      __ branch(lir_cond_aboveEqual, T_INT, stub);
1843    }
1844    __ move(index.result(), result);
1845  } else {
1846    // Just load the index into the result register
1847    __ move(index.result(), result);
1848  }
1849}
1850
1851
1852//------------------------array access--------------------------------------
1853
1854
1855void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1856  LIRItem array(x->array(), this);
1857  array.load_item();
1858  LIR_Opr reg = rlock_result(x);
1859
1860  CodeEmitInfo* info = NULL;
1861  if (x->needs_null_check()) {
1862    NullCheck* nc = x->explicit_null_check();
1863    if (nc == NULL) {
1864      info = state_for(x);
1865    } else {
1866      info = state_for(nc);
1867    }
1868    if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1869      LIR_Opr obj = new_register(T_OBJECT);
1870      __ move(LIR_OprFact::oopConst(NULL), obj);
1871      __ null_check(obj, new CodeEmitInfo(info));
1872    }
1873  }
1874  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1875}
1876
1877
1878void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1879  bool use_length = x->length() != NULL;
1880  LIRItem array(x->array(), this);
1881  LIRItem index(x->index(), this);
1882  LIRItem length(this);
1883  bool needs_range_check = x->compute_needs_range_check();
1884
1885  if (use_length && needs_range_check) {
1886    length.set_instruction(x->length());
1887    length.load_item();
1888  }
1889
1890  array.load_item();
1891  if (index.is_constant() && can_inline_as_constant(x->index())) {
1892    // let it be a constant
1893    index.dont_load_item();
1894  } else {
1895    index.load_item();
1896  }
1897
1898  CodeEmitInfo* range_check_info = state_for(x);
1899  CodeEmitInfo* null_check_info = NULL;
1900  if (x->needs_null_check()) {
1901    NullCheck* nc = x->explicit_null_check();
1902    if (nc != NULL) {
1903      null_check_info = state_for(nc);
1904    } else {
1905      null_check_info = range_check_info;
1906    }
1907    if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1908      LIR_Opr obj = new_register(T_OBJECT);
1909      __ move(LIR_OprFact::oopConst(NULL), obj);
1910      __ null_check(obj, new CodeEmitInfo(null_check_info));
1911    }
1912  }
1913
1914  // emit array address setup early so it schedules better
1915  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1916
1917  if (GenerateRangeChecks && needs_range_check) {
1918    if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1919      __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1920    } else if (use_length) {
1921      // TODO: use a (modified) version of array_range_check that does not require a
1922      //       constant length to be loaded to a register
1923      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1924      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1925    } else {
1926      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1927      // The range check performs the null check, so clear it out for the load
1928      null_check_info = NULL;
1929    }
1930  }
1931
1932  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1933}
1934
1935
1936void LIRGenerator::do_NullCheck(NullCheck* x) {
1937  if (x->can_trap()) {
1938    LIRItem value(x->obj(), this);
1939    value.load_item();
1940    CodeEmitInfo* info = state_for(x);
1941    __ null_check(value.result(), info);
1942  }
1943}
1944
1945
1946void LIRGenerator::do_TypeCast(TypeCast* x) {
1947  LIRItem value(x->obj(), this);
1948  value.load_item();
1949  // the result is the same as from the node we are casting
1950  set_result(x, value.result());
1951}
1952
1953
1954void LIRGenerator::do_Throw(Throw* x) {
1955  LIRItem exception(x->exception(), this);
1956  exception.load_item();
1957  set_no_result(x);
1958  LIR_Opr exception_opr = exception.result();
1959  CodeEmitInfo* info = state_for(x, x->state());
1960
1961#ifndef PRODUCT
1962  if (PrintC1Statistics) {
1963    increment_counter(Runtime1::throw_count_address(), T_INT);
1964  }
1965#endif
1966
1967  // check if the instruction has an xhandler in any of the nested scopes
1968  bool unwind = false;
1969  if (info->exception_handlers()->length() == 0) {
1970    // this throw is not inside an xhandler
1971    unwind = true;
1972  } else {
1973    // get some idea of the throw type
1974    bool type_is_exact = true;
1975    ciType* throw_type = x->exception()->exact_type();
1976    if (throw_type == NULL) {
1977      type_is_exact = false;
1978      throw_type = x->exception()->declared_type();
1979    }
1980    if (throw_type != NULL && throw_type->is_instance_klass()) {
1981      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1982      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1983    }
1984  }
1985
1986  // do null check before moving exception oop into fixed register
1987  // to avoid a fixed interval with an oop during the null check.
1988  // Use a copy of the CodeEmitInfo because debug information is
1989  // different for null_check and throw.
1990  if (GenerateCompilerNullChecks &&
1991      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1992    // if the exception object wasn't created using new then it might be null.
1993    __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1994  }
1995
1996  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1997    // we need to go through the exception lookup path to get JVMTI
1998    // notification done
1999    unwind = false;
2000  }
2001
2002  // move exception oop into fixed register
2003  __ move(exception_opr, exceptionOopOpr());
2004
2005  if (unwind) {
2006    __ unwind_exception(exceptionOopOpr());
2007  } else {
2008    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2009  }
2010}
2011
2012
2013void LIRGenerator::do_RoundFP(RoundFP* x) {
2014  LIRItem input(x->input(), this);
2015  input.load_item();
2016  LIR_Opr input_opr = input.result();
2017  assert(input_opr->is_register(), "why round if value is not in a register?");
2018  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2019  if (input_opr->is_single_fpu()) {
2020    set_result(x, round_item(input_opr)); // This code path not currently taken
2021  } else {
2022    LIR_Opr result = new_register(T_DOUBLE);
2023    set_vreg_flag(result, must_start_in_memory);
2024    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2025    set_result(x, result);
2026  }
2027}
2028
2029void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2030  LIRItem base(x->base(), this);
2031  LIRItem idx(this);
2032
2033  base.load_item();
2034  if (x->has_index()) {
2035    idx.set_instruction(x->index());
2036    idx.load_nonconstant();
2037  }
2038
2039  LIR_Opr reg = rlock_result(x, x->basic_type());
2040
2041  int   log2_scale = 0;
2042  if (x->has_index()) {
2043    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2044    log2_scale = x->log2_scale();
2045  }
2046
2047  assert(!x->has_index() || idx.value() == x->index(), "should match");
2048
2049  LIR_Opr base_op = base.result();
2050#ifndef _LP64
2051  if (x->base()->type()->tag() == longTag) {
2052    base_op = new_register(T_INT);
2053    __ convert(Bytecodes::_l2i, base.result(), base_op);
2054  } else {
2055    assert(x->base()->type()->tag() == intTag, "must be");
2056  }
2057#endif
2058
2059  BasicType dst_type = x->basic_type();
2060  LIR_Opr index_op = idx.result();
2061
2062  LIR_Address* addr;
2063  if (index_op->is_constant()) {
2064    assert(log2_scale == 0, "must not have a scale");
2065    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2066  } else {
2067#ifdef X86
2068#ifdef _LP64
2069    if (!index_op->is_illegal() && index_op->type() == T_INT) {
2070      LIR_Opr tmp = new_pointer_register();
2071      __ convert(Bytecodes::_i2l, index_op, tmp);
2072      index_op = tmp;
2073    }
2074#endif
2075    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2076#elif defined(ARM)
2077    addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2078#else
2079    if (index_op->is_illegal() || log2_scale == 0) {
2080#ifdef _LP64
2081      if (!index_op->is_illegal() && index_op->type() == T_INT) {
2082        LIR_Opr tmp = new_pointer_register();
2083        __ convert(Bytecodes::_i2l, index_op, tmp);
2084        index_op = tmp;
2085      }
2086#endif
2087      addr = new LIR_Address(base_op, index_op, dst_type);
2088    } else {
2089      LIR_Opr tmp = new_pointer_register();
2090      __ shift_left(index_op, log2_scale, tmp);
2091      addr = new LIR_Address(base_op, tmp, dst_type);
2092    }
2093#endif
2094  }
2095
2096  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2097    __ unaligned_move(addr, reg);
2098  } else {
2099    if (dst_type == T_OBJECT && x->is_wide()) {
2100      __ move_wide(addr, reg);
2101    } else {
2102      __ move(addr, reg);
2103    }
2104  }
2105}
2106
2107
2108void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2109  int  log2_scale = 0;
2110  BasicType type = x->basic_type();
2111
2112  if (x->has_index()) {
2113    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2114    log2_scale = x->log2_scale();
2115  }
2116
2117  LIRItem base(x->base(), this);
2118  LIRItem value(x->value(), this);
2119  LIRItem idx(this);
2120
2121  base.load_item();
2122  if (x->has_index()) {
2123    idx.set_instruction(x->index());
2124    idx.load_item();
2125  }
2126
2127  if (type == T_BYTE || type == T_BOOLEAN) {
2128    value.load_byte_item();
2129  } else {
2130    value.load_item();
2131  }
2132
2133  set_no_result(x);
2134
2135  LIR_Opr base_op = base.result();
2136#ifndef _LP64
2137  if (x->base()->type()->tag() == longTag) {
2138    base_op = new_register(T_INT);
2139    __ convert(Bytecodes::_l2i, base.result(), base_op);
2140  } else {
2141    assert(x->base()->type()->tag() == intTag, "must be");
2142  }
2143#endif
2144
2145  LIR_Opr index_op = idx.result();
2146  if (log2_scale != 0) {
2147    // temporary fix (platform dependent code without shift on Intel would be better)
2148    index_op = new_pointer_register();
2149#ifdef _LP64
2150    if(idx.result()->type() == T_INT) {
2151      __ convert(Bytecodes::_i2l, idx.result(), index_op);
2152    } else {
2153#endif
2154      // TODO: ARM also allows embedded shift in the address
2155      __ move(idx.result(), index_op);
2156#ifdef _LP64
2157    }
2158#endif
2159    __ shift_left(index_op, log2_scale, index_op);
2160  }
2161#ifdef _LP64
2162  else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2163    LIR_Opr tmp = new_pointer_register();
2164    __ convert(Bytecodes::_i2l, index_op, tmp);
2165    index_op = tmp;
2166  }
2167#endif
2168
2169  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2170  __ move(value.result(), addr);
2171}
2172
2173
2174void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2175  BasicType type = x->basic_type();
2176  LIRItem src(x->object(), this);
2177  LIRItem off(x->offset(), this);
2178
2179  off.load_item();
2180  src.load_item();
2181
2182  LIR_Opr value = rlock_result(x, x->basic_type());
2183
2184  get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2185
2186#if INCLUDE_ALL_GCS
2187  // We might be reading the value of the referent field of a
2188  // Reference object in order to attach it back to the live
2189  // object graph. If G1 is enabled then we need to record
2190  // the value that is being returned in an SATB log buffer.
2191  //
2192  // We need to generate code similar to the following...
2193  //
2194  // if (offset == java_lang_ref_Reference::referent_offset) {
2195  //   if (src != NULL) {
2196  //     if (klass(src)->reference_type() != REF_NONE) {
2197  //       pre_barrier(..., value, ...);
2198  //     }
2199  //   }
2200  // }
2201
2202  if (UseG1GC && type == T_OBJECT) {
2203    bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2204    bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2205    bool gen_source_check = true;    // Assume we need to check the src object for null.
2206    bool gen_type_check = true;      // Assume we need to check the reference_type.
2207
2208    if (off.is_constant()) {
2209      jlong off_con = (off.type()->is_int() ?
2210                        (jlong) off.get_jint_constant() :
2211                        off.get_jlong_constant());
2212
2213
2214      if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2215        // The constant offset is something other than referent_offset.
2216        // We can skip generating/checking the remaining guards and
2217        // skip generation of the code stub.
2218        gen_pre_barrier = false;
2219      } else {
2220        // The constant offset is the same as referent_offset -
2221        // we do not need to generate a runtime offset check.
2222        gen_offset_check = false;
2223      }
2224    }
2225
2226    // We don't need to generate stub if the source object is an array
2227    if (gen_pre_barrier && src.type()->is_array()) {
2228      gen_pre_barrier = false;
2229    }
2230
2231    if (gen_pre_barrier) {
2232      // We still need to continue with the checks.
2233      if (src.is_constant()) {
2234        ciObject* src_con = src.get_jobject_constant();
2235
2236        if (src_con->is_null_object()) {
2237          // The constant src object is null - We can skip
2238          // generating the code stub.
2239          gen_pre_barrier = false;
2240        } else {
2241          // Non-null constant source object. We still have to generate
2242          // the slow stub - but we don't need to generate the runtime
2243          // null object check.
2244          gen_source_check = false;
2245        }
2246      }
2247    }
2248    if (gen_pre_barrier && !PatchALot) {
2249      // Can the klass of object be statically determined to be
2250      // a sub-class of Reference?
2251      ciType* type = src.value()->declared_type();
2252      if ((type != NULL) && type->is_loaded()) {
2253        if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2254          gen_type_check = false;
2255        } else if (type->is_klass() &&
2256                   !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2257          // Not Reference and not Object klass.
2258          gen_pre_barrier = false;
2259        }
2260      }
2261    }
2262
2263    if (gen_pre_barrier) {
2264      LabelObj* Lcont = new LabelObj();
2265
2266      // We can have generate one runtime check here. Let's start with
2267      // the offset check.
2268      if (gen_offset_check) {
2269        // if (offset != referent_offset) -> continue
2270        // If offset is an int then we can do the comparison with the
2271        // referent_offset constant; otherwise we need to move
2272        // referent_offset into a temporary register and generate
2273        // a reg-reg compare.
2274
2275        LIR_Opr referent_off;
2276
2277        if (off.type()->is_int()) {
2278          referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2279        } else {
2280          assert(off.type()->is_long(), "what else?");
2281          referent_off = new_register(T_LONG);
2282          __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2283        }
2284        __ cmp(lir_cond_notEqual, off.result(), referent_off);
2285        __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2286      }
2287      if (gen_source_check) {
2288        // offset is a const and equals referent offset
2289        // if (source == null) -> continue
2290        __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2291        __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2292      }
2293      LIR_Opr src_klass = new_register(T_OBJECT);
2294      if (gen_type_check) {
2295        // We have determined that offset == referent_offset && src != null.
2296        // if (src->_klass->_reference_type == REF_NONE) -> continue
2297        __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
2298        LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2299        LIR_Opr reference_type = new_register(T_INT);
2300        __ move(reference_type_addr, reference_type);
2301        __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2302        __ branch(lir_cond_equal, T_INT, Lcont->label());
2303      }
2304      {
2305        // We have determined that src->_klass->_reference_type != REF_NONE
2306        // so register the value in the referent field with the pre-barrier.
2307        pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2308                    value  /* pre_val */,
2309                    false  /* do_load */,
2310                    false  /* patch */,
2311                    NULL   /* info */);
2312      }
2313      __ branch_destination(Lcont->label());
2314    }
2315  }
2316#endif // INCLUDE_ALL_GCS
2317
2318  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2319}
2320
2321
2322void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2323  BasicType type = x->basic_type();
2324  LIRItem src(x->object(), this);
2325  LIRItem off(x->offset(), this);
2326  LIRItem data(x->value(), this);
2327
2328  src.load_item();
2329  if (type == T_BOOLEAN || type == T_BYTE) {
2330    data.load_byte_item();
2331  } else {
2332    data.load_item();
2333  }
2334  off.load_item();
2335
2336  set_no_result(x);
2337
2338  if (x->is_volatile() && os::is_MP()) __ membar_release();
2339  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2340  if (x->is_volatile() && os::is_MP()) __ membar();
2341}
2342
2343
2344void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2345  LIRItem src(x->object(), this);
2346  LIRItem off(x->offset(), this);
2347
2348  src.load_item();
2349  if (off.is_constant() && can_inline_as_constant(x->offset())) {
2350    // let it be a constant
2351    off.dont_load_item();
2352  } else {
2353    off.load_item();
2354  }
2355
2356  set_no_result(x);
2357
2358  LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2359  __ prefetch(addr, is_store);
2360}
2361
2362
2363void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2364  do_UnsafePrefetch(x, false);
2365}
2366
2367
2368void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2369  do_UnsafePrefetch(x, true);
2370}
2371
2372
2373void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2374  int lng = x->length();
2375
2376  for (int i = 0; i < lng; i++) {
2377    SwitchRange* one_range = x->at(i);
2378    int low_key = one_range->low_key();
2379    int high_key = one_range->high_key();
2380    BlockBegin* dest = one_range->sux();
2381    if (low_key == high_key) {
2382      __ cmp(lir_cond_equal, value, low_key);
2383      __ branch(lir_cond_equal, T_INT, dest);
2384    } else if (high_key - low_key == 1) {
2385      __ cmp(lir_cond_equal, value, low_key);
2386      __ branch(lir_cond_equal, T_INT, dest);
2387      __ cmp(lir_cond_equal, value, high_key);
2388      __ branch(lir_cond_equal, T_INT, dest);
2389    } else {
2390      LabelObj* L = new LabelObj();
2391      __ cmp(lir_cond_less, value, low_key);
2392      __ branch(lir_cond_less, T_INT, L->label());
2393      __ cmp(lir_cond_lessEqual, value, high_key);
2394      __ branch(lir_cond_lessEqual, T_INT, dest);
2395      __ branch_destination(L->label());
2396    }
2397  }
2398  __ jump(default_sux);
2399}
2400
2401
2402SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2403  SwitchRangeList* res = new SwitchRangeList();
2404  int len = x->length();
2405  if (len > 0) {
2406    BlockBegin* sux = x->sux_at(0);
2407    int key = x->lo_key();
2408    BlockBegin* default_sux = x->default_sux();
2409    SwitchRange* range = new SwitchRange(key, sux);
2410    for (int i = 0; i < len; i++, key++) {
2411      BlockBegin* new_sux = x->sux_at(i);
2412      if (sux == new_sux) {
2413        // still in same range
2414        range->set_high_key(key);
2415      } else {
2416        // skip tests which explicitly dispatch to the default
2417        if (sux != default_sux) {
2418          res->append(range);
2419        }
2420        range = new SwitchRange(key, new_sux);
2421      }
2422      sux = new_sux;
2423    }
2424    if (res->length() == 0 || res->last() != range)  res->append(range);
2425  }
2426  return res;
2427}
2428
2429
2430// we expect the keys to be sorted by increasing value
2431SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2432  SwitchRangeList* res = new SwitchRangeList();
2433  int len = x->length();
2434  if (len > 0) {
2435    BlockBegin* default_sux = x->default_sux();
2436    int key = x->key_at(0);
2437    BlockBegin* sux = x->sux_at(0);
2438    SwitchRange* range = new SwitchRange(key, sux);
2439    for (int i = 1; i < len; i++) {
2440      int new_key = x->key_at(i);
2441      BlockBegin* new_sux = x->sux_at(i);
2442      if (key+1 == new_key && sux == new_sux) {
2443        // still in same range
2444        range->set_high_key(new_key);
2445      } else {
2446        // skip tests which explicitly dispatch to the default
2447        if (range->sux() != default_sux) {
2448          res->append(range);
2449        }
2450        range = new SwitchRange(new_key, new_sux);
2451      }
2452      key = new_key;
2453      sux = new_sux;
2454    }
2455    if (res->length() == 0 || res->last() != range)  res->append(range);
2456  }
2457  return res;
2458}
2459
2460
2461void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2462  LIRItem tag(x->tag(), this);
2463  tag.load_item();
2464  set_no_result(x);
2465
2466  if (x->is_safepoint()) {
2467    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2468  }
2469
2470  // move values into phi locations
2471  move_to_phi(x->state());
2472
2473  int lo_key = x->lo_key();
2474  int hi_key = x->hi_key();
2475  int len = x->length();
2476  LIR_Opr value = tag.result();
2477  if (UseTableRanges) {
2478    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2479  } else {
2480    for (int i = 0; i < len; i++) {
2481      __ cmp(lir_cond_equal, value, i + lo_key);
2482      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2483    }
2484    __ jump(x->default_sux());
2485  }
2486}
2487
2488
2489void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2490  LIRItem tag(x->tag(), this);
2491  tag.load_item();
2492  set_no_result(x);
2493
2494  if (x->is_safepoint()) {
2495    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2496  }
2497
2498  // move values into phi locations
2499  move_to_phi(x->state());
2500
2501  LIR_Opr value = tag.result();
2502  if (UseTableRanges) {
2503    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2504  } else {
2505    int len = x->length();
2506    for (int i = 0; i < len; i++) {
2507      __ cmp(lir_cond_equal, value, x->key_at(i));
2508      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2509    }
2510    __ jump(x->default_sux());
2511  }
2512}
2513
2514
2515void LIRGenerator::do_Goto(Goto* x) {
2516  set_no_result(x);
2517
2518  if (block()->next()->as_OsrEntry()) {
2519    // need to free up storage used for OSR entry point
2520    LIR_Opr osrBuffer = block()->next()->operand();
2521    BasicTypeList signature;
2522    signature.append(T_INT);
2523    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2524    __ move(osrBuffer, cc->args()->at(0));
2525    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2526                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2527  }
2528
2529  if (x->is_safepoint()) {
2530    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2531
2532    // increment backedge counter if needed
2533    CodeEmitInfo* info = state_for(x, state);
2534    increment_backedge_counter(info, x->profiled_bci());
2535    CodeEmitInfo* safepoint_info = state_for(x, state);
2536    __ safepoint(safepoint_poll_register(), safepoint_info);
2537  }
2538
2539  // Gotos can be folded Ifs, handle this case.
2540  if (x->should_profile()) {
2541    ciMethod* method = x->profiled_method();
2542    assert(method != NULL, "method should be set if branch is profiled");
2543    ciMethodData* md = method->method_data_or_null();
2544    assert(md != NULL, "Sanity");
2545    ciProfileData* data = md->bci_to_data(x->profiled_bci());
2546    assert(data != NULL, "must have profiling data");
2547    int offset;
2548    if (x->direction() == Goto::taken) {
2549      assert(data->is_BranchData(), "need BranchData for two-way branches");
2550      offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2551    } else if (x->direction() == Goto::not_taken) {
2552      assert(data->is_BranchData(), "need BranchData for two-way branches");
2553      offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2554    } else {
2555      assert(data->is_JumpData(), "need JumpData for branches");
2556      offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2557    }
2558    LIR_Opr md_reg = new_register(T_METADATA);
2559    __ metadata2reg(md->constant_encoding(), md_reg);
2560
2561    increment_counter(new LIR_Address(md_reg, offset,
2562                                      NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2563  }
2564
2565  // emit phi-instruction move after safepoint since this simplifies
2566  // describing the state as the safepoint.
2567  move_to_phi(x->state());
2568
2569  __ jump(x->default_sux());
2570}
2571
2572
2573void LIRGenerator::do_Base(Base* x) {
2574  __ std_entry(LIR_OprFact::illegalOpr);
2575  // Emit moves from physical registers / stack slots to virtual registers
2576  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2577  IRScope* irScope = compilation()->hir()->top_scope();
2578  int java_index = 0;
2579  for (int i = 0; i < args->length(); i++) {
2580    LIR_Opr src = args->at(i);
2581    assert(!src->is_illegal(), "check");
2582    BasicType t = src->type();
2583
2584    // Types which are smaller than int are passed as int, so
2585    // correct the type which passed.
2586    switch (t) {
2587    case T_BYTE:
2588    case T_BOOLEAN:
2589    case T_SHORT:
2590    case T_CHAR:
2591      t = T_INT;
2592      break;
2593    }
2594
2595    LIR_Opr dest = new_register(t);
2596    __ move(src, dest);
2597
2598    // Assign new location to Local instruction for this local
2599    Local* local = x->state()->local_at(java_index)->as_Local();
2600    assert(local != NULL, "Locals for incoming arguments must have been created");
2601#ifndef __SOFTFP__
2602    // The java calling convention passes double as long and float as int.
2603    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2604#endif // __SOFTFP__
2605    local->set_operand(dest);
2606    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2607    java_index += type2size[t];
2608  }
2609
2610  if (compilation()->env()->dtrace_method_probes()) {
2611    BasicTypeList signature;
2612    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2613    signature.append(T_OBJECT); // Method*
2614    LIR_OprList* args = new LIR_OprList();
2615    args->append(getThreadPointer());
2616    LIR_Opr meth = new_register(T_METADATA);
2617    __ metadata2reg(method()->constant_encoding(), meth);
2618    args->append(meth);
2619    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2620  }
2621
2622  if (method()->is_synchronized()) {
2623    LIR_Opr obj;
2624    if (method()->is_static()) {
2625      obj = new_register(T_OBJECT);
2626      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2627    } else {
2628      Local* receiver = x->state()->local_at(0)->as_Local();
2629      assert(receiver != NULL, "must already exist");
2630      obj = receiver->operand();
2631    }
2632    assert(obj->is_valid(), "must be valid");
2633
2634    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2635      LIR_Opr lock = new_register(T_INT);
2636      __ load_stack_address_monitor(0, lock);
2637
2638      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2639      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2640
2641      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2642      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2643    }
2644  }
2645
2646  // increment invocation counters if needed
2647  if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2648    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2649    increment_invocation_counter(info);
2650  }
2651
2652  // all blocks with a successor must end with an unconditional jump
2653  // to the successor even if they are consecutive
2654  __ jump(x->default_sux());
2655}
2656
2657
2658void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2659  // construct our frame and model the production of incoming pointer
2660  // to the OSR buffer.
2661  __ osr_entry(LIR_Assembler::osrBufferPointer());
2662  LIR_Opr result = rlock_result(x);
2663  __ move(LIR_Assembler::osrBufferPointer(), result);
2664}
2665
2666
2667void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2668  assert(args->length() == arg_list->length(),
2669         err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2670  for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2671    LIRItem* param = args->at(i);
2672    LIR_Opr loc = arg_list->at(i);
2673    if (loc->is_register()) {
2674      param->load_item_force(loc);
2675    } else {
2676      LIR_Address* addr = loc->as_address_ptr();
2677      param->load_for_store(addr->type());
2678      if (addr->type() == T_OBJECT) {
2679        __ move_wide(param->result(), addr);
2680      } else
2681        if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2682          __ unaligned_move(param->result(), addr);
2683        } else {
2684          __ move(param->result(), addr);
2685        }
2686    }
2687  }
2688
2689  if (x->has_receiver()) {
2690    LIRItem* receiver = args->at(0);
2691    LIR_Opr loc = arg_list->at(0);
2692    if (loc->is_register()) {
2693      receiver->load_item_force(loc);
2694    } else {
2695      assert(loc->is_address(), "just checking");
2696      receiver->load_for_store(T_OBJECT);
2697      __ move_wide(receiver->result(), loc->as_address_ptr());
2698    }
2699  }
2700}
2701
2702
2703// Visits all arguments, returns appropriate items without loading them
2704LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2705  LIRItemList* argument_items = new LIRItemList();
2706  if (x->has_receiver()) {
2707    LIRItem* receiver = new LIRItem(x->receiver(), this);
2708    argument_items->append(receiver);
2709  }
2710  for (int i = 0; i < x->number_of_arguments(); i++) {
2711    LIRItem* param = new LIRItem(x->argument_at(i), this);
2712    argument_items->append(param);
2713  }
2714  return argument_items;
2715}
2716
2717
2718// The invoke with receiver has following phases:
2719//   a) traverse and load/lock receiver;
2720//   b) traverse all arguments -> item-array (invoke_visit_argument)
2721//   c) push receiver on stack
2722//   d) load each of the items and push on stack
2723//   e) unlock receiver
2724//   f) move receiver into receiver-register %o0
2725//   g) lock result registers and emit call operation
2726//
2727// Before issuing a call, we must spill-save all values on stack
2728// that are in caller-save register. "spill-save" moves thos registers
2729// either in a free callee-save register or spills them if no free
2730// callee save register is available.
2731//
2732// The problem is where to invoke spill-save.
2733// - if invoked between e) and f), we may lock callee save
2734//   register in "spill-save" that destroys the receiver register
2735//   before f) is executed
2736// - if we rearange the f) to be earlier, by loading %o0, it
2737//   may destroy a value on the stack that is currently in %o0
2738//   and is waiting to be spilled
2739// - if we keep the receiver locked while doing spill-save,
2740//   we cannot spill it as it is spill-locked
2741//
2742void LIRGenerator::do_Invoke(Invoke* x) {
2743  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2744
2745  LIR_OprList* arg_list = cc->args();
2746  LIRItemList* args = invoke_visit_arguments(x);
2747  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2748
2749  // setup result register
2750  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2751  if (x->type() != voidType) {
2752    result_register = result_register_for(x->type());
2753  }
2754
2755  CodeEmitInfo* info = state_for(x, x->state());
2756
2757  invoke_load_arguments(x, args, arg_list);
2758
2759  if (x->has_receiver()) {
2760    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2761    receiver = args->at(0)->result();
2762  }
2763
2764  // emit invoke code
2765  bool optimized = x->target_is_loaded() && x->target_is_final();
2766  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2767
2768  // JSR 292
2769  // Preserve the SP over MethodHandle call sites.
2770  ciMethod* target = x->target();
2771  bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2772                                  target->is_method_handle_intrinsic() ||
2773                                  target->is_compiled_lambda_form());
2774  if (is_method_handle_invoke) {
2775    info->set_is_method_handle_invoke(true);
2776    __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2777  }
2778
2779  switch (x->code()) {
2780    case Bytecodes::_invokestatic:
2781      __ call_static(target, result_register,
2782                     SharedRuntime::get_resolve_static_call_stub(),
2783                     arg_list, info);
2784      break;
2785    case Bytecodes::_invokespecial:
2786    case Bytecodes::_invokevirtual:
2787    case Bytecodes::_invokeinterface:
2788      // for final target we still produce an inline cache, in order
2789      // to be able to call mixed mode
2790      if (x->code() == Bytecodes::_invokespecial || optimized) {
2791        __ call_opt_virtual(target, receiver, result_register,
2792                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2793                            arg_list, info);
2794      } else if (x->vtable_index() < 0) {
2795        __ call_icvirtual(target, receiver, result_register,
2796                          SharedRuntime::get_resolve_virtual_call_stub(),
2797                          arg_list, info);
2798      } else {
2799        int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2800        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2801        __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2802      }
2803      break;
2804    case Bytecodes::_invokedynamic: {
2805      __ call_dynamic(target, receiver, result_register,
2806                      SharedRuntime::get_resolve_static_call_stub(),
2807                      arg_list, info);
2808      break;
2809    }
2810    default:
2811      fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2812      break;
2813  }
2814
2815  // JSR 292
2816  // Restore the SP after MethodHandle call sites.
2817  if (is_method_handle_invoke) {
2818    __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2819  }
2820
2821  if (x->type()->is_float() || x->type()->is_double()) {
2822    // Force rounding of results from non-strictfp when in strictfp
2823    // scope (or when we don't know the strictness of the callee, to
2824    // be safe.)
2825    if (method()->is_strict()) {
2826      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2827        result_register = round_item(result_register);
2828      }
2829    }
2830  }
2831
2832  if (result_register->is_valid()) {
2833    LIR_Opr result = rlock_result(x);
2834    __ move(result_register, result);
2835  }
2836}
2837
2838
2839void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2840  assert(x->number_of_arguments() == 1, "wrong type");
2841  LIRItem value       (x->argument_at(0), this);
2842  LIR_Opr reg = rlock_result(x);
2843  value.load_item();
2844  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2845  __ move(tmp, reg);
2846}
2847
2848
2849
2850// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2851void LIRGenerator::do_IfOp(IfOp* x) {
2852#ifdef ASSERT
2853  {
2854    ValueTag xtag = x->x()->type()->tag();
2855    ValueTag ttag = x->tval()->type()->tag();
2856    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2857    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2858    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2859  }
2860#endif
2861
2862  LIRItem left(x->x(), this);
2863  LIRItem right(x->y(), this);
2864  left.load_item();
2865  if (can_inline_as_constant(right.value())) {
2866    right.dont_load_item();
2867  } else {
2868    right.load_item();
2869  }
2870
2871  LIRItem t_val(x->tval(), this);
2872  LIRItem f_val(x->fval(), this);
2873  t_val.dont_load_item();
2874  f_val.dont_load_item();
2875  LIR_Opr reg = rlock_result(x);
2876
2877  __ cmp(lir_cond(x->cond()), left.result(), right.result());
2878  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2879}
2880
2881void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
2882    assert(x->number_of_arguments() == expected_arguments, "wrong type");
2883    LIR_Opr reg = result_register_for(x->type());
2884    __ call_runtime_leaf(routine, getThreadTemp(),
2885                         reg, new LIR_OprList());
2886    LIR_Opr result = rlock_result(x);
2887    __ move(reg, result);
2888}
2889
2890#ifdef TRACE_HAVE_INTRINSICS
2891void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
2892    LIR_Opr thread = getThreadPointer();
2893    LIR_Opr osthread = new_pointer_register();
2894    __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
2895    size_t thread_id_size = OSThread::thread_id_size();
2896    if (thread_id_size == (size_t) BytesPerLong) {
2897      LIR_Opr id = new_register(T_LONG);
2898      __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
2899      __ convert(Bytecodes::_l2i, id, rlock_result(x));
2900    } else if (thread_id_size == (size_t) BytesPerInt) {
2901      __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
2902    } else {
2903      ShouldNotReachHere();
2904    }
2905}
2906
2907void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2908    CodeEmitInfo* info = state_for(x);
2909    CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2910    BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
2911    assert(info != NULL, "must have info");
2912    LIRItem arg(x->argument_at(1), this);
2913    arg.load_item();
2914    LIR_Opr klass = new_pointer_register();
2915    __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
2916    LIR_Opr id = new_register(T_LONG);
2917    ByteSize offset = TRACE_ID_OFFSET;
2918    LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2919    __ move(trace_id_addr, id);
2920    __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2921    __ store(id, trace_id_addr);
2922    __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
2923    __ move(id, rlock_result(x));
2924}
2925#endif
2926
2927void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2928  switch (x->id()) {
2929  case vmIntrinsics::_intBitsToFloat      :
2930  case vmIntrinsics::_doubleToRawLongBits :
2931  case vmIntrinsics::_longBitsToDouble    :
2932  case vmIntrinsics::_floatToRawIntBits   : {
2933    do_FPIntrinsics(x);
2934    break;
2935  }
2936
2937#ifdef TRACE_HAVE_INTRINSICS
2938  case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
2939  case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
2940  case vmIntrinsics::_counterTime:
2941    do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
2942    break;
2943#endif
2944
2945  case vmIntrinsics::_currentTimeMillis:
2946    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
2947    break;
2948
2949  case vmIntrinsics::_nanoTime:
2950    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
2951    break;
2952
2953  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2954  case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2955  case vmIntrinsics::_getClass:       do_getClass(x);      break;
2956  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2957
2958  case vmIntrinsics::_dlog:           // fall through
2959  case vmIntrinsics::_dlog10:         // fall through
2960  case vmIntrinsics::_dabs:           // fall through
2961  case vmIntrinsics::_dsqrt:          // fall through
2962  case vmIntrinsics::_dtan:           // fall through
2963  case vmIntrinsics::_dsin :          // fall through
2964  case vmIntrinsics::_dcos :          // fall through
2965  case vmIntrinsics::_dexp :          // fall through
2966  case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2967  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2968
2969  // java.nio.Buffer.checkIndex
2970  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2971
2972  case vmIntrinsics::_compareAndSwapObject:
2973    do_CompareAndSwap(x, objectType);
2974    break;
2975  case vmIntrinsics::_compareAndSwapInt:
2976    do_CompareAndSwap(x, intType);
2977    break;
2978  case vmIntrinsics::_compareAndSwapLong:
2979    do_CompareAndSwap(x, longType);
2980    break;
2981
2982  case vmIntrinsics::_loadFence :
2983    if (os::is_MP()) __ membar_acquire();
2984    break;
2985  case vmIntrinsics::_storeFence:
2986    if (os::is_MP()) __ membar_release();
2987    break;
2988  case vmIntrinsics::_fullFence :
2989    if (os::is_MP()) __ membar();
2990    break;
2991
2992  case vmIntrinsics::_Reference_get:
2993    do_Reference_get(x);
2994    break;
2995
2996  default: ShouldNotReachHere(); break;
2997  }
2998}
2999
3000void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3001  // Need recv in a temporary register so it interferes with the other temporaries
3002  LIR_Opr recv = LIR_OprFact::illegalOpr;
3003  LIR_Opr mdo = new_register(T_OBJECT);
3004  // tmp is used to hold the counters on SPARC
3005  LIR_Opr tmp = new_pointer_register();
3006  if (x->recv() != NULL) {
3007    LIRItem value(x->recv(), this);
3008    value.load_item();
3009    recv = new_register(T_OBJECT);
3010    __ move(value.result(), recv);
3011  }
3012  __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3013}
3014
3015void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3016  // We can safely ignore accessors here, since c2 will inline them anyway,
3017  // accessors are also always mature.
3018  if (!x->inlinee()->is_accessor()) {
3019    CodeEmitInfo* info = state_for(x, x->state(), true);
3020    // Notify the runtime very infrequently only to take care of counter overflows
3021    increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3022  }
3023}
3024
3025void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3026  int freq_log;
3027  int level = compilation()->env()->comp_level();
3028  if (level == CompLevel_limited_profile) {
3029    freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3030  } else if (level == CompLevel_full_profile) {
3031    freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3032  } else {
3033    ShouldNotReachHere();
3034  }
3035  // Increment the appropriate invocation/backedge counter and notify the runtime.
3036  increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3037}
3038
3039void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3040                                                ciMethod *method, int frequency,
3041                                                int bci, bool backedge, bool notify) {
3042  assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3043  int level = _compilation->env()->comp_level();
3044  assert(level > CompLevel_simple, "Shouldn't be here");
3045
3046  int offset = -1;
3047  LIR_Opr counter_holder = new_register(T_METADATA);
3048  LIR_Opr meth;
3049  if (level == CompLevel_limited_profile) {
3050    offset = in_bytes(backedge ? Method::backedge_counter_offset() :
3051                                 Method::invocation_counter_offset());
3052    __ metadata2reg(method->constant_encoding(), counter_holder);
3053    meth = counter_holder;
3054  } else if (level == CompLevel_full_profile) {
3055    offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3056                                 MethodData::invocation_counter_offset());
3057    ciMethodData* md = method->method_data_or_null();
3058    assert(md != NULL, "Sanity");
3059    __ metadata2reg(md->constant_encoding(), counter_holder);
3060    meth = new_register(T_METADATA);
3061    __ metadata2reg(method->constant_encoding(), meth);
3062  } else {
3063    ShouldNotReachHere();
3064  }
3065  LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3066  LIR_Opr result = new_register(T_INT);
3067  __ load(counter, result);
3068  __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3069  __ store(result, counter);
3070  if (notify) {
3071    LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3072    __ logical_and(result, mask, result);
3073    __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3074    // The bci for info can point to cmp for if's we want the if bci
3075    CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3076    __ branch(lir_cond_equal, T_INT, overflow);
3077    __ branch_destination(overflow->continuation());
3078  }
3079}
3080
3081void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3082  LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3083  BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3084
3085  if (x->pass_thread()) {
3086    signature->append(T_ADDRESS);
3087    args->append(getThreadPointer());
3088  }
3089
3090  for (int i = 0; i < x->number_of_arguments(); i++) {
3091    Value a = x->argument_at(i);
3092    LIRItem* item = new LIRItem(a, this);
3093    item->load_item();
3094    args->append(item->result());
3095    signature->append(as_BasicType(a->type()));
3096  }
3097
3098  LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3099  if (x->type() == voidType) {
3100    set_no_result(x);
3101  } else {
3102    __ move(result, rlock_result(x));
3103  }
3104}
3105
3106void LIRGenerator::do_Assert(Assert *x) {
3107#ifdef ASSERT
3108  ValueTag tag = x->x()->type()->tag();
3109  If::Condition cond = x->cond();
3110
3111  LIRItem xitem(x->x(), this);
3112  LIRItem yitem(x->y(), this);
3113  LIRItem* xin = &xitem;
3114  LIRItem* yin = &yitem;
3115
3116  assert(tag == intTag, "Only integer assertions are valid!");
3117
3118  xin->load_item();
3119  yin->dont_load_item();
3120
3121  set_no_result(x);
3122
3123  LIR_Opr left = xin->result();
3124  LIR_Opr right = yin->result();
3125
3126  __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3127#endif
3128}
3129
3130
3131void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3132
3133
3134  Instruction *a = x->x();
3135  Instruction *b = x->y();
3136  if (!a || StressRangeCheckElimination) {
3137    assert(!b || StressRangeCheckElimination, "B must also be null");
3138
3139    CodeEmitInfo *info = state_for(x, x->state());
3140    CodeStub* stub = new PredicateFailedStub(info);
3141
3142    __ jump(stub);
3143  } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3144    int a_int = a->type()->as_IntConstant()->value();
3145    int b_int = b->type()->as_IntConstant()->value();
3146
3147    bool ok = false;
3148
3149    switch(x->cond()) {
3150      case Instruction::eql: ok = (a_int == b_int); break;
3151      case Instruction::neq: ok = (a_int != b_int); break;
3152      case Instruction::lss: ok = (a_int < b_int); break;
3153      case Instruction::leq: ok = (a_int <= b_int); break;
3154      case Instruction::gtr: ok = (a_int > b_int); break;
3155      case Instruction::geq: ok = (a_int >= b_int); break;
3156      case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3157      case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3158      default: ShouldNotReachHere();
3159    }
3160
3161    if (ok) {
3162
3163      CodeEmitInfo *info = state_for(x, x->state());
3164      CodeStub* stub = new PredicateFailedStub(info);
3165
3166      __ jump(stub);
3167    }
3168  } else {
3169
3170    ValueTag tag = x->x()->type()->tag();
3171    If::Condition cond = x->cond();
3172    LIRItem xitem(x->x(), this);
3173    LIRItem yitem(x->y(), this);
3174    LIRItem* xin = &xitem;
3175    LIRItem* yin = &yitem;
3176
3177    assert(tag == intTag, "Only integer deoptimizations are valid!");
3178
3179    xin->load_item();
3180    yin->dont_load_item();
3181    set_no_result(x);
3182
3183    LIR_Opr left = xin->result();
3184    LIR_Opr right = yin->result();
3185
3186    CodeEmitInfo *info = state_for(x, x->state());
3187    CodeStub* stub = new PredicateFailedStub(info);
3188
3189    __ cmp(lir_cond(cond), left, right);
3190    __ branch(lir_cond(cond), right->type(), stub);
3191  }
3192}
3193
3194
3195LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3196  LIRItemList args(1);
3197  LIRItem value(arg1, this);
3198  args.append(&value);
3199  BasicTypeList signature;
3200  signature.append(as_BasicType(arg1->type()));
3201
3202  return call_runtime(&signature, &args, entry, result_type, info);
3203}
3204
3205
3206LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3207  LIRItemList args(2);
3208  LIRItem value1(arg1, this);
3209  LIRItem value2(arg2, this);
3210  args.append(&value1);
3211  args.append(&value2);
3212  BasicTypeList signature;
3213  signature.append(as_BasicType(arg1->type()));
3214  signature.append(as_BasicType(arg2->type()));
3215
3216  return call_runtime(&signature, &args, entry, result_type, info);
3217}
3218
3219
3220LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3221                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3222  // get a result register
3223  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3224  LIR_Opr result = LIR_OprFact::illegalOpr;
3225  if (result_type->tag() != voidTag) {
3226    result = new_register(result_type);
3227    phys_reg = result_register_for(result_type);
3228  }
3229
3230  // move the arguments into the correct location
3231  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3232  assert(cc->length() == args->length(), "argument mismatch");
3233  for (int i = 0; i < args->length(); i++) {
3234    LIR_Opr arg = args->at(i);
3235    LIR_Opr loc = cc->at(i);
3236    if (loc->is_register()) {
3237      __ move(arg, loc);
3238    } else {
3239      LIR_Address* addr = loc->as_address_ptr();
3240//           if (!can_store_as_constant(arg)) {
3241//             LIR_Opr tmp = new_register(arg->type());
3242//             __ move(arg, tmp);
3243//             arg = tmp;
3244//           }
3245      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3246        __ unaligned_move(arg, addr);
3247      } else {
3248        __ move(arg, addr);
3249      }
3250    }
3251  }
3252
3253  if (info) {
3254    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3255  } else {
3256    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3257  }
3258  if (result->is_valid()) {
3259    __ move(phys_reg, result);
3260  }
3261  return result;
3262}
3263
3264
3265LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3266                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3267  // get a result register
3268  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3269  LIR_Opr result = LIR_OprFact::illegalOpr;
3270  if (result_type->tag() != voidTag) {
3271    result = new_register(result_type);
3272    phys_reg = result_register_for(result_type);
3273  }
3274
3275  // move the arguments into the correct location
3276  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3277
3278  assert(cc->length() == args->length(), "argument mismatch");
3279  for (int i = 0; i < args->length(); i++) {
3280    LIRItem* arg = args->at(i);
3281    LIR_Opr loc = cc->at(i);
3282    if (loc->is_register()) {
3283      arg->load_item_force(loc);
3284    } else {
3285      LIR_Address* addr = loc->as_address_ptr();
3286      arg->load_for_store(addr->type());
3287      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3288        __ unaligned_move(arg->result(), addr);
3289      } else {
3290        __ move(arg->result(), addr);
3291      }
3292    }
3293  }
3294
3295  if (info) {
3296    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3297  } else {
3298    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3299  }
3300  if (result->is_valid()) {
3301    __ move(phys_reg, result);
3302  }
3303  return result;
3304}
3305
3306void LIRGenerator::do_MemBar(MemBar* x) {
3307  if (os::is_MP()) {
3308    LIR_Code code = x->code();
3309    switch(code) {
3310      case lir_membar_acquire   : __ membar_acquire(); break;
3311      case lir_membar_release   : __ membar_release(); break;
3312      case lir_membar           : __ membar(); break;
3313      case lir_membar_loadload  : __ membar_loadload(); break;
3314      case lir_membar_storestore: __ membar_storestore(); break;
3315      case lir_membar_loadstore : __ membar_loadstore(); break;
3316      case lir_membar_storeload : __ membar_storeload(); break;
3317      default                   : ShouldNotReachHere(); break;
3318    }
3319  }
3320}
3321