c1_LIRGenerator.cpp revision 2009:e31d8c656c5b
1/*
2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_ValueStack.hpp"
32#include "ci/ciArrayKlass.hpp"
33#include "ci/ciCPCache.hpp"
34#include "ci/ciInstance.hpp"
35#include "runtime/sharedRuntime.hpp"
36#include "runtime/stubRoutines.hpp"
37#include "utilities/bitMap.inline.hpp"
38#ifndef SERIALGC
39#include "gc_implementation/g1/heapRegion.hpp"
40#endif
41
42#ifdef ASSERT
43#define __ gen()->lir(__FILE__, __LINE__)->
44#else
45#define __ gen()->lir()->
46#endif
47
48// TODO: ARM - Use some recognizable constant which still fits architectural constraints
49#ifdef ARM
50#define PATCHED_ADDR  (204)
51#else
52#define PATCHED_ADDR  (max_jint)
53#endif
54
55void PhiResolverState::reset(int max_vregs) {
56  // Initialize array sizes
57  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
58  _virtual_operands.trunc_to(0);
59  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
60  _other_operands.trunc_to(0);
61  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
62  _vreg_table.trunc_to(0);
63}
64
65
66
67//--------------------------------------------------------------
68// PhiResolver
69
70// Resolves cycles:
71//
72//  r1 := r2  becomes  temp := r1
73//  r2 := r1           r1 := r2
74//                     r2 := temp
75// and orders moves:
76//
77//  r2 := r3  becomes  r1 := r2
78//  r1 := r2           r2 := r3
79
80PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
81 : _gen(gen)
82 , _state(gen->resolver_state())
83 , _temp(LIR_OprFact::illegalOpr)
84{
85  // reinitialize the shared state arrays
86  _state.reset(max_vregs);
87}
88
89
90void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
91  assert(src->is_valid(), "");
92  assert(dest->is_valid(), "");
93  __ move(src, dest);
94}
95
96
97void PhiResolver::move_temp_to(LIR_Opr dest) {
98  assert(_temp->is_valid(), "");
99  emit_move(_temp, dest);
100  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
101}
102
103
104void PhiResolver::move_to_temp(LIR_Opr src) {
105  assert(_temp->is_illegal(), "");
106  _temp = _gen->new_register(src->type());
107  emit_move(src, _temp);
108}
109
110
111// Traverse assignment graph in depth first order and generate moves in post order
112// ie. two assignments: b := c, a := b start with node c:
113// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
114// Generates moves in this order: move b to a and move c to b
115// ie. cycle a := b, b := a start with node a
116// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
117// Generates moves in this order: move b to temp, move a to b, move temp to a
118void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
119  if (!dest->visited()) {
120    dest->set_visited();
121    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
122      move(dest, dest->destination_at(i));
123    }
124  } else if (!dest->start_node()) {
125    // cylce in graph detected
126    assert(_loop == NULL, "only one loop valid!");
127    _loop = dest;
128    move_to_temp(src->operand());
129    return;
130  } // else dest is a start node
131
132  if (!dest->assigned()) {
133    if (_loop == dest) {
134      move_temp_to(dest->operand());
135      dest->set_assigned();
136    } else if (src != NULL) {
137      emit_move(src->operand(), dest->operand());
138      dest->set_assigned();
139    }
140  }
141}
142
143
144PhiResolver::~PhiResolver() {
145  int i;
146  // resolve any cycles in moves from and to virtual registers
147  for (i = virtual_operands().length() - 1; i >= 0; i --) {
148    ResolveNode* node = virtual_operands()[i];
149    if (!node->visited()) {
150      _loop = NULL;
151      move(NULL, node);
152      node->set_start_node();
153      assert(_temp->is_illegal(), "move_temp_to() call missing");
154    }
155  }
156
157  // generate move for move from non virtual register to abitrary destination
158  for (i = other_operands().length() - 1; i >= 0; i --) {
159    ResolveNode* node = other_operands()[i];
160    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
161      emit_move(node->operand(), node->destination_at(j)->operand());
162    }
163  }
164}
165
166
167ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
168  ResolveNode* node;
169  if (opr->is_virtual()) {
170    int vreg_num = opr->vreg_number();
171    node = vreg_table().at_grow(vreg_num, NULL);
172    assert(node == NULL || node->operand() == opr, "");
173    if (node == NULL) {
174      node = new ResolveNode(opr);
175      vreg_table()[vreg_num] = node;
176    }
177    // Make sure that all virtual operands show up in the list when
178    // they are used as the source of a move.
179    if (source && !virtual_operands().contains(node)) {
180      virtual_operands().append(node);
181    }
182  } else {
183    assert(source, "");
184    node = new ResolveNode(opr);
185    other_operands().append(node);
186  }
187  return node;
188}
189
190
191void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
192  assert(dest->is_virtual(), "");
193  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
194  assert(src->is_valid(), "");
195  assert(dest->is_valid(), "");
196  ResolveNode* source = source_node(src);
197  source->append(destination_node(dest));
198}
199
200
201//--------------------------------------------------------------
202// LIRItem
203
204void LIRItem::set_result(LIR_Opr opr) {
205  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
206  value()->set_operand(opr);
207
208  if (opr->is_virtual()) {
209    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
210  }
211
212  _result = opr;
213}
214
215void LIRItem::load_item() {
216  if (result()->is_illegal()) {
217    // update the items result
218    _result = value()->operand();
219  }
220  if (!result()->is_register()) {
221    LIR_Opr reg = _gen->new_register(value()->type());
222    __ move(result(), reg);
223    if (result()->is_constant()) {
224      _result = reg;
225    } else {
226      set_result(reg);
227    }
228  }
229}
230
231
232void LIRItem::load_for_store(BasicType type) {
233  if (_gen->can_store_as_constant(value(), type)) {
234    _result = value()->operand();
235    if (!_result->is_constant()) {
236      _result = LIR_OprFact::value_type(value()->type());
237    }
238  } else if (type == T_BYTE || type == T_BOOLEAN) {
239    load_byte_item();
240  } else {
241    load_item();
242  }
243}
244
245void LIRItem::load_item_force(LIR_Opr reg) {
246  LIR_Opr r = result();
247  if (r != reg) {
248#if !defined(ARM) && !defined(E500V2)
249    if (r->type() != reg->type()) {
250      // moves between different types need an intervening spill slot
251      r = _gen->force_to_spill(r, reg->type());
252    }
253#endif
254    __ move(r, reg);
255    _result = reg;
256  }
257}
258
259ciObject* LIRItem::get_jobject_constant() const {
260  ObjectType* oc = type()->as_ObjectType();
261  if (oc) {
262    return oc->constant_value();
263  }
264  return NULL;
265}
266
267
268jint LIRItem::get_jint_constant() const {
269  assert(is_constant() && value() != NULL, "");
270  assert(type()->as_IntConstant() != NULL, "type check");
271  return type()->as_IntConstant()->value();
272}
273
274
275jint LIRItem::get_address_constant() const {
276  assert(is_constant() && value() != NULL, "");
277  assert(type()->as_AddressConstant() != NULL, "type check");
278  return type()->as_AddressConstant()->value();
279}
280
281
282jfloat LIRItem::get_jfloat_constant() const {
283  assert(is_constant() && value() != NULL, "");
284  assert(type()->as_FloatConstant() != NULL, "type check");
285  return type()->as_FloatConstant()->value();
286}
287
288
289jdouble LIRItem::get_jdouble_constant() const {
290  assert(is_constant() && value() != NULL, "");
291  assert(type()->as_DoubleConstant() != NULL, "type check");
292  return type()->as_DoubleConstant()->value();
293}
294
295
296jlong LIRItem::get_jlong_constant() const {
297  assert(is_constant() && value() != NULL, "");
298  assert(type()->as_LongConstant() != NULL, "type check");
299  return type()->as_LongConstant()->value();
300}
301
302
303
304//--------------------------------------------------------------
305
306
307void LIRGenerator::init() {
308  _bs = Universe::heap()->barrier_set();
309}
310
311
312void LIRGenerator::block_do_prolog(BlockBegin* block) {
313#ifndef PRODUCT
314  if (PrintIRWithLIR) {
315    block->print();
316  }
317#endif
318
319  // set up the list of LIR instructions
320  assert(block->lir() == NULL, "LIR list already computed for this block");
321  _lir = new LIR_List(compilation(), block);
322  block->set_lir(_lir);
323
324  __ branch_destination(block->label());
325
326  if (LIRTraceExecution &&
327      Compilation::current()->hir()->start()->block_id() != block->block_id() &&
328      !block->is_set(BlockBegin::exception_entry_flag)) {
329    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
330    trace_block_entry(block);
331  }
332}
333
334
335void LIRGenerator::block_do_epilog(BlockBegin* block) {
336#ifndef PRODUCT
337  if (PrintIRWithLIR) {
338    tty->cr();
339  }
340#endif
341
342  // LIR_Opr for unpinned constants shouldn't be referenced by other
343  // blocks so clear them out after processing the block.
344  for (int i = 0; i < _unpinned_constants.length(); i++) {
345    _unpinned_constants.at(i)->clear_operand();
346  }
347  _unpinned_constants.trunc_to(0);
348
349  // clear our any registers for other local constants
350  _constants.trunc_to(0);
351  _reg_for_constants.trunc_to(0);
352}
353
354
355void LIRGenerator::block_do(BlockBegin* block) {
356  CHECK_BAILOUT();
357
358  block_do_prolog(block);
359  set_block(block);
360
361  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
362    if (instr->is_pinned()) do_root(instr);
363  }
364
365  set_block(NULL);
366  block_do_epilog(block);
367}
368
369
370//-------------------------LIRGenerator-----------------------------
371
372// This is where the tree-walk starts; instr must be root;
373void LIRGenerator::do_root(Value instr) {
374  CHECK_BAILOUT();
375
376  InstructionMark im(compilation(), instr);
377
378  assert(instr->is_pinned(), "use only with roots");
379  assert(instr->subst() == instr, "shouldn't have missed substitution");
380
381  instr->visit(this);
382
383  assert(!instr->has_uses() || instr->operand()->is_valid() ||
384         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
385}
386
387
388// This is called for each node in tree; the walk stops if a root is reached
389void LIRGenerator::walk(Value instr) {
390  InstructionMark im(compilation(), instr);
391  //stop walk when encounter a root
392  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
393    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
394  } else {
395    assert(instr->subst() == instr, "shouldn't have missed substitution");
396    instr->visit(this);
397    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
398  }
399}
400
401
402CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
403  assert(state != NULL, "state must be defined");
404
405  ValueStack* s = state;
406  for_each_state(s) {
407    if (s->kind() == ValueStack::EmptyExceptionState) {
408      assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
409      continue;
410    }
411
412    int index;
413    Value value;
414    for_each_stack_value(s, index, value) {
415      assert(value->subst() == value, "missed substitution");
416      if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
417        walk(value);
418        assert(value->operand()->is_valid(), "must be evaluated now");
419      }
420    }
421
422    int bci = s->bci();
423    IRScope* scope = s->scope();
424    ciMethod* method = scope->method();
425
426    MethodLivenessResult liveness = method->liveness_at_bci(bci);
427    if (bci == SynchronizationEntryBCI) {
428      if (x->as_ExceptionObject() || x->as_Throw()) {
429        // all locals are dead on exit from the synthetic unlocker
430        liveness.clear();
431      } else {
432        assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
433      }
434    }
435    if (!liveness.is_valid()) {
436      // Degenerate or breakpointed method.
437      bailout("Degenerate or breakpointed method");
438    } else {
439      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
440      for_each_local_value(s, index, value) {
441        assert(value->subst() == value, "missed substition");
442        if (liveness.at(index) && !value->type()->is_illegal()) {
443          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
444            walk(value);
445            assert(value->operand()->is_valid(), "must be evaluated now");
446          }
447        } else {
448          // NULL out this local so that linear scan can assume that all non-NULL values are live.
449          s->invalidate_local(index);
450        }
451      }
452    }
453  }
454
455  return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
456}
457
458
459CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
460  return state_for(x, x->exception_state());
461}
462
463
464void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
465  if (!obj->is_loaded() || PatchALot) {
466    assert(info != NULL, "info must be set if class is not loaded");
467    __ oop2reg_patch(NULL, r, info);
468  } else {
469    // no patching needed
470    __ oop2reg(obj->constant_encoding(), r);
471  }
472}
473
474
475void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
476                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
477  CodeStub* stub = new RangeCheckStub(range_check_info, index);
478  if (index->is_constant()) {
479    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
480                index->as_jint(), null_check_info);
481    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
482  } else {
483    cmp_reg_mem(lir_cond_aboveEqual, index, array,
484                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
485    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
486  }
487}
488
489
490void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
491  CodeStub* stub = new RangeCheckStub(info, index, true);
492  if (index->is_constant()) {
493    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
494    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
495  } else {
496    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
497                java_nio_Buffer::limit_offset(), T_INT, info);
498    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
499  }
500  __ move(index, result);
501}
502
503
504
505void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
506  LIR_Opr result_op = result;
507  LIR_Opr left_op   = left;
508  LIR_Opr right_op  = right;
509
510  if (TwoOperandLIRForm && left_op != result_op) {
511    assert(right_op != result_op, "malformed");
512    __ move(left_op, result_op);
513    left_op = result_op;
514  }
515
516  switch(code) {
517    case Bytecodes::_dadd:
518    case Bytecodes::_fadd:
519    case Bytecodes::_ladd:
520    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
521    case Bytecodes::_fmul:
522    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
523
524    case Bytecodes::_dmul:
525      {
526        if (is_strictfp) {
527          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
528        } else {
529          __ mul(left_op, right_op, result_op); break;
530        }
531      }
532      break;
533
534    case Bytecodes::_imul:
535      {
536        bool    did_strength_reduce = false;
537
538        if (right->is_constant()) {
539          int c = right->as_jint();
540          if (is_power_of_2(c)) {
541            // do not need tmp here
542            __ shift_left(left_op, exact_log2(c), result_op);
543            did_strength_reduce = true;
544          } else {
545            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
546          }
547        }
548        // we couldn't strength reduce so just emit the multiply
549        if (!did_strength_reduce) {
550          __ mul(left_op, right_op, result_op);
551        }
552      }
553      break;
554
555    case Bytecodes::_dsub:
556    case Bytecodes::_fsub:
557    case Bytecodes::_lsub:
558    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
559
560    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
561    // ldiv and lrem are implemented with a direct runtime call
562
563    case Bytecodes::_ddiv:
564      {
565        if (is_strictfp) {
566          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
567        } else {
568          __ div (left_op, right_op, result_op); break;
569        }
570      }
571      break;
572
573    case Bytecodes::_drem:
574    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
575
576    default: ShouldNotReachHere();
577  }
578}
579
580
581void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
582  arithmetic_op(code, result, left, right, false, tmp);
583}
584
585
586void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
587  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
588}
589
590
591void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
592  arithmetic_op(code, result, left, right, is_strictfp, tmp);
593}
594
595
596void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
597  if (TwoOperandLIRForm && value != result_op) {
598    assert(count != result_op, "malformed");
599    __ move(value, result_op);
600    value = result_op;
601  }
602
603  assert(count->is_constant() || count->is_register(), "must be");
604  switch(code) {
605  case Bytecodes::_ishl:
606  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
607  case Bytecodes::_ishr:
608  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
609  case Bytecodes::_iushr:
610  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
611  default: ShouldNotReachHere();
612  }
613}
614
615
616void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
617  if (TwoOperandLIRForm && left_op != result_op) {
618    assert(right_op != result_op, "malformed");
619    __ move(left_op, result_op);
620    left_op = result_op;
621  }
622
623  switch(code) {
624    case Bytecodes::_iand:
625    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
626
627    case Bytecodes::_ior:
628    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
629
630    case Bytecodes::_ixor:
631    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
632
633    default: ShouldNotReachHere();
634  }
635}
636
637
638void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
639  if (!GenerateSynchronizationCode) return;
640  // for slow path, use debug info for state after successful locking
641  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
642  __ load_stack_address_monitor(monitor_no, lock);
643  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
644  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
645}
646
647
648void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
649  if (!GenerateSynchronizationCode) return;
650  // setup registers
651  LIR_Opr hdr = lock;
652  lock = new_hdr;
653  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
654  __ load_stack_address_monitor(monitor_no, lock);
655  __ unlock_object(hdr, object, lock, scratch, slow_path);
656}
657
658
659void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
660  jobject2reg_with_patching(klass_reg, klass, info);
661  // If klass is not loaded we do not know if the klass has finalizers:
662  if (UseFastNewInstance && klass->is_loaded()
663      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
664
665    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
666
667    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
668
669    assert(klass->is_loaded(), "must be loaded");
670    // allocate space for instance
671    assert(klass->size_helper() >= 0, "illegal instance size");
672    const int instance_size = align_object_size(klass->size_helper());
673    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
674                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
675  } else {
676    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
677    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
678    __ branch_destination(slow_path->continuation());
679  }
680}
681
682
683static bool is_constant_zero(Instruction* inst) {
684  IntConstant* c = inst->type()->as_IntConstant();
685  if (c) {
686    return (c->value() == 0);
687  }
688  return false;
689}
690
691
692static bool positive_constant(Instruction* inst) {
693  IntConstant* c = inst->type()->as_IntConstant();
694  if (c) {
695    return (c->value() >= 0);
696  }
697  return false;
698}
699
700
701static ciArrayKlass* as_array_klass(ciType* type) {
702  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
703    return (ciArrayKlass*)type;
704  } else {
705    return NULL;
706  }
707}
708
709void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
710  Instruction* src     = x->argument_at(0);
711  Instruction* src_pos = x->argument_at(1);
712  Instruction* dst     = x->argument_at(2);
713  Instruction* dst_pos = x->argument_at(3);
714  Instruction* length  = x->argument_at(4);
715
716  // first try to identify the likely type of the arrays involved
717  ciArrayKlass* expected_type = NULL;
718  bool is_exact = false;
719  {
720    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
721    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
722    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
723    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
724    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
725      // the types exactly match so the type is fully known
726      is_exact = true;
727      expected_type = src_exact_type;
728    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
729      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
730      ciArrayKlass* src_type = NULL;
731      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
732        src_type = (ciArrayKlass*) src_exact_type;
733      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
734        src_type = (ciArrayKlass*) src_declared_type;
735      }
736      if (src_type != NULL) {
737        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
738          is_exact = true;
739          expected_type = dst_type;
740        }
741      }
742    }
743    // at least pass along a good guess
744    if (expected_type == NULL) expected_type = dst_exact_type;
745    if (expected_type == NULL) expected_type = src_declared_type;
746    if (expected_type == NULL) expected_type = dst_declared_type;
747  }
748
749  // if a probable array type has been identified, figure out if any
750  // of the required checks for a fast case can be elided.
751  int flags = LIR_OpArrayCopy::all_flags;
752  if (expected_type != NULL) {
753    // try to skip null checks
754    if (src->as_NewArray() != NULL)
755      flags &= ~LIR_OpArrayCopy::src_null_check;
756    if (dst->as_NewArray() != NULL)
757      flags &= ~LIR_OpArrayCopy::dst_null_check;
758
759    // check from incoming constant values
760    if (positive_constant(src_pos))
761      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
762    if (positive_constant(dst_pos))
763      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
764    if (positive_constant(length))
765      flags &= ~LIR_OpArrayCopy::length_positive_check;
766
767    // see if the range check can be elided, which might also imply
768    // that src or dst is non-null.
769    ArrayLength* al = length->as_ArrayLength();
770    if (al != NULL) {
771      if (al->array() == src) {
772        // it's the length of the source array
773        flags &= ~LIR_OpArrayCopy::length_positive_check;
774        flags &= ~LIR_OpArrayCopy::src_null_check;
775        if (is_constant_zero(src_pos))
776          flags &= ~LIR_OpArrayCopy::src_range_check;
777      }
778      if (al->array() == dst) {
779        // it's the length of the destination array
780        flags &= ~LIR_OpArrayCopy::length_positive_check;
781        flags &= ~LIR_OpArrayCopy::dst_null_check;
782        if (is_constant_zero(dst_pos))
783          flags &= ~LIR_OpArrayCopy::dst_range_check;
784      }
785    }
786    if (is_exact) {
787      flags &= ~LIR_OpArrayCopy::type_check;
788    }
789  }
790
791  if (src == dst) {
792    // moving within a single array so no type checks are needed
793    if (flags & LIR_OpArrayCopy::type_check) {
794      flags &= ~LIR_OpArrayCopy::type_check;
795    }
796  }
797  *flagsp = flags;
798  *expected_typep = (ciArrayKlass*)expected_type;
799}
800
801
802LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
803  assert(opr->is_register(), "why spill if item is not register?");
804
805  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
806    LIR_Opr result = new_register(T_FLOAT);
807    set_vreg_flag(result, must_start_in_memory);
808    assert(opr->is_register(), "only a register can be spilled");
809    assert(opr->value_type()->is_float(), "rounding only for floats available");
810    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
811    return result;
812  }
813  return opr;
814}
815
816
817LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
818  assert(type2size[t] == type2size[value->type()], "size mismatch");
819  if (!value->is_register()) {
820    // force into a register
821    LIR_Opr r = new_register(value->type());
822    __ move(value, r);
823    value = r;
824  }
825
826  // create a spill location
827  LIR_Opr tmp = new_register(t);
828  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
829
830  // move from register to spill
831  __ move(value, tmp);
832  return tmp;
833}
834
835void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
836  if (if_instr->should_profile()) {
837    ciMethod* method = if_instr->profiled_method();
838    assert(method != NULL, "method should be set if branch is profiled");
839    ciMethodData* md = method->method_data_or_null();
840    assert(md != NULL, "Sanity");
841    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
842    assert(data != NULL, "must have profiling data");
843    assert(data->is_BranchData(), "need BranchData for two-way branches");
844    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
845    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
846    if (if_instr->is_swapped()) {
847      int t = taken_count_offset;
848      taken_count_offset = not_taken_count_offset;
849      not_taken_count_offset = t;
850    }
851
852    LIR_Opr md_reg = new_register(T_OBJECT);
853    __ oop2reg(md->constant_encoding(), md_reg);
854
855    LIR_Opr data_offset_reg = new_pointer_register();
856    __ cmove(lir_cond(cond),
857             LIR_OprFact::intptrConst(taken_count_offset),
858             LIR_OprFact::intptrConst(not_taken_count_offset),
859             data_offset_reg, as_BasicType(if_instr->x()->type()));
860
861    // MDO cells are intptr_t, so the data_reg width is arch-dependent.
862    LIR_Opr data_reg = new_pointer_register();
863    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
864    __ move(data_addr, data_reg);
865    // Use leal instead of add to avoid destroying condition codes on x86
866    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
867    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
868    __ move(data_reg, data_addr);
869  }
870}
871
872// Phi technique:
873// This is about passing live values from one basic block to the other.
874// In code generated with Java it is rather rare that more than one
875// value is on the stack from one basic block to the other.
876// We optimize our technique for efficient passing of one value
877// (of type long, int, double..) but it can be extended.
878// When entering or leaving a basic block, all registers and all spill
879// slots are release and empty. We use the released registers
880// and spill slots to pass the live values from one block
881// to the other. The topmost value, i.e., the value on TOS of expression
882// stack is passed in registers. All other values are stored in spilling
883// area. Every Phi has an index which designates its spill slot
884// At exit of a basic block, we fill the register(s) and spill slots.
885// At entry of a basic block, the block_prolog sets up the content of phi nodes
886// and locks necessary registers and spilling slots.
887
888
889// move current value to referenced phi function
890void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
891  Phi* phi = sux_val->as_Phi();
892  // cur_val can be null without phi being null in conjunction with inlining
893  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
894    LIR_Opr operand = cur_val->operand();
895    if (cur_val->operand()->is_illegal()) {
896      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
897             "these can be produced lazily");
898      operand = operand_for_instruction(cur_val);
899    }
900    resolver->move(operand, operand_for_instruction(phi));
901  }
902}
903
904
905// Moves all stack values into their PHI position
906void LIRGenerator::move_to_phi(ValueStack* cur_state) {
907  BlockBegin* bb = block();
908  if (bb->number_of_sux() == 1) {
909    BlockBegin* sux = bb->sux_at(0);
910    assert(sux->number_of_preds() > 0, "invalid CFG");
911
912    // a block with only one predecessor never has phi functions
913    if (sux->number_of_preds() > 1) {
914      int max_phis = cur_state->stack_size() + cur_state->locals_size();
915      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
916
917      ValueStack* sux_state = sux->state();
918      Value sux_value;
919      int index;
920
921      assert(cur_state->scope() == sux_state->scope(), "not matching");
922      assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
923      assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
924
925      for_each_stack_value(sux_state, index, sux_value) {
926        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
927      }
928
929      for_each_local_value(sux_state, index, sux_value) {
930        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
931      }
932
933      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
934    }
935  }
936}
937
938
939LIR_Opr LIRGenerator::new_register(BasicType type) {
940  int vreg = _virtual_register_number;
941  // add a little fudge factor for the bailout, since the bailout is
942  // only checked periodically.  This gives a few extra registers to
943  // hand out before we really run out, which helps us keep from
944  // tripping over assertions.
945  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
946    bailout("out of virtual registers");
947    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
948      // wrap it around
949      _virtual_register_number = LIR_OprDesc::vreg_base;
950    }
951  }
952  _virtual_register_number += 1;
953  return LIR_OprFact::virtual_register(vreg, type);
954}
955
956
957// Try to lock using register in hint
958LIR_Opr LIRGenerator::rlock(Value instr) {
959  return new_register(instr->type());
960}
961
962
963// does an rlock and sets result
964LIR_Opr LIRGenerator::rlock_result(Value x) {
965  LIR_Opr reg = rlock(x);
966  set_result(x, reg);
967  return reg;
968}
969
970
971// does an rlock and sets result
972LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
973  LIR_Opr reg;
974  switch (type) {
975  case T_BYTE:
976  case T_BOOLEAN:
977    reg = rlock_byte(type);
978    break;
979  default:
980    reg = rlock(x);
981    break;
982  }
983
984  set_result(x, reg);
985  return reg;
986}
987
988
989//---------------------------------------------------------------------
990ciObject* LIRGenerator::get_jobject_constant(Value value) {
991  ObjectType* oc = value->type()->as_ObjectType();
992  if (oc) {
993    return oc->constant_value();
994  }
995  return NULL;
996}
997
998
999void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1000  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1001  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1002
1003  // no moves are created for phi functions at the begin of exception
1004  // handlers, so assign operands manually here
1005  for_each_phi_fun(block(), phi,
1006                   operand_for_instruction(phi));
1007
1008  LIR_Opr thread_reg = getThreadPointer();
1009  __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1010               exceptionOopOpr());
1011  __ move_wide(LIR_OprFact::oopConst(NULL),
1012               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1013  __ move_wide(LIR_OprFact::oopConst(NULL),
1014               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1015
1016  LIR_Opr result = new_register(T_OBJECT);
1017  __ move(exceptionOopOpr(), result);
1018  set_result(x, result);
1019}
1020
1021
1022//----------------------------------------------------------------------
1023//----------------------------------------------------------------------
1024//----------------------------------------------------------------------
1025//----------------------------------------------------------------------
1026//                        visitor functions
1027//----------------------------------------------------------------------
1028//----------------------------------------------------------------------
1029//----------------------------------------------------------------------
1030//----------------------------------------------------------------------
1031
1032void LIRGenerator::do_Phi(Phi* x) {
1033  // phi functions are never visited directly
1034  ShouldNotReachHere();
1035}
1036
1037
1038// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1039void LIRGenerator::do_Constant(Constant* x) {
1040  if (x->state_before() != NULL) {
1041    // Any constant with a ValueStack requires patching so emit the patch here
1042    LIR_Opr reg = rlock_result(x);
1043    CodeEmitInfo* info = state_for(x, x->state_before());
1044    __ oop2reg_patch(NULL, reg, info);
1045  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1046    if (!x->is_pinned()) {
1047      // unpinned constants are handled specially so that they can be
1048      // put into registers when they are used multiple times within a
1049      // block.  After the block completes their operand will be
1050      // cleared so that other blocks can't refer to that register.
1051      set_result(x, load_constant(x));
1052    } else {
1053      LIR_Opr res = x->operand();
1054      if (!res->is_valid()) {
1055        res = LIR_OprFact::value_type(x->type());
1056      }
1057      if (res->is_constant()) {
1058        LIR_Opr reg = rlock_result(x);
1059        __ move(res, reg);
1060      } else {
1061        set_result(x, res);
1062      }
1063    }
1064  } else {
1065    set_result(x, LIR_OprFact::value_type(x->type()));
1066  }
1067}
1068
1069
1070void LIRGenerator::do_Local(Local* x) {
1071  // operand_for_instruction has the side effect of setting the result
1072  // so there's no need to do it here.
1073  operand_for_instruction(x);
1074}
1075
1076
1077void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1078  Unimplemented();
1079}
1080
1081
1082void LIRGenerator::do_Return(Return* x) {
1083  if (compilation()->env()->dtrace_method_probes()) {
1084    BasicTypeList signature;
1085    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1086    signature.append(T_OBJECT); // methodOop
1087    LIR_OprList* args = new LIR_OprList();
1088    args->append(getThreadPointer());
1089    LIR_Opr meth = new_register(T_OBJECT);
1090    __ oop2reg(method()->constant_encoding(), meth);
1091    args->append(meth);
1092    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1093  }
1094
1095  if (x->type()->is_void()) {
1096    __ return_op(LIR_OprFact::illegalOpr);
1097  } else {
1098    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1099    LIRItem result(x->result(), this);
1100
1101    result.load_item_force(reg);
1102    __ return_op(result.result());
1103  }
1104  set_no_result(x);
1105}
1106
1107
1108// Example: object.getClass ()
1109void LIRGenerator::do_getClass(Intrinsic* x) {
1110  assert(x->number_of_arguments() == 1, "wrong type");
1111
1112  LIRItem rcvr(x->argument_at(0), this);
1113  rcvr.load_item();
1114  LIR_Opr result = rlock_result(x);
1115
1116  // need to perform the null check on the rcvr
1117  CodeEmitInfo* info = NULL;
1118  if (x->needs_null_check()) {
1119    info = state_for(x);
1120  }
1121  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1122  __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1123                               klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1124}
1125
1126
1127// Example: Thread.currentThread()
1128void LIRGenerator::do_currentThread(Intrinsic* x) {
1129  assert(x->number_of_arguments() == 0, "wrong type");
1130  LIR_Opr reg = rlock_result(x);
1131  __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1132}
1133
1134
1135void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1136  assert(x->number_of_arguments() == 1, "wrong type");
1137  LIRItem receiver(x->argument_at(0), this);
1138
1139  receiver.load_item();
1140  BasicTypeList signature;
1141  signature.append(T_OBJECT); // receiver
1142  LIR_OprList* args = new LIR_OprList();
1143  args->append(receiver.result());
1144  CodeEmitInfo* info = state_for(x, x->state());
1145  call_runtime(&signature, args,
1146               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1147               voidType, info);
1148
1149  set_no_result(x);
1150}
1151
1152
1153//------------------------local access--------------------------------------
1154
1155LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1156  if (x->operand()->is_illegal()) {
1157    Constant* c = x->as_Constant();
1158    if (c != NULL) {
1159      x->set_operand(LIR_OprFact::value_type(c->type()));
1160    } else {
1161      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1162      // allocate a virtual register for this local or phi
1163      x->set_operand(rlock(x));
1164      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1165    }
1166  }
1167  return x->operand();
1168}
1169
1170
1171Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1172  if (opr->is_virtual()) {
1173    return instruction_for_vreg(opr->vreg_number());
1174  }
1175  return NULL;
1176}
1177
1178
1179Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1180  if (reg_num < _instruction_for_operand.length()) {
1181    return _instruction_for_operand.at(reg_num);
1182  }
1183  return NULL;
1184}
1185
1186
1187void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1188  if (_vreg_flags.size_in_bits() == 0) {
1189    BitMap2D temp(100, num_vreg_flags);
1190    temp.clear();
1191    _vreg_flags = temp;
1192  }
1193  _vreg_flags.at_put_grow(vreg_num, f, true);
1194}
1195
1196bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1197  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1198    return false;
1199  }
1200  return _vreg_flags.at(vreg_num, f);
1201}
1202
1203
1204// Block local constant handling.  This code is useful for keeping
1205// unpinned constants and constants which aren't exposed in the IR in
1206// registers.  Unpinned Constant instructions have their operands
1207// cleared when the block is finished so that other blocks can't end
1208// up referring to their registers.
1209
1210LIR_Opr LIRGenerator::load_constant(Constant* x) {
1211  assert(!x->is_pinned(), "only for unpinned constants");
1212  _unpinned_constants.append(x);
1213  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1214}
1215
1216
1217LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1218  BasicType t = c->type();
1219  for (int i = 0; i < _constants.length(); i++) {
1220    LIR_Const* other = _constants.at(i);
1221    if (t == other->type()) {
1222      switch (t) {
1223      case T_INT:
1224      case T_FLOAT:
1225        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1226        break;
1227      case T_LONG:
1228      case T_DOUBLE:
1229        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1230        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1231        break;
1232      case T_OBJECT:
1233        if (c->as_jobject() != other->as_jobject()) continue;
1234        break;
1235      }
1236      return _reg_for_constants.at(i);
1237    }
1238  }
1239
1240  LIR_Opr result = new_register(t);
1241  __ move((LIR_Opr)c, result);
1242  _constants.append(c);
1243  _reg_for_constants.append(result);
1244  return result;
1245}
1246
1247// Various barriers
1248
1249void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1250  // Do the pre-write barrier, if any.
1251  switch (_bs->kind()) {
1252#ifndef SERIALGC
1253    case BarrierSet::G1SATBCT:
1254    case BarrierSet::G1SATBCTLogging:
1255      G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
1256      break;
1257#endif // SERIALGC
1258    case BarrierSet::CardTableModRef:
1259    case BarrierSet::CardTableExtension:
1260      // No pre barriers
1261      break;
1262    case BarrierSet::ModRef:
1263    case BarrierSet::Other:
1264      // No pre barriers
1265      break;
1266    default      :
1267      ShouldNotReachHere();
1268
1269  }
1270}
1271
1272void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1273  switch (_bs->kind()) {
1274#ifndef SERIALGC
1275    case BarrierSet::G1SATBCT:
1276    case BarrierSet::G1SATBCTLogging:
1277      G1SATBCardTableModRef_post_barrier(addr,  new_val);
1278      break;
1279#endif // SERIALGC
1280    case BarrierSet::CardTableModRef:
1281    case BarrierSet::CardTableExtension:
1282      CardTableModRef_post_barrier(addr,  new_val);
1283      break;
1284    case BarrierSet::ModRef:
1285    case BarrierSet::Other:
1286      // No post barriers
1287      break;
1288    default      :
1289      ShouldNotReachHere();
1290    }
1291}
1292
1293////////////////////////////////////////////////////////////////////////
1294#ifndef SERIALGC
1295
1296void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1297  if (G1DisablePreBarrier) return;
1298
1299  // First we test whether marking is in progress.
1300  BasicType flag_type;
1301  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1302    flag_type = T_INT;
1303  } else {
1304    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1305              "Assumption");
1306    flag_type = T_BYTE;
1307  }
1308  LIR_Opr thrd = getThreadPointer();
1309  LIR_Address* mark_active_flag_addr =
1310    new LIR_Address(thrd,
1311                    in_bytes(JavaThread::satb_mark_queue_offset() +
1312                             PtrQueue::byte_offset_of_active()),
1313                    flag_type);
1314  // Read the marking-in-progress flag.
1315  LIR_Opr flag_val = new_register(T_INT);
1316  __ load(mark_active_flag_addr, flag_val);
1317
1318  LIR_PatchCode pre_val_patch_code =
1319    patch ? lir_patch_normal : lir_patch_none;
1320
1321  LIR_Opr pre_val = new_register(T_OBJECT);
1322
1323  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1324  if (!addr_opr->is_address()) {
1325    assert(addr_opr->is_register(), "must be");
1326    addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1327  }
1328  CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
1329                                        info);
1330  __ branch(lir_cond_notEqual, T_INT, slow);
1331  __ branch_destination(slow->continuation());
1332}
1333
1334void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1335  if (G1DisablePostBarrier) return;
1336
1337  // If the "new_val" is a constant NULL, no barrier is necessary.
1338  if (new_val->is_constant() &&
1339      new_val->as_constant_ptr()->as_jobject() == NULL) return;
1340
1341  if (!new_val->is_register()) {
1342    LIR_Opr new_val_reg = new_register(T_OBJECT);
1343    if (new_val->is_constant()) {
1344      __ move(new_val, new_val_reg);
1345    } else {
1346      __ leal(new_val, new_val_reg);
1347    }
1348    new_val = new_val_reg;
1349  }
1350  assert(new_val->is_register(), "must be a register at this point");
1351
1352  if (addr->is_address()) {
1353    LIR_Address* address = addr->as_address_ptr();
1354    LIR_Opr ptr = new_register(T_OBJECT);
1355    if (!address->index()->is_valid() && address->disp() == 0) {
1356      __ move(address->base(), ptr);
1357    } else {
1358      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1359      __ leal(addr, ptr);
1360    }
1361    addr = ptr;
1362  }
1363  assert(addr->is_register(), "must be a register at this point");
1364
1365  LIR_Opr xor_res = new_pointer_register();
1366  LIR_Opr xor_shift_res = new_pointer_register();
1367  if (TwoOperandLIRForm ) {
1368    __ move(addr, xor_res);
1369    __ logical_xor(xor_res, new_val, xor_res);
1370    __ move(xor_res, xor_shift_res);
1371    __ unsigned_shift_right(xor_shift_res,
1372                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1373                            xor_shift_res,
1374                            LIR_OprDesc::illegalOpr());
1375  } else {
1376    __ logical_xor(addr, new_val, xor_res);
1377    __ unsigned_shift_right(xor_res,
1378                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1379                            xor_shift_res,
1380                            LIR_OprDesc::illegalOpr());
1381  }
1382
1383  if (!new_val->is_register()) {
1384    LIR_Opr new_val_reg = new_register(T_OBJECT);
1385    __ leal(new_val, new_val_reg);
1386    new_val = new_val_reg;
1387  }
1388  assert(new_val->is_register(), "must be a register at this point");
1389
1390  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1391
1392  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1393  __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1394  __ branch_destination(slow->continuation());
1395}
1396
1397#endif // SERIALGC
1398////////////////////////////////////////////////////////////////////////
1399
1400void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1401
1402  assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1403  LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1404  if (addr->is_address()) {
1405    LIR_Address* address = addr->as_address_ptr();
1406    LIR_Opr ptr = new_register(T_OBJECT);
1407    if (!address->index()->is_valid() && address->disp() == 0) {
1408      __ move(address->base(), ptr);
1409    } else {
1410      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1411      __ leal(addr, ptr);
1412    }
1413    addr = ptr;
1414  }
1415  assert(addr->is_register(), "must be a register at this point");
1416
1417#ifdef ARM
1418  // TODO: ARM - move to platform-dependent code
1419  LIR_Opr tmp = FrameMap::R14_opr;
1420  if (VM_Version::supports_movw()) {
1421    __ move((LIR_Opr)card_table_base, tmp);
1422  } else {
1423    __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1424  }
1425
1426  CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1427  LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1428  if(((int)ct->byte_map_base & 0xff) == 0) {
1429    __ move(tmp, card_addr);
1430  } else {
1431    LIR_Opr tmp_zero = new_register(T_INT);
1432    __ move(LIR_OprFact::intConst(0), tmp_zero);
1433    __ move(tmp_zero, card_addr);
1434  }
1435#else // ARM
1436  LIR_Opr tmp = new_pointer_register();
1437  if (TwoOperandLIRForm) {
1438    __ move(addr, tmp);
1439    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1440  } else {
1441    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1442  }
1443  if (can_inline_as_constant(card_table_base)) {
1444    __ move(LIR_OprFact::intConst(0),
1445              new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1446  } else {
1447    __ move(LIR_OprFact::intConst(0),
1448              new LIR_Address(tmp, load_constant(card_table_base),
1449                              T_BYTE));
1450  }
1451#endif // ARM
1452}
1453
1454
1455//------------------------field access--------------------------------------
1456
1457// Comment copied form templateTable_i486.cpp
1458// ----------------------------------------------------------------------------
1459// Volatile variables demand their effects be made known to all CPU's in
1460// order.  Store buffers on most chips allow reads & writes to reorder; the
1461// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1462// memory barrier (i.e., it's not sufficient that the interpreter does not
1463// reorder volatile references, the hardware also must not reorder them).
1464//
1465// According to the new Java Memory Model (JMM):
1466// (1) All volatiles are serialized wrt to each other.
1467// ALSO reads & writes act as aquire & release, so:
1468// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1469// the read float up to before the read.  It's OK for non-volatile memory refs
1470// that happen before the volatile read to float down below it.
1471// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1472// that happen BEFORE the write float down to after the write.  It's OK for
1473// non-volatile memory refs that happen after the volatile write to float up
1474// before it.
1475//
1476// We only put in barriers around volatile refs (they are expensive), not
1477// _between_ memory refs (that would require us to track the flavor of the
1478// previous memory refs).  Requirements (2) and (3) require some barriers
1479// before volatile stores and after volatile loads.  These nearly cover
1480// requirement (1) but miss the volatile-store-volatile-load case.  This final
1481// case is placed after volatile-stores although it could just as well go
1482// before volatile-loads.
1483
1484
1485void LIRGenerator::do_StoreField(StoreField* x) {
1486  bool needs_patching = x->needs_patching();
1487  bool is_volatile = x->field()->is_volatile();
1488  BasicType field_type = x->field_type();
1489  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1490
1491  CodeEmitInfo* info = NULL;
1492  if (needs_patching) {
1493    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1494    info = state_for(x, x->state_before());
1495  } else if (x->needs_null_check()) {
1496    NullCheck* nc = x->explicit_null_check();
1497    if (nc == NULL) {
1498      info = state_for(x);
1499    } else {
1500      info = state_for(nc);
1501    }
1502  }
1503
1504
1505  LIRItem object(x->obj(), this);
1506  LIRItem value(x->value(),  this);
1507
1508  object.load_item();
1509
1510  if (is_volatile || needs_patching) {
1511    // load item if field is volatile (fewer special cases for volatiles)
1512    // load item if field not initialized
1513    // load item if field not constant
1514    // because of code patching we cannot inline constants
1515    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1516      value.load_byte_item();
1517    } else  {
1518      value.load_item();
1519    }
1520  } else {
1521    value.load_for_store(field_type);
1522  }
1523
1524  set_no_result(x);
1525
1526#ifndef PRODUCT
1527  if (PrintNotLoaded && needs_patching) {
1528    tty->print_cr("   ###class not loaded at store_%s bci %d",
1529                  x->is_static() ?  "static" : "field", x->printable_bci());
1530  }
1531#endif
1532
1533  if (x->needs_null_check() &&
1534      (needs_patching ||
1535       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1536    // emit an explicit null check because the offset is too large
1537    __ null_check(object.result(), new CodeEmitInfo(info));
1538  }
1539
1540  LIR_Address* address;
1541  if (needs_patching) {
1542    // we need to patch the offset in the instruction so don't allow
1543    // generate_address to try to be smart about emitting the -1.
1544    // Otherwise the patching code won't know how to find the
1545    // instruction to patch.
1546    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1547  } else {
1548    address = generate_address(object.result(), x->offset(), field_type);
1549  }
1550
1551  if (is_volatile && os::is_MP()) {
1552    __ membar_release();
1553  }
1554
1555  if (is_oop) {
1556    // Do the pre-write barrier, if any.
1557    pre_barrier(LIR_OprFact::address(address),
1558                needs_patching,
1559                (info ? new CodeEmitInfo(info) : NULL));
1560  }
1561
1562  if (is_volatile) {
1563    assert(!needs_patching && x->is_loaded(),
1564           "how do we know it's volatile if it's not loaded");
1565    volatile_field_store(value.result(), address, info);
1566  } else {
1567    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1568    __ store(value.result(), address, info, patch_code);
1569  }
1570
1571  if (is_oop) {
1572    // Store to object so mark the card of the header
1573    post_barrier(object.result(), value.result());
1574  }
1575
1576  if (is_volatile && os::is_MP()) {
1577    __ membar();
1578  }
1579}
1580
1581
1582void LIRGenerator::do_LoadField(LoadField* x) {
1583  bool needs_patching = x->needs_patching();
1584  bool is_volatile = x->field()->is_volatile();
1585  BasicType field_type = x->field_type();
1586
1587  CodeEmitInfo* info = NULL;
1588  if (needs_patching) {
1589    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1590    info = state_for(x, x->state_before());
1591  } else if (x->needs_null_check()) {
1592    NullCheck* nc = x->explicit_null_check();
1593    if (nc == NULL) {
1594      info = state_for(x);
1595    } else {
1596      info = state_for(nc);
1597    }
1598  }
1599
1600  LIRItem object(x->obj(), this);
1601
1602  object.load_item();
1603
1604#ifndef PRODUCT
1605  if (PrintNotLoaded && needs_patching) {
1606    tty->print_cr("   ###class not loaded at load_%s bci %d",
1607                  x->is_static() ?  "static" : "field", x->printable_bci());
1608  }
1609#endif
1610
1611  if (x->needs_null_check() &&
1612      (needs_patching ||
1613       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1614    // emit an explicit null check because the offset is too large
1615    __ null_check(object.result(), new CodeEmitInfo(info));
1616  }
1617
1618  LIR_Opr reg = rlock_result(x, field_type);
1619  LIR_Address* address;
1620  if (needs_patching) {
1621    // we need to patch the offset in the instruction so don't allow
1622    // generate_address to try to be smart about emitting the -1.
1623    // Otherwise the patching code won't know how to find the
1624    // instruction to patch.
1625    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1626  } else {
1627    address = generate_address(object.result(), x->offset(), field_type);
1628  }
1629
1630  if (is_volatile) {
1631    assert(!needs_patching && x->is_loaded(),
1632           "how do we know it's volatile if it's not loaded");
1633    volatile_field_load(address, reg, info);
1634  } else {
1635    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1636    __ load(address, reg, info, patch_code);
1637  }
1638
1639  if (is_volatile && os::is_MP()) {
1640    __ membar_acquire();
1641  }
1642}
1643
1644
1645//------------------------java.nio.Buffer.checkIndex------------------------
1646
1647// int java.nio.Buffer.checkIndex(int)
1648void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1649  // NOTE: by the time we are in checkIndex() we are guaranteed that
1650  // the buffer is non-null (because checkIndex is package-private and
1651  // only called from within other methods in the buffer).
1652  assert(x->number_of_arguments() == 2, "wrong type");
1653  LIRItem buf  (x->argument_at(0), this);
1654  LIRItem index(x->argument_at(1), this);
1655  buf.load_item();
1656  index.load_item();
1657
1658  LIR_Opr result = rlock_result(x);
1659  if (GenerateRangeChecks) {
1660    CodeEmitInfo* info = state_for(x);
1661    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1662    if (index.result()->is_constant()) {
1663      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1664      __ branch(lir_cond_belowEqual, T_INT, stub);
1665    } else {
1666      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1667                  java_nio_Buffer::limit_offset(), T_INT, info);
1668      __ branch(lir_cond_aboveEqual, T_INT, stub);
1669    }
1670    __ move(index.result(), result);
1671  } else {
1672    // Just load the index into the result register
1673    __ move(index.result(), result);
1674  }
1675}
1676
1677
1678//------------------------array access--------------------------------------
1679
1680
1681void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1682  LIRItem array(x->array(), this);
1683  array.load_item();
1684  LIR_Opr reg = rlock_result(x);
1685
1686  CodeEmitInfo* info = NULL;
1687  if (x->needs_null_check()) {
1688    NullCheck* nc = x->explicit_null_check();
1689    if (nc == NULL) {
1690      info = state_for(x);
1691    } else {
1692      info = state_for(nc);
1693    }
1694  }
1695  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1696}
1697
1698
1699void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1700  bool use_length = x->length() != NULL;
1701  LIRItem array(x->array(), this);
1702  LIRItem index(x->index(), this);
1703  LIRItem length(this);
1704  bool needs_range_check = true;
1705
1706  if (use_length) {
1707    needs_range_check = x->compute_needs_range_check();
1708    if (needs_range_check) {
1709      length.set_instruction(x->length());
1710      length.load_item();
1711    }
1712  }
1713
1714  array.load_item();
1715  if (index.is_constant() && can_inline_as_constant(x->index())) {
1716    // let it be a constant
1717    index.dont_load_item();
1718  } else {
1719    index.load_item();
1720  }
1721
1722  CodeEmitInfo* range_check_info = state_for(x);
1723  CodeEmitInfo* null_check_info = NULL;
1724  if (x->needs_null_check()) {
1725    NullCheck* nc = x->explicit_null_check();
1726    if (nc != NULL) {
1727      null_check_info = state_for(nc);
1728    } else {
1729      null_check_info = range_check_info;
1730    }
1731  }
1732
1733  // emit array address setup early so it schedules better
1734  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1735
1736  if (GenerateRangeChecks && needs_range_check) {
1737    if (use_length) {
1738      // TODO: use a (modified) version of array_range_check that does not require a
1739      //       constant length to be loaded to a register
1740      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1741      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1742    } else {
1743      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1744      // The range check performs the null check, so clear it out for the load
1745      null_check_info = NULL;
1746    }
1747  }
1748
1749  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1750}
1751
1752
1753void LIRGenerator::do_NullCheck(NullCheck* x) {
1754  if (x->can_trap()) {
1755    LIRItem value(x->obj(), this);
1756    value.load_item();
1757    CodeEmitInfo* info = state_for(x);
1758    __ null_check(value.result(), info);
1759  }
1760}
1761
1762
1763void LIRGenerator::do_Throw(Throw* x) {
1764  LIRItem exception(x->exception(), this);
1765  exception.load_item();
1766  set_no_result(x);
1767  LIR_Opr exception_opr = exception.result();
1768  CodeEmitInfo* info = state_for(x, x->state());
1769
1770#ifndef PRODUCT
1771  if (PrintC1Statistics) {
1772    increment_counter(Runtime1::throw_count_address(), T_INT);
1773  }
1774#endif
1775
1776  // check if the instruction has an xhandler in any of the nested scopes
1777  bool unwind = false;
1778  if (info->exception_handlers()->length() == 0) {
1779    // this throw is not inside an xhandler
1780    unwind = true;
1781  } else {
1782    // get some idea of the throw type
1783    bool type_is_exact = true;
1784    ciType* throw_type = x->exception()->exact_type();
1785    if (throw_type == NULL) {
1786      type_is_exact = false;
1787      throw_type = x->exception()->declared_type();
1788    }
1789    if (throw_type != NULL && throw_type->is_instance_klass()) {
1790      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1791      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1792    }
1793  }
1794
1795  // do null check before moving exception oop into fixed register
1796  // to avoid a fixed interval with an oop during the null check.
1797  // Use a copy of the CodeEmitInfo because debug information is
1798  // different for null_check and throw.
1799  if (GenerateCompilerNullChecks &&
1800      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1801    // if the exception object wasn't created using new then it might be null.
1802    __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1803  }
1804
1805  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1806    // we need to go through the exception lookup path to get JVMTI
1807    // notification done
1808    unwind = false;
1809  }
1810
1811  // move exception oop into fixed register
1812  __ move(exception_opr, exceptionOopOpr());
1813
1814  if (unwind) {
1815    __ unwind_exception(exceptionOopOpr());
1816  } else {
1817    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1818  }
1819}
1820
1821
1822void LIRGenerator::do_RoundFP(RoundFP* x) {
1823  LIRItem input(x->input(), this);
1824  input.load_item();
1825  LIR_Opr input_opr = input.result();
1826  assert(input_opr->is_register(), "why round if value is not in a register?");
1827  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1828  if (input_opr->is_single_fpu()) {
1829    set_result(x, round_item(input_opr)); // This code path not currently taken
1830  } else {
1831    LIR_Opr result = new_register(T_DOUBLE);
1832    set_vreg_flag(result, must_start_in_memory);
1833    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1834    set_result(x, result);
1835  }
1836}
1837
1838void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1839  LIRItem base(x->base(), this);
1840  LIRItem idx(this);
1841
1842  base.load_item();
1843  if (x->has_index()) {
1844    idx.set_instruction(x->index());
1845    idx.load_nonconstant();
1846  }
1847
1848  LIR_Opr reg = rlock_result(x, x->basic_type());
1849
1850  int   log2_scale = 0;
1851  if (x->has_index()) {
1852    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1853    log2_scale = x->log2_scale();
1854  }
1855
1856  assert(!x->has_index() || idx.value() == x->index(), "should match");
1857
1858  LIR_Opr base_op = base.result();
1859#ifndef _LP64
1860  if (x->base()->type()->tag() == longTag) {
1861    base_op = new_register(T_INT);
1862    __ convert(Bytecodes::_l2i, base.result(), base_op);
1863  } else {
1864    assert(x->base()->type()->tag() == intTag, "must be");
1865  }
1866#endif
1867
1868  BasicType dst_type = x->basic_type();
1869  LIR_Opr index_op = idx.result();
1870
1871  LIR_Address* addr;
1872  if (index_op->is_constant()) {
1873    assert(log2_scale == 0, "must not have a scale");
1874    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1875  } else {
1876#ifdef X86
1877#ifdef _LP64
1878    if (!index_op->is_illegal() && index_op->type() == T_INT) {
1879      LIR_Opr tmp = new_pointer_register();
1880      __ convert(Bytecodes::_i2l, index_op, tmp);
1881      index_op = tmp;
1882    }
1883#endif
1884    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1885#elif defined(ARM)
1886    addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
1887#else
1888    if (index_op->is_illegal() || log2_scale == 0) {
1889#ifdef _LP64
1890      if (!index_op->is_illegal() && index_op->type() == T_INT) {
1891        LIR_Opr tmp = new_pointer_register();
1892        __ convert(Bytecodes::_i2l, index_op, tmp);
1893        index_op = tmp;
1894      }
1895#endif
1896      addr = new LIR_Address(base_op, index_op, dst_type);
1897    } else {
1898      LIR_Opr tmp = new_pointer_register();
1899      __ shift_left(index_op, log2_scale, tmp);
1900      addr = new LIR_Address(base_op, tmp, dst_type);
1901    }
1902#endif
1903  }
1904
1905  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1906    __ unaligned_move(addr, reg);
1907  } else {
1908    if (dst_type == T_OBJECT && x->is_wide()) {
1909      __ move_wide(addr, reg);
1910    } else {
1911      __ move(addr, reg);
1912    }
1913  }
1914}
1915
1916
1917void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1918  int  log2_scale = 0;
1919  BasicType type = x->basic_type();
1920
1921  if (x->has_index()) {
1922    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1923    log2_scale = x->log2_scale();
1924  }
1925
1926  LIRItem base(x->base(), this);
1927  LIRItem value(x->value(), this);
1928  LIRItem idx(this);
1929
1930  base.load_item();
1931  if (x->has_index()) {
1932    idx.set_instruction(x->index());
1933    idx.load_item();
1934  }
1935
1936  if (type == T_BYTE || type == T_BOOLEAN) {
1937    value.load_byte_item();
1938  } else {
1939    value.load_item();
1940  }
1941
1942  set_no_result(x);
1943
1944  LIR_Opr base_op = base.result();
1945#ifndef _LP64
1946  if (x->base()->type()->tag() == longTag) {
1947    base_op = new_register(T_INT);
1948    __ convert(Bytecodes::_l2i, base.result(), base_op);
1949  } else {
1950    assert(x->base()->type()->tag() == intTag, "must be");
1951  }
1952#endif
1953
1954  LIR_Opr index_op = idx.result();
1955  if (log2_scale != 0) {
1956    // temporary fix (platform dependent code without shift on Intel would be better)
1957    index_op = new_pointer_register();
1958#ifdef _LP64
1959    if(idx.result()->type() == T_INT) {
1960      __ convert(Bytecodes::_i2l, idx.result(), index_op);
1961    } else {
1962#endif
1963      // TODO: ARM also allows embedded shift in the address
1964      __ move(idx.result(), index_op);
1965#ifdef _LP64
1966    }
1967#endif
1968    __ shift_left(index_op, log2_scale, index_op);
1969  }
1970#ifdef _LP64
1971  else if(!index_op->is_illegal() && index_op->type() == T_INT) {
1972    LIR_Opr tmp = new_pointer_register();
1973    __ convert(Bytecodes::_i2l, index_op, tmp);
1974    index_op = tmp;
1975  }
1976#endif
1977
1978  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
1979  __ move(value.result(), addr);
1980}
1981
1982
1983void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
1984  BasicType type = x->basic_type();
1985  LIRItem src(x->object(), this);
1986  LIRItem off(x->offset(), this);
1987
1988  off.load_item();
1989  src.load_item();
1990
1991  LIR_Opr reg = reg = rlock_result(x, x->basic_type());
1992
1993  get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
1994  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
1995}
1996
1997
1998void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
1999  BasicType type = x->basic_type();
2000  LIRItem src(x->object(), this);
2001  LIRItem off(x->offset(), this);
2002  LIRItem data(x->value(), this);
2003
2004  src.load_item();
2005  if (type == T_BOOLEAN || type == T_BYTE) {
2006    data.load_byte_item();
2007  } else {
2008    data.load_item();
2009  }
2010  off.load_item();
2011
2012  set_no_result(x);
2013
2014  if (x->is_volatile() && os::is_MP()) __ membar_release();
2015  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2016  if (x->is_volatile() && os::is_MP()) __ membar();
2017}
2018
2019
2020void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2021  LIRItem src(x->object(), this);
2022  LIRItem off(x->offset(), this);
2023
2024  src.load_item();
2025  if (off.is_constant() && can_inline_as_constant(x->offset())) {
2026    // let it be a constant
2027    off.dont_load_item();
2028  } else {
2029    off.load_item();
2030  }
2031
2032  set_no_result(x);
2033
2034  LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2035  __ prefetch(addr, is_store);
2036}
2037
2038
2039void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2040  do_UnsafePrefetch(x, false);
2041}
2042
2043
2044void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2045  do_UnsafePrefetch(x, true);
2046}
2047
2048
2049void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2050  int lng = x->length();
2051
2052  for (int i = 0; i < lng; i++) {
2053    SwitchRange* one_range = x->at(i);
2054    int low_key = one_range->low_key();
2055    int high_key = one_range->high_key();
2056    BlockBegin* dest = one_range->sux();
2057    if (low_key == high_key) {
2058      __ cmp(lir_cond_equal, value, low_key);
2059      __ branch(lir_cond_equal, T_INT, dest);
2060    } else if (high_key - low_key == 1) {
2061      __ cmp(lir_cond_equal, value, low_key);
2062      __ branch(lir_cond_equal, T_INT, dest);
2063      __ cmp(lir_cond_equal, value, high_key);
2064      __ branch(lir_cond_equal, T_INT, dest);
2065    } else {
2066      LabelObj* L = new LabelObj();
2067      __ cmp(lir_cond_less, value, low_key);
2068      __ branch(lir_cond_less, L->label());
2069      __ cmp(lir_cond_lessEqual, value, high_key);
2070      __ branch(lir_cond_lessEqual, T_INT, dest);
2071      __ branch_destination(L->label());
2072    }
2073  }
2074  __ jump(default_sux);
2075}
2076
2077
2078SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2079  SwitchRangeList* res = new SwitchRangeList();
2080  int len = x->length();
2081  if (len > 0) {
2082    BlockBegin* sux = x->sux_at(0);
2083    int key = x->lo_key();
2084    BlockBegin* default_sux = x->default_sux();
2085    SwitchRange* range = new SwitchRange(key, sux);
2086    for (int i = 0; i < len; i++, key++) {
2087      BlockBegin* new_sux = x->sux_at(i);
2088      if (sux == new_sux) {
2089        // still in same range
2090        range->set_high_key(key);
2091      } else {
2092        // skip tests which explicitly dispatch to the default
2093        if (sux != default_sux) {
2094          res->append(range);
2095        }
2096        range = new SwitchRange(key, new_sux);
2097      }
2098      sux = new_sux;
2099    }
2100    if (res->length() == 0 || res->last() != range)  res->append(range);
2101  }
2102  return res;
2103}
2104
2105
2106// we expect the keys to be sorted by increasing value
2107SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2108  SwitchRangeList* res = new SwitchRangeList();
2109  int len = x->length();
2110  if (len > 0) {
2111    BlockBegin* default_sux = x->default_sux();
2112    int key = x->key_at(0);
2113    BlockBegin* sux = x->sux_at(0);
2114    SwitchRange* range = new SwitchRange(key, sux);
2115    for (int i = 1; i < len; i++) {
2116      int new_key = x->key_at(i);
2117      BlockBegin* new_sux = x->sux_at(i);
2118      if (key+1 == new_key && sux == new_sux) {
2119        // still in same range
2120        range->set_high_key(new_key);
2121      } else {
2122        // skip tests which explicitly dispatch to the default
2123        if (range->sux() != default_sux) {
2124          res->append(range);
2125        }
2126        range = new SwitchRange(new_key, new_sux);
2127      }
2128      key = new_key;
2129      sux = new_sux;
2130    }
2131    if (res->length() == 0 || res->last() != range)  res->append(range);
2132  }
2133  return res;
2134}
2135
2136
2137void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2138  LIRItem tag(x->tag(), this);
2139  tag.load_item();
2140  set_no_result(x);
2141
2142  if (x->is_safepoint()) {
2143    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2144  }
2145
2146  // move values into phi locations
2147  move_to_phi(x->state());
2148
2149  int lo_key = x->lo_key();
2150  int hi_key = x->hi_key();
2151  int len = x->length();
2152  LIR_Opr value = tag.result();
2153  if (UseTableRanges) {
2154    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2155  } else {
2156    for (int i = 0; i < len; i++) {
2157      __ cmp(lir_cond_equal, value, i + lo_key);
2158      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2159    }
2160    __ jump(x->default_sux());
2161  }
2162}
2163
2164
2165void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2166  LIRItem tag(x->tag(), this);
2167  tag.load_item();
2168  set_no_result(x);
2169
2170  if (x->is_safepoint()) {
2171    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2172  }
2173
2174  // move values into phi locations
2175  move_to_phi(x->state());
2176
2177  LIR_Opr value = tag.result();
2178  if (UseTableRanges) {
2179    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2180  } else {
2181    int len = x->length();
2182    for (int i = 0; i < len; i++) {
2183      __ cmp(lir_cond_equal, value, x->key_at(i));
2184      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2185    }
2186    __ jump(x->default_sux());
2187  }
2188}
2189
2190
2191void LIRGenerator::do_Goto(Goto* x) {
2192  set_no_result(x);
2193
2194  if (block()->next()->as_OsrEntry()) {
2195    // need to free up storage used for OSR entry point
2196    LIR_Opr osrBuffer = block()->next()->operand();
2197    BasicTypeList signature;
2198    signature.append(T_INT);
2199    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2200    __ move(osrBuffer, cc->args()->at(0));
2201    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2202                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2203  }
2204
2205  if (x->is_safepoint()) {
2206    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2207
2208    // increment backedge counter if needed
2209    CodeEmitInfo* info = state_for(x, state);
2210    increment_backedge_counter(info, info->stack()->bci());
2211    CodeEmitInfo* safepoint_info = state_for(x, state);
2212    __ safepoint(safepoint_poll_register(), safepoint_info);
2213  }
2214
2215  // Gotos can be folded Ifs, handle this case.
2216  if (x->should_profile()) {
2217    ciMethod* method = x->profiled_method();
2218    assert(method != NULL, "method should be set if branch is profiled");
2219    ciMethodData* md = method->method_data_or_null();
2220    assert(md != NULL, "Sanity");
2221    ciProfileData* data = md->bci_to_data(x->profiled_bci());
2222    assert(data != NULL, "must have profiling data");
2223    int offset;
2224    if (x->direction() == Goto::taken) {
2225      assert(data->is_BranchData(), "need BranchData for two-way branches");
2226      offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2227    } else if (x->direction() == Goto::not_taken) {
2228      assert(data->is_BranchData(), "need BranchData for two-way branches");
2229      offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2230    } else {
2231      assert(data->is_JumpData(), "need JumpData for branches");
2232      offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2233    }
2234    LIR_Opr md_reg = new_register(T_OBJECT);
2235    __ oop2reg(md->constant_encoding(), md_reg);
2236
2237    increment_counter(new LIR_Address(md_reg, offset,
2238                                      NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2239  }
2240
2241  // emit phi-instruction move after safepoint since this simplifies
2242  // describing the state as the safepoint.
2243  move_to_phi(x->state());
2244
2245  __ jump(x->default_sux());
2246}
2247
2248
2249void LIRGenerator::do_Base(Base* x) {
2250  __ std_entry(LIR_OprFact::illegalOpr);
2251  // Emit moves from physical registers / stack slots to virtual registers
2252  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2253  IRScope* irScope = compilation()->hir()->top_scope();
2254  int java_index = 0;
2255  for (int i = 0; i < args->length(); i++) {
2256    LIR_Opr src = args->at(i);
2257    assert(!src->is_illegal(), "check");
2258    BasicType t = src->type();
2259
2260    // Types which are smaller than int are passed as int, so
2261    // correct the type which passed.
2262    switch (t) {
2263    case T_BYTE:
2264    case T_BOOLEAN:
2265    case T_SHORT:
2266    case T_CHAR:
2267      t = T_INT;
2268      break;
2269    }
2270
2271    LIR_Opr dest = new_register(t);
2272    __ move(src, dest);
2273
2274    // Assign new location to Local instruction for this local
2275    Local* local = x->state()->local_at(java_index)->as_Local();
2276    assert(local != NULL, "Locals for incoming arguments must have been created");
2277#ifndef __SOFTFP__
2278    // The java calling convention passes double as long and float as int.
2279    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2280#endif // __SOFTFP__
2281    local->set_operand(dest);
2282    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2283    java_index += type2size[t];
2284  }
2285
2286  if (compilation()->env()->dtrace_method_probes()) {
2287    BasicTypeList signature;
2288    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2289    signature.append(T_OBJECT); // methodOop
2290    LIR_OprList* args = new LIR_OprList();
2291    args->append(getThreadPointer());
2292    LIR_Opr meth = new_register(T_OBJECT);
2293    __ oop2reg(method()->constant_encoding(), meth);
2294    args->append(meth);
2295    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2296  }
2297
2298  if (method()->is_synchronized()) {
2299    LIR_Opr obj;
2300    if (method()->is_static()) {
2301      obj = new_register(T_OBJECT);
2302      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2303    } else {
2304      Local* receiver = x->state()->local_at(0)->as_Local();
2305      assert(receiver != NULL, "must already exist");
2306      obj = receiver->operand();
2307    }
2308    assert(obj->is_valid(), "must be valid");
2309
2310    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2311      LIR_Opr lock = new_register(T_INT);
2312      __ load_stack_address_monitor(0, lock);
2313
2314      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2315      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2316
2317      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2318      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2319    }
2320  }
2321
2322  // increment invocation counters if needed
2323  if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2324    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2325    increment_invocation_counter(info);
2326  }
2327
2328  // all blocks with a successor must end with an unconditional jump
2329  // to the successor even if they are consecutive
2330  __ jump(x->default_sux());
2331}
2332
2333
2334void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2335  // construct our frame and model the production of incoming pointer
2336  // to the OSR buffer.
2337  __ osr_entry(LIR_Assembler::osrBufferPointer());
2338  LIR_Opr result = rlock_result(x);
2339  __ move(LIR_Assembler::osrBufferPointer(), result);
2340}
2341
2342
2343void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2344  int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2345  for (; i < args->length(); i++) {
2346    LIRItem* param = args->at(i);
2347    LIR_Opr loc = arg_list->at(i);
2348    if (loc->is_register()) {
2349      param->load_item_force(loc);
2350    } else {
2351      LIR_Address* addr = loc->as_address_ptr();
2352      param->load_for_store(addr->type());
2353      if (addr->type() == T_OBJECT) {
2354        __ move_wide(param->result(), addr);
2355      } else
2356        if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2357          __ unaligned_move(param->result(), addr);
2358        } else {
2359          __ move(param->result(), addr);
2360        }
2361    }
2362  }
2363
2364  if (x->has_receiver()) {
2365    LIRItem* receiver = args->at(0);
2366    LIR_Opr loc = arg_list->at(0);
2367    if (loc->is_register()) {
2368      receiver->load_item_force(loc);
2369    } else {
2370      assert(loc->is_address(), "just checking");
2371      receiver->load_for_store(T_OBJECT);
2372      __ move_wide(receiver->result(), loc->as_address_ptr());
2373    }
2374  }
2375}
2376
2377
2378// Visits all arguments, returns appropriate items without loading them
2379LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2380  LIRItemList* argument_items = new LIRItemList();
2381  if (x->has_receiver()) {
2382    LIRItem* receiver = new LIRItem(x->receiver(), this);
2383    argument_items->append(receiver);
2384  }
2385  if (x->is_invokedynamic()) {
2386    // Insert a dummy for the synthetic MethodHandle argument.
2387    argument_items->append(NULL);
2388  }
2389  int idx = x->has_receiver() ? 1 : 0;
2390  for (int i = 0; i < x->number_of_arguments(); i++) {
2391    LIRItem* param = new LIRItem(x->argument_at(i), this);
2392    argument_items->append(param);
2393    idx += (param->type()->is_double_word() ? 2 : 1);
2394  }
2395  return argument_items;
2396}
2397
2398
2399// The invoke with receiver has following phases:
2400//   a) traverse and load/lock receiver;
2401//   b) traverse all arguments -> item-array (invoke_visit_argument)
2402//   c) push receiver on stack
2403//   d) load each of the items and push on stack
2404//   e) unlock receiver
2405//   f) move receiver into receiver-register %o0
2406//   g) lock result registers and emit call operation
2407//
2408// Before issuing a call, we must spill-save all values on stack
2409// that are in caller-save register. "spill-save" moves thos registers
2410// either in a free callee-save register or spills them if no free
2411// callee save register is available.
2412//
2413// The problem is where to invoke spill-save.
2414// - if invoked between e) and f), we may lock callee save
2415//   register in "spill-save" that destroys the receiver register
2416//   before f) is executed
2417// - if we rearange the f) to be earlier, by loading %o0, it
2418//   may destroy a value on the stack that is currently in %o0
2419//   and is waiting to be spilled
2420// - if we keep the receiver locked while doing spill-save,
2421//   we cannot spill it as it is spill-locked
2422//
2423void LIRGenerator::do_Invoke(Invoke* x) {
2424  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2425
2426  LIR_OprList* arg_list = cc->args();
2427  LIRItemList* args = invoke_visit_arguments(x);
2428  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2429
2430  // setup result register
2431  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2432  if (x->type() != voidType) {
2433    result_register = result_register_for(x->type());
2434  }
2435
2436  CodeEmitInfo* info = state_for(x, x->state());
2437
2438  // invokedynamics can deoptimize.
2439  CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2440
2441  invoke_load_arguments(x, args, arg_list);
2442
2443  if (x->has_receiver()) {
2444    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2445    receiver = args->at(0)->result();
2446  }
2447
2448  // emit invoke code
2449  bool optimized = x->target_is_loaded() && x->target_is_final();
2450  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2451
2452  // JSR 292
2453  // Preserve the SP over MethodHandle call sites.
2454  ciMethod* target = x->target();
2455  if (target->is_method_handle_invoke()) {
2456    info->set_is_method_handle_invoke(true);
2457    __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2458  }
2459
2460  switch (x->code()) {
2461    case Bytecodes::_invokestatic:
2462      __ call_static(target, result_register,
2463                     SharedRuntime::get_resolve_static_call_stub(),
2464                     arg_list, info);
2465      break;
2466    case Bytecodes::_invokespecial:
2467    case Bytecodes::_invokevirtual:
2468    case Bytecodes::_invokeinterface:
2469      // for final target we still produce an inline cache, in order
2470      // to be able to call mixed mode
2471      if (x->code() == Bytecodes::_invokespecial || optimized) {
2472        __ call_opt_virtual(target, receiver, result_register,
2473                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2474                            arg_list, info);
2475      } else if (x->vtable_index() < 0) {
2476        __ call_icvirtual(target, receiver, result_register,
2477                          SharedRuntime::get_resolve_virtual_call_stub(),
2478                          arg_list, info);
2479      } else {
2480        int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2481        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2482        __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2483      }
2484      break;
2485    case Bytecodes::_invokedynamic: {
2486      ciBytecodeStream bcs(x->scope()->method());
2487      bcs.force_bci(x->state()->bci());
2488      assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2489      ciCPCache* cpcache = bcs.get_cpcache();
2490
2491      // Get CallSite offset from constant pool cache pointer.
2492      int index = bcs.get_method_index();
2493      size_t call_site_offset = cpcache->get_f1_offset(index);
2494
2495      // If this invokedynamic call site hasn't been executed yet in
2496      // the interpreter, the CallSite object in the constant pool
2497      // cache is still null and we need to deoptimize.
2498      if (cpcache->is_f1_null_at(index)) {
2499        // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2500        // clone all handlers.  This is handled transparently in other
2501        // places by the CodeEmitInfo cloning logic but is handled
2502        // specially here because a stub isn't being used.
2503        x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2504
2505        DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2506        __ jump(deopt_stub);
2507      }
2508
2509      // Use the receiver register for the synthetic MethodHandle
2510      // argument.
2511      receiver = LIR_Assembler::receiverOpr();
2512      LIR_Opr tmp = new_register(objectType);
2513
2514      // Load CallSite object from constant pool cache.
2515      __ oop2reg(cpcache->constant_encoding(), tmp);
2516      __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2517
2518      // Load target MethodHandle from CallSite object.
2519      __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2520
2521      __ call_dynamic(target, receiver, result_register,
2522                      SharedRuntime::get_resolve_opt_virtual_call_stub(),
2523                      arg_list, info);
2524      break;
2525    }
2526    default:
2527      ShouldNotReachHere();
2528      break;
2529  }
2530
2531  // JSR 292
2532  // Restore the SP after MethodHandle call sites.
2533  if (target->is_method_handle_invoke()) {
2534    __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2535  }
2536
2537  if (x->type()->is_float() || x->type()->is_double()) {
2538    // Force rounding of results from non-strictfp when in strictfp
2539    // scope (or when we don't know the strictness of the callee, to
2540    // be safe.)
2541    if (method()->is_strict()) {
2542      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2543        result_register = round_item(result_register);
2544      }
2545    }
2546  }
2547
2548  if (result_register->is_valid()) {
2549    LIR_Opr result = rlock_result(x);
2550    __ move(result_register, result);
2551  }
2552}
2553
2554
2555void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2556  assert(x->number_of_arguments() == 1, "wrong type");
2557  LIRItem value       (x->argument_at(0), this);
2558  LIR_Opr reg = rlock_result(x);
2559  value.load_item();
2560  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2561  __ move(tmp, reg);
2562}
2563
2564
2565
2566// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2567void LIRGenerator::do_IfOp(IfOp* x) {
2568#ifdef ASSERT
2569  {
2570    ValueTag xtag = x->x()->type()->tag();
2571    ValueTag ttag = x->tval()->type()->tag();
2572    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2573    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2574    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2575  }
2576#endif
2577
2578  LIRItem left(x->x(), this);
2579  LIRItem right(x->y(), this);
2580  left.load_item();
2581  if (can_inline_as_constant(right.value())) {
2582    right.dont_load_item();
2583  } else {
2584    right.load_item();
2585  }
2586
2587  LIRItem t_val(x->tval(), this);
2588  LIRItem f_val(x->fval(), this);
2589  t_val.dont_load_item();
2590  f_val.dont_load_item();
2591  LIR_Opr reg = rlock_result(x);
2592
2593  __ cmp(lir_cond(x->cond()), left.result(), right.result());
2594  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2595}
2596
2597
2598void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2599  switch (x->id()) {
2600  case vmIntrinsics::_intBitsToFloat      :
2601  case vmIntrinsics::_doubleToRawLongBits :
2602  case vmIntrinsics::_longBitsToDouble    :
2603  case vmIntrinsics::_floatToRawIntBits   : {
2604    do_FPIntrinsics(x);
2605    break;
2606  }
2607
2608  case vmIntrinsics::_currentTimeMillis: {
2609    assert(x->number_of_arguments() == 0, "wrong type");
2610    LIR_Opr reg = result_register_for(x->type());
2611    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2612                         reg, new LIR_OprList());
2613    LIR_Opr result = rlock_result(x);
2614    __ move(reg, result);
2615    break;
2616  }
2617
2618  case vmIntrinsics::_nanoTime: {
2619    assert(x->number_of_arguments() == 0, "wrong type");
2620    LIR_Opr reg = result_register_for(x->type());
2621    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2622                         reg, new LIR_OprList());
2623    LIR_Opr result = rlock_result(x);
2624    __ move(reg, result);
2625    break;
2626  }
2627
2628  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2629  case vmIntrinsics::_getClass:       do_getClass(x);      break;
2630  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2631
2632  case vmIntrinsics::_dlog:           // fall through
2633  case vmIntrinsics::_dlog10:         // fall through
2634  case vmIntrinsics::_dabs:           // fall through
2635  case vmIntrinsics::_dsqrt:          // fall through
2636  case vmIntrinsics::_dtan:           // fall through
2637  case vmIntrinsics::_dsin :          // fall through
2638  case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2639  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2640
2641  // java.nio.Buffer.checkIndex
2642  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2643
2644  case vmIntrinsics::_compareAndSwapObject:
2645    do_CompareAndSwap(x, objectType);
2646    break;
2647  case vmIntrinsics::_compareAndSwapInt:
2648    do_CompareAndSwap(x, intType);
2649    break;
2650  case vmIntrinsics::_compareAndSwapLong:
2651    do_CompareAndSwap(x, longType);
2652    break;
2653
2654    // sun.misc.AtomicLongCSImpl.attemptUpdate
2655  case vmIntrinsics::_attemptUpdate:
2656    do_AttemptUpdate(x);
2657    break;
2658
2659  default: ShouldNotReachHere(); break;
2660  }
2661}
2662
2663void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2664  // Need recv in a temporary register so it interferes with the other temporaries
2665  LIR_Opr recv = LIR_OprFact::illegalOpr;
2666  LIR_Opr mdo = new_register(T_OBJECT);
2667  // tmp is used to hold the counters on SPARC
2668  LIR_Opr tmp = new_pointer_register();
2669  if (x->recv() != NULL) {
2670    LIRItem value(x->recv(), this);
2671    value.load_item();
2672    recv = new_register(T_OBJECT);
2673    __ move(value.result(), recv);
2674  }
2675  __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2676}
2677
2678void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
2679  // We can safely ignore accessors here, since c2 will inline them anyway,
2680  // accessors are also always mature.
2681  if (!x->inlinee()->is_accessor()) {
2682    CodeEmitInfo* info = state_for(x, x->state(), true);
2683    // Increment invocation counter, don't notify the runtime, because we don't inline loops,
2684    increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
2685  }
2686}
2687
2688void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
2689  int freq_log;
2690  int level = compilation()->env()->comp_level();
2691  if (level == CompLevel_limited_profile) {
2692    freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
2693  } else if (level == CompLevel_full_profile) {
2694    freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
2695  } else {
2696    ShouldNotReachHere();
2697  }
2698  // Increment the appropriate invocation/backedge counter and notify the runtime.
2699  increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
2700}
2701
2702void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
2703                                                ciMethod *method, int frequency,
2704                                                int bci, bool backedge, bool notify) {
2705  assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
2706  int level = _compilation->env()->comp_level();
2707  assert(level > CompLevel_simple, "Shouldn't be here");
2708
2709  int offset = -1;
2710  LIR_Opr counter_holder = new_register(T_OBJECT);
2711  LIR_Opr meth;
2712  if (level == CompLevel_limited_profile) {
2713    offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
2714                                 methodOopDesc::invocation_counter_offset());
2715    __ oop2reg(method->constant_encoding(), counter_holder);
2716    meth = counter_holder;
2717  } else if (level == CompLevel_full_profile) {
2718    offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
2719                                 methodDataOopDesc::invocation_counter_offset());
2720    ciMethodData* md = method->method_data_or_null();
2721    assert(md != NULL, "Sanity");
2722    __ oop2reg(md->constant_encoding(), counter_holder);
2723    meth = new_register(T_OBJECT);
2724    __ oop2reg(method->constant_encoding(), meth);
2725  } else {
2726    ShouldNotReachHere();
2727  }
2728  LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
2729  LIR_Opr result = new_register(T_INT);
2730  __ load(counter, result);
2731  __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
2732  __ store(result, counter);
2733  if (notify) {
2734    LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
2735    __ logical_and(result, mask, result);
2736    __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
2737    // The bci for info can point to cmp for if's we want the if bci
2738    CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
2739    __ branch(lir_cond_equal, T_INT, overflow);
2740    __ branch_destination(overflow->continuation());
2741  }
2742}
2743
2744LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2745  LIRItemList args(1);
2746  LIRItem value(arg1, this);
2747  args.append(&value);
2748  BasicTypeList signature;
2749  signature.append(as_BasicType(arg1->type()));
2750
2751  return call_runtime(&signature, &args, entry, result_type, info);
2752}
2753
2754
2755LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2756  LIRItemList args(2);
2757  LIRItem value1(arg1, this);
2758  LIRItem value2(arg2, this);
2759  args.append(&value1);
2760  args.append(&value2);
2761  BasicTypeList signature;
2762  signature.append(as_BasicType(arg1->type()));
2763  signature.append(as_BasicType(arg2->type()));
2764
2765  return call_runtime(&signature, &args, entry, result_type, info);
2766}
2767
2768
2769LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2770                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
2771  // get a result register
2772  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2773  LIR_Opr result = LIR_OprFact::illegalOpr;
2774  if (result_type->tag() != voidTag) {
2775    result = new_register(result_type);
2776    phys_reg = result_register_for(result_type);
2777  }
2778
2779  // move the arguments into the correct location
2780  CallingConvention* cc = frame_map()->c_calling_convention(signature);
2781  assert(cc->length() == args->length(), "argument mismatch");
2782  for (int i = 0; i < args->length(); i++) {
2783    LIR_Opr arg = args->at(i);
2784    LIR_Opr loc = cc->at(i);
2785    if (loc->is_register()) {
2786      __ move(arg, loc);
2787    } else {
2788      LIR_Address* addr = loc->as_address_ptr();
2789//           if (!can_store_as_constant(arg)) {
2790//             LIR_Opr tmp = new_register(arg->type());
2791//             __ move(arg, tmp);
2792//             arg = tmp;
2793//           }
2794      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2795        __ unaligned_move(arg, addr);
2796      } else {
2797        __ move(arg, addr);
2798      }
2799    }
2800  }
2801
2802  if (info) {
2803    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2804  } else {
2805    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2806  }
2807  if (result->is_valid()) {
2808    __ move(phys_reg, result);
2809  }
2810  return result;
2811}
2812
2813
2814LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2815                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
2816  // get a result register
2817  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2818  LIR_Opr result = LIR_OprFact::illegalOpr;
2819  if (result_type->tag() != voidTag) {
2820    result = new_register(result_type);
2821    phys_reg = result_register_for(result_type);
2822  }
2823
2824  // move the arguments into the correct location
2825  CallingConvention* cc = frame_map()->c_calling_convention(signature);
2826
2827  assert(cc->length() == args->length(), "argument mismatch");
2828  for (int i = 0; i < args->length(); i++) {
2829    LIRItem* arg = args->at(i);
2830    LIR_Opr loc = cc->at(i);
2831    if (loc->is_register()) {
2832      arg->load_item_force(loc);
2833    } else {
2834      LIR_Address* addr = loc->as_address_ptr();
2835      arg->load_for_store(addr->type());
2836      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2837        __ unaligned_move(arg->result(), addr);
2838      } else {
2839        __ move(arg->result(), addr);
2840      }
2841    }
2842  }
2843
2844  if (info) {
2845    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2846  } else {
2847    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2848  }
2849  if (result->is_valid()) {
2850    __ move(phys_reg, result);
2851  }
2852  return result;
2853}
2854