c1_LIRGenerator.cpp revision 337:9ee9cf798b59
1/*
2 * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_c1_LIRGenerator.cpp.incl"
27
28#ifdef ASSERT
29#define __ gen()->lir(__FILE__, __LINE__)->
30#else
31#define __ gen()->lir()->
32#endif
33
34
35void PhiResolverState::reset(int max_vregs) {
36  // Initialize array sizes
37  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
38  _virtual_operands.trunc_to(0);
39  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
40  _other_operands.trunc_to(0);
41  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
42  _vreg_table.trunc_to(0);
43}
44
45
46
47//--------------------------------------------------------------
48// PhiResolver
49
50// Resolves cycles:
51//
52//  r1 := r2  becomes  temp := r1
53//  r2 := r1           r1 := r2
54//                     r2 := temp
55// and orders moves:
56//
57//  r2 := r3  becomes  r1 := r2
58//  r1 := r2           r2 := r3
59
60PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
61 : _gen(gen)
62 , _state(gen->resolver_state())
63 , _temp(LIR_OprFact::illegalOpr)
64{
65  // reinitialize the shared state arrays
66  _state.reset(max_vregs);
67}
68
69
70void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
71  assert(src->is_valid(), "");
72  assert(dest->is_valid(), "");
73  __ move(src, dest);
74}
75
76
77void PhiResolver::move_temp_to(LIR_Opr dest) {
78  assert(_temp->is_valid(), "");
79  emit_move(_temp, dest);
80  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
81}
82
83
84void PhiResolver::move_to_temp(LIR_Opr src) {
85  assert(_temp->is_illegal(), "");
86  _temp = _gen->new_register(src->type());
87  emit_move(src, _temp);
88}
89
90
91// Traverse assignment graph in depth first order and generate moves in post order
92// ie. two assignments: b := c, a := b start with node c:
93// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
94// Generates moves in this order: move b to a and move c to b
95// ie. cycle a := b, b := a start with node a
96// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
97// Generates moves in this order: move b to temp, move a to b, move temp to a
98void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
99  if (!dest->visited()) {
100    dest->set_visited();
101    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
102      move(dest, dest->destination_at(i));
103    }
104  } else if (!dest->start_node()) {
105    // cylce in graph detected
106    assert(_loop == NULL, "only one loop valid!");
107    _loop = dest;
108    move_to_temp(src->operand());
109    return;
110  } // else dest is a start node
111
112  if (!dest->assigned()) {
113    if (_loop == dest) {
114      move_temp_to(dest->operand());
115      dest->set_assigned();
116    } else if (src != NULL) {
117      emit_move(src->operand(), dest->operand());
118      dest->set_assigned();
119    }
120  }
121}
122
123
124PhiResolver::~PhiResolver() {
125  int i;
126  // resolve any cycles in moves from and to virtual registers
127  for (i = virtual_operands().length() - 1; i >= 0; i --) {
128    ResolveNode* node = virtual_operands()[i];
129    if (!node->visited()) {
130      _loop = NULL;
131      move(NULL, node);
132      node->set_start_node();
133      assert(_temp->is_illegal(), "move_temp_to() call missing");
134    }
135  }
136
137  // generate move for move from non virtual register to abitrary destination
138  for (i = other_operands().length() - 1; i >= 0; i --) {
139    ResolveNode* node = other_operands()[i];
140    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
141      emit_move(node->operand(), node->destination_at(j)->operand());
142    }
143  }
144}
145
146
147ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
148  ResolveNode* node;
149  if (opr->is_virtual()) {
150    int vreg_num = opr->vreg_number();
151    node = vreg_table().at_grow(vreg_num, NULL);
152    assert(node == NULL || node->operand() == opr, "");
153    if (node == NULL) {
154      node = new ResolveNode(opr);
155      vreg_table()[vreg_num] = node;
156    }
157    // Make sure that all virtual operands show up in the list when
158    // they are used as the source of a move.
159    if (source && !virtual_operands().contains(node)) {
160      virtual_operands().append(node);
161    }
162  } else {
163    assert(source, "");
164    node = new ResolveNode(opr);
165    other_operands().append(node);
166  }
167  return node;
168}
169
170
171void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
172  assert(dest->is_virtual(), "");
173  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
174  assert(src->is_valid(), "");
175  assert(dest->is_valid(), "");
176  ResolveNode* source = source_node(src);
177  source->append(destination_node(dest));
178}
179
180
181//--------------------------------------------------------------
182// LIRItem
183
184void LIRItem::set_result(LIR_Opr opr) {
185  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
186  value()->set_operand(opr);
187
188  if (opr->is_virtual()) {
189    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
190  }
191
192  _result = opr;
193}
194
195void LIRItem::load_item() {
196  if (result()->is_illegal()) {
197    // update the items result
198    _result = value()->operand();
199  }
200  if (!result()->is_register()) {
201    LIR_Opr reg = _gen->new_register(value()->type());
202    __ move(result(), reg);
203    if (result()->is_constant()) {
204      _result = reg;
205    } else {
206      set_result(reg);
207    }
208  }
209}
210
211
212void LIRItem::load_for_store(BasicType type) {
213  if (_gen->can_store_as_constant(value(), type)) {
214    _result = value()->operand();
215    if (!_result->is_constant()) {
216      _result = LIR_OprFact::value_type(value()->type());
217    }
218  } else if (type == T_BYTE || type == T_BOOLEAN) {
219    load_byte_item();
220  } else {
221    load_item();
222  }
223}
224
225void LIRItem::load_item_force(LIR_Opr reg) {
226  LIR_Opr r = result();
227  if (r != reg) {
228    if (r->type() != reg->type()) {
229      // moves between different types need an intervening spill slot
230      LIR_Opr tmp = _gen->force_to_spill(r, reg->type());
231      __ move(tmp, reg);
232    } else {
233      __ move(r, reg);
234    }
235    _result = reg;
236  }
237}
238
239ciObject* LIRItem::get_jobject_constant() const {
240  ObjectType* oc = type()->as_ObjectType();
241  if (oc) {
242    return oc->constant_value();
243  }
244  return NULL;
245}
246
247
248jint LIRItem::get_jint_constant() const {
249  assert(is_constant() && value() != NULL, "");
250  assert(type()->as_IntConstant() != NULL, "type check");
251  return type()->as_IntConstant()->value();
252}
253
254
255jint LIRItem::get_address_constant() const {
256  assert(is_constant() && value() != NULL, "");
257  assert(type()->as_AddressConstant() != NULL, "type check");
258  return type()->as_AddressConstant()->value();
259}
260
261
262jfloat LIRItem::get_jfloat_constant() const {
263  assert(is_constant() && value() != NULL, "");
264  assert(type()->as_FloatConstant() != NULL, "type check");
265  return type()->as_FloatConstant()->value();
266}
267
268
269jdouble LIRItem::get_jdouble_constant() const {
270  assert(is_constant() && value() != NULL, "");
271  assert(type()->as_DoubleConstant() != NULL, "type check");
272  return type()->as_DoubleConstant()->value();
273}
274
275
276jlong LIRItem::get_jlong_constant() const {
277  assert(is_constant() && value() != NULL, "");
278  assert(type()->as_LongConstant() != NULL, "type check");
279  return type()->as_LongConstant()->value();
280}
281
282
283
284//--------------------------------------------------------------
285
286
287void LIRGenerator::init() {
288  BarrierSet* bs = Universe::heap()->barrier_set();
289  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
290  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
291  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
292
293#ifdef _LP64
294  _card_table_base = new LIR_Const((jlong)ct->byte_map_base);
295#else
296  _card_table_base = new LIR_Const((jint)ct->byte_map_base);
297#endif
298}
299
300
301void LIRGenerator::block_do_prolog(BlockBegin* block) {
302#ifndef PRODUCT
303  if (PrintIRWithLIR) {
304    block->print();
305  }
306#endif
307
308  // set up the list of LIR instructions
309  assert(block->lir() == NULL, "LIR list already computed for this block");
310  _lir = new LIR_List(compilation(), block);
311  block->set_lir(_lir);
312
313  __ branch_destination(block->label());
314
315  if (LIRTraceExecution &&
316      Compilation::current_compilation()->hir()->start()->block_id() != block->block_id() &&
317      !block->is_set(BlockBegin::exception_entry_flag)) {
318    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
319    trace_block_entry(block);
320  }
321}
322
323
324void LIRGenerator::block_do_epilog(BlockBegin* block) {
325#ifndef PRODUCT
326  if (PrintIRWithLIR) {
327    tty->cr();
328  }
329#endif
330
331  // LIR_Opr for unpinned constants shouldn't be referenced by other
332  // blocks so clear them out after processing the block.
333  for (int i = 0; i < _unpinned_constants.length(); i++) {
334    _unpinned_constants.at(i)->clear_operand();
335  }
336  _unpinned_constants.trunc_to(0);
337
338  // clear our any registers for other local constants
339  _constants.trunc_to(0);
340  _reg_for_constants.trunc_to(0);
341}
342
343
344void LIRGenerator::block_do(BlockBegin* block) {
345  CHECK_BAILOUT();
346
347  block_do_prolog(block);
348  set_block(block);
349
350  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
351    if (instr->is_pinned()) do_root(instr);
352  }
353
354  set_block(NULL);
355  block_do_epilog(block);
356}
357
358
359//-------------------------LIRGenerator-----------------------------
360
361// This is where the tree-walk starts; instr must be root;
362void LIRGenerator::do_root(Value instr) {
363  CHECK_BAILOUT();
364
365  InstructionMark im(compilation(), instr);
366
367  assert(instr->is_pinned(), "use only with roots");
368  assert(instr->subst() == instr, "shouldn't have missed substitution");
369
370  instr->visit(this);
371
372  assert(!instr->has_uses() || instr->operand()->is_valid() ||
373         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
374}
375
376
377// This is called for each node in tree; the walk stops if a root is reached
378void LIRGenerator::walk(Value instr) {
379  InstructionMark im(compilation(), instr);
380  //stop walk when encounter a root
381  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
382    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
383  } else {
384    assert(instr->subst() == instr, "shouldn't have missed substitution");
385    instr->visit(this);
386    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
387  }
388}
389
390
391CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
392  int index;
393  Value value;
394  for_each_stack_value(state, index, value) {
395    assert(value->subst() == value, "missed substition");
396    if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
397      walk(value);
398      assert(value->operand()->is_valid(), "must be evaluated now");
399    }
400  }
401  ValueStack* s = state;
402  int bci = x->bci();
403  for_each_state(s) {
404    IRScope* scope = s->scope();
405    ciMethod* method = scope->method();
406
407    MethodLivenessResult liveness = method->liveness_at_bci(bci);
408    if (bci == SynchronizationEntryBCI) {
409      if (x->as_ExceptionObject() || x->as_Throw()) {
410        // all locals are dead on exit from the synthetic unlocker
411        liveness.clear();
412      } else {
413        assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
414      }
415    }
416    if (!liveness.is_valid()) {
417      // Degenerate or breakpointed method.
418      bailout("Degenerate or breakpointed method");
419    } else {
420      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
421      for_each_local_value(s, index, value) {
422        assert(value->subst() == value, "missed substition");
423        if (liveness.at(index) && !value->type()->is_illegal()) {
424          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
425            walk(value);
426            assert(value->operand()->is_valid(), "must be evaluated now");
427          }
428        } else {
429          // NULL out this local so that linear scan can assume that all non-NULL values are live.
430          s->invalidate_local(index);
431        }
432      }
433    }
434    bci = scope->caller_bci();
435  }
436
437  return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
438}
439
440
441CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
442  return state_for(x, x->lock_stack());
443}
444
445
446void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
447  if (!obj->is_loaded() || PatchALot) {
448    assert(info != NULL, "info must be set if class is not loaded");
449    __ oop2reg_patch(NULL, r, info);
450  } else {
451    // no patching needed
452    __ oop2reg(obj->encoding(), r);
453  }
454}
455
456
457void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
458                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
459  CodeStub* stub = new RangeCheckStub(range_check_info, index);
460  if (index->is_constant()) {
461    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
462                index->as_jint(), null_check_info);
463    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
464  } else {
465    cmp_reg_mem(lir_cond_aboveEqual, index, array,
466                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
467    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
468  }
469}
470
471
472void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
473  CodeStub* stub = new RangeCheckStub(info, index, true);
474  if (index->is_constant()) {
475    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
476    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
477  } else {
478    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
479                java_nio_Buffer::limit_offset(), T_INT, info);
480    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
481  }
482  __ move(index, result);
483}
484
485
486// increment a counter returning the incremented value
487LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
488  LIR_Address* counter = new LIR_Address(base, offset, T_INT);
489  LIR_Opr result = new_register(T_INT);
490  __ load(counter, result);
491  __ add(result, LIR_OprFact::intConst(increment), result);
492  __ store(result, counter);
493  return result;
494}
495
496
497void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
498  LIR_Opr result_op = result;
499  LIR_Opr left_op   = left;
500  LIR_Opr right_op  = right;
501
502  if (TwoOperandLIRForm && left_op != result_op) {
503    assert(right_op != result_op, "malformed");
504    __ move(left_op, result_op);
505    left_op = result_op;
506  }
507
508  switch(code) {
509    case Bytecodes::_dadd:
510    case Bytecodes::_fadd:
511    case Bytecodes::_ladd:
512    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
513    case Bytecodes::_fmul:
514    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
515
516    case Bytecodes::_dmul:
517      {
518        if (is_strictfp) {
519          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
520        } else {
521          __ mul(left_op, right_op, result_op); break;
522        }
523      }
524      break;
525
526    case Bytecodes::_imul:
527      {
528        bool    did_strength_reduce = false;
529
530        if (right->is_constant()) {
531          int c = right->as_jint();
532          if (is_power_of_2(c)) {
533            // do not need tmp here
534            __ shift_left(left_op, exact_log2(c), result_op);
535            did_strength_reduce = true;
536          } else {
537            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
538          }
539        }
540        // we couldn't strength reduce so just emit the multiply
541        if (!did_strength_reduce) {
542          __ mul(left_op, right_op, result_op);
543        }
544      }
545      break;
546
547    case Bytecodes::_dsub:
548    case Bytecodes::_fsub:
549    case Bytecodes::_lsub:
550    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
551
552    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
553    // ldiv and lrem are implemented with a direct runtime call
554
555    case Bytecodes::_ddiv:
556      {
557        if (is_strictfp) {
558          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
559        } else {
560          __ div (left_op, right_op, result_op); break;
561        }
562      }
563      break;
564
565    case Bytecodes::_drem:
566    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
567
568    default: ShouldNotReachHere();
569  }
570}
571
572
573void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
574  arithmetic_op(code, result, left, right, false, tmp);
575}
576
577
578void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
579  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
580}
581
582
583void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
584  arithmetic_op(code, result, left, right, is_strictfp, tmp);
585}
586
587
588void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
589  if (TwoOperandLIRForm && value != result_op) {
590    assert(count != result_op, "malformed");
591    __ move(value, result_op);
592    value = result_op;
593  }
594
595  assert(count->is_constant() || count->is_register(), "must be");
596  switch(code) {
597  case Bytecodes::_ishl:
598  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
599  case Bytecodes::_ishr:
600  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
601  case Bytecodes::_iushr:
602  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
603  default: ShouldNotReachHere();
604  }
605}
606
607
608void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
609  if (TwoOperandLIRForm && left_op != result_op) {
610    assert(right_op != result_op, "malformed");
611    __ move(left_op, result_op);
612    left_op = result_op;
613  }
614
615  switch(code) {
616    case Bytecodes::_iand:
617    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
618
619    case Bytecodes::_ior:
620    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
621
622    case Bytecodes::_ixor:
623    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
624
625    default: ShouldNotReachHere();
626  }
627}
628
629
630void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
631  if (!GenerateSynchronizationCode) return;
632  // for slow path, use debug info for state after successful locking
633  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
634  __ load_stack_address_monitor(monitor_no, lock);
635  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
636  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
637}
638
639
640void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) {
641  if (!GenerateSynchronizationCode) return;
642  // setup registers
643  LIR_Opr hdr = lock;
644  lock = new_hdr;
645  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
646  __ load_stack_address_monitor(monitor_no, lock);
647  __ unlock_object(hdr, object, lock, slow_path);
648}
649
650
651void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
652  jobject2reg_with_patching(klass_reg, klass, info);
653  // If klass is not loaded we do not know if the klass has finalizers:
654  if (UseFastNewInstance && klass->is_loaded()
655      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
656
657    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
658
659    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
660
661    assert(klass->is_loaded(), "must be loaded");
662    // allocate space for instance
663    assert(klass->size_helper() >= 0, "illegal instance size");
664    const int instance_size = align_object_size(klass->size_helper());
665    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
666                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
667  } else {
668    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
669    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
670    __ branch_destination(slow_path->continuation());
671  }
672}
673
674
675static bool is_constant_zero(Instruction* inst) {
676  IntConstant* c = inst->type()->as_IntConstant();
677  if (c) {
678    return (c->value() == 0);
679  }
680  return false;
681}
682
683
684static bool positive_constant(Instruction* inst) {
685  IntConstant* c = inst->type()->as_IntConstant();
686  if (c) {
687    return (c->value() >= 0);
688  }
689  return false;
690}
691
692
693static ciArrayKlass* as_array_klass(ciType* type) {
694  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
695    return (ciArrayKlass*)type;
696  } else {
697    return NULL;
698  }
699}
700
701void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
702  Instruction* src     = x->argument_at(0);
703  Instruction* src_pos = x->argument_at(1);
704  Instruction* dst     = x->argument_at(2);
705  Instruction* dst_pos = x->argument_at(3);
706  Instruction* length  = x->argument_at(4);
707
708  // first try to identify the likely type of the arrays involved
709  ciArrayKlass* expected_type = NULL;
710  bool is_exact = false;
711  {
712    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
713    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
714    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
715    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
716    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
717      // the types exactly match so the type is fully known
718      is_exact = true;
719      expected_type = src_exact_type;
720    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
721      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
722      ciArrayKlass* src_type = NULL;
723      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
724        src_type = (ciArrayKlass*) src_exact_type;
725      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
726        src_type = (ciArrayKlass*) src_declared_type;
727      }
728      if (src_type != NULL) {
729        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
730          is_exact = true;
731          expected_type = dst_type;
732        }
733      }
734    }
735    // at least pass along a good guess
736    if (expected_type == NULL) expected_type = dst_exact_type;
737    if (expected_type == NULL) expected_type = src_declared_type;
738    if (expected_type == NULL) expected_type = dst_declared_type;
739  }
740
741  // if a probable array type has been identified, figure out if any
742  // of the required checks for a fast case can be elided.
743  int flags = LIR_OpArrayCopy::all_flags;
744  if (expected_type != NULL) {
745    // try to skip null checks
746    if (src->as_NewArray() != NULL)
747      flags &= ~LIR_OpArrayCopy::src_null_check;
748    if (dst->as_NewArray() != NULL)
749      flags &= ~LIR_OpArrayCopy::dst_null_check;
750
751    // check from incoming constant values
752    if (positive_constant(src_pos))
753      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
754    if (positive_constant(dst_pos))
755      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
756    if (positive_constant(length))
757      flags &= ~LIR_OpArrayCopy::length_positive_check;
758
759    // see if the range check can be elided, which might also imply
760    // that src or dst is non-null.
761    ArrayLength* al = length->as_ArrayLength();
762    if (al != NULL) {
763      if (al->array() == src) {
764        // it's the length of the source array
765        flags &= ~LIR_OpArrayCopy::length_positive_check;
766        flags &= ~LIR_OpArrayCopy::src_null_check;
767        if (is_constant_zero(src_pos))
768          flags &= ~LIR_OpArrayCopy::src_range_check;
769      }
770      if (al->array() == dst) {
771        // it's the length of the destination array
772        flags &= ~LIR_OpArrayCopy::length_positive_check;
773        flags &= ~LIR_OpArrayCopy::dst_null_check;
774        if (is_constant_zero(dst_pos))
775          flags &= ~LIR_OpArrayCopy::dst_range_check;
776      }
777    }
778    if (is_exact) {
779      flags &= ~LIR_OpArrayCopy::type_check;
780    }
781  }
782
783  if (src == dst) {
784    // moving within a single array so no type checks are needed
785    if (flags & LIR_OpArrayCopy::type_check) {
786      flags &= ~LIR_OpArrayCopy::type_check;
787    }
788  }
789  *flagsp = flags;
790  *expected_typep = (ciArrayKlass*)expected_type;
791}
792
793
794LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
795  assert(opr->is_register(), "why spill if item is not register?");
796
797  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
798    LIR_Opr result = new_register(T_FLOAT);
799    set_vreg_flag(result, must_start_in_memory);
800    assert(opr->is_register(), "only a register can be spilled");
801    assert(opr->value_type()->is_float(), "rounding only for floats available");
802    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
803    return result;
804  }
805  return opr;
806}
807
808
809LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
810  assert(type2size[t] == type2size[value->type()], "size mismatch");
811  if (!value->is_register()) {
812    // force into a register
813    LIR_Opr r = new_register(value->type());
814    __ move(value, r);
815    value = r;
816  }
817
818  // create a spill location
819  LIR_Opr tmp = new_register(t);
820  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
821
822  // move from register to spill
823  __ move(value, tmp);
824  return tmp;
825}
826
827
828void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
829  if (if_instr->should_profile()) {
830    ciMethod* method = if_instr->profiled_method();
831    assert(method != NULL, "method should be set if branch is profiled");
832    ciMethodData* md = method->method_data();
833    if (md == NULL) {
834      bailout("out of memory building methodDataOop");
835      return;
836    }
837    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
838    assert(data != NULL, "must have profiling data");
839    assert(data->is_BranchData(), "need BranchData for two-way branches");
840    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
841    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
842    LIR_Opr md_reg = new_register(T_OBJECT);
843    __ move(LIR_OprFact::oopConst(md->encoding()), md_reg);
844    LIR_Opr data_offset_reg = new_register(T_INT);
845    __ cmove(lir_cond(cond),
846             LIR_OprFact::intConst(taken_count_offset),
847             LIR_OprFact::intConst(not_taken_count_offset),
848             data_offset_reg);
849    LIR_Opr data_reg = new_register(T_INT);
850    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
851    __ move(LIR_OprFact::address(data_addr), data_reg);
852    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
853    // Use leal instead of add to avoid destroying condition codes on x86
854    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
855    __ move(data_reg, LIR_OprFact::address(data_addr));
856  }
857}
858
859
860// Phi technique:
861// This is about passing live values from one basic block to the other.
862// In code generated with Java it is rather rare that more than one
863// value is on the stack from one basic block to the other.
864// We optimize our technique for efficient passing of one value
865// (of type long, int, double..) but it can be extended.
866// When entering or leaving a basic block, all registers and all spill
867// slots are release and empty. We use the released registers
868// and spill slots to pass the live values from one block
869// to the other. The topmost value, i.e., the value on TOS of expression
870// stack is passed in registers. All other values are stored in spilling
871// area. Every Phi has an index which designates its spill slot
872// At exit of a basic block, we fill the register(s) and spill slots.
873// At entry of a basic block, the block_prolog sets up the content of phi nodes
874// and locks necessary registers and spilling slots.
875
876
877// move current value to referenced phi function
878void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
879  Phi* phi = sux_val->as_Phi();
880  // cur_val can be null without phi being null in conjunction with inlining
881  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
882    LIR_Opr operand = cur_val->operand();
883    if (cur_val->operand()->is_illegal()) {
884      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
885             "these can be produced lazily");
886      operand = operand_for_instruction(cur_val);
887    }
888    resolver->move(operand, operand_for_instruction(phi));
889  }
890}
891
892
893// Moves all stack values into their PHI position
894void LIRGenerator::move_to_phi(ValueStack* cur_state) {
895  BlockBegin* bb = block();
896  if (bb->number_of_sux() == 1) {
897    BlockBegin* sux = bb->sux_at(0);
898    assert(sux->number_of_preds() > 0, "invalid CFG");
899
900    // a block with only one predecessor never has phi functions
901    if (sux->number_of_preds() > 1) {
902      int max_phis = cur_state->stack_size() + cur_state->locals_size();
903      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
904
905      ValueStack* sux_state = sux->state();
906      Value sux_value;
907      int index;
908
909      for_each_stack_value(sux_state, index, sux_value) {
910        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
911      }
912
913      // Inlining may cause the local state not to match up, so walk up
914      // the caller state until we get to the same scope as the
915      // successor and then start processing from there.
916      while (cur_state->scope() != sux_state->scope()) {
917        cur_state = cur_state->caller_state();
918        assert(cur_state != NULL, "scopes don't match up");
919      }
920
921      for_each_local_value(sux_state, index, sux_value) {
922        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
923      }
924
925      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
926    }
927  }
928}
929
930
931LIR_Opr LIRGenerator::new_register(BasicType type) {
932  int vreg = _virtual_register_number;
933  // add a little fudge factor for the bailout, since the bailout is
934  // only checked periodically.  This gives a few extra registers to
935  // hand out before we really run out, which helps us keep from
936  // tripping over assertions.
937  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
938    bailout("out of virtual registers");
939    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
940      // wrap it around
941      _virtual_register_number = LIR_OprDesc::vreg_base;
942    }
943  }
944  _virtual_register_number += 1;
945  if (type == T_ADDRESS) type = T_INT;
946  return LIR_OprFact::virtual_register(vreg, type);
947}
948
949
950// Try to lock using register in hint
951LIR_Opr LIRGenerator::rlock(Value instr) {
952  return new_register(instr->type());
953}
954
955
956// does an rlock and sets result
957LIR_Opr LIRGenerator::rlock_result(Value x) {
958  LIR_Opr reg = rlock(x);
959  set_result(x, reg);
960  return reg;
961}
962
963
964// does an rlock and sets result
965LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
966  LIR_Opr reg;
967  switch (type) {
968  case T_BYTE:
969  case T_BOOLEAN:
970    reg = rlock_byte(type);
971    break;
972  default:
973    reg = rlock(x);
974    break;
975  }
976
977  set_result(x, reg);
978  return reg;
979}
980
981
982//---------------------------------------------------------------------
983ciObject* LIRGenerator::get_jobject_constant(Value value) {
984  ObjectType* oc = value->type()->as_ObjectType();
985  if (oc) {
986    return oc->constant_value();
987  }
988  return NULL;
989}
990
991
992void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
993  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
994  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
995
996  // no moves are created for phi functions at the begin of exception
997  // handlers, so assign operands manually here
998  for_each_phi_fun(block(), phi,
999                   operand_for_instruction(phi));
1000
1001  LIR_Opr thread_reg = getThreadPointer();
1002  __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1003          exceptionOopOpr());
1004  __ move(LIR_OprFact::oopConst(NULL),
1005          new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1006  __ move(LIR_OprFact::oopConst(NULL),
1007          new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1008
1009  LIR_Opr result = new_register(T_OBJECT);
1010  __ move(exceptionOopOpr(), result);
1011  set_result(x, result);
1012}
1013
1014
1015//----------------------------------------------------------------------
1016//----------------------------------------------------------------------
1017//----------------------------------------------------------------------
1018//----------------------------------------------------------------------
1019//                        visitor functions
1020//----------------------------------------------------------------------
1021//----------------------------------------------------------------------
1022//----------------------------------------------------------------------
1023//----------------------------------------------------------------------
1024
1025void LIRGenerator::do_Phi(Phi* x) {
1026  // phi functions are never visited directly
1027  ShouldNotReachHere();
1028}
1029
1030
1031// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1032void LIRGenerator::do_Constant(Constant* x) {
1033  if (x->state() != NULL) {
1034    // Any constant with a ValueStack requires patching so emit the patch here
1035    LIR_Opr reg = rlock_result(x);
1036    CodeEmitInfo* info = state_for(x, x->state());
1037    __ oop2reg_patch(NULL, reg, info);
1038  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1039    if (!x->is_pinned()) {
1040      // unpinned constants are handled specially so that they can be
1041      // put into registers when they are used multiple times within a
1042      // block.  After the block completes their operand will be
1043      // cleared so that other blocks can't refer to that register.
1044      set_result(x, load_constant(x));
1045    } else {
1046      LIR_Opr res = x->operand();
1047      if (!res->is_valid()) {
1048        res = LIR_OprFact::value_type(x->type());
1049      }
1050      if (res->is_constant()) {
1051        LIR_Opr reg = rlock_result(x);
1052        __ move(res, reg);
1053      } else {
1054        set_result(x, res);
1055      }
1056    }
1057  } else {
1058    set_result(x, LIR_OprFact::value_type(x->type()));
1059  }
1060}
1061
1062
1063void LIRGenerator::do_Local(Local* x) {
1064  // operand_for_instruction has the side effect of setting the result
1065  // so there's no need to do it here.
1066  operand_for_instruction(x);
1067}
1068
1069
1070void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1071  Unimplemented();
1072}
1073
1074
1075void LIRGenerator::do_Return(Return* x) {
1076  if (DTraceMethodProbes) {
1077    BasicTypeList signature;
1078    signature.append(T_INT);    // thread
1079    signature.append(T_OBJECT); // methodOop
1080    LIR_OprList* args = new LIR_OprList();
1081    args->append(getThreadPointer());
1082    LIR_Opr meth = new_register(T_OBJECT);
1083    __ oop2reg(method()->encoding(), meth);
1084    args->append(meth);
1085    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1086  }
1087
1088  if (x->type()->is_void()) {
1089    __ return_op(LIR_OprFact::illegalOpr);
1090  } else {
1091    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1092    LIRItem result(x->result(), this);
1093
1094    result.load_item_force(reg);
1095    __ return_op(result.result());
1096  }
1097  set_no_result(x);
1098}
1099
1100
1101// Example: object.getClass ()
1102void LIRGenerator::do_getClass(Intrinsic* x) {
1103  assert(x->number_of_arguments() == 1, "wrong type");
1104
1105  LIRItem rcvr(x->argument_at(0), this);
1106  rcvr.load_item();
1107  LIR_Opr result = rlock_result(x);
1108
1109  // need to perform the null check on the rcvr
1110  CodeEmitInfo* info = NULL;
1111  if (x->needs_null_check()) {
1112    info = state_for(x, x->state()->copy_locks());
1113  }
1114  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1115  __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1116                          klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1117}
1118
1119
1120// Example: Thread.currentThread()
1121void LIRGenerator::do_currentThread(Intrinsic* x) {
1122  assert(x->number_of_arguments() == 0, "wrong type");
1123  LIR_Opr reg = rlock_result(x);
1124  __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1125}
1126
1127
1128void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1129  assert(x->number_of_arguments() == 1, "wrong type");
1130  LIRItem receiver(x->argument_at(0), this);
1131
1132  receiver.load_item();
1133  BasicTypeList signature;
1134  signature.append(T_OBJECT); // receiver
1135  LIR_OprList* args = new LIR_OprList();
1136  args->append(receiver.result());
1137  CodeEmitInfo* info = state_for(x, x->state());
1138  call_runtime(&signature, args,
1139               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1140               voidType, info);
1141
1142  set_no_result(x);
1143}
1144
1145
1146//------------------------local access--------------------------------------
1147
1148LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1149  if (x->operand()->is_illegal()) {
1150    Constant* c = x->as_Constant();
1151    if (c != NULL) {
1152      x->set_operand(LIR_OprFact::value_type(c->type()));
1153    } else {
1154      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1155      // allocate a virtual register for this local or phi
1156      x->set_operand(rlock(x));
1157      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1158    }
1159  }
1160  return x->operand();
1161}
1162
1163
1164Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1165  if (opr->is_virtual()) {
1166    return instruction_for_vreg(opr->vreg_number());
1167  }
1168  return NULL;
1169}
1170
1171
1172Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1173  if (reg_num < _instruction_for_operand.length()) {
1174    return _instruction_for_operand.at(reg_num);
1175  }
1176  return NULL;
1177}
1178
1179
1180void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1181  if (_vreg_flags.size_in_bits() == 0) {
1182    BitMap2D temp(100, num_vreg_flags);
1183    temp.clear();
1184    _vreg_flags = temp;
1185  }
1186  _vreg_flags.at_put_grow(vreg_num, f, true);
1187}
1188
1189bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1190  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1191    return false;
1192  }
1193  return _vreg_flags.at(vreg_num, f);
1194}
1195
1196
1197// Block local constant handling.  This code is useful for keeping
1198// unpinned constants and constants which aren't exposed in the IR in
1199// registers.  Unpinned Constant instructions have their operands
1200// cleared when the block is finished so that other blocks can't end
1201// up referring to their registers.
1202
1203LIR_Opr LIRGenerator::load_constant(Constant* x) {
1204  assert(!x->is_pinned(), "only for unpinned constants");
1205  _unpinned_constants.append(x);
1206  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1207}
1208
1209
1210LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1211  BasicType t = c->type();
1212  for (int i = 0; i < _constants.length(); i++) {
1213    LIR_Const* other = _constants.at(i);
1214    if (t == other->type()) {
1215      switch (t) {
1216      case T_INT:
1217      case T_FLOAT:
1218        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1219        break;
1220      case T_LONG:
1221      case T_DOUBLE:
1222        if (c->as_jint_hi_bits() != other->as_jint_lo_bits()) continue;
1223        if (c->as_jint_lo_bits() != other->as_jint_hi_bits()) continue;
1224        break;
1225      case T_OBJECT:
1226        if (c->as_jobject() != other->as_jobject()) continue;
1227        break;
1228      }
1229      return _reg_for_constants.at(i);
1230    }
1231  }
1232
1233  LIR_Opr result = new_register(t);
1234  __ move((LIR_Opr)c, result);
1235  _constants.append(c);
1236  _reg_for_constants.append(result);
1237  return result;
1238}
1239
1240// Various barriers
1241
1242void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1243  switch (Universe::heap()->barrier_set()->kind()) {
1244    case BarrierSet::CardTableModRef:
1245    case BarrierSet::CardTableExtension:
1246      CardTableModRef_post_barrier(addr,  new_val);
1247      break;
1248    case BarrierSet::ModRef:
1249    case BarrierSet::Other:
1250      // No post barriers
1251      break;
1252    default      :
1253      ShouldNotReachHere();
1254    }
1255}
1256
1257void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1258
1259  BarrierSet* bs = Universe::heap()->barrier_set();
1260  assert(sizeof(*((CardTableModRefBS*)bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1261  LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)bs)->byte_map_base);
1262  if (addr->is_address()) {
1263    LIR_Address* address = addr->as_address_ptr();
1264    LIR_Opr ptr = new_register(T_OBJECT);
1265    if (!address->index()->is_valid() && address->disp() == 0) {
1266      __ move(address->base(), ptr);
1267    } else {
1268      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1269      __ leal(addr, ptr);
1270    }
1271    addr = ptr;
1272  }
1273  assert(addr->is_register(), "must be a register at this point");
1274
1275  LIR_Opr tmp = new_pointer_register();
1276  if (TwoOperandLIRForm) {
1277    __ move(addr, tmp);
1278    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1279  } else {
1280    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1281  }
1282  if (can_inline_as_constant(card_table_base)) {
1283    __ move(LIR_OprFact::intConst(0),
1284              new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1285  } else {
1286    __ move(LIR_OprFact::intConst(0),
1287              new LIR_Address(tmp, load_constant(card_table_base),
1288                              T_BYTE));
1289  }
1290}
1291
1292
1293//------------------------field access--------------------------------------
1294
1295// Comment copied form templateTable_i486.cpp
1296// ----------------------------------------------------------------------------
1297// Volatile variables demand their effects be made known to all CPU's in
1298// order.  Store buffers on most chips allow reads & writes to reorder; the
1299// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1300// memory barrier (i.e., it's not sufficient that the interpreter does not
1301// reorder volatile references, the hardware also must not reorder them).
1302//
1303// According to the new Java Memory Model (JMM):
1304// (1) All volatiles are serialized wrt to each other.
1305// ALSO reads & writes act as aquire & release, so:
1306// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1307// the read float up to before the read.  It's OK for non-volatile memory refs
1308// that happen before the volatile read to float down below it.
1309// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1310// that happen BEFORE the write float down to after the write.  It's OK for
1311// non-volatile memory refs that happen after the volatile write to float up
1312// before it.
1313//
1314// We only put in barriers around volatile refs (they are expensive), not
1315// _between_ memory refs (that would require us to track the flavor of the
1316// previous memory refs).  Requirements (2) and (3) require some barriers
1317// before volatile stores and after volatile loads.  These nearly cover
1318// requirement (1) but miss the volatile-store-volatile-load case.  This final
1319// case is placed after volatile-stores although it could just as well go
1320// before volatile-loads.
1321
1322
1323void LIRGenerator::do_StoreField(StoreField* x) {
1324  bool needs_patching = x->needs_patching();
1325  bool is_volatile = x->field()->is_volatile();
1326  BasicType field_type = x->field_type();
1327  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1328
1329  CodeEmitInfo* info = NULL;
1330  if (needs_patching) {
1331    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1332    info = state_for(x, x->state_before());
1333  } else if (x->needs_null_check()) {
1334    NullCheck* nc = x->explicit_null_check();
1335    if (nc == NULL) {
1336      info = state_for(x, x->lock_stack());
1337    } else {
1338      info = state_for(nc);
1339    }
1340  }
1341
1342
1343  LIRItem object(x->obj(), this);
1344  LIRItem value(x->value(),  this);
1345
1346  object.load_item();
1347
1348  if (is_volatile || needs_patching) {
1349    // load item if field is volatile (fewer special cases for volatiles)
1350    // load item if field not initialized
1351    // load item if field not constant
1352    // because of code patching we cannot inline constants
1353    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1354      value.load_byte_item();
1355    } else  {
1356      value.load_item();
1357    }
1358  } else {
1359    value.load_for_store(field_type);
1360  }
1361
1362  set_no_result(x);
1363
1364  if (PrintNotLoaded && needs_patching) {
1365    tty->print_cr("   ###class not loaded at store_%s bci %d",
1366                  x->is_static() ?  "static" : "field", x->bci());
1367  }
1368
1369  if (x->needs_null_check() &&
1370      (needs_patching ||
1371       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1372    // emit an explicit null check because the offset is too large
1373    __ null_check(object.result(), new CodeEmitInfo(info));
1374  }
1375
1376  LIR_Address* address;
1377  if (needs_patching) {
1378    // we need to patch the offset in the instruction so don't allow
1379    // generate_address to try to be smart about emitting the -1.
1380    // Otherwise the patching code won't know how to find the
1381    // instruction to patch.
1382    address = new LIR_Address(object.result(), max_jint, field_type);
1383  } else {
1384    address = generate_address(object.result(), x->offset(), field_type);
1385  }
1386
1387  if (is_volatile && os::is_MP()) {
1388    __ membar_release();
1389  }
1390
1391  if (is_volatile) {
1392    assert(!needs_patching && x->is_loaded(),
1393           "how do we know it's volatile if it's not loaded");
1394    volatile_field_store(value.result(), address, info);
1395  } else {
1396    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1397    __ store(value.result(), address, info, patch_code);
1398  }
1399
1400  if (is_oop) {
1401    post_barrier(object.result(), value.result());
1402  }
1403
1404  if (is_volatile && os::is_MP()) {
1405    __ membar();
1406  }
1407}
1408
1409
1410void LIRGenerator::do_LoadField(LoadField* x) {
1411  bool needs_patching = x->needs_patching();
1412  bool is_volatile = x->field()->is_volatile();
1413  BasicType field_type = x->field_type();
1414
1415  CodeEmitInfo* info = NULL;
1416  if (needs_patching) {
1417    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1418    info = state_for(x, x->state_before());
1419  } else if (x->needs_null_check()) {
1420    NullCheck* nc = x->explicit_null_check();
1421    if (nc == NULL) {
1422      info = state_for(x, x->lock_stack());
1423    } else {
1424      info = state_for(nc);
1425    }
1426  }
1427
1428  LIRItem object(x->obj(), this);
1429
1430  object.load_item();
1431
1432  if (PrintNotLoaded && needs_patching) {
1433    tty->print_cr("   ###class not loaded at load_%s bci %d",
1434                  x->is_static() ?  "static" : "field", x->bci());
1435  }
1436
1437  if (x->needs_null_check() &&
1438      (needs_patching ||
1439       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1440    // emit an explicit null check because the offset is too large
1441    __ null_check(object.result(), new CodeEmitInfo(info));
1442  }
1443
1444  LIR_Opr reg = rlock_result(x, field_type);
1445  LIR_Address* address;
1446  if (needs_patching) {
1447    // we need to patch the offset in the instruction so don't allow
1448    // generate_address to try to be smart about emitting the -1.
1449    // Otherwise the patching code won't know how to find the
1450    // instruction to patch.
1451    address = new LIR_Address(object.result(), max_jint, field_type);
1452  } else {
1453    address = generate_address(object.result(), x->offset(), field_type);
1454  }
1455
1456  if (is_volatile) {
1457    assert(!needs_patching && x->is_loaded(),
1458           "how do we know it's volatile if it's not loaded");
1459    volatile_field_load(address, reg, info);
1460  } else {
1461    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1462    __ load(address, reg, info, patch_code);
1463  }
1464
1465  if (is_volatile && os::is_MP()) {
1466    __ membar_acquire();
1467  }
1468}
1469
1470
1471//------------------------java.nio.Buffer.checkIndex------------------------
1472
1473// int java.nio.Buffer.checkIndex(int)
1474void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1475  // NOTE: by the time we are in checkIndex() we are guaranteed that
1476  // the buffer is non-null (because checkIndex is package-private and
1477  // only called from within other methods in the buffer).
1478  assert(x->number_of_arguments() == 2, "wrong type");
1479  LIRItem buf  (x->argument_at(0), this);
1480  LIRItem index(x->argument_at(1), this);
1481  buf.load_item();
1482  index.load_item();
1483
1484  LIR_Opr result = rlock_result(x);
1485  if (GenerateRangeChecks) {
1486    CodeEmitInfo* info = state_for(x);
1487    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1488    if (index.result()->is_constant()) {
1489      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1490      __ branch(lir_cond_belowEqual, T_INT, stub);
1491    } else {
1492      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1493                  java_nio_Buffer::limit_offset(), T_INT, info);
1494      __ branch(lir_cond_aboveEqual, T_INT, stub);
1495    }
1496    __ move(index.result(), result);
1497  } else {
1498    // Just load the index into the result register
1499    __ move(index.result(), result);
1500  }
1501}
1502
1503
1504//------------------------array access--------------------------------------
1505
1506
1507void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1508  LIRItem array(x->array(), this);
1509  array.load_item();
1510  LIR_Opr reg = rlock_result(x);
1511
1512  CodeEmitInfo* info = NULL;
1513  if (x->needs_null_check()) {
1514    NullCheck* nc = x->explicit_null_check();
1515    if (nc == NULL) {
1516      info = state_for(x);
1517    } else {
1518      info = state_for(nc);
1519    }
1520  }
1521  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1522}
1523
1524
1525void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1526  bool use_length = x->length() != NULL;
1527  LIRItem array(x->array(), this);
1528  LIRItem index(x->index(), this);
1529  LIRItem length(this);
1530  bool needs_range_check = true;
1531
1532  if (use_length) {
1533    needs_range_check = x->compute_needs_range_check();
1534    if (needs_range_check) {
1535      length.set_instruction(x->length());
1536      length.load_item();
1537    }
1538  }
1539
1540  array.load_item();
1541  if (index.is_constant() && can_inline_as_constant(x->index())) {
1542    // let it be a constant
1543    index.dont_load_item();
1544  } else {
1545    index.load_item();
1546  }
1547
1548  CodeEmitInfo* range_check_info = state_for(x);
1549  CodeEmitInfo* null_check_info = NULL;
1550  if (x->needs_null_check()) {
1551    NullCheck* nc = x->explicit_null_check();
1552    if (nc != NULL) {
1553      null_check_info = state_for(nc);
1554    } else {
1555      null_check_info = range_check_info;
1556    }
1557  }
1558
1559  // emit array address setup early so it schedules better
1560  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1561
1562  if (GenerateRangeChecks && needs_range_check) {
1563    if (use_length) {
1564      // TODO: use a (modified) version of array_range_check that does not require a
1565      //       constant length to be loaded to a register
1566      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1567      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1568    } else {
1569      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1570      // The range check performs the null check, so clear it out for the load
1571      null_check_info = NULL;
1572    }
1573  }
1574
1575  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1576}
1577
1578
1579void LIRGenerator::do_NullCheck(NullCheck* x) {
1580  if (x->can_trap()) {
1581    LIRItem value(x->obj(), this);
1582    value.load_item();
1583    CodeEmitInfo* info = state_for(x);
1584    __ null_check(value.result(), info);
1585  }
1586}
1587
1588
1589void LIRGenerator::do_Throw(Throw* x) {
1590  LIRItem exception(x->exception(), this);
1591  exception.load_item();
1592  set_no_result(x);
1593  LIR_Opr exception_opr = exception.result();
1594  CodeEmitInfo* info = state_for(x, x->state());
1595
1596#ifndef PRODUCT
1597  if (PrintC1Statistics) {
1598    increment_counter(Runtime1::throw_count_address());
1599  }
1600#endif
1601
1602  // check if the instruction has an xhandler in any of the nested scopes
1603  bool unwind = false;
1604  if (info->exception_handlers()->length() == 0) {
1605    // this throw is not inside an xhandler
1606    unwind = true;
1607  } else {
1608    // get some idea of the throw type
1609    bool type_is_exact = true;
1610    ciType* throw_type = x->exception()->exact_type();
1611    if (throw_type == NULL) {
1612      type_is_exact = false;
1613      throw_type = x->exception()->declared_type();
1614    }
1615    if (throw_type != NULL && throw_type->is_instance_klass()) {
1616      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1617      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1618    }
1619  }
1620
1621  // do null check before moving exception oop into fixed register
1622  // to avoid a fixed interval with an oop during the null check.
1623  // Use a copy of the CodeEmitInfo because debug information is
1624  // different for null_check and throw.
1625  if (GenerateCompilerNullChecks &&
1626      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1627    // if the exception object wasn't created using new then it might be null.
1628    __ null_check(exception_opr, new CodeEmitInfo(info, true));
1629  }
1630
1631  if (JvmtiExport::can_post_exceptions() &&
1632      !block()->is_set(BlockBegin::default_exception_handler_flag)) {
1633    // we need to go through the exception lookup path to get JVMTI
1634    // notification done
1635    unwind = false;
1636  }
1637
1638  assert(!block()->is_set(BlockBegin::default_exception_handler_flag) || unwind,
1639         "should be no more handlers to dispatch to");
1640
1641  if (DTraceMethodProbes &&
1642      block()->is_set(BlockBegin::default_exception_handler_flag)) {
1643    // notify that this frame is unwinding
1644    BasicTypeList signature;
1645    signature.append(T_INT);    // thread
1646    signature.append(T_OBJECT); // methodOop
1647    LIR_OprList* args = new LIR_OprList();
1648    args->append(getThreadPointer());
1649    LIR_Opr meth = new_register(T_OBJECT);
1650    __ oop2reg(method()->encoding(), meth);
1651    args->append(meth);
1652    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1653  }
1654
1655  // move exception oop into fixed register
1656  __ move(exception_opr, exceptionOopOpr());
1657
1658  if (unwind) {
1659    __ unwind_exception(LIR_OprFact::illegalOpr, exceptionOopOpr(), info);
1660  } else {
1661    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1662  }
1663}
1664
1665
1666void LIRGenerator::do_RoundFP(RoundFP* x) {
1667  LIRItem input(x->input(), this);
1668  input.load_item();
1669  LIR_Opr input_opr = input.result();
1670  assert(input_opr->is_register(), "why round if value is not in a register?");
1671  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1672  if (input_opr->is_single_fpu()) {
1673    set_result(x, round_item(input_opr)); // This code path not currently taken
1674  } else {
1675    LIR_Opr result = new_register(T_DOUBLE);
1676    set_vreg_flag(result, must_start_in_memory);
1677    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1678    set_result(x, result);
1679  }
1680}
1681
1682void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1683  LIRItem base(x->base(), this);
1684  LIRItem idx(this);
1685
1686  base.load_item();
1687  if (x->has_index()) {
1688    idx.set_instruction(x->index());
1689    idx.load_nonconstant();
1690  }
1691
1692  LIR_Opr reg = rlock_result(x, x->basic_type());
1693
1694  int   log2_scale = 0;
1695  if (x->has_index()) {
1696    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1697    log2_scale = x->log2_scale();
1698  }
1699
1700  assert(!x->has_index() || idx.value() == x->index(), "should match");
1701
1702  LIR_Opr base_op = base.result();
1703#ifndef _LP64
1704  if (x->base()->type()->tag() == longTag) {
1705    base_op = new_register(T_INT);
1706    __ convert(Bytecodes::_l2i, base.result(), base_op);
1707  } else {
1708    assert(x->base()->type()->tag() == intTag, "must be");
1709  }
1710#endif
1711
1712  BasicType dst_type = x->basic_type();
1713  LIR_Opr index_op = idx.result();
1714
1715  LIR_Address* addr;
1716  if (index_op->is_constant()) {
1717    assert(log2_scale == 0, "must not have a scale");
1718    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1719  } else {
1720#ifdef X86
1721    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1722#else
1723    if (index_op->is_illegal() || log2_scale == 0) {
1724      addr = new LIR_Address(base_op, index_op, dst_type);
1725    } else {
1726      LIR_Opr tmp = new_register(T_INT);
1727      __ shift_left(index_op, log2_scale, tmp);
1728      addr = new LIR_Address(base_op, tmp, dst_type);
1729    }
1730#endif
1731  }
1732
1733  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1734    __ unaligned_move(addr, reg);
1735  } else {
1736    __ move(addr, reg);
1737  }
1738}
1739
1740
1741void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1742  int  log2_scale = 0;
1743  BasicType type = x->basic_type();
1744
1745  if (x->has_index()) {
1746    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1747    log2_scale = x->log2_scale();
1748  }
1749
1750  LIRItem base(x->base(), this);
1751  LIRItem value(x->value(), this);
1752  LIRItem idx(this);
1753
1754  base.load_item();
1755  if (x->has_index()) {
1756    idx.set_instruction(x->index());
1757    idx.load_item();
1758  }
1759
1760  if (type == T_BYTE || type == T_BOOLEAN) {
1761    value.load_byte_item();
1762  } else {
1763    value.load_item();
1764  }
1765
1766  set_no_result(x);
1767
1768  LIR_Opr base_op = base.result();
1769#ifndef _LP64
1770  if (x->base()->type()->tag() == longTag) {
1771    base_op = new_register(T_INT);
1772    __ convert(Bytecodes::_l2i, base.result(), base_op);
1773  } else {
1774    assert(x->base()->type()->tag() == intTag, "must be");
1775  }
1776#endif
1777
1778  LIR_Opr index_op = idx.result();
1779  if (log2_scale != 0) {
1780    // temporary fix (platform dependent code without shift on Intel would be better)
1781    index_op = new_register(T_INT);
1782    __ move(idx.result(), index_op);
1783    __ shift_left(index_op, log2_scale, index_op);
1784  }
1785
1786  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
1787  __ move(value.result(), addr);
1788}
1789
1790
1791void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
1792  BasicType type = x->basic_type();
1793  LIRItem src(x->object(), this);
1794  LIRItem off(x->offset(), this);
1795
1796  off.load_item();
1797  src.load_item();
1798
1799  LIR_Opr reg = reg = rlock_result(x, x->basic_type());
1800
1801  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
1802  get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
1803  if (x->is_volatile() && os::is_MP()) __ membar();
1804}
1805
1806
1807void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
1808  BasicType type = x->basic_type();
1809  LIRItem src(x->object(), this);
1810  LIRItem off(x->offset(), this);
1811  LIRItem data(x->value(), this);
1812
1813  src.load_item();
1814  if (type == T_BOOLEAN || type == T_BYTE) {
1815    data.load_byte_item();
1816  } else {
1817    data.load_item();
1818  }
1819  off.load_item();
1820
1821  set_no_result(x);
1822
1823  if (x->is_volatile() && os::is_MP()) __ membar_release();
1824  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
1825}
1826
1827
1828void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
1829  LIRItem src(x->object(), this);
1830  LIRItem off(x->offset(), this);
1831
1832  src.load_item();
1833  if (off.is_constant() && can_inline_as_constant(x->offset())) {
1834    // let it be a constant
1835    off.dont_load_item();
1836  } else {
1837    off.load_item();
1838  }
1839
1840  set_no_result(x);
1841
1842  LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
1843  __ prefetch(addr, is_store);
1844}
1845
1846
1847void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
1848  do_UnsafePrefetch(x, false);
1849}
1850
1851
1852void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
1853  do_UnsafePrefetch(x, true);
1854}
1855
1856
1857void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
1858  int lng = x->length();
1859
1860  for (int i = 0; i < lng; i++) {
1861    SwitchRange* one_range = x->at(i);
1862    int low_key = one_range->low_key();
1863    int high_key = one_range->high_key();
1864    BlockBegin* dest = one_range->sux();
1865    if (low_key == high_key) {
1866      __ cmp(lir_cond_equal, value, low_key);
1867      __ branch(lir_cond_equal, T_INT, dest);
1868    } else if (high_key - low_key == 1) {
1869      __ cmp(lir_cond_equal, value, low_key);
1870      __ branch(lir_cond_equal, T_INT, dest);
1871      __ cmp(lir_cond_equal, value, high_key);
1872      __ branch(lir_cond_equal, T_INT, dest);
1873    } else {
1874      LabelObj* L = new LabelObj();
1875      __ cmp(lir_cond_less, value, low_key);
1876      __ branch(lir_cond_less, L->label());
1877      __ cmp(lir_cond_lessEqual, value, high_key);
1878      __ branch(lir_cond_lessEqual, T_INT, dest);
1879      __ branch_destination(L->label());
1880    }
1881  }
1882  __ jump(default_sux);
1883}
1884
1885
1886SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
1887  SwitchRangeList* res = new SwitchRangeList();
1888  int len = x->length();
1889  if (len > 0) {
1890    BlockBegin* sux = x->sux_at(0);
1891    int key = x->lo_key();
1892    BlockBegin* default_sux = x->default_sux();
1893    SwitchRange* range = new SwitchRange(key, sux);
1894    for (int i = 0; i < len; i++, key++) {
1895      BlockBegin* new_sux = x->sux_at(i);
1896      if (sux == new_sux) {
1897        // still in same range
1898        range->set_high_key(key);
1899      } else {
1900        // skip tests which explicitly dispatch to the default
1901        if (sux != default_sux) {
1902          res->append(range);
1903        }
1904        range = new SwitchRange(key, new_sux);
1905      }
1906      sux = new_sux;
1907    }
1908    if (res->length() == 0 || res->last() != range)  res->append(range);
1909  }
1910  return res;
1911}
1912
1913
1914// we expect the keys to be sorted by increasing value
1915SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
1916  SwitchRangeList* res = new SwitchRangeList();
1917  int len = x->length();
1918  if (len > 0) {
1919    BlockBegin* default_sux = x->default_sux();
1920    int key = x->key_at(0);
1921    BlockBegin* sux = x->sux_at(0);
1922    SwitchRange* range = new SwitchRange(key, sux);
1923    for (int i = 1; i < len; i++) {
1924      int new_key = x->key_at(i);
1925      BlockBegin* new_sux = x->sux_at(i);
1926      if (key+1 == new_key && sux == new_sux) {
1927        // still in same range
1928        range->set_high_key(new_key);
1929      } else {
1930        // skip tests which explicitly dispatch to the default
1931        if (range->sux() != default_sux) {
1932          res->append(range);
1933        }
1934        range = new SwitchRange(new_key, new_sux);
1935      }
1936      key = new_key;
1937      sux = new_sux;
1938    }
1939    if (res->length() == 0 || res->last() != range)  res->append(range);
1940  }
1941  return res;
1942}
1943
1944
1945void LIRGenerator::do_TableSwitch(TableSwitch* x) {
1946  LIRItem tag(x->tag(), this);
1947  tag.load_item();
1948  set_no_result(x);
1949
1950  if (x->is_safepoint()) {
1951    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1952  }
1953
1954  // move values into phi locations
1955  move_to_phi(x->state());
1956
1957  int lo_key = x->lo_key();
1958  int hi_key = x->hi_key();
1959  int len = x->length();
1960  CodeEmitInfo* info = state_for(x, x->state());
1961  LIR_Opr value = tag.result();
1962  if (UseTableRanges) {
1963    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
1964  } else {
1965    for (int i = 0; i < len; i++) {
1966      __ cmp(lir_cond_equal, value, i + lo_key);
1967      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
1968    }
1969    __ jump(x->default_sux());
1970  }
1971}
1972
1973
1974void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
1975  LIRItem tag(x->tag(), this);
1976  tag.load_item();
1977  set_no_result(x);
1978
1979  if (x->is_safepoint()) {
1980    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1981  }
1982
1983  // move values into phi locations
1984  move_to_phi(x->state());
1985
1986  LIR_Opr value = tag.result();
1987  if (UseTableRanges) {
1988    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
1989  } else {
1990    int len = x->length();
1991    for (int i = 0; i < len; i++) {
1992      __ cmp(lir_cond_equal, value, x->key_at(i));
1993      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
1994    }
1995    __ jump(x->default_sux());
1996  }
1997}
1998
1999
2000void LIRGenerator::do_Goto(Goto* x) {
2001  set_no_result(x);
2002
2003  if (block()->next()->as_OsrEntry()) {
2004    // need to free up storage used for OSR entry point
2005    LIR_Opr osrBuffer = block()->next()->operand();
2006    BasicTypeList signature;
2007    signature.append(T_INT);
2008    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2009    __ move(osrBuffer, cc->args()->at(0));
2010    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2011                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2012  }
2013
2014  if (x->is_safepoint()) {
2015    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2016
2017    // increment backedge counter if needed
2018    increment_backedge_counter(state_for(x, state));
2019
2020    CodeEmitInfo* safepoint_info = state_for(x, state);
2021    __ safepoint(safepoint_poll_register(), safepoint_info);
2022  }
2023
2024  // emit phi-instruction move after safepoint since this simplifies
2025  // describing the state as the safepoint.
2026  move_to_phi(x->state());
2027
2028  __ jump(x->default_sux());
2029}
2030
2031
2032void LIRGenerator::do_Base(Base* x) {
2033  __ std_entry(LIR_OprFact::illegalOpr);
2034  // Emit moves from physical registers / stack slots to virtual registers
2035  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2036  IRScope* irScope = compilation()->hir()->top_scope();
2037  int java_index = 0;
2038  for (int i = 0; i < args->length(); i++) {
2039    LIR_Opr src = args->at(i);
2040    assert(!src->is_illegal(), "check");
2041    BasicType t = src->type();
2042
2043    // Types which are smaller than int are passed as int, so
2044    // correct the type which passed.
2045    switch (t) {
2046    case T_BYTE:
2047    case T_BOOLEAN:
2048    case T_SHORT:
2049    case T_CHAR:
2050      t = T_INT;
2051      break;
2052    }
2053
2054    LIR_Opr dest = new_register(t);
2055    __ move(src, dest);
2056
2057    // Assign new location to Local instruction for this local
2058    Local* local = x->state()->local_at(java_index)->as_Local();
2059    assert(local != NULL, "Locals for incoming arguments must have been created");
2060    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2061    local->set_operand(dest);
2062    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2063    java_index += type2size[t];
2064  }
2065
2066  if (DTraceMethodProbes) {
2067    BasicTypeList signature;
2068    signature.append(T_INT);    // thread
2069    signature.append(T_OBJECT); // methodOop
2070    LIR_OprList* args = new LIR_OprList();
2071    args->append(getThreadPointer());
2072    LIR_Opr meth = new_register(T_OBJECT);
2073    __ oop2reg(method()->encoding(), meth);
2074    args->append(meth);
2075    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2076  }
2077
2078  if (method()->is_synchronized()) {
2079    LIR_Opr obj;
2080    if (method()->is_static()) {
2081      obj = new_register(T_OBJECT);
2082      __ oop2reg(method()->holder()->java_mirror()->encoding(), obj);
2083    } else {
2084      Local* receiver = x->state()->local_at(0)->as_Local();
2085      assert(receiver != NULL, "must already exist");
2086      obj = receiver->operand();
2087    }
2088    assert(obj->is_valid(), "must be valid");
2089
2090    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2091      LIR_Opr lock = new_register(T_INT);
2092      __ load_stack_address_monitor(0, lock);
2093
2094      CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
2095      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2096
2097      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2098      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2099    }
2100  }
2101
2102  // increment invocation counters if needed
2103  increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
2104
2105  // all blocks with a successor must end with an unconditional jump
2106  // to the successor even if they are consecutive
2107  __ jump(x->default_sux());
2108}
2109
2110
2111void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2112  // construct our frame and model the production of incoming pointer
2113  // to the OSR buffer.
2114  __ osr_entry(LIR_Assembler::osrBufferPointer());
2115  LIR_Opr result = rlock_result(x);
2116  __ move(LIR_Assembler::osrBufferPointer(), result);
2117}
2118
2119
2120void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2121  int i = x->has_receiver() ? 1 : 0;
2122  for (; i < args->length(); i++) {
2123    LIRItem* param = args->at(i);
2124    LIR_Opr loc = arg_list->at(i);
2125    if (loc->is_register()) {
2126      param->load_item_force(loc);
2127    } else {
2128      LIR_Address* addr = loc->as_address_ptr();
2129      param->load_for_store(addr->type());
2130      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2131        __ unaligned_move(param->result(), addr);
2132      } else {
2133        __ move(param->result(), addr);
2134      }
2135    }
2136  }
2137
2138  if (x->has_receiver()) {
2139    LIRItem* receiver = args->at(0);
2140    LIR_Opr loc = arg_list->at(0);
2141    if (loc->is_register()) {
2142      receiver->load_item_force(loc);
2143    } else {
2144      assert(loc->is_address(), "just checking");
2145      receiver->load_for_store(T_OBJECT);
2146      __ move(receiver->result(), loc);
2147    }
2148  }
2149}
2150
2151
2152// Visits all arguments, returns appropriate items without loading them
2153LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2154  LIRItemList* argument_items = new LIRItemList();
2155  if (x->has_receiver()) {
2156    LIRItem* receiver = new LIRItem(x->receiver(), this);
2157    argument_items->append(receiver);
2158  }
2159  int idx = x->has_receiver() ? 1 : 0;
2160  for (int i = 0; i < x->number_of_arguments(); i++) {
2161    LIRItem* param = new LIRItem(x->argument_at(i), this);
2162    argument_items->append(param);
2163    idx += (param->type()->is_double_word() ? 2 : 1);
2164  }
2165  return argument_items;
2166}
2167
2168
2169// The invoke with receiver has following phases:
2170//   a) traverse and load/lock receiver;
2171//   b) traverse all arguments -> item-array (invoke_visit_argument)
2172//   c) push receiver on stack
2173//   d) load each of the items and push on stack
2174//   e) unlock receiver
2175//   f) move receiver into receiver-register %o0
2176//   g) lock result registers and emit call operation
2177//
2178// Before issuing a call, we must spill-save all values on stack
2179// that are in caller-save register. "spill-save" moves thos registers
2180// either in a free callee-save register or spills them if no free
2181// callee save register is available.
2182//
2183// The problem is where to invoke spill-save.
2184// - if invoked between e) and f), we may lock callee save
2185//   register in "spill-save" that destroys the receiver register
2186//   before f) is executed
2187// - if we rearange the f) to be earlier, by loading %o0, it
2188//   may destroy a value on the stack that is currently in %o0
2189//   and is waiting to be spilled
2190// - if we keep the receiver locked while doing spill-save,
2191//   we cannot spill it as it is spill-locked
2192//
2193void LIRGenerator::do_Invoke(Invoke* x) {
2194  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2195
2196  LIR_OprList* arg_list = cc->args();
2197  LIRItemList* args = invoke_visit_arguments(x);
2198  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2199
2200  // setup result register
2201  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2202  if (x->type() != voidType) {
2203    result_register = result_register_for(x->type());
2204  }
2205
2206  CodeEmitInfo* info = state_for(x, x->state());
2207
2208  invoke_load_arguments(x, args, arg_list);
2209
2210  if (x->has_receiver()) {
2211    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2212    receiver = args->at(0)->result();
2213  }
2214
2215  // emit invoke code
2216  bool optimized = x->target_is_loaded() && x->target_is_final();
2217  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2218
2219  switch (x->code()) {
2220    case Bytecodes::_invokestatic:
2221      __ call_static(x->target(), result_register,
2222                     SharedRuntime::get_resolve_static_call_stub(),
2223                     arg_list, info);
2224      break;
2225    case Bytecodes::_invokespecial:
2226    case Bytecodes::_invokevirtual:
2227    case Bytecodes::_invokeinterface:
2228      // for final target we still produce an inline cache, in order
2229      // to be able to call mixed mode
2230      if (x->code() == Bytecodes::_invokespecial || optimized) {
2231        __ call_opt_virtual(x->target(), receiver, result_register,
2232                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2233                            arg_list, info);
2234      } else if (x->vtable_index() < 0) {
2235        __ call_icvirtual(x->target(), receiver, result_register,
2236                          SharedRuntime::get_resolve_virtual_call_stub(),
2237                          arg_list, info);
2238      } else {
2239        int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2240        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2241        __ call_virtual(x->target(), receiver, result_register, vtable_offset, arg_list, info);
2242      }
2243      break;
2244    default:
2245      ShouldNotReachHere();
2246      break;
2247  }
2248
2249  if (x->type()->is_float() || x->type()->is_double()) {
2250    // Force rounding of results from non-strictfp when in strictfp
2251    // scope (or when we don't know the strictness of the callee, to
2252    // be safe.)
2253    if (method()->is_strict()) {
2254      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2255        result_register = round_item(result_register);
2256      }
2257    }
2258  }
2259
2260  if (result_register->is_valid()) {
2261    LIR_Opr result = rlock_result(x);
2262    __ move(result_register, result);
2263  }
2264}
2265
2266
2267void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2268  assert(x->number_of_arguments() == 1, "wrong type");
2269  LIRItem value       (x->argument_at(0), this);
2270  LIR_Opr reg = rlock_result(x);
2271  value.load_item();
2272  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2273  __ move(tmp, reg);
2274}
2275
2276
2277
2278// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2279void LIRGenerator::do_IfOp(IfOp* x) {
2280#ifdef ASSERT
2281  {
2282    ValueTag xtag = x->x()->type()->tag();
2283    ValueTag ttag = x->tval()->type()->tag();
2284    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2285    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2286    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2287  }
2288#endif
2289
2290  LIRItem left(x->x(), this);
2291  LIRItem right(x->y(), this);
2292  left.load_item();
2293  if (can_inline_as_constant(right.value())) {
2294    right.dont_load_item();
2295  } else {
2296    right.load_item();
2297  }
2298
2299  LIRItem t_val(x->tval(), this);
2300  LIRItem f_val(x->fval(), this);
2301  t_val.dont_load_item();
2302  f_val.dont_load_item();
2303  LIR_Opr reg = rlock_result(x);
2304
2305  __ cmp(lir_cond(x->cond()), left.result(), right.result());
2306  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
2307}
2308
2309
2310void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2311  switch (x->id()) {
2312  case vmIntrinsics::_intBitsToFloat      :
2313  case vmIntrinsics::_doubleToRawLongBits :
2314  case vmIntrinsics::_longBitsToDouble    :
2315  case vmIntrinsics::_floatToRawIntBits   : {
2316    do_FPIntrinsics(x);
2317    break;
2318  }
2319
2320  case vmIntrinsics::_currentTimeMillis: {
2321    assert(x->number_of_arguments() == 0, "wrong type");
2322    LIR_Opr reg = result_register_for(x->type());
2323    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2324                         reg, new LIR_OprList());
2325    LIR_Opr result = rlock_result(x);
2326    __ move(reg, result);
2327    break;
2328  }
2329
2330  case vmIntrinsics::_nanoTime: {
2331    assert(x->number_of_arguments() == 0, "wrong type");
2332    LIR_Opr reg = result_register_for(x->type());
2333    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2334                         reg, new LIR_OprList());
2335    LIR_Opr result = rlock_result(x);
2336    __ move(reg, result);
2337    break;
2338  }
2339
2340  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2341  case vmIntrinsics::_getClass:       do_getClass(x);      break;
2342  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2343
2344  case vmIntrinsics::_dlog:           // fall through
2345  case vmIntrinsics::_dlog10:         // fall through
2346  case vmIntrinsics::_dabs:           // fall through
2347  case vmIntrinsics::_dsqrt:          // fall through
2348  case vmIntrinsics::_dtan:           // fall through
2349  case vmIntrinsics::_dsin :          // fall through
2350  case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2351  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2352
2353  // java.nio.Buffer.checkIndex
2354  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2355
2356  case vmIntrinsics::_compareAndSwapObject:
2357    do_CompareAndSwap(x, objectType);
2358    break;
2359  case vmIntrinsics::_compareAndSwapInt:
2360    do_CompareAndSwap(x, intType);
2361    break;
2362  case vmIntrinsics::_compareAndSwapLong:
2363    do_CompareAndSwap(x, longType);
2364    break;
2365
2366    // sun.misc.AtomicLongCSImpl.attemptUpdate
2367  case vmIntrinsics::_attemptUpdate:
2368    do_AttemptUpdate(x);
2369    break;
2370
2371  default: ShouldNotReachHere(); break;
2372  }
2373}
2374
2375
2376void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2377  // Need recv in a temporary register so it interferes with the other temporaries
2378  LIR_Opr recv = LIR_OprFact::illegalOpr;
2379  LIR_Opr mdo = new_register(T_OBJECT);
2380  LIR_Opr tmp = new_register(T_INT);
2381  if (x->recv() != NULL) {
2382    LIRItem value(x->recv(), this);
2383    value.load_item();
2384    recv = new_register(T_OBJECT);
2385    __ move(value.result(), recv);
2386  }
2387  __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2388}
2389
2390
2391void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
2392  LIRItem mdo(x->mdo(), this);
2393  mdo.load_item();
2394
2395  increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
2396}
2397
2398
2399LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2400  LIRItemList args(1);
2401  LIRItem value(arg1, this);
2402  args.append(&value);
2403  BasicTypeList signature;
2404  signature.append(as_BasicType(arg1->type()));
2405
2406  return call_runtime(&signature, &args, entry, result_type, info);
2407}
2408
2409
2410LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2411  LIRItemList args(2);
2412  LIRItem value1(arg1, this);
2413  LIRItem value2(arg2, this);
2414  args.append(&value1);
2415  args.append(&value2);
2416  BasicTypeList signature;
2417  signature.append(as_BasicType(arg1->type()));
2418  signature.append(as_BasicType(arg2->type()));
2419
2420  return call_runtime(&signature, &args, entry, result_type, info);
2421}
2422
2423
2424LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2425                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
2426  // get a result register
2427  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2428  LIR_Opr result = LIR_OprFact::illegalOpr;
2429  if (result_type->tag() != voidTag) {
2430    result = new_register(result_type);
2431    phys_reg = result_register_for(result_type);
2432  }
2433
2434  // move the arguments into the correct location
2435  CallingConvention* cc = frame_map()->c_calling_convention(signature);
2436  assert(cc->length() == args->length(), "argument mismatch");
2437  for (int i = 0; i < args->length(); i++) {
2438    LIR_Opr arg = args->at(i);
2439    LIR_Opr loc = cc->at(i);
2440    if (loc->is_register()) {
2441      __ move(arg, loc);
2442    } else {
2443      LIR_Address* addr = loc->as_address_ptr();
2444//           if (!can_store_as_constant(arg)) {
2445//             LIR_Opr tmp = new_register(arg->type());
2446//             __ move(arg, tmp);
2447//             arg = tmp;
2448//           }
2449      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2450        __ unaligned_move(arg, addr);
2451      } else {
2452        __ move(arg, addr);
2453      }
2454    }
2455  }
2456
2457  if (info) {
2458    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2459  } else {
2460    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2461  }
2462  if (result->is_valid()) {
2463    __ move(phys_reg, result);
2464  }
2465  return result;
2466}
2467
2468
2469LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2470                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
2471  // get a result register
2472  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2473  LIR_Opr result = LIR_OprFact::illegalOpr;
2474  if (result_type->tag() != voidTag) {
2475    result = new_register(result_type);
2476    phys_reg = result_register_for(result_type);
2477  }
2478
2479  // move the arguments into the correct location
2480  CallingConvention* cc = frame_map()->c_calling_convention(signature);
2481
2482  assert(cc->length() == args->length(), "argument mismatch");
2483  for (int i = 0; i < args->length(); i++) {
2484    LIRItem* arg = args->at(i);
2485    LIR_Opr loc = cc->at(i);
2486    if (loc->is_register()) {
2487      arg->load_item_force(loc);
2488    } else {
2489      LIR_Address* addr = loc->as_address_ptr();
2490      arg->load_for_store(addr->type());
2491      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2492        __ unaligned_move(arg->result(), addr);
2493      } else {
2494        __ move(arg->result(), addr);
2495      }
2496    }
2497  }
2498
2499  if (info) {
2500    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2501  } else {
2502    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2503  }
2504  if (result->is_valid()) {
2505    __ move(phys_reg, result);
2506  }
2507  return result;
2508}
2509
2510
2511
2512void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
2513#ifdef TIERED
2514  if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
2515      (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
2516    int limit = InvocationCounter::Tier1InvocationLimit;
2517    int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
2518                          InvocationCounter::counter_offset());
2519    if (backedge) {
2520      limit = InvocationCounter::Tier1BackEdgeLimit;
2521      offset = in_bytes(methodOopDesc::backedge_counter_offset() +
2522                        InvocationCounter::counter_offset());
2523    }
2524
2525    LIR_Opr meth = new_register(T_OBJECT);
2526    __ oop2reg(method()->encoding(), meth);
2527    LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
2528    __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
2529    CodeStub* overflow = new CounterOverflowStub(info, info->bci());
2530    __ branch(lir_cond_aboveEqual, T_INT, overflow);
2531    __ branch_destination(overflow->continuation());
2532  }
2533#endif
2534}
2535