c1_LIRGenerator.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_Instruction.hpp"
29#include "c1/c1_LIRAssembler.hpp"
30#include "c1/c1_LIRGenerator.hpp"
31#include "c1/c1_ValueStack.hpp"
32#include "ci/ciArrayKlass.hpp"
33#include "ci/ciCPCache.hpp"
34#include "ci/ciInstance.hpp"
35#include "runtime/sharedRuntime.hpp"
36#include "runtime/stubRoutines.hpp"
37#include "utilities/bitMap.inline.hpp"
38#ifndef SERIALGC
39#include "gc_implementation/g1/heapRegion.hpp"
40#endif
41
42#ifdef ASSERT
43#define __ gen()->lir(__FILE__, __LINE__)->
44#else
45#define __ gen()->lir()->
46#endif
47
48// TODO: ARM - Use some recognizable constant which still fits architectural constraints
49#ifdef ARM
50#define PATCHED_ADDR  (204)
51#else
52#define PATCHED_ADDR  (max_jint)
53#endif
54
55void PhiResolverState::reset(int max_vregs) {
56  // Initialize array sizes
57  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
58  _virtual_operands.trunc_to(0);
59  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
60  _other_operands.trunc_to(0);
61  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
62  _vreg_table.trunc_to(0);
63}
64
65
66
67//--------------------------------------------------------------
68// PhiResolver
69
70// Resolves cycles:
71//
72//  r1 := r2  becomes  temp := r1
73//  r2 := r1           r1 := r2
74//                     r2 := temp
75// and orders moves:
76//
77//  r2 := r3  becomes  r1 := r2
78//  r1 := r2           r2 := r3
79
80PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
81 : _gen(gen)
82 , _state(gen->resolver_state())
83 , _temp(LIR_OprFact::illegalOpr)
84{
85  // reinitialize the shared state arrays
86  _state.reset(max_vregs);
87}
88
89
90void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
91  assert(src->is_valid(), "");
92  assert(dest->is_valid(), "");
93  __ move(src, dest);
94}
95
96
97void PhiResolver::move_temp_to(LIR_Opr dest) {
98  assert(_temp->is_valid(), "");
99  emit_move(_temp, dest);
100  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
101}
102
103
104void PhiResolver::move_to_temp(LIR_Opr src) {
105  assert(_temp->is_illegal(), "");
106  _temp = _gen->new_register(src->type());
107  emit_move(src, _temp);
108}
109
110
111// Traverse assignment graph in depth first order and generate moves in post order
112// ie. two assignments: b := c, a := b start with node c:
113// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
114// Generates moves in this order: move b to a and move c to b
115// ie. cycle a := b, b := a start with node a
116// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
117// Generates moves in this order: move b to temp, move a to b, move temp to a
118void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
119  if (!dest->visited()) {
120    dest->set_visited();
121    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
122      move(dest, dest->destination_at(i));
123    }
124  } else if (!dest->start_node()) {
125    // cylce in graph detected
126    assert(_loop == NULL, "only one loop valid!");
127    _loop = dest;
128    move_to_temp(src->operand());
129    return;
130  } // else dest is a start node
131
132  if (!dest->assigned()) {
133    if (_loop == dest) {
134      move_temp_to(dest->operand());
135      dest->set_assigned();
136    } else if (src != NULL) {
137      emit_move(src->operand(), dest->operand());
138      dest->set_assigned();
139    }
140  }
141}
142
143
144PhiResolver::~PhiResolver() {
145  int i;
146  // resolve any cycles in moves from and to virtual registers
147  for (i = virtual_operands().length() - 1; i >= 0; i --) {
148    ResolveNode* node = virtual_operands()[i];
149    if (!node->visited()) {
150      _loop = NULL;
151      move(NULL, node);
152      node->set_start_node();
153      assert(_temp->is_illegal(), "move_temp_to() call missing");
154    }
155  }
156
157  // generate move for move from non virtual register to abitrary destination
158  for (i = other_operands().length() - 1; i >= 0; i --) {
159    ResolveNode* node = other_operands()[i];
160    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
161      emit_move(node->operand(), node->destination_at(j)->operand());
162    }
163  }
164}
165
166
167ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
168  ResolveNode* node;
169  if (opr->is_virtual()) {
170    int vreg_num = opr->vreg_number();
171    node = vreg_table().at_grow(vreg_num, NULL);
172    assert(node == NULL || node->operand() == opr, "");
173    if (node == NULL) {
174      node = new ResolveNode(opr);
175      vreg_table()[vreg_num] = node;
176    }
177    // Make sure that all virtual operands show up in the list when
178    // they are used as the source of a move.
179    if (source && !virtual_operands().contains(node)) {
180      virtual_operands().append(node);
181    }
182  } else {
183    assert(source, "");
184    node = new ResolveNode(opr);
185    other_operands().append(node);
186  }
187  return node;
188}
189
190
191void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
192  assert(dest->is_virtual(), "");
193  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
194  assert(src->is_valid(), "");
195  assert(dest->is_valid(), "");
196  ResolveNode* source = source_node(src);
197  source->append(destination_node(dest));
198}
199
200
201//--------------------------------------------------------------
202// LIRItem
203
204void LIRItem::set_result(LIR_Opr opr) {
205  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
206  value()->set_operand(opr);
207
208  if (opr->is_virtual()) {
209    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
210  }
211
212  _result = opr;
213}
214
215void LIRItem::load_item() {
216  if (result()->is_illegal()) {
217    // update the items result
218    _result = value()->operand();
219  }
220  if (!result()->is_register()) {
221    LIR_Opr reg = _gen->new_register(value()->type());
222    __ move(result(), reg);
223    if (result()->is_constant()) {
224      _result = reg;
225    } else {
226      set_result(reg);
227    }
228  }
229}
230
231
232void LIRItem::load_for_store(BasicType type) {
233  if (_gen->can_store_as_constant(value(), type)) {
234    _result = value()->operand();
235    if (!_result->is_constant()) {
236      _result = LIR_OprFact::value_type(value()->type());
237    }
238  } else if (type == T_BYTE || type == T_BOOLEAN) {
239    load_byte_item();
240  } else {
241    load_item();
242  }
243}
244
245void LIRItem::load_item_force(LIR_Opr reg) {
246  LIR_Opr r = result();
247  if (r != reg) {
248#if !defined(ARM) && !defined(E500V2)
249    if (r->type() != reg->type()) {
250      // moves between different types need an intervening spill slot
251      r = _gen->force_to_spill(r, reg->type());
252    }
253#endif
254    __ move(r, reg);
255    _result = reg;
256  }
257}
258
259ciObject* LIRItem::get_jobject_constant() const {
260  ObjectType* oc = type()->as_ObjectType();
261  if (oc) {
262    return oc->constant_value();
263  }
264  return NULL;
265}
266
267
268jint LIRItem::get_jint_constant() const {
269  assert(is_constant() && value() != NULL, "");
270  assert(type()->as_IntConstant() != NULL, "type check");
271  return type()->as_IntConstant()->value();
272}
273
274
275jint LIRItem::get_address_constant() const {
276  assert(is_constant() && value() != NULL, "");
277  assert(type()->as_AddressConstant() != NULL, "type check");
278  return type()->as_AddressConstant()->value();
279}
280
281
282jfloat LIRItem::get_jfloat_constant() const {
283  assert(is_constant() && value() != NULL, "");
284  assert(type()->as_FloatConstant() != NULL, "type check");
285  return type()->as_FloatConstant()->value();
286}
287
288
289jdouble LIRItem::get_jdouble_constant() const {
290  assert(is_constant() && value() != NULL, "");
291  assert(type()->as_DoubleConstant() != NULL, "type check");
292  return type()->as_DoubleConstant()->value();
293}
294
295
296jlong LIRItem::get_jlong_constant() const {
297  assert(is_constant() && value() != NULL, "");
298  assert(type()->as_LongConstant() != NULL, "type check");
299  return type()->as_LongConstant()->value();
300}
301
302
303
304//--------------------------------------------------------------
305
306
307void LIRGenerator::init() {
308  _bs = Universe::heap()->barrier_set();
309}
310
311
312void LIRGenerator::block_do_prolog(BlockBegin* block) {
313#ifndef PRODUCT
314  if (PrintIRWithLIR) {
315    block->print();
316  }
317#endif
318
319  // set up the list of LIR instructions
320  assert(block->lir() == NULL, "LIR list already computed for this block");
321  _lir = new LIR_List(compilation(), block);
322  block->set_lir(_lir);
323
324  __ branch_destination(block->label());
325
326  if (LIRTraceExecution &&
327      Compilation::current()->hir()->start()->block_id() != block->block_id() &&
328      !block->is_set(BlockBegin::exception_entry_flag)) {
329    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
330    trace_block_entry(block);
331  }
332}
333
334
335void LIRGenerator::block_do_epilog(BlockBegin* block) {
336#ifndef PRODUCT
337  if (PrintIRWithLIR) {
338    tty->cr();
339  }
340#endif
341
342  // LIR_Opr for unpinned constants shouldn't be referenced by other
343  // blocks so clear them out after processing the block.
344  for (int i = 0; i < _unpinned_constants.length(); i++) {
345    _unpinned_constants.at(i)->clear_operand();
346  }
347  _unpinned_constants.trunc_to(0);
348
349  // clear our any registers for other local constants
350  _constants.trunc_to(0);
351  _reg_for_constants.trunc_to(0);
352}
353
354
355void LIRGenerator::block_do(BlockBegin* block) {
356  CHECK_BAILOUT();
357
358  block_do_prolog(block);
359  set_block(block);
360
361  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
362    if (instr->is_pinned()) do_root(instr);
363  }
364
365  set_block(NULL);
366  block_do_epilog(block);
367}
368
369
370//-------------------------LIRGenerator-----------------------------
371
372// This is where the tree-walk starts; instr must be root;
373void LIRGenerator::do_root(Value instr) {
374  CHECK_BAILOUT();
375
376  InstructionMark im(compilation(), instr);
377
378  assert(instr->is_pinned(), "use only with roots");
379  assert(instr->subst() == instr, "shouldn't have missed substitution");
380
381  instr->visit(this);
382
383  assert(!instr->has_uses() || instr->operand()->is_valid() ||
384         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
385}
386
387
388// This is called for each node in tree; the walk stops if a root is reached
389void LIRGenerator::walk(Value instr) {
390  InstructionMark im(compilation(), instr);
391  //stop walk when encounter a root
392  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
393    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
394  } else {
395    assert(instr->subst() == instr, "shouldn't have missed substitution");
396    instr->visit(this);
397    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
398  }
399}
400
401
402CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
403  assert(state != NULL, "state must be defined");
404
405  ValueStack* s = state;
406  for_each_state(s) {
407    if (s->kind() == ValueStack::EmptyExceptionState) {
408      assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
409      continue;
410    }
411
412    int index;
413    Value value;
414    for_each_stack_value(s, index, value) {
415      assert(value->subst() == value, "missed substitution");
416      if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
417        walk(value);
418        assert(value->operand()->is_valid(), "must be evaluated now");
419      }
420    }
421
422    int bci = s->bci();
423    IRScope* scope = s->scope();
424    ciMethod* method = scope->method();
425
426    MethodLivenessResult liveness = method->liveness_at_bci(bci);
427    if (bci == SynchronizationEntryBCI) {
428      if (x->as_ExceptionObject() || x->as_Throw()) {
429        // all locals are dead on exit from the synthetic unlocker
430        liveness.clear();
431      } else {
432        assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
433      }
434    }
435    if (!liveness.is_valid()) {
436      // Degenerate or breakpointed method.
437      bailout("Degenerate or breakpointed method");
438    } else {
439      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
440      for_each_local_value(s, index, value) {
441        assert(value->subst() == value, "missed substition");
442        if (liveness.at(index) && !value->type()->is_illegal()) {
443          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
444            walk(value);
445            assert(value->operand()->is_valid(), "must be evaluated now");
446          }
447        } else {
448          // NULL out this local so that linear scan can assume that all non-NULL values are live.
449          s->invalidate_local(index);
450        }
451      }
452    }
453  }
454
455  return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
456}
457
458
459CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
460  return state_for(x, x->exception_state());
461}
462
463
464void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
465  if (!obj->is_loaded() || PatchALot) {
466    assert(info != NULL, "info must be set if class is not loaded");
467    __ oop2reg_patch(NULL, r, info);
468  } else {
469    // no patching needed
470    __ oop2reg(obj->constant_encoding(), r);
471  }
472}
473
474
475void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
476                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
477  CodeStub* stub = new RangeCheckStub(range_check_info, index);
478  if (index->is_constant()) {
479    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
480                index->as_jint(), null_check_info);
481    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
482  } else {
483    cmp_reg_mem(lir_cond_aboveEqual, index, array,
484                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
485    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
486  }
487}
488
489
490void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
491  CodeStub* stub = new RangeCheckStub(info, index, true);
492  if (index->is_constant()) {
493    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
494    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
495  } else {
496    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
497                java_nio_Buffer::limit_offset(), T_INT, info);
498    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
499  }
500  __ move(index, result);
501}
502
503
504
505void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
506  LIR_Opr result_op = result;
507  LIR_Opr left_op   = left;
508  LIR_Opr right_op  = right;
509
510  if (TwoOperandLIRForm && left_op != result_op) {
511    assert(right_op != result_op, "malformed");
512    __ move(left_op, result_op);
513    left_op = result_op;
514  }
515
516  switch(code) {
517    case Bytecodes::_dadd:
518    case Bytecodes::_fadd:
519    case Bytecodes::_ladd:
520    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
521    case Bytecodes::_fmul:
522    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
523
524    case Bytecodes::_dmul:
525      {
526        if (is_strictfp) {
527          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
528        } else {
529          __ mul(left_op, right_op, result_op); break;
530        }
531      }
532      break;
533
534    case Bytecodes::_imul:
535      {
536        bool    did_strength_reduce = false;
537
538        if (right->is_constant()) {
539          int c = right->as_jint();
540          if (is_power_of_2(c)) {
541            // do not need tmp here
542            __ shift_left(left_op, exact_log2(c), result_op);
543            did_strength_reduce = true;
544          } else {
545            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
546          }
547        }
548        // we couldn't strength reduce so just emit the multiply
549        if (!did_strength_reduce) {
550          __ mul(left_op, right_op, result_op);
551        }
552      }
553      break;
554
555    case Bytecodes::_dsub:
556    case Bytecodes::_fsub:
557    case Bytecodes::_lsub:
558    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
559
560    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
561    // ldiv and lrem are implemented with a direct runtime call
562
563    case Bytecodes::_ddiv:
564      {
565        if (is_strictfp) {
566          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
567        } else {
568          __ div (left_op, right_op, result_op); break;
569        }
570      }
571      break;
572
573    case Bytecodes::_drem:
574    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
575
576    default: ShouldNotReachHere();
577  }
578}
579
580
581void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
582  arithmetic_op(code, result, left, right, false, tmp);
583}
584
585
586void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
587  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
588}
589
590
591void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
592  arithmetic_op(code, result, left, right, is_strictfp, tmp);
593}
594
595
596void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
597  if (TwoOperandLIRForm && value != result_op) {
598    assert(count != result_op, "malformed");
599    __ move(value, result_op);
600    value = result_op;
601  }
602
603  assert(count->is_constant() || count->is_register(), "must be");
604  switch(code) {
605  case Bytecodes::_ishl:
606  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
607  case Bytecodes::_ishr:
608  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
609  case Bytecodes::_iushr:
610  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
611  default: ShouldNotReachHere();
612  }
613}
614
615
616void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
617  if (TwoOperandLIRForm && left_op != result_op) {
618    assert(right_op != result_op, "malformed");
619    __ move(left_op, result_op);
620    left_op = result_op;
621  }
622
623  switch(code) {
624    case Bytecodes::_iand:
625    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
626
627    case Bytecodes::_ior:
628    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
629
630    case Bytecodes::_ixor:
631    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
632
633    default: ShouldNotReachHere();
634  }
635}
636
637
638void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
639  if (!GenerateSynchronizationCode) return;
640  // for slow path, use debug info for state after successful locking
641  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
642  __ load_stack_address_monitor(monitor_no, lock);
643  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
644  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
645}
646
647
648void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
649  if (!GenerateSynchronizationCode) return;
650  // setup registers
651  LIR_Opr hdr = lock;
652  lock = new_hdr;
653  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
654  __ load_stack_address_monitor(monitor_no, lock);
655  __ unlock_object(hdr, object, lock, scratch, slow_path);
656}
657
658
659void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
660  jobject2reg_with_patching(klass_reg, klass, info);
661  // If klass is not loaded we do not know if the klass has finalizers:
662  if (UseFastNewInstance && klass->is_loaded()
663      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
664
665    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
666
667    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
668
669    assert(klass->is_loaded(), "must be loaded");
670    // allocate space for instance
671    assert(klass->size_helper() >= 0, "illegal instance size");
672    const int instance_size = align_object_size(klass->size_helper());
673    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
674                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
675  } else {
676    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
677    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
678    __ branch_destination(slow_path->continuation());
679  }
680}
681
682
683static bool is_constant_zero(Instruction* inst) {
684  IntConstant* c = inst->type()->as_IntConstant();
685  if (c) {
686    return (c->value() == 0);
687  }
688  return false;
689}
690
691
692static bool positive_constant(Instruction* inst) {
693  IntConstant* c = inst->type()->as_IntConstant();
694  if (c) {
695    return (c->value() >= 0);
696  }
697  return false;
698}
699
700
701static ciArrayKlass* as_array_klass(ciType* type) {
702  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
703    return (ciArrayKlass*)type;
704  } else {
705    return NULL;
706  }
707}
708
709void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
710  Instruction* src     = x->argument_at(0);
711  Instruction* src_pos = x->argument_at(1);
712  Instruction* dst     = x->argument_at(2);
713  Instruction* dst_pos = x->argument_at(3);
714  Instruction* length  = x->argument_at(4);
715
716  // first try to identify the likely type of the arrays involved
717  ciArrayKlass* expected_type = NULL;
718  bool is_exact = false;
719  {
720    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
721    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
722    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
723    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
724    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
725      // the types exactly match so the type is fully known
726      is_exact = true;
727      expected_type = src_exact_type;
728    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
729      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
730      ciArrayKlass* src_type = NULL;
731      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
732        src_type = (ciArrayKlass*) src_exact_type;
733      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
734        src_type = (ciArrayKlass*) src_declared_type;
735      }
736      if (src_type != NULL) {
737        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
738          is_exact = true;
739          expected_type = dst_type;
740        }
741      }
742    }
743    // at least pass along a good guess
744    if (expected_type == NULL) expected_type = dst_exact_type;
745    if (expected_type == NULL) expected_type = src_declared_type;
746    if (expected_type == NULL) expected_type = dst_declared_type;
747  }
748
749  // if a probable array type has been identified, figure out if any
750  // of the required checks for a fast case can be elided.
751  int flags = LIR_OpArrayCopy::all_flags;
752  if (expected_type != NULL) {
753    // try to skip null checks
754    if (src->as_NewArray() != NULL)
755      flags &= ~LIR_OpArrayCopy::src_null_check;
756    if (dst->as_NewArray() != NULL)
757      flags &= ~LIR_OpArrayCopy::dst_null_check;
758
759    // check from incoming constant values
760    if (positive_constant(src_pos))
761      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
762    if (positive_constant(dst_pos))
763      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
764    if (positive_constant(length))
765      flags &= ~LIR_OpArrayCopy::length_positive_check;
766
767    // see if the range check can be elided, which might also imply
768    // that src or dst is non-null.
769    ArrayLength* al = length->as_ArrayLength();
770    if (al != NULL) {
771      if (al->array() == src) {
772        // it's the length of the source array
773        flags &= ~LIR_OpArrayCopy::length_positive_check;
774        flags &= ~LIR_OpArrayCopy::src_null_check;
775        if (is_constant_zero(src_pos))
776          flags &= ~LIR_OpArrayCopy::src_range_check;
777      }
778      if (al->array() == dst) {
779        // it's the length of the destination array
780        flags &= ~LIR_OpArrayCopy::length_positive_check;
781        flags &= ~LIR_OpArrayCopy::dst_null_check;
782        if (is_constant_zero(dst_pos))
783          flags &= ~LIR_OpArrayCopy::dst_range_check;
784      }
785    }
786    if (is_exact) {
787      flags &= ~LIR_OpArrayCopy::type_check;
788    }
789  }
790
791  if (src == dst) {
792    // moving within a single array so no type checks are needed
793    if (flags & LIR_OpArrayCopy::type_check) {
794      flags &= ~LIR_OpArrayCopy::type_check;
795    }
796  }
797  *flagsp = flags;
798  *expected_typep = (ciArrayKlass*)expected_type;
799}
800
801
802LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
803  assert(opr->is_register(), "why spill if item is not register?");
804
805  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
806    LIR_Opr result = new_register(T_FLOAT);
807    set_vreg_flag(result, must_start_in_memory);
808    assert(opr->is_register(), "only a register can be spilled");
809    assert(opr->value_type()->is_float(), "rounding only for floats available");
810    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
811    return result;
812  }
813  return opr;
814}
815
816
817LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
818  assert(type2size[t] == type2size[value->type()], "size mismatch");
819  if (!value->is_register()) {
820    // force into a register
821    LIR_Opr r = new_register(value->type());
822    __ move(value, r);
823    value = r;
824  }
825
826  // create a spill location
827  LIR_Opr tmp = new_register(t);
828  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
829
830  // move from register to spill
831  __ move(value, tmp);
832  return tmp;
833}
834
835void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
836  if (if_instr->should_profile()) {
837    ciMethod* method = if_instr->profiled_method();
838    assert(method != NULL, "method should be set if branch is profiled");
839    ciMethodData* md = method->method_data();
840    if (md == NULL) {
841      bailout("out of memory building methodDataOop");
842      return;
843    }
844    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
845    assert(data != NULL, "must have profiling data");
846    assert(data->is_BranchData(), "need BranchData for two-way branches");
847    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
848    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
849    if (if_instr->is_swapped()) {
850      int t = taken_count_offset;
851      taken_count_offset = not_taken_count_offset;
852      not_taken_count_offset = t;
853    }
854
855    LIR_Opr md_reg = new_register(T_OBJECT);
856    __ oop2reg(md->constant_encoding(), md_reg);
857
858    LIR_Opr data_offset_reg = new_pointer_register();
859    __ cmove(lir_cond(cond),
860             LIR_OprFact::intptrConst(taken_count_offset),
861             LIR_OprFact::intptrConst(not_taken_count_offset),
862             data_offset_reg);
863
864    // MDO cells are intptr_t, so the data_reg width is arch-dependent.
865    LIR_Opr data_reg = new_pointer_register();
866    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
867    __ move(LIR_OprFact::address(data_addr), data_reg);
868    // Use leal instead of add to avoid destroying condition codes on x86
869    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
870    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
871    __ move(data_reg, LIR_OprFact::address(data_addr));
872  }
873}
874
875// Phi technique:
876// This is about passing live values from one basic block to the other.
877// In code generated with Java it is rather rare that more than one
878// value is on the stack from one basic block to the other.
879// We optimize our technique for efficient passing of one value
880// (of type long, int, double..) but it can be extended.
881// When entering or leaving a basic block, all registers and all spill
882// slots are release and empty. We use the released registers
883// and spill slots to pass the live values from one block
884// to the other. The topmost value, i.e., the value on TOS of expression
885// stack is passed in registers. All other values are stored in spilling
886// area. Every Phi has an index which designates its spill slot
887// At exit of a basic block, we fill the register(s) and spill slots.
888// At entry of a basic block, the block_prolog sets up the content of phi nodes
889// and locks necessary registers and spilling slots.
890
891
892// move current value to referenced phi function
893void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
894  Phi* phi = sux_val->as_Phi();
895  // cur_val can be null without phi being null in conjunction with inlining
896  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
897    LIR_Opr operand = cur_val->operand();
898    if (cur_val->operand()->is_illegal()) {
899      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
900             "these can be produced lazily");
901      operand = operand_for_instruction(cur_val);
902    }
903    resolver->move(operand, operand_for_instruction(phi));
904  }
905}
906
907
908// Moves all stack values into their PHI position
909void LIRGenerator::move_to_phi(ValueStack* cur_state) {
910  BlockBegin* bb = block();
911  if (bb->number_of_sux() == 1) {
912    BlockBegin* sux = bb->sux_at(0);
913    assert(sux->number_of_preds() > 0, "invalid CFG");
914
915    // a block with only one predecessor never has phi functions
916    if (sux->number_of_preds() > 1) {
917      int max_phis = cur_state->stack_size() + cur_state->locals_size();
918      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
919
920      ValueStack* sux_state = sux->state();
921      Value sux_value;
922      int index;
923
924      assert(cur_state->scope() == sux_state->scope(), "not matching");
925      assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
926      assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
927
928      for_each_stack_value(sux_state, index, sux_value) {
929        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
930      }
931
932      for_each_local_value(sux_state, index, sux_value) {
933        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
934      }
935
936      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
937    }
938  }
939}
940
941
942LIR_Opr LIRGenerator::new_register(BasicType type) {
943  int vreg = _virtual_register_number;
944  // add a little fudge factor for the bailout, since the bailout is
945  // only checked periodically.  This gives a few extra registers to
946  // hand out before we really run out, which helps us keep from
947  // tripping over assertions.
948  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
949    bailout("out of virtual registers");
950    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
951      // wrap it around
952      _virtual_register_number = LIR_OprDesc::vreg_base;
953    }
954  }
955  _virtual_register_number += 1;
956  return LIR_OprFact::virtual_register(vreg, type);
957}
958
959
960// Try to lock using register in hint
961LIR_Opr LIRGenerator::rlock(Value instr) {
962  return new_register(instr->type());
963}
964
965
966// does an rlock and sets result
967LIR_Opr LIRGenerator::rlock_result(Value x) {
968  LIR_Opr reg = rlock(x);
969  set_result(x, reg);
970  return reg;
971}
972
973
974// does an rlock and sets result
975LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
976  LIR_Opr reg;
977  switch (type) {
978  case T_BYTE:
979  case T_BOOLEAN:
980    reg = rlock_byte(type);
981    break;
982  default:
983    reg = rlock(x);
984    break;
985  }
986
987  set_result(x, reg);
988  return reg;
989}
990
991
992//---------------------------------------------------------------------
993ciObject* LIRGenerator::get_jobject_constant(Value value) {
994  ObjectType* oc = value->type()->as_ObjectType();
995  if (oc) {
996    return oc->constant_value();
997  }
998  return NULL;
999}
1000
1001
1002void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1003  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1004  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1005
1006  // no moves are created for phi functions at the begin of exception
1007  // handlers, so assign operands manually here
1008  for_each_phi_fun(block(), phi,
1009                   operand_for_instruction(phi));
1010
1011  LIR_Opr thread_reg = getThreadPointer();
1012  __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1013          exceptionOopOpr());
1014  __ move(LIR_OprFact::oopConst(NULL),
1015          new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1016  __ move(LIR_OprFact::oopConst(NULL),
1017          new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1018
1019  LIR_Opr result = new_register(T_OBJECT);
1020  __ move(exceptionOopOpr(), result);
1021  set_result(x, result);
1022}
1023
1024
1025//----------------------------------------------------------------------
1026//----------------------------------------------------------------------
1027//----------------------------------------------------------------------
1028//----------------------------------------------------------------------
1029//                        visitor functions
1030//----------------------------------------------------------------------
1031//----------------------------------------------------------------------
1032//----------------------------------------------------------------------
1033//----------------------------------------------------------------------
1034
1035void LIRGenerator::do_Phi(Phi* x) {
1036  // phi functions are never visited directly
1037  ShouldNotReachHere();
1038}
1039
1040
1041// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1042void LIRGenerator::do_Constant(Constant* x) {
1043  if (x->state_before() != NULL) {
1044    // Any constant with a ValueStack requires patching so emit the patch here
1045    LIR_Opr reg = rlock_result(x);
1046    CodeEmitInfo* info = state_for(x, x->state_before());
1047    __ oop2reg_patch(NULL, reg, info);
1048  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1049    if (!x->is_pinned()) {
1050      // unpinned constants are handled specially so that they can be
1051      // put into registers when they are used multiple times within a
1052      // block.  After the block completes their operand will be
1053      // cleared so that other blocks can't refer to that register.
1054      set_result(x, load_constant(x));
1055    } else {
1056      LIR_Opr res = x->operand();
1057      if (!res->is_valid()) {
1058        res = LIR_OprFact::value_type(x->type());
1059      }
1060      if (res->is_constant()) {
1061        LIR_Opr reg = rlock_result(x);
1062        __ move(res, reg);
1063      } else {
1064        set_result(x, res);
1065      }
1066    }
1067  } else {
1068    set_result(x, LIR_OprFact::value_type(x->type()));
1069  }
1070}
1071
1072
1073void LIRGenerator::do_Local(Local* x) {
1074  // operand_for_instruction has the side effect of setting the result
1075  // so there's no need to do it here.
1076  operand_for_instruction(x);
1077}
1078
1079
1080void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1081  Unimplemented();
1082}
1083
1084
1085void LIRGenerator::do_Return(Return* x) {
1086  if (compilation()->env()->dtrace_method_probes()) {
1087    BasicTypeList signature;
1088    signature.append(T_INT);    // thread
1089    signature.append(T_OBJECT); // methodOop
1090    LIR_OprList* args = new LIR_OprList();
1091    args->append(getThreadPointer());
1092    LIR_Opr meth = new_register(T_OBJECT);
1093    __ oop2reg(method()->constant_encoding(), meth);
1094    args->append(meth);
1095    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1096  }
1097
1098  if (x->type()->is_void()) {
1099    __ return_op(LIR_OprFact::illegalOpr);
1100  } else {
1101    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1102    LIRItem result(x->result(), this);
1103
1104    result.load_item_force(reg);
1105    __ return_op(result.result());
1106  }
1107  set_no_result(x);
1108}
1109
1110
1111// Example: object.getClass ()
1112void LIRGenerator::do_getClass(Intrinsic* x) {
1113  assert(x->number_of_arguments() == 1, "wrong type");
1114
1115  LIRItem rcvr(x->argument_at(0), this);
1116  rcvr.load_item();
1117  LIR_Opr result = rlock_result(x);
1118
1119  // need to perform the null check on the rcvr
1120  CodeEmitInfo* info = NULL;
1121  if (x->needs_null_check()) {
1122    info = state_for(x);
1123  }
1124  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1125  __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1126                          klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1127}
1128
1129
1130// Example: Thread.currentThread()
1131void LIRGenerator::do_currentThread(Intrinsic* x) {
1132  assert(x->number_of_arguments() == 0, "wrong type");
1133  LIR_Opr reg = rlock_result(x);
1134  __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1135}
1136
1137
1138void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1139  assert(x->number_of_arguments() == 1, "wrong type");
1140  LIRItem receiver(x->argument_at(0), this);
1141
1142  receiver.load_item();
1143  BasicTypeList signature;
1144  signature.append(T_OBJECT); // receiver
1145  LIR_OprList* args = new LIR_OprList();
1146  args->append(receiver.result());
1147  CodeEmitInfo* info = state_for(x, x->state());
1148  call_runtime(&signature, args,
1149               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1150               voidType, info);
1151
1152  set_no_result(x);
1153}
1154
1155
1156//------------------------local access--------------------------------------
1157
1158LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1159  if (x->operand()->is_illegal()) {
1160    Constant* c = x->as_Constant();
1161    if (c != NULL) {
1162      x->set_operand(LIR_OprFact::value_type(c->type()));
1163    } else {
1164      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1165      // allocate a virtual register for this local or phi
1166      x->set_operand(rlock(x));
1167      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1168    }
1169  }
1170  return x->operand();
1171}
1172
1173
1174Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1175  if (opr->is_virtual()) {
1176    return instruction_for_vreg(opr->vreg_number());
1177  }
1178  return NULL;
1179}
1180
1181
1182Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1183  if (reg_num < _instruction_for_operand.length()) {
1184    return _instruction_for_operand.at(reg_num);
1185  }
1186  return NULL;
1187}
1188
1189
1190void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1191  if (_vreg_flags.size_in_bits() == 0) {
1192    BitMap2D temp(100, num_vreg_flags);
1193    temp.clear();
1194    _vreg_flags = temp;
1195  }
1196  _vreg_flags.at_put_grow(vreg_num, f, true);
1197}
1198
1199bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1200  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1201    return false;
1202  }
1203  return _vreg_flags.at(vreg_num, f);
1204}
1205
1206
1207// Block local constant handling.  This code is useful for keeping
1208// unpinned constants and constants which aren't exposed in the IR in
1209// registers.  Unpinned Constant instructions have their operands
1210// cleared when the block is finished so that other blocks can't end
1211// up referring to their registers.
1212
1213LIR_Opr LIRGenerator::load_constant(Constant* x) {
1214  assert(!x->is_pinned(), "only for unpinned constants");
1215  _unpinned_constants.append(x);
1216  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1217}
1218
1219
1220LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1221  BasicType t = c->type();
1222  for (int i = 0; i < _constants.length(); i++) {
1223    LIR_Const* other = _constants.at(i);
1224    if (t == other->type()) {
1225      switch (t) {
1226      case T_INT:
1227      case T_FLOAT:
1228        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1229        break;
1230      case T_LONG:
1231      case T_DOUBLE:
1232        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1233        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1234        break;
1235      case T_OBJECT:
1236        if (c->as_jobject() != other->as_jobject()) continue;
1237        break;
1238      }
1239      return _reg_for_constants.at(i);
1240    }
1241  }
1242
1243  LIR_Opr result = new_register(t);
1244  __ move((LIR_Opr)c, result);
1245  _constants.append(c);
1246  _reg_for_constants.append(result);
1247  return result;
1248}
1249
1250// Various barriers
1251
1252void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1253  // Do the pre-write barrier, if any.
1254  switch (_bs->kind()) {
1255#ifndef SERIALGC
1256    case BarrierSet::G1SATBCT:
1257    case BarrierSet::G1SATBCTLogging:
1258      G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
1259      break;
1260#endif // SERIALGC
1261    case BarrierSet::CardTableModRef:
1262    case BarrierSet::CardTableExtension:
1263      // No pre barriers
1264      break;
1265    case BarrierSet::ModRef:
1266    case BarrierSet::Other:
1267      // No pre barriers
1268      break;
1269    default      :
1270      ShouldNotReachHere();
1271
1272  }
1273}
1274
1275void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1276  switch (_bs->kind()) {
1277#ifndef SERIALGC
1278    case BarrierSet::G1SATBCT:
1279    case BarrierSet::G1SATBCTLogging:
1280      G1SATBCardTableModRef_post_barrier(addr,  new_val);
1281      break;
1282#endif // SERIALGC
1283    case BarrierSet::CardTableModRef:
1284    case BarrierSet::CardTableExtension:
1285      CardTableModRef_post_barrier(addr,  new_val);
1286      break;
1287    case BarrierSet::ModRef:
1288    case BarrierSet::Other:
1289      // No post barriers
1290      break;
1291    default      :
1292      ShouldNotReachHere();
1293    }
1294}
1295
1296////////////////////////////////////////////////////////////////////////
1297#ifndef SERIALGC
1298
1299void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1300  if (G1DisablePreBarrier) return;
1301
1302  // First we test whether marking is in progress.
1303  BasicType flag_type;
1304  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1305    flag_type = T_INT;
1306  } else {
1307    guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1308              "Assumption");
1309    flag_type = T_BYTE;
1310  }
1311  LIR_Opr thrd = getThreadPointer();
1312  LIR_Address* mark_active_flag_addr =
1313    new LIR_Address(thrd,
1314                    in_bytes(JavaThread::satb_mark_queue_offset() +
1315                             PtrQueue::byte_offset_of_active()),
1316                    flag_type);
1317  // Read the marking-in-progress flag.
1318  LIR_Opr flag_val = new_register(T_INT);
1319  __ load(mark_active_flag_addr, flag_val);
1320
1321  LIR_PatchCode pre_val_patch_code =
1322    patch ? lir_patch_normal : lir_patch_none;
1323
1324  LIR_Opr pre_val = new_register(T_OBJECT);
1325
1326  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1327  if (!addr_opr->is_address()) {
1328    assert(addr_opr->is_register(), "must be");
1329    addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1330  }
1331  CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
1332                                        info);
1333  __ branch(lir_cond_notEqual, T_INT, slow);
1334  __ branch_destination(slow->continuation());
1335}
1336
1337void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1338  if (G1DisablePostBarrier) return;
1339
1340  // If the "new_val" is a constant NULL, no barrier is necessary.
1341  if (new_val->is_constant() &&
1342      new_val->as_constant_ptr()->as_jobject() == NULL) return;
1343
1344  if (!new_val->is_register()) {
1345    LIR_Opr new_val_reg = new_register(T_OBJECT);
1346    if (new_val->is_constant()) {
1347      __ move(new_val, new_val_reg);
1348    } else {
1349      __ leal(new_val, new_val_reg);
1350    }
1351    new_val = new_val_reg;
1352  }
1353  assert(new_val->is_register(), "must be a register at this point");
1354
1355  if (addr->is_address()) {
1356    LIR_Address* address = addr->as_address_ptr();
1357    LIR_Opr ptr = new_register(T_OBJECT);
1358    if (!address->index()->is_valid() && address->disp() == 0) {
1359      __ move(address->base(), ptr);
1360    } else {
1361      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1362      __ leal(addr, ptr);
1363    }
1364    addr = ptr;
1365  }
1366  assert(addr->is_register(), "must be a register at this point");
1367
1368  LIR_Opr xor_res = new_pointer_register();
1369  LIR_Opr xor_shift_res = new_pointer_register();
1370  if (TwoOperandLIRForm ) {
1371    __ move(addr, xor_res);
1372    __ logical_xor(xor_res, new_val, xor_res);
1373    __ move(xor_res, xor_shift_res);
1374    __ unsigned_shift_right(xor_shift_res,
1375                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1376                            xor_shift_res,
1377                            LIR_OprDesc::illegalOpr());
1378  } else {
1379    __ logical_xor(addr, new_val, xor_res);
1380    __ unsigned_shift_right(xor_res,
1381                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1382                            xor_shift_res,
1383                            LIR_OprDesc::illegalOpr());
1384  }
1385
1386  if (!new_val->is_register()) {
1387    LIR_Opr new_val_reg = new_register(T_OBJECT);
1388    __ leal(new_val, new_val_reg);
1389    new_val = new_val_reg;
1390  }
1391  assert(new_val->is_register(), "must be a register at this point");
1392
1393  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1394
1395  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1396  __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1397  __ branch_destination(slow->continuation());
1398}
1399
1400#endif // SERIALGC
1401////////////////////////////////////////////////////////////////////////
1402
1403void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1404
1405  assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1406  LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1407  if (addr->is_address()) {
1408    LIR_Address* address = addr->as_address_ptr();
1409    LIR_Opr ptr = new_register(T_OBJECT);
1410    if (!address->index()->is_valid() && address->disp() == 0) {
1411      __ move(address->base(), ptr);
1412    } else {
1413      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1414      __ leal(addr, ptr);
1415    }
1416    addr = ptr;
1417  }
1418  assert(addr->is_register(), "must be a register at this point");
1419
1420#ifdef ARM
1421  // TODO: ARM - move to platform-dependent code
1422  LIR_Opr tmp = FrameMap::R14_opr;
1423  if (VM_Version::supports_movw()) {
1424    __ move((LIR_Opr)card_table_base, tmp);
1425  } else {
1426    __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1427  }
1428
1429  CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1430  LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1431  if(((int)ct->byte_map_base & 0xff) == 0) {
1432    __ move(tmp, card_addr);
1433  } else {
1434    LIR_Opr tmp_zero = new_register(T_INT);
1435    __ move(LIR_OprFact::intConst(0), tmp_zero);
1436    __ move(tmp_zero, card_addr);
1437  }
1438#else // ARM
1439  LIR_Opr tmp = new_pointer_register();
1440  if (TwoOperandLIRForm) {
1441    __ move(addr, tmp);
1442    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1443  } else {
1444    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1445  }
1446  if (can_inline_as_constant(card_table_base)) {
1447    __ move(LIR_OprFact::intConst(0),
1448              new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1449  } else {
1450    __ move(LIR_OprFact::intConst(0),
1451              new LIR_Address(tmp, load_constant(card_table_base),
1452                              T_BYTE));
1453  }
1454#endif // ARM
1455}
1456
1457
1458//------------------------field access--------------------------------------
1459
1460// Comment copied form templateTable_i486.cpp
1461// ----------------------------------------------------------------------------
1462// Volatile variables demand their effects be made known to all CPU's in
1463// order.  Store buffers on most chips allow reads & writes to reorder; the
1464// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1465// memory barrier (i.e., it's not sufficient that the interpreter does not
1466// reorder volatile references, the hardware also must not reorder them).
1467//
1468// According to the new Java Memory Model (JMM):
1469// (1) All volatiles are serialized wrt to each other.
1470// ALSO reads & writes act as aquire & release, so:
1471// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1472// the read float up to before the read.  It's OK for non-volatile memory refs
1473// that happen before the volatile read to float down below it.
1474// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1475// that happen BEFORE the write float down to after the write.  It's OK for
1476// non-volatile memory refs that happen after the volatile write to float up
1477// before it.
1478//
1479// We only put in barriers around volatile refs (they are expensive), not
1480// _between_ memory refs (that would require us to track the flavor of the
1481// previous memory refs).  Requirements (2) and (3) require some barriers
1482// before volatile stores and after volatile loads.  These nearly cover
1483// requirement (1) but miss the volatile-store-volatile-load case.  This final
1484// case is placed after volatile-stores although it could just as well go
1485// before volatile-loads.
1486
1487
1488void LIRGenerator::do_StoreField(StoreField* x) {
1489  bool needs_patching = x->needs_patching();
1490  bool is_volatile = x->field()->is_volatile();
1491  BasicType field_type = x->field_type();
1492  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1493
1494  CodeEmitInfo* info = NULL;
1495  if (needs_patching) {
1496    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1497    info = state_for(x, x->state_before());
1498  } else if (x->needs_null_check()) {
1499    NullCheck* nc = x->explicit_null_check();
1500    if (nc == NULL) {
1501      info = state_for(x);
1502    } else {
1503      info = state_for(nc);
1504    }
1505  }
1506
1507
1508  LIRItem object(x->obj(), this);
1509  LIRItem value(x->value(),  this);
1510
1511  object.load_item();
1512
1513  if (is_volatile || needs_patching) {
1514    // load item if field is volatile (fewer special cases for volatiles)
1515    // load item if field not initialized
1516    // load item if field not constant
1517    // because of code patching we cannot inline constants
1518    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1519      value.load_byte_item();
1520    } else  {
1521      value.load_item();
1522    }
1523  } else {
1524    value.load_for_store(field_type);
1525  }
1526
1527  set_no_result(x);
1528
1529#ifndef PRODUCT
1530  if (PrintNotLoaded && needs_patching) {
1531    tty->print_cr("   ###class not loaded at store_%s bci %d",
1532                  x->is_static() ?  "static" : "field", x->printable_bci());
1533  }
1534#endif
1535
1536  if (x->needs_null_check() &&
1537      (needs_patching ||
1538       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1539    // emit an explicit null check because the offset is too large
1540    __ null_check(object.result(), new CodeEmitInfo(info));
1541  }
1542
1543  LIR_Address* address;
1544  if (needs_patching) {
1545    // we need to patch the offset in the instruction so don't allow
1546    // generate_address to try to be smart about emitting the -1.
1547    // Otherwise the patching code won't know how to find the
1548    // instruction to patch.
1549    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1550  } else {
1551    address = generate_address(object.result(), x->offset(), field_type);
1552  }
1553
1554  if (is_volatile && os::is_MP()) {
1555    __ membar_release();
1556  }
1557
1558  if (is_oop) {
1559    // Do the pre-write barrier, if any.
1560    pre_barrier(LIR_OprFact::address(address),
1561                needs_patching,
1562                (info ? new CodeEmitInfo(info) : NULL));
1563  }
1564
1565  if (is_volatile) {
1566    assert(!needs_patching && x->is_loaded(),
1567           "how do we know it's volatile if it's not loaded");
1568    volatile_field_store(value.result(), address, info);
1569  } else {
1570    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1571    __ store(value.result(), address, info, patch_code);
1572  }
1573
1574  if (is_oop) {
1575    // Store to object so mark the card of the header
1576    post_barrier(object.result(), value.result());
1577  }
1578
1579  if (is_volatile && os::is_MP()) {
1580    __ membar();
1581  }
1582}
1583
1584
1585void LIRGenerator::do_LoadField(LoadField* x) {
1586  bool needs_patching = x->needs_patching();
1587  bool is_volatile = x->field()->is_volatile();
1588  BasicType field_type = x->field_type();
1589
1590  CodeEmitInfo* info = NULL;
1591  if (needs_patching) {
1592    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1593    info = state_for(x, x->state_before());
1594  } else if (x->needs_null_check()) {
1595    NullCheck* nc = x->explicit_null_check();
1596    if (nc == NULL) {
1597      info = state_for(x);
1598    } else {
1599      info = state_for(nc);
1600    }
1601  }
1602
1603  LIRItem object(x->obj(), this);
1604
1605  object.load_item();
1606
1607#ifndef PRODUCT
1608  if (PrintNotLoaded && needs_patching) {
1609    tty->print_cr("   ###class not loaded at load_%s bci %d",
1610                  x->is_static() ?  "static" : "field", x->printable_bci());
1611  }
1612#endif
1613
1614  if (x->needs_null_check() &&
1615      (needs_patching ||
1616       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1617    // emit an explicit null check because the offset is too large
1618    __ null_check(object.result(), new CodeEmitInfo(info));
1619  }
1620
1621  LIR_Opr reg = rlock_result(x, field_type);
1622  LIR_Address* address;
1623  if (needs_patching) {
1624    // we need to patch the offset in the instruction so don't allow
1625    // generate_address to try to be smart about emitting the -1.
1626    // Otherwise the patching code won't know how to find the
1627    // instruction to patch.
1628    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1629  } else {
1630    address = generate_address(object.result(), x->offset(), field_type);
1631  }
1632
1633  if (is_volatile) {
1634    assert(!needs_patching && x->is_loaded(),
1635           "how do we know it's volatile if it's not loaded");
1636    volatile_field_load(address, reg, info);
1637  } else {
1638    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1639    __ load(address, reg, info, patch_code);
1640  }
1641
1642  if (is_volatile && os::is_MP()) {
1643    __ membar_acquire();
1644  }
1645}
1646
1647
1648//------------------------java.nio.Buffer.checkIndex------------------------
1649
1650// int java.nio.Buffer.checkIndex(int)
1651void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1652  // NOTE: by the time we are in checkIndex() we are guaranteed that
1653  // the buffer is non-null (because checkIndex is package-private and
1654  // only called from within other methods in the buffer).
1655  assert(x->number_of_arguments() == 2, "wrong type");
1656  LIRItem buf  (x->argument_at(0), this);
1657  LIRItem index(x->argument_at(1), this);
1658  buf.load_item();
1659  index.load_item();
1660
1661  LIR_Opr result = rlock_result(x);
1662  if (GenerateRangeChecks) {
1663    CodeEmitInfo* info = state_for(x);
1664    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1665    if (index.result()->is_constant()) {
1666      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1667      __ branch(lir_cond_belowEqual, T_INT, stub);
1668    } else {
1669      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1670                  java_nio_Buffer::limit_offset(), T_INT, info);
1671      __ branch(lir_cond_aboveEqual, T_INT, stub);
1672    }
1673    __ move(index.result(), result);
1674  } else {
1675    // Just load the index into the result register
1676    __ move(index.result(), result);
1677  }
1678}
1679
1680
1681//------------------------array access--------------------------------------
1682
1683
1684void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1685  LIRItem array(x->array(), this);
1686  array.load_item();
1687  LIR_Opr reg = rlock_result(x);
1688
1689  CodeEmitInfo* info = NULL;
1690  if (x->needs_null_check()) {
1691    NullCheck* nc = x->explicit_null_check();
1692    if (nc == NULL) {
1693      info = state_for(x);
1694    } else {
1695      info = state_for(nc);
1696    }
1697  }
1698  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1699}
1700
1701
1702void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1703  bool use_length = x->length() != NULL;
1704  LIRItem array(x->array(), this);
1705  LIRItem index(x->index(), this);
1706  LIRItem length(this);
1707  bool needs_range_check = true;
1708
1709  if (use_length) {
1710    needs_range_check = x->compute_needs_range_check();
1711    if (needs_range_check) {
1712      length.set_instruction(x->length());
1713      length.load_item();
1714    }
1715  }
1716
1717  array.load_item();
1718  if (index.is_constant() && can_inline_as_constant(x->index())) {
1719    // let it be a constant
1720    index.dont_load_item();
1721  } else {
1722    index.load_item();
1723  }
1724
1725  CodeEmitInfo* range_check_info = state_for(x);
1726  CodeEmitInfo* null_check_info = NULL;
1727  if (x->needs_null_check()) {
1728    NullCheck* nc = x->explicit_null_check();
1729    if (nc != NULL) {
1730      null_check_info = state_for(nc);
1731    } else {
1732      null_check_info = range_check_info;
1733    }
1734  }
1735
1736  // emit array address setup early so it schedules better
1737  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1738
1739  if (GenerateRangeChecks && needs_range_check) {
1740    if (use_length) {
1741      // TODO: use a (modified) version of array_range_check that does not require a
1742      //       constant length to be loaded to a register
1743      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1744      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1745    } else {
1746      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1747      // The range check performs the null check, so clear it out for the load
1748      null_check_info = NULL;
1749    }
1750  }
1751
1752  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1753}
1754
1755
1756void LIRGenerator::do_NullCheck(NullCheck* x) {
1757  if (x->can_trap()) {
1758    LIRItem value(x->obj(), this);
1759    value.load_item();
1760    CodeEmitInfo* info = state_for(x);
1761    __ null_check(value.result(), info);
1762  }
1763}
1764
1765
1766void LIRGenerator::do_Throw(Throw* x) {
1767  LIRItem exception(x->exception(), this);
1768  exception.load_item();
1769  set_no_result(x);
1770  LIR_Opr exception_opr = exception.result();
1771  CodeEmitInfo* info = state_for(x, x->state());
1772
1773#ifndef PRODUCT
1774  if (PrintC1Statistics) {
1775    increment_counter(Runtime1::throw_count_address(), T_INT);
1776  }
1777#endif
1778
1779  // check if the instruction has an xhandler in any of the nested scopes
1780  bool unwind = false;
1781  if (info->exception_handlers()->length() == 0) {
1782    // this throw is not inside an xhandler
1783    unwind = true;
1784  } else {
1785    // get some idea of the throw type
1786    bool type_is_exact = true;
1787    ciType* throw_type = x->exception()->exact_type();
1788    if (throw_type == NULL) {
1789      type_is_exact = false;
1790      throw_type = x->exception()->declared_type();
1791    }
1792    if (throw_type != NULL && throw_type->is_instance_klass()) {
1793      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1794      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1795    }
1796  }
1797
1798  // do null check before moving exception oop into fixed register
1799  // to avoid a fixed interval with an oop during the null check.
1800  // Use a copy of the CodeEmitInfo because debug information is
1801  // different for null_check and throw.
1802  if (GenerateCompilerNullChecks &&
1803      (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1804    // if the exception object wasn't created using new then it might be null.
1805    __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1806  }
1807
1808  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1809    // we need to go through the exception lookup path to get JVMTI
1810    // notification done
1811    unwind = false;
1812  }
1813
1814  // move exception oop into fixed register
1815  __ move(exception_opr, exceptionOopOpr());
1816
1817  if (unwind) {
1818    __ unwind_exception(exceptionOopOpr());
1819  } else {
1820    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1821  }
1822}
1823
1824
1825void LIRGenerator::do_RoundFP(RoundFP* x) {
1826  LIRItem input(x->input(), this);
1827  input.load_item();
1828  LIR_Opr input_opr = input.result();
1829  assert(input_opr->is_register(), "why round if value is not in a register?");
1830  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1831  if (input_opr->is_single_fpu()) {
1832    set_result(x, round_item(input_opr)); // This code path not currently taken
1833  } else {
1834    LIR_Opr result = new_register(T_DOUBLE);
1835    set_vreg_flag(result, must_start_in_memory);
1836    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1837    set_result(x, result);
1838  }
1839}
1840
1841void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1842  LIRItem base(x->base(), this);
1843  LIRItem idx(this);
1844
1845  base.load_item();
1846  if (x->has_index()) {
1847    idx.set_instruction(x->index());
1848    idx.load_nonconstant();
1849  }
1850
1851  LIR_Opr reg = rlock_result(x, x->basic_type());
1852
1853  int   log2_scale = 0;
1854  if (x->has_index()) {
1855    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1856    log2_scale = x->log2_scale();
1857  }
1858
1859  assert(!x->has_index() || idx.value() == x->index(), "should match");
1860
1861  LIR_Opr base_op = base.result();
1862#ifndef _LP64
1863  if (x->base()->type()->tag() == longTag) {
1864    base_op = new_register(T_INT);
1865    __ convert(Bytecodes::_l2i, base.result(), base_op);
1866  } else {
1867    assert(x->base()->type()->tag() == intTag, "must be");
1868  }
1869#endif
1870
1871  BasicType dst_type = x->basic_type();
1872  LIR_Opr index_op = idx.result();
1873
1874  LIR_Address* addr;
1875  if (index_op->is_constant()) {
1876    assert(log2_scale == 0, "must not have a scale");
1877    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1878  } else {
1879#ifdef X86
1880#ifdef _LP64
1881    if (!index_op->is_illegal() && index_op->type() == T_INT) {
1882      LIR_Opr tmp = new_pointer_register();
1883      __ convert(Bytecodes::_i2l, index_op, tmp);
1884      index_op = tmp;
1885    }
1886#endif
1887    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1888#elif defined(ARM)
1889    addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
1890#else
1891    if (index_op->is_illegal() || log2_scale == 0) {
1892#ifdef _LP64
1893      if (!index_op->is_illegal() && index_op->type() == T_INT) {
1894        LIR_Opr tmp = new_pointer_register();
1895        __ convert(Bytecodes::_i2l, index_op, tmp);
1896        index_op = tmp;
1897      }
1898#endif
1899      addr = new LIR_Address(base_op, index_op, dst_type);
1900    } else {
1901      LIR_Opr tmp = new_pointer_register();
1902      __ shift_left(index_op, log2_scale, tmp);
1903      addr = new LIR_Address(base_op, tmp, dst_type);
1904    }
1905#endif
1906  }
1907
1908  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1909    __ unaligned_move(addr, reg);
1910  } else {
1911    __ move(addr, reg);
1912  }
1913}
1914
1915
1916void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1917  int  log2_scale = 0;
1918  BasicType type = x->basic_type();
1919
1920  if (x->has_index()) {
1921    assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1922    log2_scale = x->log2_scale();
1923  }
1924
1925  LIRItem base(x->base(), this);
1926  LIRItem value(x->value(), this);
1927  LIRItem idx(this);
1928
1929  base.load_item();
1930  if (x->has_index()) {
1931    idx.set_instruction(x->index());
1932    idx.load_item();
1933  }
1934
1935  if (type == T_BYTE || type == T_BOOLEAN) {
1936    value.load_byte_item();
1937  } else {
1938    value.load_item();
1939  }
1940
1941  set_no_result(x);
1942
1943  LIR_Opr base_op = base.result();
1944#ifndef _LP64
1945  if (x->base()->type()->tag() == longTag) {
1946    base_op = new_register(T_INT);
1947    __ convert(Bytecodes::_l2i, base.result(), base_op);
1948  } else {
1949    assert(x->base()->type()->tag() == intTag, "must be");
1950  }
1951#endif
1952
1953  LIR_Opr index_op = idx.result();
1954  if (log2_scale != 0) {
1955    // temporary fix (platform dependent code without shift on Intel would be better)
1956    index_op = new_pointer_register();
1957#ifdef _LP64
1958    if(idx.result()->type() == T_INT) {
1959      __ convert(Bytecodes::_i2l, idx.result(), index_op);
1960    } else {
1961#endif
1962      // TODO: ARM also allows embedded shift in the address
1963      __ move(idx.result(), index_op);
1964#ifdef _LP64
1965    }
1966#endif
1967    __ shift_left(index_op, log2_scale, index_op);
1968  }
1969#ifdef _LP64
1970  else if(!index_op->is_illegal() && index_op->type() == T_INT) {
1971    LIR_Opr tmp = new_pointer_register();
1972    __ convert(Bytecodes::_i2l, index_op, tmp);
1973    index_op = tmp;
1974  }
1975#endif
1976
1977  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
1978  __ move(value.result(), addr);
1979}
1980
1981
1982void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
1983  BasicType type = x->basic_type();
1984  LIRItem src(x->object(), this);
1985  LIRItem off(x->offset(), this);
1986
1987  off.load_item();
1988  src.load_item();
1989
1990  LIR_Opr reg = reg = rlock_result(x, x->basic_type());
1991
1992  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
1993  get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
1994  if (x->is_volatile() && os::is_MP()) __ membar();
1995}
1996
1997
1998void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
1999  BasicType type = x->basic_type();
2000  LIRItem src(x->object(), this);
2001  LIRItem off(x->offset(), this);
2002  LIRItem data(x->value(), this);
2003
2004  src.load_item();
2005  if (type == T_BOOLEAN || type == T_BYTE) {
2006    data.load_byte_item();
2007  } else {
2008    data.load_item();
2009  }
2010  off.load_item();
2011
2012  set_no_result(x);
2013
2014  if (x->is_volatile() && os::is_MP()) __ membar_release();
2015  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2016}
2017
2018
2019void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2020  LIRItem src(x->object(), this);
2021  LIRItem off(x->offset(), this);
2022
2023  src.load_item();
2024  if (off.is_constant() && can_inline_as_constant(x->offset())) {
2025    // let it be a constant
2026    off.dont_load_item();
2027  } else {
2028    off.load_item();
2029  }
2030
2031  set_no_result(x);
2032
2033  LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2034  __ prefetch(addr, is_store);
2035}
2036
2037
2038void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2039  do_UnsafePrefetch(x, false);
2040}
2041
2042
2043void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2044  do_UnsafePrefetch(x, true);
2045}
2046
2047
2048void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2049  int lng = x->length();
2050
2051  for (int i = 0; i < lng; i++) {
2052    SwitchRange* one_range = x->at(i);
2053    int low_key = one_range->low_key();
2054    int high_key = one_range->high_key();
2055    BlockBegin* dest = one_range->sux();
2056    if (low_key == high_key) {
2057      __ cmp(lir_cond_equal, value, low_key);
2058      __ branch(lir_cond_equal, T_INT, dest);
2059    } else if (high_key - low_key == 1) {
2060      __ cmp(lir_cond_equal, value, low_key);
2061      __ branch(lir_cond_equal, T_INT, dest);
2062      __ cmp(lir_cond_equal, value, high_key);
2063      __ branch(lir_cond_equal, T_INT, dest);
2064    } else {
2065      LabelObj* L = new LabelObj();
2066      __ cmp(lir_cond_less, value, low_key);
2067      __ branch(lir_cond_less, L->label());
2068      __ cmp(lir_cond_lessEqual, value, high_key);
2069      __ branch(lir_cond_lessEqual, T_INT, dest);
2070      __ branch_destination(L->label());
2071    }
2072  }
2073  __ jump(default_sux);
2074}
2075
2076
2077SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2078  SwitchRangeList* res = new SwitchRangeList();
2079  int len = x->length();
2080  if (len > 0) {
2081    BlockBegin* sux = x->sux_at(0);
2082    int key = x->lo_key();
2083    BlockBegin* default_sux = x->default_sux();
2084    SwitchRange* range = new SwitchRange(key, sux);
2085    for (int i = 0; i < len; i++, key++) {
2086      BlockBegin* new_sux = x->sux_at(i);
2087      if (sux == new_sux) {
2088        // still in same range
2089        range->set_high_key(key);
2090      } else {
2091        // skip tests which explicitly dispatch to the default
2092        if (sux != default_sux) {
2093          res->append(range);
2094        }
2095        range = new SwitchRange(key, new_sux);
2096      }
2097      sux = new_sux;
2098    }
2099    if (res->length() == 0 || res->last() != range)  res->append(range);
2100  }
2101  return res;
2102}
2103
2104
2105// we expect the keys to be sorted by increasing value
2106SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2107  SwitchRangeList* res = new SwitchRangeList();
2108  int len = x->length();
2109  if (len > 0) {
2110    BlockBegin* default_sux = x->default_sux();
2111    int key = x->key_at(0);
2112    BlockBegin* sux = x->sux_at(0);
2113    SwitchRange* range = new SwitchRange(key, sux);
2114    for (int i = 1; i < len; i++) {
2115      int new_key = x->key_at(i);
2116      BlockBegin* new_sux = x->sux_at(i);
2117      if (key+1 == new_key && sux == new_sux) {
2118        // still in same range
2119        range->set_high_key(new_key);
2120      } else {
2121        // skip tests which explicitly dispatch to the default
2122        if (range->sux() != default_sux) {
2123          res->append(range);
2124        }
2125        range = new SwitchRange(new_key, new_sux);
2126      }
2127      key = new_key;
2128      sux = new_sux;
2129    }
2130    if (res->length() == 0 || res->last() != range)  res->append(range);
2131  }
2132  return res;
2133}
2134
2135
2136void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2137  LIRItem tag(x->tag(), this);
2138  tag.load_item();
2139  set_no_result(x);
2140
2141  if (x->is_safepoint()) {
2142    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2143  }
2144
2145  // move values into phi locations
2146  move_to_phi(x->state());
2147
2148  int lo_key = x->lo_key();
2149  int hi_key = x->hi_key();
2150  int len = x->length();
2151  LIR_Opr value = tag.result();
2152  if (UseTableRanges) {
2153    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2154  } else {
2155    for (int i = 0; i < len; i++) {
2156      __ cmp(lir_cond_equal, value, i + lo_key);
2157      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2158    }
2159    __ jump(x->default_sux());
2160  }
2161}
2162
2163
2164void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2165  LIRItem tag(x->tag(), this);
2166  tag.load_item();
2167  set_no_result(x);
2168
2169  if (x->is_safepoint()) {
2170    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2171  }
2172
2173  // move values into phi locations
2174  move_to_phi(x->state());
2175
2176  LIR_Opr value = tag.result();
2177  if (UseTableRanges) {
2178    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2179  } else {
2180    int len = x->length();
2181    for (int i = 0; i < len; i++) {
2182      __ cmp(lir_cond_equal, value, x->key_at(i));
2183      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2184    }
2185    __ jump(x->default_sux());
2186  }
2187}
2188
2189
2190void LIRGenerator::do_Goto(Goto* x) {
2191  set_no_result(x);
2192
2193  if (block()->next()->as_OsrEntry()) {
2194    // need to free up storage used for OSR entry point
2195    LIR_Opr osrBuffer = block()->next()->operand();
2196    BasicTypeList signature;
2197    signature.append(T_INT);
2198    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2199    __ move(osrBuffer, cc->args()->at(0));
2200    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2201                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2202  }
2203
2204  if (x->is_safepoint()) {
2205    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2206
2207    // increment backedge counter if needed
2208    CodeEmitInfo* info = state_for(x, state);
2209    increment_backedge_counter(info, info->stack()->bci());
2210    CodeEmitInfo* safepoint_info = state_for(x, state);
2211    __ safepoint(safepoint_poll_register(), safepoint_info);
2212  }
2213
2214  // Gotos can be folded Ifs, handle this case.
2215  if (x->should_profile()) {
2216    ciMethod* method = x->profiled_method();
2217    assert(method != NULL, "method should be set if branch is profiled");
2218    ciMethodData* md = method->method_data();
2219    if (md == NULL) {
2220      bailout("out of memory building methodDataOop");
2221      return;
2222    }
2223    ciProfileData* data = md->bci_to_data(x->profiled_bci());
2224    assert(data != NULL, "must have profiling data");
2225    int offset;
2226    if (x->direction() == Goto::taken) {
2227      assert(data->is_BranchData(), "need BranchData for two-way branches");
2228      offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2229    } else if (x->direction() == Goto::not_taken) {
2230      assert(data->is_BranchData(), "need BranchData for two-way branches");
2231      offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2232    } else {
2233      assert(data->is_JumpData(), "need JumpData for branches");
2234      offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2235    }
2236    LIR_Opr md_reg = new_register(T_OBJECT);
2237    __ oop2reg(md->constant_encoding(), md_reg);
2238
2239    increment_counter(new LIR_Address(md_reg, offset,
2240                                      NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2241  }
2242
2243  // emit phi-instruction move after safepoint since this simplifies
2244  // describing the state as the safepoint.
2245  move_to_phi(x->state());
2246
2247  __ jump(x->default_sux());
2248}
2249
2250
2251void LIRGenerator::do_Base(Base* x) {
2252  __ std_entry(LIR_OprFact::illegalOpr);
2253  // Emit moves from physical registers / stack slots to virtual registers
2254  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2255  IRScope* irScope = compilation()->hir()->top_scope();
2256  int java_index = 0;
2257  for (int i = 0; i < args->length(); i++) {
2258    LIR_Opr src = args->at(i);
2259    assert(!src->is_illegal(), "check");
2260    BasicType t = src->type();
2261
2262    // Types which are smaller than int are passed as int, so
2263    // correct the type which passed.
2264    switch (t) {
2265    case T_BYTE:
2266    case T_BOOLEAN:
2267    case T_SHORT:
2268    case T_CHAR:
2269      t = T_INT;
2270      break;
2271    }
2272
2273    LIR_Opr dest = new_register(t);
2274    __ move(src, dest);
2275
2276    // Assign new location to Local instruction for this local
2277    Local* local = x->state()->local_at(java_index)->as_Local();
2278    assert(local != NULL, "Locals for incoming arguments must have been created");
2279#ifndef __SOFTFP__
2280    // The java calling convention passes double as long and float as int.
2281    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2282#endif // __SOFTFP__
2283    local->set_operand(dest);
2284    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2285    java_index += type2size[t];
2286  }
2287
2288  if (compilation()->env()->dtrace_method_probes()) {
2289    BasicTypeList signature;
2290    signature.append(T_INT);    // thread
2291    signature.append(T_OBJECT); // methodOop
2292    LIR_OprList* args = new LIR_OprList();
2293    args->append(getThreadPointer());
2294    LIR_Opr meth = new_register(T_OBJECT);
2295    __ oop2reg(method()->constant_encoding(), meth);
2296    args->append(meth);
2297    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2298  }
2299
2300  if (method()->is_synchronized()) {
2301    LIR_Opr obj;
2302    if (method()->is_static()) {
2303      obj = new_register(T_OBJECT);
2304      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2305    } else {
2306      Local* receiver = x->state()->local_at(0)->as_Local();
2307      assert(receiver != NULL, "must already exist");
2308      obj = receiver->operand();
2309    }
2310    assert(obj->is_valid(), "must be valid");
2311
2312    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2313      LIR_Opr lock = new_register(T_INT);
2314      __ load_stack_address_monitor(0, lock);
2315
2316      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2317      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2318
2319      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2320      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2321    }
2322  }
2323
2324  // increment invocation counters if needed
2325  if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2326    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2327    increment_invocation_counter(info);
2328  }
2329
2330  // all blocks with a successor must end with an unconditional jump
2331  // to the successor even if they are consecutive
2332  __ jump(x->default_sux());
2333}
2334
2335
2336void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2337  // construct our frame and model the production of incoming pointer
2338  // to the OSR buffer.
2339  __ osr_entry(LIR_Assembler::osrBufferPointer());
2340  LIR_Opr result = rlock_result(x);
2341  __ move(LIR_Assembler::osrBufferPointer(), result);
2342}
2343
2344
2345void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2346  int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2347  for (; i < args->length(); i++) {
2348    LIRItem* param = args->at(i);
2349    LIR_Opr loc = arg_list->at(i);
2350    if (loc->is_register()) {
2351      param->load_item_force(loc);
2352    } else {
2353      LIR_Address* addr = loc->as_address_ptr();
2354      param->load_for_store(addr->type());
2355      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2356        __ unaligned_move(param->result(), addr);
2357      } else {
2358        __ move(param->result(), addr);
2359      }
2360    }
2361  }
2362
2363  if (x->has_receiver()) {
2364    LIRItem* receiver = args->at(0);
2365    LIR_Opr loc = arg_list->at(0);
2366    if (loc->is_register()) {
2367      receiver->load_item_force(loc);
2368    } else {
2369      assert(loc->is_address(), "just checking");
2370      receiver->load_for_store(T_OBJECT);
2371      __ move(receiver->result(), loc);
2372    }
2373  }
2374}
2375
2376
2377// Visits all arguments, returns appropriate items without loading them
2378LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2379  LIRItemList* argument_items = new LIRItemList();
2380  if (x->has_receiver()) {
2381    LIRItem* receiver = new LIRItem(x->receiver(), this);
2382    argument_items->append(receiver);
2383  }
2384  if (x->is_invokedynamic()) {
2385    // Insert a dummy for the synthetic MethodHandle argument.
2386    argument_items->append(NULL);
2387  }
2388  int idx = x->has_receiver() ? 1 : 0;
2389  for (int i = 0; i < x->number_of_arguments(); i++) {
2390    LIRItem* param = new LIRItem(x->argument_at(i), this);
2391    argument_items->append(param);
2392    idx += (param->type()->is_double_word() ? 2 : 1);
2393  }
2394  return argument_items;
2395}
2396
2397
2398// The invoke with receiver has following phases:
2399//   a) traverse and load/lock receiver;
2400//   b) traverse all arguments -> item-array (invoke_visit_argument)
2401//   c) push receiver on stack
2402//   d) load each of the items and push on stack
2403//   e) unlock receiver
2404//   f) move receiver into receiver-register %o0
2405//   g) lock result registers and emit call operation
2406//
2407// Before issuing a call, we must spill-save all values on stack
2408// that are in caller-save register. "spill-save" moves thos registers
2409// either in a free callee-save register or spills them if no free
2410// callee save register is available.
2411//
2412// The problem is where to invoke spill-save.
2413// - if invoked between e) and f), we may lock callee save
2414//   register in "spill-save" that destroys the receiver register
2415//   before f) is executed
2416// - if we rearange the f) to be earlier, by loading %o0, it
2417//   may destroy a value on the stack that is currently in %o0
2418//   and is waiting to be spilled
2419// - if we keep the receiver locked while doing spill-save,
2420//   we cannot spill it as it is spill-locked
2421//
2422void LIRGenerator::do_Invoke(Invoke* x) {
2423  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2424
2425  LIR_OprList* arg_list = cc->args();
2426  LIRItemList* args = invoke_visit_arguments(x);
2427  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2428
2429  // setup result register
2430  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2431  if (x->type() != voidType) {
2432    result_register = result_register_for(x->type());
2433  }
2434
2435  CodeEmitInfo* info = state_for(x, x->state());
2436
2437  // invokedynamics can deoptimize.
2438  CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2439
2440  invoke_load_arguments(x, args, arg_list);
2441
2442  if (x->has_receiver()) {
2443    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2444    receiver = args->at(0)->result();
2445  }
2446
2447  // emit invoke code
2448  bool optimized = x->target_is_loaded() && x->target_is_final();
2449  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2450
2451  // JSR 292
2452  // Preserve the SP over MethodHandle call sites.
2453  ciMethod* target = x->target();
2454  if (target->is_method_handle_invoke()) {
2455    info->set_is_method_handle_invoke(true);
2456    __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2457  }
2458
2459  switch (x->code()) {
2460    case Bytecodes::_invokestatic:
2461      __ call_static(target, result_register,
2462                     SharedRuntime::get_resolve_static_call_stub(),
2463                     arg_list, info);
2464      break;
2465    case Bytecodes::_invokespecial:
2466    case Bytecodes::_invokevirtual:
2467    case Bytecodes::_invokeinterface:
2468      // for final target we still produce an inline cache, in order
2469      // to be able to call mixed mode
2470      if (x->code() == Bytecodes::_invokespecial || optimized) {
2471        __ call_opt_virtual(target, receiver, result_register,
2472                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2473                            arg_list, info);
2474      } else if (x->vtable_index() < 0) {
2475        __ call_icvirtual(target, receiver, result_register,
2476                          SharedRuntime::get_resolve_virtual_call_stub(),
2477                          arg_list, info);
2478      } else {
2479        int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2480        int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2481        __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2482      }
2483      break;
2484    case Bytecodes::_invokedynamic: {
2485      ciBytecodeStream bcs(x->scope()->method());
2486      bcs.force_bci(x->state()->bci());
2487      assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2488      ciCPCache* cpcache = bcs.get_cpcache();
2489
2490      // Get CallSite offset from constant pool cache pointer.
2491      int index = bcs.get_method_index();
2492      size_t call_site_offset = cpcache->get_f1_offset(index);
2493
2494      // If this invokedynamic call site hasn't been executed yet in
2495      // the interpreter, the CallSite object in the constant pool
2496      // cache is still null and we need to deoptimize.
2497      if (cpcache->is_f1_null_at(index)) {
2498        // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2499        // clone all handlers.  This is handled transparently in other
2500        // places by the CodeEmitInfo cloning logic but is handled
2501        // specially here because a stub isn't being used.
2502        x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2503
2504        DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2505        __ jump(deopt_stub);
2506      }
2507
2508      // Use the receiver register for the synthetic MethodHandle
2509      // argument.
2510      receiver = LIR_Assembler::receiverOpr();
2511      LIR_Opr tmp = new_register(objectType);
2512
2513      // Load CallSite object from constant pool cache.
2514      __ oop2reg(cpcache->constant_encoding(), tmp);
2515      __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2516
2517      // Load target MethodHandle from CallSite object.
2518      __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2519
2520      __ call_dynamic(target, receiver, result_register,
2521                      SharedRuntime::get_resolve_opt_virtual_call_stub(),
2522                      arg_list, info);
2523      break;
2524    }
2525    default:
2526      ShouldNotReachHere();
2527      break;
2528  }
2529
2530  // JSR 292
2531  // Restore the SP after MethodHandle call sites.
2532  if (target->is_method_handle_invoke()) {
2533    __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2534  }
2535
2536  if (x->type()->is_float() || x->type()->is_double()) {
2537    // Force rounding of results from non-strictfp when in strictfp
2538    // scope (or when we don't know the strictness of the callee, to
2539    // be safe.)
2540    if (method()->is_strict()) {
2541      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2542        result_register = round_item(result_register);
2543      }
2544    }
2545  }
2546
2547  if (result_register->is_valid()) {
2548    LIR_Opr result = rlock_result(x);
2549    __ move(result_register, result);
2550  }
2551}
2552
2553
2554void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2555  assert(x->number_of_arguments() == 1, "wrong type");
2556  LIRItem value       (x->argument_at(0), this);
2557  LIR_Opr reg = rlock_result(x);
2558  value.load_item();
2559  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2560  __ move(tmp, reg);
2561}
2562
2563
2564
2565// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2566void LIRGenerator::do_IfOp(IfOp* x) {
2567#ifdef ASSERT
2568  {
2569    ValueTag xtag = x->x()->type()->tag();
2570    ValueTag ttag = x->tval()->type()->tag();
2571    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2572    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2573    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2574  }
2575#endif
2576
2577  LIRItem left(x->x(), this);
2578  LIRItem right(x->y(), this);
2579  left.load_item();
2580  if (can_inline_as_constant(right.value())) {
2581    right.dont_load_item();
2582  } else {
2583    right.load_item();
2584  }
2585
2586  LIRItem t_val(x->tval(), this);
2587  LIRItem f_val(x->fval(), this);
2588  t_val.dont_load_item();
2589  f_val.dont_load_item();
2590  LIR_Opr reg = rlock_result(x);
2591
2592  __ cmp(lir_cond(x->cond()), left.result(), right.result());
2593  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
2594}
2595
2596
2597void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2598  switch (x->id()) {
2599  case vmIntrinsics::_intBitsToFloat      :
2600  case vmIntrinsics::_doubleToRawLongBits :
2601  case vmIntrinsics::_longBitsToDouble    :
2602  case vmIntrinsics::_floatToRawIntBits   : {
2603    do_FPIntrinsics(x);
2604    break;
2605  }
2606
2607  case vmIntrinsics::_currentTimeMillis: {
2608    assert(x->number_of_arguments() == 0, "wrong type");
2609    LIR_Opr reg = result_register_for(x->type());
2610    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2611                         reg, new LIR_OprList());
2612    LIR_Opr result = rlock_result(x);
2613    __ move(reg, result);
2614    break;
2615  }
2616
2617  case vmIntrinsics::_nanoTime: {
2618    assert(x->number_of_arguments() == 0, "wrong type");
2619    LIR_Opr reg = result_register_for(x->type());
2620    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2621                         reg, new LIR_OprList());
2622    LIR_Opr result = rlock_result(x);
2623    __ move(reg, result);
2624    break;
2625  }
2626
2627  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2628  case vmIntrinsics::_getClass:       do_getClass(x);      break;
2629  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2630
2631  case vmIntrinsics::_dlog:           // fall through
2632  case vmIntrinsics::_dlog10:         // fall through
2633  case vmIntrinsics::_dabs:           // fall through
2634  case vmIntrinsics::_dsqrt:          // fall through
2635  case vmIntrinsics::_dtan:           // fall through
2636  case vmIntrinsics::_dsin :          // fall through
2637  case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2638  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2639
2640  // java.nio.Buffer.checkIndex
2641  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2642
2643  case vmIntrinsics::_compareAndSwapObject:
2644    do_CompareAndSwap(x, objectType);
2645    break;
2646  case vmIntrinsics::_compareAndSwapInt:
2647    do_CompareAndSwap(x, intType);
2648    break;
2649  case vmIntrinsics::_compareAndSwapLong:
2650    do_CompareAndSwap(x, longType);
2651    break;
2652
2653    // sun.misc.AtomicLongCSImpl.attemptUpdate
2654  case vmIntrinsics::_attemptUpdate:
2655    do_AttemptUpdate(x);
2656    break;
2657
2658  default: ShouldNotReachHere(); break;
2659  }
2660}
2661
2662void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2663  // Need recv in a temporary register so it interferes with the other temporaries
2664  LIR_Opr recv = LIR_OprFact::illegalOpr;
2665  LIR_Opr mdo = new_register(T_OBJECT);
2666  // tmp is used to hold the counters on SPARC
2667  LIR_Opr tmp = new_pointer_register();
2668  if (x->recv() != NULL) {
2669    LIRItem value(x->recv(), this);
2670    value.load_item();
2671    recv = new_register(T_OBJECT);
2672    __ move(value.result(), recv);
2673  }
2674  __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2675}
2676
2677void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
2678  // We can safely ignore accessors here, since c2 will inline them anyway,
2679  // accessors are also always mature.
2680  if (!x->inlinee()->is_accessor()) {
2681    CodeEmitInfo* info = state_for(x, x->state(), true);
2682    // Increment invocation counter, don't notify the runtime, because we don't inline loops,
2683    increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
2684  }
2685}
2686
2687void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
2688  int freq_log;
2689  int level = compilation()->env()->comp_level();
2690  if (level == CompLevel_limited_profile) {
2691    freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
2692  } else if (level == CompLevel_full_profile) {
2693    freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
2694  } else {
2695    ShouldNotReachHere();
2696  }
2697  // Increment the appropriate invocation/backedge counter and notify the runtime.
2698  increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
2699}
2700
2701void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
2702                                                ciMethod *method, int frequency,
2703                                                int bci, bool backedge, bool notify) {
2704  assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
2705  int level = _compilation->env()->comp_level();
2706  assert(level > CompLevel_simple, "Shouldn't be here");
2707
2708  int offset = -1;
2709  LIR_Opr counter_holder = new_register(T_OBJECT);
2710  LIR_Opr meth;
2711  if (level == CompLevel_limited_profile) {
2712    offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
2713                                 methodOopDesc::invocation_counter_offset());
2714    __ oop2reg(method->constant_encoding(), counter_holder);
2715    meth = counter_holder;
2716  } else if (level == CompLevel_full_profile) {
2717    offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
2718                                 methodDataOopDesc::invocation_counter_offset());
2719    __ oop2reg(method->method_data()->constant_encoding(), counter_holder);
2720    meth = new_register(T_OBJECT);
2721    __ oop2reg(method->constant_encoding(), meth);
2722  } else {
2723    ShouldNotReachHere();
2724  }
2725  LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
2726  LIR_Opr result = new_register(T_INT);
2727  __ load(counter, result);
2728  __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
2729  __ store(result, counter);
2730  if (notify) {
2731    LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
2732    __ logical_and(result, mask, result);
2733    __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
2734    // The bci for info can point to cmp for if's we want the if bci
2735    CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
2736    __ branch(lir_cond_equal, T_INT, overflow);
2737    __ branch_destination(overflow->continuation());
2738  }
2739}
2740
2741LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2742  LIRItemList args(1);
2743  LIRItem value(arg1, this);
2744  args.append(&value);
2745  BasicTypeList signature;
2746  signature.append(as_BasicType(arg1->type()));
2747
2748  return call_runtime(&signature, &args, entry, result_type, info);
2749}
2750
2751
2752LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2753  LIRItemList args(2);
2754  LIRItem value1(arg1, this);
2755  LIRItem value2(arg2, this);
2756  args.append(&value1);
2757  args.append(&value2);
2758  BasicTypeList signature;
2759  signature.append(as_BasicType(arg1->type()));
2760  signature.append(as_BasicType(arg2->type()));
2761
2762  return call_runtime(&signature, &args, entry, result_type, info);
2763}
2764
2765
2766LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2767                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
2768  // get a result register
2769  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2770  LIR_Opr result = LIR_OprFact::illegalOpr;
2771  if (result_type->tag() != voidTag) {
2772    result = new_register(result_type);
2773    phys_reg = result_register_for(result_type);
2774  }
2775
2776  // move the arguments into the correct location
2777  CallingConvention* cc = frame_map()->c_calling_convention(signature);
2778  assert(cc->length() == args->length(), "argument mismatch");
2779  for (int i = 0; i < args->length(); i++) {
2780    LIR_Opr arg = args->at(i);
2781    LIR_Opr loc = cc->at(i);
2782    if (loc->is_register()) {
2783      __ move(arg, loc);
2784    } else {
2785      LIR_Address* addr = loc->as_address_ptr();
2786//           if (!can_store_as_constant(arg)) {
2787//             LIR_Opr tmp = new_register(arg->type());
2788//             __ move(arg, tmp);
2789//             arg = tmp;
2790//           }
2791      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2792        __ unaligned_move(arg, addr);
2793      } else {
2794        __ move(arg, addr);
2795      }
2796    }
2797  }
2798
2799  if (info) {
2800    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2801  } else {
2802    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2803  }
2804  if (result->is_valid()) {
2805    __ move(phys_reg, result);
2806  }
2807  return result;
2808}
2809
2810
2811LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2812                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
2813  // get a result register
2814  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2815  LIR_Opr result = LIR_OprFact::illegalOpr;
2816  if (result_type->tag() != voidTag) {
2817    result = new_register(result_type);
2818    phys_reg = result_register_for(result_type);
2819  }
2820
2821  // move the arguments into the correct location
2822  CallingConvention* cc = frame_map()->c_calling_convention(signature);
2823
2824  assert(cc->length() == args->length(), "argument mismatch");
2825  for (int i = 0; i < args->length(); i++) {
2826    LIRItem* arg = args->at(i);
2827    LIR_Opr loc = cc->at(i);
2828    if (loc->is_register()) {
2829      arg->load_item_force(loc);
2830    } else {
2831      LIR_Address* addr = loc->as_address_ptr();
2832      arg->load_for_store(addr->type());
2833      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2834        __ unaligned_move(arg->result(), addr);
2835      } else {
2836        __ move(arg->result(), addr);
2837      }
2838    }
2839  }
2840
2841  if (info) {
2842    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2843  } else {
2844    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2845  }
2846  if (result->is_valid()) {
2847    __ move(phys_reg, result);
2848  }
2849  return result;
2850}
2851