c1_LIRGenerator.cpp revision 10977:9c5d445a7962
1/*
2 * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_Defs.hpp"
28#include "c1/c1_FrameMap.hpp"
29#include "c1/c1_Instruction.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_LIRGenerator.hpp"
32#include "c1/c1_ValueStack.hpp"
33#include "ci/ciArrayKlass.hpp"
34#include "ci/ciInstance.hpp"
35#include "ci/ciObjArray.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "runtime/arguments.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/stubRoutines.hpp"
40#include "runtime/vm_version.hpp"
41#include "utilities/bitMap.inline.hpp"
42#include "utilities/macros.hpp"
43#if INCLUDE_ALL_GCS
44#include "gc/g1/heapRegion.hpp"
45#endif // INCLUDE_ALL_GCS
46#ifdef TRACE_HAVE_INTRINSICS
47#include "trace/traceMacros.hpp"
48#endif
49
50#ifdef ASSERT
51#define __ gen()->lir(__FILE__, __LINE__)->
52#else
53#define __ gen()->lir()->
54#endif
55
56#ifndef PATCHED_ADDR
57#define PATCHED_ADDR  (max_jint)
58#endif
59
60void PhiResolverState::reset(int max_vregs) {
61  // Initialize array sizes
62  _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
63  _virtual_operands.trunc_to(0);
64  _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
65  _other_operands.trunc_to(0);
66  _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
67  _vreg_table.trunc_to(0);
68}
69
70
71
72//--------------------------------------------------------------
73// PhiResolver
74
75// Resolves cycles:
76//
77//  r1 := r2  becomes  temp := r1
78//  r2 := r1           r1 := r2
79//                     r2 := temp
80// and orders moves:
81//
82//  r2 := r3  becomes  r1 := r2
83//  r1 := r2           r2 := r3
84
85PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
86 : _gen(gen)
87 , _state(gen->resolver_state())
88 , _temp(LIR_OprFact::illegalOpr)
89{
90  // reinitialize the shared state arrays
91  _state.reset(max_vregs);
92}
93
94
95void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
96  assert(src->is_valid(), "");
97  assert(dest->is_valid(), "");
98  __ move(src, dest);
99}
100
101
102void PhiResolver::move_temp_to(LIR_Opr dest) {
103  assert(_temp->is_valid(), "");
104  emit_move(_temp, dest);
105  NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
106}
107
108
109void PhiResolver::move_to_temp(LIR_Opr src) {
110  assert(_temp->is_illegal(), "");
111  _temp = _gen->new_register(src->type());
112  emit_move(src, _temp);
113}
114
115
116// Traverse assignment graph in depth first order and generate moves in post order
117// ie. two assignments: b := c, a := b start with node c:
118// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
119// Generates moves in this order: move b to a and move c to b
120// ie. cycle a := b, b := a start with node a
121// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
122// Generates moves in this order: move b to temp, move a to b, move temp to a
123void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
124  if (!dest->visited()) {
125    dest->set_visited();
126    for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
127      move(dest, dest->destination_at(i));
128    }
129  } else if (!dest->start_node()) {
130    // cylce in graph detected
131    assert(_loop == NULL, "only one loop valid!");
132    _loop = dest;
133    move_to_temp(src->operand());
134    return;
135  } // else dest is a start node
136
137  if (!dest->assigned()) {
138    if (_loop == dest) {
139      move_temp_to(dest->operand());
140      dest->set_assigned();
141    } else if (src != NULL) {
142      emit_move(src->operand(), dest->operand());
143      dest->set_assigned();
144    }
145  }
146}
147
148
149PhiResolver::~PhiResolver() {
150  int i;
151  // resolve any cycles in moves from and to virtual registers
152  for (i = virtual_operands().length() - 1; i >= 0; i --) {
153    ResolveNode* node = virtual_operands().at(i);
154    if (!node->visited()) {
155      _loop = NULL;
156      move(NULL, node);
157      node->set_start_node();
158      assert(_temp->is_illegal(), "move_temp_to() call missing");
159    }
160  }
161
162  // generate move for move from non virtual register to abitrary destination
163  for (i = other_operands().length() - 1; i >= 0; i --) {
164    ResolveNode* node = other_operands().at(i);
165    for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
166      emit_move(node->operand(), node->destination_at(j)->operand());
167    }
168  }
169}
170
171
172ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
173  ResolveNode* node;
174  if (opr->is_virtual()) {
175    int vreg_num = opr->vreg_number();
176    node = vreg_table().at_grow(vreg_num, NULL);
177    assert(node == NULL || node->operand() == opr, "");
178    if (node == NULL) {
179      node = new ResolveNode(opr);
180      vreg_table().at_put(vreg_num, node);
181    }
182    // Make sure that all virtual operands show up in the list when
183    // they are used as the source of a move.
184    if (source && !virtual_operands().contains(node)) {
185      virtual_operands().append(node);
186    }
187  } else {
188    assert(source, "");
189    node = new ResolveNode(opr);
190    other_operands().append(node);
191  }
192  return node;
193}
194
195
196void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
197  assert(dest->is_virtual(), "");
198  // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
199  assert(src->is_valid(), "");
200  assert(dest->is_valid(), "");
201  ResolveNode* source = source_node(src);
202  source->append(destination_node(dest));
203}
204
205
206//--------------------------------------------------------------
207// LIRItem
208
209void LIRItem::set_result(LIR_Opr opr) {
210  assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
211  value()->set_operand(opr);
212
213  if (opr->is_virtual()) {
214    _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
215  }
216
217  _result = opr;
218}
219
220void LIRItem::load_item() {
221  if (result()->is_illegal()) {
222    // update the items result
223    _result = value()->operand();
224  }
225  if (!result()->is_register()) {
226    LIR_Opr reg = _gen->new_register(value()->type());
227    __ move(result(), reg);
228    if (result()->is_constant()) {
229      _result = reg;
230    } else {
231      set_result(reg);
232    }
233  }
234}
235
236
237void LIRItem::load_for_store(BasicType type) {
238  if (_gen->can_store_as_constant(value(), type)) {
239    _result = value()->operand();
240    if (!_result->is_constant()) {
241      _result = LIR_OprFact::value_type(value()->type());
242    }
243  } else if (type == T_BYTE || type == T_BOOLEAN) {
244    load_byte_item();
245  } else {
246    load_item();
247  }
248}
249
250void LIRItem::load_item_force(LIR_Opr reg) {
251  LIR_Opr r = result();
252  if (r != reg) {
253#if !defined(ARM) && !defined(E500V2)
254    if (r->type() != reg->type()) {
255      // moves between different types need an intervening spill slot
256      r = _gen->force_to_spill(r, reg->type());
257    }
258#endif
259    __ move(r, reg);
260    _result = reg;
261  }
262}
263
264ciObject* LIRItem::get_jobject_constant() const {
265  ObjectType* oc = type()->as_ObjectType();
266  if (oc) {
267    return oc->constant_value();
268  }
269  return NULL;
270}
271
272
273jint LIRItem::get_jint_constant() const {
274  assert(is_constant() && value() != NULL, "");
275  assert(type()->as_IntConstant() != NULL, "type check");
276  return type()->as_IntConstant()->value();
277}
278
279
280jint LIRItem::get_address_constant() const {
281  assert(is_constant() && value() != NULL, "");
282  assert(type()->as_AddressConstant() != NULL, "type check");
283  return type()->as_AddressConstant()->value();
284}
285
286
287jfloat LIRItem::get_jfloat_constant() const {
288  assert(is_constant() && value() != NULL, "");
289  assert(type()->as_FloatConstant() != NULL, "type check");
290  return type()->as_FloatConstant()->value();
291}
292
293
294jdouble LIRItem::get_jdouble_constant() const {
295  assert(is_constant() && value() != NULL, "");
296  assert(type()->as_DoubleConstant() != NULL, "type check");
297  return type()->as_DoubleConstant()->value();
298}
299
300
301jlong LIRItem::get_jlong_constant() const {
302  assert(is_constant() && value() != NULL, "");
303  assert(type()->as_LongConstant() != NULL, "type check");
304  return type()->as_LongConstant()->value();
305}
306
307
308
309//--------------------------------------------------------------
310
311
312void LIRGenerator::init() {
313  _bs = Universe::heap()->barrier_set();
314}
315
316
317void LIRGenerator::block_do_prolog(BlockBegin* block) {
318#ifndef PRODUCT
319  if (PrintIRWithLIR) {
320    block->print();
321  }
322#endif
323
324  // set up the list of LIR instructions
325  assert(block->lir() == NULL, "LIR list already computed for this block");
326  _lir = new LIR_List(compilation(), block);
327  block->set_lir(_lir);
328
329  __ branch_destination(block->label());
330
331  if (LIRTraceExecution &&
332      Compilation::current()->hir()->start()->block_id() != block->block_id() &&
333      !block->is_set(BlockBegin::exception_entry_flag)) {
334    assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
335    trace_block_entry(block);
336  }
337}
338
339
340void LIRGenerator::block_do_epilog(BlockBegin* block) {
341#ifndef PRODUCT
342  if (PrintIRWithLIR) {
343    tty->cr();
344  }
345#endif
346
347  // LIR_Opr for unpinned constants shouldn't be referenced by other
348  // blocks so clear them out after processing the block.
349  for (int i = 0; i < _unpinned_constants.length(); i++) {
350    _unpinned_constants.at(i)->clear_operand();
351  }
352  _unpinned_constants.trunc_to(0);
353
354  // clear our any registers for other local constants
355  _constants.trunc_to(0);
356  _reg_for_constants.trunc_to(0);
357}
358
359
360void LIRGenerator::block_do(BlockBegin* block) {
361  CHECK_BAILOUT();
362
363  block_do_prolog(block);
364  set_block(block);
365
366  for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
367    if (instr->is_pinned()) do_root(instr);
368  }
369
370  set_block(NULL);
371  block_do_epilog(block);
372}
373
374
375//-------------------------LIRGenerator-----------------------------
376
377// This is where the tree-walk starts; instr must be root;
378void LIRGenerator::do_root(Value instr) {
379  CHECK_BAILOUT();
380
381  InstructionMark im(compilation(), instr);
382
383  assert(instr->is_pinned(), "use only with roots");
384  assert(instr->subst() == instr, "shouldn't have missed substitution");
385
386  instr->visit(this);
387
388  assert(!instr->has_uses() || instr->operand()->is_valid() ||
389         instr->as_Constant() != NULL || bailed_out(), "invalid item set");
390}
391
392
393// This is called for each node in tree; the walk stops if a root is reached
394void LIRGenerator::walk(Value instr) {
395  InstructionMark im(compilation(), instr);
396  //stop walk when encounter a root
397  if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
398    assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
399  } else {
400    assert(instr->subst() == instr, "shouldn't have missed substitution");
401    instr->visit(this);
402    // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
403  }
404}
405
406
407CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
408  assert(state != NULL, "state must be defined");
409
410#ifndef PRODUCT
411  state->verify();
412#endif
413
414  ValueStack* s = state;
415  for_each_state(s) {
416    if (s->kind() == ValueStack::EmptyExceptionState) {
417      assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
418      continue;
419    }
420
421    int index;
422    Value value;
423    for_each_stack_value(s, index, value) {
424      assert(value->subst() == value, "missed substitution");
425      if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
426        walk(value);
427        assert(value->operand()->is_valid(), "must be evaluated now");
428      }
429    }
430
431    int bci = s->bci();
432    IRScope* scope = s->scope();
433    ciMethod* method = scope->method();
434
435    MethodLivenessResult liveness = method->liveness_at_bci(bci);
436    if (bci == SynchronizationEntryBCI) {
437      if (x->as_ExceptionObject() || x->as_Throw()) {
438        // all locals are dead on exit from the synthetic unlocker
439        liveness.clear();
440      } else {
441        assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
442      }
443    }
444    if (!liveness.is_valid()) {
445      // Degenerate or breakpointed method.
446      bailout("Degenerate or breakpointed method");
447    } else {
448      assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
449      for_each_local_value(s, index, value) {
450        assert(value->subst() == value, "missed substition");
451        if (liveness.at(index) && !value->type()->is_illegal()) {
452          if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
453            walk(value);
454            assert(value->operand()->is_valid(), "must be evaluated now");
455          }
456        } else {
457          // NULL out this local so that linear scan can assume that all non-NULL values are live.
458          s->invalidate_local(index);
459        }
460      }
461    }
462  }
463
464  return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
465}
466
467
468CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
469  return state_for(x, x->exception_state());
470}
471
472
473void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
474  /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
475   * is active and the class hasn't yet been resolved we need to emit a patch that resolves
476   * the class. */
477  if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
478    assert(info != NULL, "info must be set if class is not loaded");
479    __ klass2reg_patch(NULL, r, info);
480  } else {
481    // no patching needed
482    __ metadata2reg(obj->constant_encoding(), r);
483  }
484}
485
486
487void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
488                                    CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
489  CodeStub* stub = new RangeCheckStub(range_check_info, index);
490  if (index->is_constant()) {
491    cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
492                index->as_jint(), null_check_info);
493    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
494  } else {
495    cmp_reg_mem(lir_cond_aboveEqual, index, array,
496                arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
497    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
498  }
499}
500
501
502void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
503  CodeStub* stub = new RangeCheckStub(info, index, true);
504  if (index->is_constant()) {
505    cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
506    __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
507  } else {
508    cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
509                java_nio_Buffer::limit_offset(), T_INT, info);
510    __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
511  }
512  __ move(index, result);
513}
514
515
516
517void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
518  LIR_Opr result_op = result;
519  LIR_Opr left_op   = left;
520  LIR_Opr right_op  = right;
521
522  if (TwoOperandLIRForm && left_op != result_op) {
523    assert(right_op != result_op, "malformed");
524    __ move(left_op, result_op);
525    left_op = result_op;
526  }
527
528  switch(code) {
529    case Bytecodes::_dadd:
530    case Bytecodes::_fadd:
531    case Bytecodes::_ladd:
532    case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
533    case Bytecodes::_fmul:
534    case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
535
536    case Bytecodes::_dmul:
537      {
538        if (is_strictfp) {
539          __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
540        } else {
541          __ mul(left_op, right_op, result_op); break;
542        }
543      }
544      break;
545
546    case Bytecodes::_imul:
547      {
548        bool    did_strength_reduce = false;
549
550        if (right->is_constant()) {
551          int c = right->as_jint();
552          if (is_power_of_2(c)) {
553            // do not need tmp here
554            __ shift_left(left_op, exact_log2(c), result_op);
555            did_strength_reduce = true;
556          } else {
557            did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
558          }
559        }
560        // we couldn't strength reduce so just emit the multiply
561        if (!did_strength_reduce) {
562          __ mul(left_op, right_op, result_op);
563        }
564      }
565      break;
566
567    case Bytecodes::_dsub:
568    case Bytecodes::_fsub:
569    case Bytecodes::_lsub:
570    case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
571
572    case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
573    // ldiv and lrem are implemented with a direct runtime call
574
575    case Bytecodes::_ddiv:
576      {
577        if (is_strictfp) {
578          __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
579        } else {
580          __ div (left_op, right_op, result_op); break;
581        }
582      }
583      break;
584
585    case Bytecodes::_drem:
586    case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
587
588    default: ShouldNotReachHere();
589  }
590}
591
592
593void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
594  arithmetic_op(code, result, left, right, false, tmp);
595}
596
597
598void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
599  arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
600}
601
602
603void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
604  arithmetic_op(code, result, left, right, is_strictfp, tmp);
605}
606
607
608void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
609  if (TwoOperandLIRForm && value != result_op) {
610    assert(count != result_op, "malformed");
611    __ move(value, result_op);
612    value = result_op;
613  }
614
615  assert(count->is_constant() || count->is_register(), "must be");
616  switch(code) {
617  case Bytecodes::_ishl:
618  case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
619  case Bytecodes::_ishr:
620  case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
621  case Bytecodes::_iushr:
622  case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
623  default: ShouldNotReachHere();
624  }
625}
626
627
628void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
629  if (TwoOperandLIRForm && left_op != result_op) {
630    assert(right_op != result_op, "malformed");
631    __ move(left_op, result_op);
632    left_op = result_op;
633  }
634
635  switch(code) {
636    case Bytecodes::_iand:
637    case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
638
639    case Bytecodes::_ior:
640    case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
641
642    case Bytecodes::_ixor:
643    case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
644
645    default: ShouldNotReachHere();
646  }
647}
648
649
650void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
651  if (!GenerateSynchronizationCode) return;
652  // for slow path, use debug info for state after successful locking
653  CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
654  __ load_stack_address_monitor(monitor_no, lock);
655  // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
656  __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
657}
658
659
660void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
661  if (!GenerateSynchronizationCode) return;
662  // setup registers
663  LIR_Opr hdr = lock;
664  lock = new_hdr;
665  CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
666  __ load_stack_address_monitor(monitor_no, lock);
667  __ unlock_object(hdr, object, lock, scratch, slow_path);
668}
669
670#ifndef PRODUCT
671void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
672  if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
673    tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
674  } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
675    tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
676  }
677}
678#endif
679
680void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
681  klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
682  // If klass is not loaded we do not know if the klass has finalizers:
683  if (UseFastNewInstance && klass->is_loaded()
684      && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
685
686    Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
687
688    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
689
690    assert(klass->is_loaded(), "must be loaded");
691    // allocate space for instance
692    assert(klass->size_helper() >= 0, "illegal instance size");
693    const int instance_size = align_object_size(klass->size_helper());
694    __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
695                       oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
696  } else {
697    CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
698    __ branch(lir_cond_always, T_ILLEGAL, slow_path);
699    __ branch_destination(slow_path->continuation());
700  }
701}
702
703
704static bool is_constant_zero(Instruction* inst) {
705  IntConstant* c = inst->type()->as_IntConstant();
706  if (c) {
707    return (c->value() == 0);
708  }
709  return false;
710}
711
712
713static bool positive_constant(Instruction* inst) {
714  IntConstant* c = inst->type()->as_IntConstant();
715  if (c) {
716    return (c->value() >= 0);
717  }
718  return false;
719}
720
721
722static ciArrayKlass* as_array_klass(ciType* type) {
723  if (type != NULL && type->is_array_klass() && type->is_loaded()) {
724    return (ciArrayKlass*)type;
725  } else {
726    return NULL;
727  }
728}
729
730static ciType* phi_declared_type(Phi* phi) {
731  ciType* t = phi->operand_at(0)->declared_type();
732  if (t == NULL) {
733    return NULL;
734  }
735  for(int i = 1; i < phi->operand_count(); i++) {
736    if (t != phi->operand_at(i)->declared_type()) {
737      return NULL;
738    }
739  }
740  return t;
741}
742
743void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
744  Instruction* src     = x->argument_at(0);
745  Instruction* src_pos = x->argument_at(1);
746  Instruction* dst     = x->argument_at(2);
747  Instruction* dst_pos = x->argument_at(3);
748  Instruction* length  = x->argument_at(4);
749
750  // first try to identify the likely type of the arrays involved
751  ciArrayKlass* expected_type = NULL;
752  bool is_exact = false, src_objarray = false, dst_objarray = false;
753  {
754    ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
755    ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
756    Phi* phi;
757    if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
758      src_declared_type = as_array_klass(phi_declared_type(phi));
759    }
760    ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
761    ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
762    if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
763      dst_declared_type = as_array_klass(phi_declared_type(phi));
764    }
765
766    if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
767      // the types exactly match so the type is fully known
768      is_exact = true;
769      expected_type = src_exact_type;
770    } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
771      ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
772      ciArrayKlass* src_type = NULL;
773      if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
774        src_type = (ciArrayKlass*) src_exact_type;
775      } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
776        src_type = (ciArrayKlass*) src_declared_type;
777      }
778      if (src_type != NULL) {
779        if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
780          is_exact = true;
781          expected_type = dst_type;
782        }
783      }
784    }
785    // at least pass along a good guess
786    if (expected_type == NULL) expected_type = dst_exact_type;
787    if (expected_type == NULL) expected_type = src_declared_type;
788    if (expected_type == NULL) expected_type = dst_declared_type;
789
790    src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
791    dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
792  }
793
794  // if a probable array type has been identified, figure out if any
795  // of the required checks for a fast case can be elided.
796  int flags = LIR_OpArrayCopy::all_flags;
797
798  if (!src_objarray)
799    flags &= ~LIR_OpArrayCopy::src_objarray;
800  if (!dst_objarray)
801    flags &= ~LIR_OpArrayCopy::dst_objarray;
802
803  if (!x->arg_needs_null_check(0))
804    flags &= ~LIR_OpArrayCopy::src_null_check;
805  if (!x->arg_needs_null_check(2))
806    flags &= ~LIR_OpArrayCopy::dst_null_check;
807
808
809  if (expected_type != NULL) {
810    Value length_limit = NULL;
811
812    IfOp* ifop = length->as_IfOp();
813    if (ifop != NULL) {
814      // look for expressions like min(v, a.length) which ends up as
815      //   x > y ? y : x  or  x >= y ? y : x
816      if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
817          ifop->x() == ifop->fval() &&
818          ifop->y() == ifop->tval()) {
819        length_limit = ifop->y();
820      }
821    }
822
823    // try to skip null checks and range checks
824    NewArray* src_array = src->as_NewArray();
825    if (src_array != NULL) {
826      flags &= ~LIR_OpArrayCopy::src_null_check;
827      if (length_limit != NULL &&
828          src_array->length() == length_limit &&
829          is_constant_zero(src_pos)) {
830        flags &= ~LIR_OpArrayCopy::src_range_check;
831      }
832    }
833
834    NewArray* dst_array = dst->as_NewArray();
835    if (dst_array != NULL) {
836      flags &= ~LIR_OpArrayCopy::dst_null_check;
837      if (length_limit != NULL &&
838          dst_array->length() == length_limit &&
839          is_constant_zero(dst_pos)) {
840        flags &= ~LIR_OpArrayCopy::dst_range_check;
841      }
842    }
843
844    // check from incoming constant values
845    if (positive_constant(src_pos))
846      flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
847    if (positive_constant(dst_pos))
848      flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
849    if (positive_constant(length))
850      flags &= ~LIR_OpArrayCopy::length_positive_check;
851
852    // see if the range check can be elided, which might also imply
853    // that src or dst is non-null.
854    ArrayLength* al = length->as_ArrayLength();
855    if (al != NULL) {
856      if (al->array() == src) {
857        // it's the length of the source array
858        flags &= ~LIR_OpArrayCopy::length_positive_check;
859        flags &= ~LIR_OpArrayCopy::src_null_check;
860        if (is_constant_zero(src_pos))
861          flags &= ~LIR_OpArrayCopy::src_range_check;
862      }
863      if (al->array() == dst) {
864        // it's the length of the destination array
865        flags &= ~LIR_OpArrayCopy::length_positive_check;
866        flags &= ~LIR_OpArrayCopy::dst_null_check;
867        if (is_constant_zero(dst_pos))
868          flags &= ~LIR_OpArrayCopy::dst_range_check;
869      }
870    }
871    if (is_exact) {
872      flags &= ~LIR_OpArrayCopy::type_check;
873    }
874  }
875
876  IntConstant* src_int = src_pos->type()->as_IntConstant();
877  IntConstant* dst_int = dst_pos->type()->as_IntConstant();
878  if (src_int && dst_int) {
879    int s_offs = src_int->value();
880    int d_offs = dst_int->value();
881    if (src_int->value() >= dst_int->value()) {
882      flags &= ~LIR_OpArrayCopy::overlapping;
883    }
884    if (expected_type != NULL) {
885      BasicType t = expected_type->element_type()->basic_type();
886      int element_size = type2aelembytes(t);
887      if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
888          ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
889        flags &= ~LIR_OpArrayCopy::unaligned;
890      }
891    }
892  } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
893    // src and dest positions are the same, or dst is zero so assume
894    // nonoverlapping copy.
895    flags &= ~LIR_OpArrayCopy::overlapping;
896  }
897
898  if (src == dst) {
899    // moving within a single array so no type checks are needed
900    if (flags & LIR_OpArrayCopy::type_check) {
901      flags &= ~LIR_OpArrayCopy::type_check;
902    }
903  }
904  *flagsp = flags;
905  *expected_typep = (ciArrayKlass*)expected_type;
906}
907
908
909LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
910  assert(opr->is_register(), "why spill if item is not register?");
911
912  if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
913    LIR_Opr result = new_register(T_FLOAT);
914    set_vreg_flag(result, must_start_in_memory);
915    assert(opr->is_register(), "only a register can be spilled");
916    assert(opr->value_type()->is_float(), "rounding only for floats available");
917    __ roundfp(opr, LIR_OprFact::illegalOpr, result);
918    return result;
919  }
920  return opr;
921}
922
923
924LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
925  assert(type2size[t] == type2size[value->type()],
926         "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
927  if (!value->is_register()) {
928    // force into a register
929    LIR_Opr r = new_register(value->type());
930    __ move(value, r);
931    value = r;
932  }
933
934  // create a spill location
935  LIR_Opr tmp = new_register(t);
936  set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
937
938  // move from register to spill
939  __ move(value, tmp);
940  return tmp;
941}
942
943void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
944  if (if_instr->should_profile()) {
945    ciMethod* method = if_instr->profiled_method();
946    assert(method != NULL, "method should be set if branch is profiled");
947    ciMethodData* md = method->method_data_or_null();
948    assert(md != NULL, "Sanity");
949    ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
950    assert(data != NULL, "must have profiling data");
951    assert(data->is_BranchData(), "need BranchData for two-way branches");
952    int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
953    int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
954    if (if_instr->is_swapped()) {
955      int t = taken_count_offset;
956      taken_count_offset = not_taken_count_offset;
957      not_taken_count_offset = t;
958    }
959
960    LIR_Opr md_reg = new_register(T_METADATA);
961    __ metadata2reg(md->constant_encoding(), md_reg);
962
963    LIR_Opr data_offset_reg = new_pointer_register();
964    __ cmove(lir_cond(cond),
965             LIR_OprFact::intptrConst(taken_count_offset),
966             LIR_OprFact::intptrConst(not_taken_count_offset),
967             data_offset_reg, as_BasicType(if_instr->x()->type()));
968
969    // MDO cells are intptr_t, so the data_reg width is arch-dependent.
970    LIR_Opr data_reg = new_pointer_register();
971    LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
972    __ move(data_addr, data_reg);
973    // Use leal instead of add to avoid destroying condition codes on x86
974    LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
975    __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
976    __ move(data_reg, data_addr);
977  }
978}
979
980// Phi technique:
981// This is about passing live values from one basic block to the other.
982// In code generated with Java it is rather rare that more than one
983// value is on the stack from one basic block to the other.
984// We optimize our technique for efficient passing of one value
985// (of type long, int, double..) but it can be extended.
986// When entering or leaving a basic block, all registers and all spill
987// slots are release and empty. We use the released registers
988// and spill slots to pass the live values from one block
989// to the other. The topmost value, i.e., the value on TOS of expression
990// stack is passed in registers. All other values are stored in spilling
991// area. Every Phi has an index which designates its spill slot
992// At exit of a basic block, we fill the register(s) and spill slots.
993// At entry of a basic block, the block_prolog sets up the content of phi nodes
994// and locks necessary registers and spilling slots.
995
996
997// move current value to referenced phi function
998void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
999  Phi* phi = sux_val->as_Phi();
1000  // cur_val can be null without phi being null in conjunction with inlining
1001  if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1002    Phi* cur_phi = cur_val->as_Phi();
1003    if (cur_phi != NULL && cur_phi->is_illegal()) {
1004      // Phi and local would need to get invalidated
1005      // (which is unexpected for Linear Scan).
1006      // But this case is very rare so we simply bail out.
1007      bailout("propagation of illegal phi");
1008      return;
1009    }
1010    LIR_Opr operand = cur_val->operand();
1011    if (operand->is_illegal()) {
1012      assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1013             "these can be produced lazily");
1014      operand = operand_for_instruction(cur_val);
1015    }
1016    resolver->move(operand, operand_for_instruction(phi));
1017  }
1018}
1019
1020
1021// Moves all stack values into their PHI position
1022void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1023  BlockBegin* bb = block();
1024  if (bb->number_of_sux() == 1) {
1025    BlockBegin* sux = bb->sux_at(0);
1026    assert(sux->number_of_preds() > 0, "invalid CFG");
1027
1028    // a block with only one predecessor never has phi functions
1029    if (sux->number_of_preds() > 1) {
1030      int max_phis = cur_state->stack_size() + cur_state->locals_size();
1031      PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1032
1033      ValueStack* sux_state = sux->state();
1034      Value sux_value;
1035      int index;
1036
1037      assert(cur_state->scope() == sux_state->scope(), "not matching");
1038      assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1039      assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1040
1041      for_each_stack_value(sux_state, index, sux_value) {
1042        move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1043      }
1044
1045      for_each_local_value(sux_state, index, sux_value) {
1046        move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1047      }
1048
1049      assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1050    }
1051  }
1052}
1053
1054
1055LIR_Opr LIRGenerator::new_register(BasicType type) {
1056  int vreg = _virtual_register_number;
1057  // add a little fudge factor for the bailout, since the bailout is
1058  // only checked periodically.  This gives a few extra registers to
1059  // hand out before we really run out, which helps us keep from
1060  // tripping over assertions.
1061  if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1062    bailout("out of virtual registers");
1063    if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1064      // wrap it around
1065      _virtual_register_number = LIR_OprDesc::vreg_base;
1066    }
1067  }
1068  _virtual_register_number += 1;
1069  return LIR_OprFact::virtual_register(vreg, type);
1070}
1071
1072
1073// Try to lock using register in hint
1074LIR_Opr LIRGenerator::rlock(Value instr) {
1075  return new_register(instr->type());
1076}
1077
1078
1079// does an rlock and sets result
1080LIR_Opr LIRGenerator::rlock_result(Value x) {
1081  LIR_Opr reg = rlock(x);
1082  set_result(x, reg);
1083  return reg;
1084}
1085
1086
1087// does an rlock and sets result
1088LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1089  LIR_Opr reg;
1090  switch (type) {
1091  case T_BYTE:
1092  case T_BOOLEAN:
1093    reg = rlock_byte(type);
1094    break;
1095  default:
1096    reg = rlock(x);
1097    break;
1098  }
1099
1100  set_result(x, reg);
1101  return reg;
1102}
1103
1104
1105//---------------------------------------------------------------------
1106ciObject* LIRGenerator::get_jobject_constant(Value value) {
1107  ObjectType* oc = value->type()->as_ObjectType();
1108  if (oc) {
1109    return oc->constant_value();
1110  }
1111  return NULL;
1112}
1113
1114
1115void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1116  assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1117  assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1118
1119  // no moves are created for phi functions at the begin of exception
1120  // handlers, so assign operands manually here
1121  for_each_phi_fun(block(), phi,
1122                   operand_for_instruction(phi));
1123
1124  LIR_Opr thread_reg = getThreadPointer();
1125  __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1126               exceptionOopOpr());
1127  __ move_wide(LIR_OprFact::oopConst(NULL),
1128               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1129  __ move_wide(LIR_OprFact::oopConst(NULL),
1130               new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1131
1132  LIR_Opr result = new_register(T_OBJECT);
1133  __ move(exceptionOopOpr(), result);
1134  set_result(x, result);
1135}
1136
1137
1138//----------------------------------------------------------------------
1139//----------------------------------------------------------------------
1140//----------------------------------------------------------------------
1141//----------------------------------------------------------------------
1142//                        visitor functions
1143//----------------------------------------------------------------------
1144//----------------------------------------------------------------------
1145//----------------------------------------------------------------------
1146//----------------------------------------------------------------------
1147
1148void LIRGenerator::do_Phi(Phi* x) {
1149  // phi functions are never visited directly
1150  ShouldNotReachHere();
1151}
1152
1153
1154// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1155void LIRGenerator::do_Constant(Constant* x) {
1156  if (x->state_before() != NULL) {
1157    // Any constant with a ValueStack requires patching so emit the patch here
1158    LIR_Opr reg = rlock_result(x);
1159    CodeEmitInfo* info = state_for(x, x->state_before());
1160    __ oop2reg_patch(NULL, reg, info);
1161  } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1162    if (!x->is_pinned()) {
1163      // unpinned constants are handled specially so that they can be
1164      // put into registers when they are used multiple times within a
1165      // block.  After the block completes their operand will be
1166      // cleared so that other blocks can't refer to that register.
1167      set_result(x, load_constant(x));
1168    } else {
1169      LIR_Opr res = x->operand();
1170      if (!res->is_valid()) {
1171        res = LIR_OprFact::value_type(x->type());
1172      }
1173      if (res->is_constant()) {
1174        LIR_Opr reg = rlock_result(x);
1175        __ move(res, reg);
1176      } else {
1177        set_result(x, res);
1178      }
1179    }
1180  } else {
1181    set_result(x, LIR_OprFact::value_type(x->type()));
1182  }
1183}
1184
1185
1186void LIRGenerator::do_Local(Local* x) {
1187  // operand_for_instruction has the side effect of setting the result
1188  // so there's no need to do it here.
1189  operand_for_instruction(x);
1190}
1191
1192
1193void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1194  Unimplemented();
1195}
1196
1197
1198void LIRGenerator::do_Return(Return* x) {
1199  if (compilation()->env()->dtrace_method_probes()) {
1200    BasicTypeList signature;
1201    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1202    signature.append(T_METADATA); // Method*
1203    LIR_OprList* args = new LIR_OprList();
1204    args->append(getThreadPointer());
1205    LIR_Opr meth = new_register(T_METADATA);
1206    __ metadata2reg(method()->constant_encoding(), meth);
1207    args->append(meth);
1208    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1209  }
1210
1211  if (x->type()->is_void()) {
1212    __ return_op(LIR_OprFact::illegalOpr);
1213  } else {
1214    LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1215    LIRItem result(x->result(), this);
1216
1217    result.load_item_force(reg);
1218    __ return_op(result.result());
1219  }
1220  set_no_result(x);
1221}
1222
1223// Examble: ref.get()
1224// Combination of LoadField and g1 pre-write barrier
1225void LIRGenerator::do_Reference_get(Intrinsic* x) {
1226
1227  const int referent_offset = java_lang_ref_Reference::referent_offset;
1228  guarantee(referent_offset > 0, "referent offset not initialized");
1229
1230  assert(x->number_of_arguments() == 1, "wrong type");
1231
1232  LIRItem reference(x->argument_at(0), this);
1233  reference.load_item();
1234
1235  // need to perform the null check on the reference objecy
1236  CodeEmitInfo* info = NULL;
1237  if (x->needs_null_check()) {
1238    info = state_for(x);
1239  }
1240
1241  LIR_Address* referent_field_adr =
1242    new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1243
1244  LIR_Opr result = rlock_result(x);
1245
1246  __ load(referent_field_adr, result, info);
1247
1248  // Register the value in the referent field with the pre-barrier
1249  pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1250              result /* pre_val */,
1251              false  /* do_load */,
1252              false  /* patch */,
1253              NULL   /* info */);
1254}
1255
1256// Example: clazz.isInstance(object)
1257void LIRGenerator::do_isInstance(Intrinsic* x) {
1258  assert(x->number_of_arguments() == 2, "wrong type");
1259
1260  // TODO could try to substitute this node with an equivalent InstanceOf
1261  // if clazz is known to be a constant Class. This will pick up newly found
1262  // constants after HIR construction. I'll leave this to a future change.
1263
1264  // as a first cut, make a simple leaf call to runtime to stay platform independent.
1265  // could follow the aastore example in a future change.
1266
1267  LIRItem clazz(x->argument_at(0), this);
1268  LIRItem object(x->argument_at(1), this);
1269  clazz.load_item();
1270  object.load_item();
1271  LIR_Opr result = rlock_result(x);
1272
1273  // need to perform null check on clazz
1274  if (x->needs_null_check()) {
1275    CodeEmitInfo* info = state_for(x);
1276    __ null_check(clazz.result(), info);
1277  }
1278
1279  LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1280                                     CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1281                                     x->type(),
1282                                     NULL); // NULL CodeEmitInfo results in a leaf call
1283  __ move(call_result, result);
1284}
1285
1286// Example: object.getClass ()
1287void LIRGenerator::do_getClass(Intrinsic* x) {
1288  assert(x->number_of_arguments() == 1, "wrong type");
1289
1290  LIRItem rcvr(x->argument_at(0), this);
1291  rcvr.load_item();
1292  LIR_Opr temp = new_register(T_METADATA);
1293  LIR_Opr result = rlock_result(x);
1294
1295  // need to perform the null check on the rcvr
1296  CodeEmitInfo* info = NULL;
1297  if (x->needs_null_check()) {
1298    info = state_for(x);
1299  }
1300
1301  // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1302  // meaning of these two is mixed up (see JDK-8026837).
1303  __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1304  __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1305}
1306
1307// java.lang.Class::isPrimitive()
1308void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1309  assert(x->number_of_arguments() == 1, "wrong type");
1310
1311  LIRItem rcvr(x->argument_at(0), this);
1312  rcvr.load_item();
1313  LIR_Opr temp = new_register(T_METADATA);
1314  LIR_Opr result = rlock_result(x);
1315
1316  CodeEmitInfo* info = NULL;
1317  if (x->needs_null_check()) {
1318    info = state_for(x);
1319  }
1320
1321  __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1322  __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1323  __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1324}
1325
1326
1327// Example: Thread.currentThread()
1328void LIRGenerator::do_currentThread(Intrinsic* x) {
1329  assert(x->number_of_arguments() == 0, "wrong type");
1330  LIR_Opr reg = rlock_result(x);
1331  __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1332}
1333
1334
1335void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1336  assert(x->number_of_arguments() == 1, "wrong type");
1337  LIRItem receiver(x->argument_at(0), this);
1338
1339  receiver.load_item();
1340  BasicTypeList signature;
1341  signature.append(T_OBJECT); // receiver
1342  LIR_OprList* args = new LIR_OprList();
1343  args->append(receiver.result());
1344  CodeEmitInfo* info = state_for(x, x->state());
1345  call_runtime(&signature, args,
1346               CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1347               voidType, info);
1348
1349  set_no_result(x);
1350}
1351
1352
1353//------------------------local access--------------------------------------
1354
1355LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1356  if (x->operand()->is_illegal()) {
1357    Constant* c = x->as_Constant();
1358    if (c != NULL) {
1359      x->set_operand(LIR_OprFact::value_type(c->type()));
1360    } else {
1361      assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1362      // allocate a virtual register for this local or phi
1363      x->set_operand(rlock(x));
1364      _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1365    }
1366  }
1367  return x->operand();
1368}
1369
1370
1371Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1372  if (opr->is_virtual()) {
1373    return instruction_for_vreg(opr->vreg_number());
1374  }
1375  return NULL;
1376}
1377
1378
1379Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1380  if (reg_num < _instruction_for_operand.length()) {
1381    return _instruction_for_operand.at(reg_num);
1382  }
1383  return NULL;
1384}
1385
1386
1387void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1388  if (_vreg_flags.size_in_bits() == 0) {
1389    BitMap2D temp(100, num_vreg_flags);
1390    temp.clear();
1391    _vreg_flags = temp;
1392  }
1393  _vreg_flags.at_put_grow(vreg_num, f, true);
1394}
1395
1396bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1397  if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1398    return false;
1399  }
1400  return _vreg_flags.at(vreg_num, f);
1401}
1402
1403
1404// Block local constant handling.  This code is useful for keeping
1405// unpinned constants and constants which aren't exposed in the IR in
1406// registers.  Unpinned Constant instructions have their operands
1407// cleared when the block is finished so that other blocks can't end
1408// up referring to their registers.
1409
1410LIR_Opr LIRGenerator::load_constant(Constant* x) {
1411  assert(!x->is_pinned(), "only for unpinned constants");
1412  _unpinned_constants.append(x);
1413  return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1414}
1415
1416
1417LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1418  BasicType t = c->type();
1419  for (int i = 0; i < _constants.length(); i++) {
1420    LIR_Const* other = _constants.at(i);
1421    if (t == other->type()) {
1422      switch (t) {
1423      case T_INT:
1424      case T_FLOAT:
1425        if (c->as_jint_bits() != other->as_jint_bits()) continue;
1426        break;
1427      case T_LONG:
1428      case T_DOUBLE:
1429        if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1430        if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1431        break;
1432      case T_OBJECT:
1433        if (c->as_jobject() != other->as_jobject()) continue;
1434        break;
1435      }
1436      return _reg_for_constants.at(i);
1437    }
1438  }
1439
1440  LIR_Opr result = new_register(t);
1441  __ move((LIR_Opr)c, result);
1442  _constants.append(c);
1443  _reg_for_constants.append(result);
1444  return result;
1445}
1446
1447// Various barriers
1448
1449void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1450                               bool do_load, bool patch, CodeEmitInfo* info) {
1451  // Do the pre-write barrier, if any.
1452  switch (_bs->kind()) {
1453#if INCLUDE_ALL_GCS
1454    case BarrierSet::G1SATBCTLogging:
1455      G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1456      break;
1457#endif // INCLUDE_ALL_GCS
1458    case BarrierSet::CardTableForRS:
1459    case BarrierSet::CardTableExtension:
1460      // No pre barriers
1461      break;
1462    case BarrierSet::ModRef:
1463      // No pre barriers
1464      break;
1465    default      :
1466      ShouldNotReachHere();
1467
1468  }
1469}
1470
1471void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1472  switch (_bs->kind()) {
1473#if INCLUDE_ALL_GCS
1474    case BarrierSet::G1SATBCTLogging:
1475      G1SATBCardTableModRef_post_barrier(addr,  new_val);
1476      break;
1477#endif // INCLUDE_ALL_GCS
1478    case BarrierSet::CardTableForRS:
1479    case BarrierSet::CardTableExtension:
1480      CardTableModRef_post_barrier(addr,  new_val);
1481      break;
1482    case BarrierSet::ModRef:
1483      // No post barriers
1484      break;
1485    default      :
1486      ShouldNotReachHere();
1487    }
1488}
1489
1490////////////////////////////////////////////////////////////////////////
1491#if INCLUDE_ALL_GCS
1492
1493void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1494                                                     bool do_load, bool patch, CodeEmitInfo* info) {
1495  // First we test whether marking is in progress.
1496  BasicType flag_type;
1497  if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1498    flag_type = T_INT;
1499  } else {
1500    guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1501              "Assumption");
1502    // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1503    // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1504    flag_type = T_BOOLEAN;
1505  }
1506  LIR_Opr thrd = getThreadPointer();
1507  LIR_Address* mark_active_flag_addr =
1508    new LIR_Address(thrd,
1509                    in_bytes(JavaThread::satb_mark_queue_offset() +
1510                             SATBMarkQueue::byte_offset_of_active()),
1511                    flag_type);
1512  // Read the marking-in-progress flag.
1513  LIR_Opr flag_val = new_register(T_INT);
1514  __ load(mark_active_flag_addr, flag_val);
1515  __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1516
1517  LIR_PatchCode pre_val_patch_code = lir_patch_none;
1518
1519  CodeStub* slow;
1520
1521  if (do_load) {
1522    assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1523    assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1524
1525    if (patch)
1526      pre_val_patch_code = lir_patch_normal;
1527
1528    pre_val = new_register(T_OBJECT);
1529
1530    if (!addr_opr->is_address()) {
1531      assert(addr_opr->is_register(), "must be");
1532      addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1533    }
1534    slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1535  } else {
1536    assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1537    assert(pre_val->is_register(), "must be");
1538    assert(pre_val->type() == T_OBJECT, "must be an object");
1539    assert(info == NULL, "sanity");
1540
1541    slow = new G1PreBarrierStub(pre_val);
1542  }
1543
1544  __ branch(lir_cond_notEqual, T_INT, slow);
1545  __ branch_destination(slow->continuation());
1546}
1547
1548void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1549  // If the "new_val" is a constant NULL, no barrier is necessary.
1550  if (new_val->is_constant() &&
1551      new_val->as_constant_ptr()->as_jobject() == NULL) return;
1552
1553  if (!new_val->is_register()) {
1554    LIR_Opr new_val_reg = new_register(T_OBJECT);
1555    if (new_val->is_constant()) {
1556      __ move(new_val, new_val_reg);
1557    } else {
1558      __ leal(new_val, new_val_reg);
1559    }
1560    new_val = new_val_reg;
1561  }
1562  assert(new_val->is_register(), "must be a register at this point");
1563
1564  if (addr->is_address()) {
1565    LIR_Address* address = addr->as_address_ptr();
1566    LIR_Opr ptr = new_pointer_register();
1567    if (!address->index()->is_valid() && address->disp() == 0) {
1568      __ move(address->base(), ptr);
1569    } else {
1570      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1571      __ leal(addr, ptr);
1572    }
1573    addr = ptr;
1574  }
1575  assert(addr->is_register(), "must be a register at this point");
1576
1577  LIR_Opr xor_res = new_pointer_register();
1578  LIR_Opr xor_shift_res = new_pointer_register();
1579  if (TwoOperandLIRForm ) {
1580    __ move(addr, xor_res);
1581    __ logical_xor(xor_res, new_val, xor_res);
1582    __ move(xor_res, xor_shift_res);
1583    __ unsigned_shift_right(xor_shift_res,
1584                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1585                            xor_shift_res,
1586                            LIR_OprDesc::illegalOpr());
1587  } else {
1588    __ logical_xor(addr, new_val, xor_res);
1589    __ unsigned_shift_right(xor_res,
1590                            LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1591                            xor_shift_res,
1592                            LIR_OprDesc::illegalOpr());
1593  }
1594
1595  if (!new_val->is_register()) {
1596    LIR_Opr new_val_reg = new_register(T_OBJECT);
1597    __ leal(new_val, new_val_reg);
1598    new_val = new_val_reg;
1599  }
1600  assert(new_val->is_register(), "must be a register at this point");
1601
1602  __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1603
1604  CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1605  __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1606  __ branch_destination(slow->continuation());
1607}
1608
1609#endif // INCLUDE_ALL_GCS
1610////////////////////////////////////////////////////////////////////////
1611
1612void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1613  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1614  assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1615  LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1616  if (addr->is_address()) {
1617    LIR_Address* address = addr->as_address_ptr();
1618    // ptr cannot be an object because we use this barrier for array card marks
1619    // and addr can point in the middle of an array.
1620    LIR_Opr ptr = new_pointer_register();
1621    if (!address->index()->is_valid() && address->disp() == 0) {
1622      __ move(address->base(), ptr);
1623    } else {
1624      assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1625      __ leal(addr, ptr);
1626    }
1627    addr = ptr;
1628  }
1629  assert(addr->is_register(), "must be a register at this point");
1630
1631#ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1632  CardTableModRef_post_barrier_helper(addr, card_table_base);
1633#else
1634  LIR_Opr tmp = new_pointer_register();
1635  if (TwoOperandLIRForm) {
1636    __ move(addr, tmp);
1637    __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1638  } else {
1639    __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1640  }
1641
1642  LIR_Address* card_addr;
1643  if (can_inline_as_constant(card_table_base)) {
1644    card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1645  } else {
1646    card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1647  }
1648
1649  LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1650  if (UseCondCardMark) {
1651    LIR_Opr cur_value = new_register(T_INT);
1652    if (UseConcMarkSweepGC) {
1653      __ membar_storeload();
1654    }
1655    __ move(card_addr, cur_value);
1656
1657    LabelObj* L_already_dirty = new LabelObj();
1658    __ cmp(lir_cond_equal, cur_value, dirty);
1659    __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1660    __ move(dirty, card_addr);
1661    __ branch_destination(L_already_dirty->label());
1662  } else {
1663    if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1664      __ membar_storestore();
1665    }
1666    __ move(dirty, card_addr);
1667  }
1668#endif
1669}
1670
1671
1672//------------------------field access--------------------------------------
1673
1674// Comment copied form templateTable_i486.cpp
1675// ----------------------------------------------------------------------------
1676// Volatile variables demand their effects be made known to all CPU's in
1677// order.  Store buffers on most chips allow reads & writes to reorder; the
1678// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1679// memory barrier (i.e., it's not sufficient that the interpreter does not
1680// reorder volatile references, the hardware also must not reorder them).
1681//
1682// According to the new Java Memory Model (JMM):
1683// (1) All volatiles are serialized wrt to each other.
1684// ALSO reads & writes act as aquire & release, so:
1685// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1686// the read float up to before the read.  It's OK for non-volatile memory refs
1687// that happen before the volatile read to float down below it.
1688// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1689// that happen BEFORE the write float down to after the write.  It's OK for
1690// non-volatile memory refs that happen after the volatile write to float up
1691// before it.
1692//
1693// We only put in barriers around volatile refs (they are expensive), not
1694// _between_ memory refs (that would require us to track the flavor of the
1695// previous memory refs).  Requirements (2) and (3) require some barriers
1696// before volatile stores and after volatile loads.  These nearly cover
1697// requirement (1) but miss the volatile-store-volatile-load case.  This final
1698// case is placed after volatile-stores although it could just as well go
1699// before volatile-loads.
1700
1701
1702void LIRGenerator::do_StoreField(StoreField* x) {
1703  bool needs_patching = x->needs_patching();
1704  bool is_volatile = x->field()->is_volatile();
1705  BasicType field_type = x->field_type();
1706  bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1707
1708  CodeEmitInfo* info = NULL;
1709  if (needs_patching) {
1710    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1711    info = state_for(x, x->state_before());
1712  } else if (x->needs_null_check()) {
1713    NullCheck* nc = x->explicit_null_check();
1714    if (nc == NULL) {
1715      info = state_for(x);
1716    } else {
1717      info = state_for(nc);
1718    }
1719  }
1720
1721
1722  LIRItem object(x->obj(), this);
1723  LIRItem value(x->value(),  this);
1724
1725  object.load_item();
1726
1727  if (is_volatile || needs_patching) {
1728    // load item if field is volatile (fewer special cases for volatiles)
1729    // load item if field not initialized
1730    // load item if field not constant
1731    // because of code patching we cannot inline constants
1732    if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1733      value.load_byte_item();
1734    } else  {
1735      value.load_item();
1736    }
1737  } else {
1738    value.load_for_store(field_type);
1739  }
1740
1741  set_no_result(x);
1742
1743#ifndef PRODUCT
1744  if (PrintNotLoaded && needs_patching) {
1745    tty->print_cr("   ###class not loaded at store_%s bci %d",
1746                  x->is_static() ?  "static" : "field", x->printable_bci());
1747  }
1748#endif
1749
1750  if (x->needs_null_check() &&
1751      (needs_patching ||
1752       MacroAssembler::needs_explicit_null_check(x->offset()))) {
1753    // emit an explicit null check because the offset is too large
1754    __ null_check(object.result(), new CodeEmitInfo(info));
1755  }
1756
1757  LIR_Address* address;
1758  if (needs_patching) {
1759    // we need to patch the offset in the instruction so don't allow
1760    // generate_address to try to be smart about emitting the -1.
1761    // Otherwise the patching code won't know how to find the
1762    // instruction to patch.
1763    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1764  } else {
1765    address = generate_address(object.result(), x->offset(), field_type);
1766  }
1767
1768  if (is_volatile && os::is_MP()) {
1769    __ membar_release();
1770  }
1771
1772  if (is_oop) {
1773    // Do the pre-write barrier, if any.
1774    pre_barrier(LIR_OprFact::address(address),
1775                LIR_OprFact::illegalOpr /* pre_val */,
1776                true /* do_load*/,
1777                needs_patching,
1778                (info ? new CodeEmitInfo(info) : NULL));
1779  }
1780
1781  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1782  if (needs_atomic_access && !needs_patching) {
1783    volatile_field_store(value.result(), address, info);
1784  } else {
1785    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1786    __ store(value.result(), address, info, patch_code);
1787  }
1788
1789  if (is_oop) {
1790    // Store to object so mark the card of the header
1791    post_barrier(object.result(), value.result());
1792  }
1793
1794  if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1795    __ membar();
1796  }
1797}
1798
1799
1800void LIRGenerator::do_LoadField(LoadField* x) {
1801  bool needs_patching = x->needs_patching();
1802  bool is_volatile = x->field()->is_volatile();
1803  BasicType field_type = x->field_type();
1804
1805  CodeEmitInfo* info = NULL;
1806  if (needs_patching) {
1807    assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1808    info = state_for(x, x->state_before());
1809  } else if (x->needs_null_check()) {
1810    NullCheck* nc = x->explicit_null_check();
1811    if (nc == NULL) {
1812      info = state_for(x);
1813    } else {
1814      info = state_for(nc);
1815    }
1816  }
1817
1818  LIRItem object(x->obj(), this);
1819
1820  object.load_item();
1821
1822#ifndef PRODUCT
1823  if (PrintNotLoaded && needs_patching) {
1824    tty->print_cr("   ###class not loaded at load_%s bci %d",
1825                  x->is_static() ?  "static" : "field", x->printable_bci());
1826  }
1827#endif
1828
1829  bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1830  if (x->needs_null_check() &&
1831      (needs_patching ||
1832       MacroAssembler::needs_explicit_null_check(x->offset()) ||
1833       stress_deopt)) {
1834    LIR_Opr obj = object.result();
1835    if (stress_deopt) {
1836      obj = new_register(T_OBJECT);
1837      __ move(LIR_OprFact::oopConst(NULL), obj);
1838    }
1839    // emit an explicit null check because the offset is too large
1840    __ null_check(obj, new CodeEmitInfo(info));
1841  }
1842
1843  LIR_Opr reg = rlock_result(x, field_type);
1844  LIR_Address* address;
1845  if (needs_patching) {
1846    // we need to patch the offset in the instruction so don't allow
1847    // generate_address to try to be smart about emitting the -1.
1848    // Otherwise the patching code won't know how to find the
1849    // instruction to patch.
1850    address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1851  } else {
1852    address = generate_address(object.result(), x->offset(), field_type);
1853  }
1854
1855  if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1856    __ membar();
1857  }
1858
1859  bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1860  if (needs_atomic_access && !needs_patching) {
1861    volatile_field_load(address, reg, info);
1862  } else {
1863    LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1864    __ load(address, reg, info, patch_code);
1865  }
1866
1867  if (is_volatile && os::is_MP()) {
1868    __ membar_acquire();
1869  }
1870}
1871
1872
1873//------------------------java.nio.Buffer.checkIndex------------------------
1874
1875// int java.nio.Buffer.checkIndex(int)
1876void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1877  // NOTE: by the time we are in checkIndex() we are guaranteed that
1878  // the buffer is non-null (because checkIndex is package-private and
1879  // only called from within other methods in the buffer).
1880  assert(x->number_of_arguments() == 2, "wrong type");
1881  LIRItem buf  (x->argument_at(0), this);
1882  LIRItem index(x->argument_at(1), this);
1883  buf.load_item();
1884  index.load_item();
1885
1886  LIR_Opr result = rlock_result(x);
1887  if (GenerateRangeChecks) {
1888    CodeEmitInfo* info = state_for(x);
1889    CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1890    if (index.result()->is_constant()) {
1891      cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1892      __ branch(lir_cond_belowEqual, T_INT, stub);
1893    } else {
1894      cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1895                  java_nio_Buffer::limit_offset(), T_INT, info);
1896      __ branch(lir_cond_aboveEqual, T_INT, stub);
1897    }
1898    __ move(index.result(), result);
1899  } else {
1900    // Just load the index into the result register
1901    __ move(index.result(), result);
1902  }
1903}
1904
1905
1906//------------------------array access--------------------------------------
1907
1908
1909void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1910  LIRItem array(x->array(), this);
1911  array.load_item();
1912  LIR_Opr reg = rlock_result(x);
1913
1914  CodeEmitInfo* info = NULL;
1915  if (x->needs_null_check()) {
1916    NullCheck* nc = x->explicit_null_check();
1917    if (nc == NULL) {
1918      info = state_for(x);
1919    } else {
1920      info = state_for(nc);
1921    }
1922    if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1923      LIR_Opr obj = new_register(T_OBJECT);
1924      __ move(LIR_OprFact::oopConst(NULL), obj);
1925      __ null_check(obj, new CodeEmitInfo(info));
1926    }
1927  }
1928  __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1929}
1930
1931
1932void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1933  bool use_length = x->length() != NULL;
1934  LIRItem array(x->array(), this);
1935  LIRItem index(x->index(), this);
1936  LIRItem length(this);
1937  bool needs_range_check = x->compute_needs_range_check();
1938
1939  if (use_length && needs_range_check) {
1940    length.set_instruction(x->length());
1941    length.load_item();
1942  }
1943
1944  array.load_item();
1945  if (index.is_constant() && can_inline_as_constant(x->index())) {
1946    // let it be a constant
1947    index.dont_load_item();
1948  } else {
1949    index.load_item();
1950  }
1951
1952  CodeEmitInfo* range_check_info = state_for(x);
1953  CodeEmitInfo* null_check_info = NULL;
1954  if (x->needs_null_check()) {
1955    NullCheck* nc = x->explicit_null_check();
1956    if (nc != NULL) {
1957      null_check_info = state_for(nc);
1958    } else {
1959      null_check_info = range_check_info;
1960    }
1961    if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1962      LIR_Opr obj = new_register(T_OBJECT);
1963      __ move(LIR_OprFact::oopConst(NULL), obj);
1964      __ null_check(obj, new CodeEmitInfo(null_check_info));
1965    }
1966  }
1967
1968  // emit array address setup early so it schedules better
1969  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1970
1971  if (GenerateRangeChecks && needs_range_check) {
1972    if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1973      __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1974    } else if (use_length) {
1975      // TODO: use a (modified) version of array_range_check that does not require a
1976      //       constant length to be loaded to a register
1977      __ cmp(lir_cond_belowEqual, length.result(), index.result());
1978      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1979    } else {
1980      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1981      // The range check performs the null check, so clear it out for the load
1982      null_check_info = NULL;
1983    }
1984  }
1985
1986  __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1987}
1988
1989
1990void LIRGenerator::do_NullCheck(NullCheck* x) {
1991  if (x->can_trap()) {
1992    LIRItem value(x->obj(), this);
1993    value.load_item();
1994    CodeEmitInfo* info = state_for(x);
1995    __ null_check(value.result(), info);
1996  }
1997}
1998
1999
2000void LIRGenerator::do_TypeCast(TypeCast* x) {
2001  LIRItem value(x->obj(), this);
2002  value.load_item();
2003  // the result is the same as from the node we are casting
2004  set_result(x, value.result());
2005}
2006
2007
2008void LIRGenerator::do_Throw(Throw* x) {
2009  LIRItem exception(x->exception(), this);
2010  exception.load_item();
2011  set_no_result(x);
2012  LIR_Opr exception_opr = exception.result();
2013  CodeEmitInfo* info = state_for(x, x->state());
2014
2015#ifndef PRODUCT
2016  if (PrintC1Statistics) {
2017    increment_counter(Runtime1::throw_count_address(), T_INT);
2018  }
2019#endif
2020
2021  // check if the instruction has an xhandler in any of the nested scopes
2022  bool unwind = false;
2023  if (info->exception_handlers()->length() == 0) {
2024    // this throw is not inside an xhandler
2025    unwind = true;
2026  } else {
2027    // get some idea of the throw type
2028    bool type_is_exact = true;
2029    ciType* throw_type = x->exception()->exact_type();
2030    if (throw_type == NULL) {
2031      type_is_exact = false;
2032      throw_type = x->exception()->declared_type();
2033    }
2034    if (throw_type != NULL && throw_type->is_instance_klass()) {
2035      ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2036      unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2037    }
2038  }
2039
2040  // do null check before moving exception oop into fixed register
2041  // to avoid a fixed interval with an oop during the null check.
2042  // Use a copy of the CodeEmitInfo because debug information is
2043  // different for null_check and throw.
2044  if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2045    // if the exception object wasn't created using new then it might be null.
2046    __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2047  }
2048
2049  if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2050    // we need to go through the exception lookup path to get JVMTI
2051    // notification done
2052    unwind = false;
2053  }
2054
2055  // move exception oop into fixed register
2056  __ move(exception_opr, exceptionOopOpr());
2057
2058  if (unwind) {
2059    __ unwind_exception(exceptionOopOpr());
2060  } else {
2061    __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2062  }
2063}
2064
2065
2066void LIRGenerator::do_RoundFP(RoundFP* x) {
2067  LIRItem input(x->input(), this);
2068  input.load_item();
2069  LIR_Opr input_opr = input.result();
2070  assert(input_opr->is_register(), "why round if value is not in a register?");
2071  assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2072  if (input_opr->is_single_fpu()) {
2073    set_result(x, round_item(input_opr)); // This code path not currently taken
2074  } else {
2075    LIR_Opr result = new_register(T_DOUBLE);
2076    set_vreg_flag(result, must_start_in_memory);
2077    __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2078    set_result(x, result);
2079  }
2080}
2081
2082// Here UnsafeGetRaw may have x->base() and x->index() be int or long
2083// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2084void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2085  LIRItem base(x->base(), this);
2086  LIRItem idx(this);
2087
2088  base.load_item();
2089  if (x->has_index()) {
2090    idx.set_instruction(x->index());
2091    idx.load_nonconstant();
2092  }
2093
2094  LIR_Opr reg = rlock_result(x, x->basic_type());
2095
2096  int   log2_scale = 0;
2097  if (x->has_index()) {
2098    log2_scale = x->log2_scale();
2099  }
2100
2101  assert(!x->has_index() || idx.value() == x->index(), "should match");
2102
2103  LIR_Opr base_op = base.result();
2104  LIR_Opr index_op = idx.result();
2105#ifndef _LP64
2106  if (base_op->type() == T_LONG) {
2107    base_op = new_register(T_INT);
2108    __ convert(Bytecodes::_l2i, base.result(), base_op);
2109  }
2110  if (x->has_index()) {
2111    if (index_op->type() == T_LONG) {
2112      LIR_Opr long_index_op = index_op;
2113      if (index_op->is_constant()) {
2114        long_index_op = new_register(T_LONG);
2115        __ move(index_op, long_index_op);
2116      }
2117      index_op = new_register(T_INT);
2118      __ convert(Bytecodes::_l2i, long_index_op, index_op);
2119    } else {
2120      assert(x->index()->type()->tag() == intTag, "must be");
2121    }
2122  }
2123  // At this point base and index should be all ints.
2124  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2125  assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2126#else
2127  if (x->has_index()) {
2128    if (index_op->type() == T_INT) {
2129      if (!index_op->is_constant()) {
2130        index_op = new_register(T_LONG);
2131        __ convert(Bytecodes::_i2l, idx.result(), index_op);
2132      }
2133    } else {
2134      assert(index_op->type() == T_LONG, "must be");
2135      if (index_op->is_constant()) {
2136        index_op = new_register(T_LONG);
2137        __ move(idx.result(), index_op);
2138      }
2139    }
2140  }
2141  // At this point base is a long non-constant
2142  // Index is a long register or a int constant.
2143  // We allow the constant to stay an int because that would allow us a more compact encoding by
2144  // embedding an immediate offset in the address expression. If we have a long constant, we have to
2145  // move it into a register first.
2146  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2147  assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2148                            (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2149#endif
2150
2151  BasicType dst_type = x->basic_type();
2152
2153  LIR_Address* addr;
2154  if (index_op->is_constant()) {
2155    assert(log2_scale == 0, "must not have a scale");
2156    assert(index_op->type() == T_INT, "only int constants supported");
2157    addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2158  } else {
2159#ifdef X86
2160    addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2161#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2162    addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2163#else
2164    if (index_op->is_illegal() || log2_scale == 0) {
2165      addr = new LIR_Address(base_op, index_op, dst_type);
2166    } else {
2167      LIR_Opr tmp = new_pointer_register();
2168      __ shift_left(index_op, log2_scale, tmp);
2169      addr = new LIR_Address(base_op, tmp, dst_type);
2170    }
2171#endif
2172  }
2173
2174  if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2175    __ unaligned_move(addr, reg);
2176  } else {
2177    if (dst_type == T_OBJECT && x->is_wide()) {
2178      __ move_wide(addr, reg);
2179    } else {
2180      __ move(addr, reg);
2181    }
2182  }
2183}
2184
2185
2186void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2187  int  log2_scale = 0;
2188  BasicType type = x->basic_type();
2189
2190  if (x->has_index()) {
2191    log2_scale = x->log2_scale();
2192  }
2193
2194  LIRItem base(x->base(), this);
2195  LIRItem value(x->value(), this);
2196  LIRItem idx(this);
2197
2198  base.load_item();
2199  if (x->has_index()) {
2200    idx.set_instruction(x->index());
2201    idx.load_item();
2202  }
2203
2204  if (type == T_BYTE || type == T_BOOLEAN) {
2205    value.load_byte_item();
2206  } else {
2207    value.load_item();
2208  }
2209
2210  set_no_result(x);
2211
2212  LIR_Opr base_op = base.result();
2213  LIR_Opr index_op = idx.result();
2214
2215#ifdef GENERATE_ADDRESS_IS_PREFERRED
2216  LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2217#else
2218#ifndef _LP64
2219  if (base_op->type() == T_LONG) {
2220    base_op = new_register(T_INT);
2221    __ convert(Bytecodes::_l2i, base.result(), base_op);
2222  }
2223  if (x->has_index()) {
2224    if (index_op->type() == T_LONG) {
2225      index_op = new_register(T_INT);
2226      __ convert(Bytecodes::_l2i, idx.result(), index_op);
2227    }
2228  }
2229  // At this point base and index should be all ints and not constants
2230  assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2231  assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2232#else
2233  if (x->has_index()) {
2234    if (index_op->type() == T_INT) {
2235      index_op = new_register(T_LONG);
2236      __ convert(Bytecodes::_i2l, idx.result(), index_op);
2237    }
2238  }
2239  // At this point base and index are long and non-constant
2240  assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2241  assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2242#endif
2243
2244  if (log2_scale != 0) {
2245    // temporary fix (platform dependent code without shift on Intel would be better)
2246    // TODO: ARM also allows embedded shift in the address
2247    LIR_Opr tmp = new_pointer_register();
2248    if (TwoOperandLIRForm) {
2249      __ move(index_op, tmp);
2250      index_op = tmp;
2251    }
2252    __ shift_left(index_op, log2_scale, tmp);
2253    if (!TwoOperandLIRForm) {
2254      index_op = tmp;
2255    }
2256  }
2257
2258  LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2259#endif // !GENERATE_ADDRESS_IS_PREFERRED
2260  __ move(value.result(), addr);
2261}
2262
2263
2264void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2265  BasicType type = x->basic_type();
2266  LIRItem src(x->object(), this);
2267  LIRItem off(x->offset(), this);
2268
2269  off.load_item();
2270  src.load_item();
2271
2272  LIR_Opr value = rlock_result(x, x->basic_type());
2273
2274  if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2275    __ membar();
2276  }
2277
2278  get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2279
2280#if INCLUDE_ALL_GCS
2281  // We might be reading the value of the referent field of a
2282  // Reference object in order to attach it back to the live
2283  // object graph. If G1 is enabled then we need to record
2284  // the value that is being returned in an SATB log buffer.
2285  //
2286  // We need to generate code similar to the following...
2287  //
2288  // if (offset == java_lang_ref_Reference::referent_offset) {
2289  //   if (src != NULL) {
2290  //     if (klass(src)->reference_type() != REF_NONE) {
2291  //       pre_barrier(..., value, ...);
2292  //     }
2293  //   }
2294  // }
2295
2296  if (UseG1GC && type == T_OBJECT) {
2297    bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2298    bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2299    bool gen_source_check = true;    // Assume we need to check the src object for null.
2300    bool gen_type_check = true;      // Assume we need to check the reference_type.
2301
2302    if (off.is_constant()) {
2303      jlong off_con = (off.type()->is_int() ?
2304                        (jlong) off.get_jint_constant() :
2305                        off.get_jlong_constant());
2306
2307
2308      if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2309        // The constant offset is something other than referent_offset.
2310        // We can skip generating/checking the remaining guards and
2311        // skip generation of the code stub.
2312        gen_pre_barrier = false;
2313      } else {
2314        // The constant offset is the same as referent_offset -
2315        // we do not need to generate a runtime offset check.
2316        gen_offset_check = false;
2317      }
2318    }
2319
2320    // We don't need to generate stub if the source object is an array
2321    if (gen_pre_barrier && src.type()->is_array()) {
2322      gen_pre_barrier = false;
2323    }
2324
2325    if (gen_pre_barrier) {
2326      // We still need to continue with the checks.
2327      if (src.is_constant()) {
2328        ciObject* src_con = src.get_jobject_constant();
2329        guarantee(src_con != NULL, "no source constant");
2330
2331        if (src_con->is_null_object()) {
2332          // The constant src object is null - We can skip
2333          // generating the code stub.
2334          gen_pre_barrier = false;
2335        } else {
2336          // Non-null constant source object. We still have to generate
2337          // the slow stub - but we don't need to generate the runtime
2338          // null object check.
2339          gen_source_check = false;
2340        }
2341      }
2342    }
2343    if (gen_pre_barrier && !PatchALot) {
2344      // Can the klass of object be statically determined to be
2345      // a sub-class of Reference?
2346      ciType* type = src.value()->declared_type();
2347      if ((type != NULL) && type->is_loaded()) {
2348        if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2349          gen_type_check = false;
2350        } else if (type->is_klass() &&
2351                   !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2352          // Not Reference and not Object klass.
2353          gen_pre_barrier = false;
2354        }
2355      }
2356    }
2357
2358    if (gen_pre_barrier) {
2359      LabelObj* Lcont = new LabelObj();
2360
2361      // We can have generate one runtime check here. Let's start with
2362      // the offset check.
2363      if (gen_offset_check) {
2364        // if (offset != referent_offset) -> continue
2365        // If offset is an int then we can do the comparison with the
2366        // referent_offset constant; otherwise we need to move
2367        // referent_offset into a temporary register and generate
2368        // a reg-reg compare.
2369
2370        LIR_Opr referent_off;
2371
2372        if (off.type()->is_int()) {
2373          referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2374        } else {
2375          assert(off.type()->is_long(), "what else?");
2376          referent_off = new_register(T_LONG);
2377          __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2378        }
2379        __ cmp(lir_cond_notEqual, off.result(), referent_off);
2380        __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2381      }
2382      if (gen_source_check) {
2383        // offset is a const and equals referent offset
2384        // if (source == null) -> continue
2385        __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2386        __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2387      }
2388      LIR_Opr src_klass = new_register(T_OBJECT);
2389      if (gen_type_check) {
2390        // We have determined that offset == referent_offset && src != null.
2391        // if (src->_klass->_reference_type == REF_NONE) -> continue
2392        __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2393        LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2394        LIR_Opr reference_type = new_register(T_INT);
2395        __ move(reference_type_addr, reference_type);
2396        __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2397        __ branch(lir_cond_equal, T_INT, Lcont->label());
2398      }
2399      {
2400        // We have determined that src->_klass->_reference_type != REF_NONE
2401        // so register the value in the referent field with the pre-barrier.
2402        pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2403                    value  /* pre_val */,
2404                    false  /* do_load */,
2405                    false  /* patch */,
2406                    NULL   /* info */);
2407      }
2408      __ branch_destination(Lcont->label());
2409    }
2410  }
2411#endif // INCLUDE_ALL_GCS
2412
2413  if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2414}
2415
2416
2417void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2418  BasicType type = x->basic_type();
2419  LIRItem src(x->object(), this);
2420  LIRItem off(x->offset(), this);
2421  LIRItem data(x->value(), this);
2422
2423  src.load_item();
2424  if (type == T_BOOLEAN || type == T_BYTE) {
2425    data.load_byte_item();
2426  } else {
2427    data.load_item();
2428  }
2429  off.load_item();
2430
2431  set_no_result(x);
2432
2433  if (x->is_volatile() && os::is_MP()) __ membar_release();
2434  put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2435  if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2436}
2437
2438
2439void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2440  int lng = x->length();
2441
2442  for (int i = 0; i < lng; i++) {
2443    SwitchRange* one_range = x->at(i);
2444    int low_key = one_range->low_key();
2445    int high_key = one_range->high_key();
2446    BlockBegin* dest = one_range->sux();
2447    if (low_key == high_key) {
2448      __ cmp(lir_cond_equal, value, low_key);
2449      __ branch(lir_cond_equal, T_INT, dest);
2450    } else if (high_key - low_key == 1) {
2451      __ cmp(lir_cond_equal, value, low_key);
2452      __ branch(lir_cond_equal, T_INT, dest);
2453      __ cmp(lir_cond_equal, value, high_key);
2454      __ branch(lir_cond_equal, T_INT, dest);
2455    } else {
2456      LabelObj* L = new LabelObj();
2457      __ cmp(lir_cond_less, value, low_key);
2458      __ branch(lir_cond_less, T_INT, L->label());
2459      __ cmp(lir_cond_lessEqual, value, high_key);
2460      __ branch(lir_cond_lessEqual, T_INT, dest);
2461      __ branch_destination(L->label());
2462    }
2463  }
2464  __ jump(default_sux);
2465}
2466
2467
2468SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2469  SwitchRangeList* res = new SwitchRangeList();
2470  int len = x->length();
2471  if (len > 0) {
2472    BlockBegin* sux = x->sux_at(0);
2473    int key = x->lo_key();
2474    BlockBegin* default_sux = x->default_sux();
2475    SwitchRange* range = new SwitchRange(key, sux);
2476    for (int i = 0; i < len; i++, key++) {
2477      BlockBegin* new_sux = x->sux_at(i);
2478      if (sux == new_sux) {
2479        // still in same range
2480        range->set_high_key(key);
2481      } else {
2482        // skip tests which explicitly dispatch to the default
2483        if (sux != default_sux) {
2484          res->append(range);
2485        }
2486        range = new SwitchRange(key, new_sux);
2487      }
2488      sux = new_sux;
2489    }
2490    if (res->length() == 0 || res->last() != range)  res->append(range);
2491  }
2492  return res;
2493}
2494
2495
2496// we expect the keys to be sorted by increasing value
2497SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2498  SwitchRangeList* res = new SwitchRangeList();
2499  int len = x->length();
2500  if (len > 0) {
2501    BlockBegin* default_sux = x->default_sux();
2502    int key = x->key_at(0);
2503    BlockBegin* sux = x->sux_at(0);
2504    SwitchRange* range = new SwitchRange(key, sux);
2505    for (int i = 1; i < len; i++) {
2506      int new_key = x->key_at(i);
2507      BlockBegin* new_sux = x->sux_at(i);
2508      if (key+1 == new_key && sux == new_sux) {
2509        // still in same range
2510        range->set_high_key(new_key);
2511      } else {
2512        // skip tests which explicitly dispatch to the default
2513        if (range->sux() != default_sux) {
2514          res->append(range);
2515        }
2516        range = new SwitchRange(new_key, new_sux);
2517      }
2518      key = new_key;
2519      sux = new_sux;
2520    }
2521    if (res->length() == 0 || res->last() != range)  res->append(range);
2522  }
2523  return res;
2524}
2525
2526
2527void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2528  LIRItem tag(x->tag(), this);
2529  tag.load_item();
2530  set_no_result(x);
2531
2532  if (x->is_safepoint()) {
2533    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2534  }
2535
2536  // move values into phi locations
2537  move_to_phi(x->state());
2538
2539  int lo_key = x->lo_key();
2540  int hi_key = x->hi_key();
2541  int len = x->length();
2542  LIR_Opr value = tag.result();
2543  if (UseTableRanges) {
2544    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2545  } else {
2546    for (int i = 0; i < len; i++) {
2547      __ cmp(lir_cond_equal, value, i + lo_key);
2548      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2549    }
2550    __ jump(x->default_sux());
2551  }
2552}
2553
2554
2555void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2556  LIRItem tag(x->tag(), this);
2557  tag.load_item();
2558  set_no_result(x);
2559
2560  if (x->is_safepoint()) {
2561    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2562  }
2563
2564  // move values into phi locations
2565  move_to_phi(x->state());
2566
2567  LIR_Opr value = tag.result();
2568  if (UseTableRanges) {
2569    do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2570  } else {
2571    int len = x->length();
2572    for (int i = 0; i < len; i++) {
2573      __ cmp(lir_cond_equal, value, x->key_at(i));
2574      __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2575    }
2576    __ jump(x->default_sux());
2577  }
2578}
2579
2580
2581void LIRGenerator::do_Goto(Goto* x) {
2582  set_no_result(x);
2583
2584  if (block()->next()->as_OsrEntry()) {
2585    // need to free up storage used for OSR entry point
2586    LIR_Opr osrBuffer = block()->next()->operand();
2587    BasicTypeList signature;
2588    signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2589    CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2590    __ move(osrBuffer, cc->args()->at(0));
2591    __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2592                         getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2593  }
2594
2595  if (x->is_safepoint()) {
2596    ValueStack* state = x->state_before() ? x->state_before() : x->state();
2597
2598    // increment backedge counter if needed
2599    CodeEmitInfo* info = state_for(x, state);
2600    increment_backedge_counter(info, x->profiled_bci());
2601    CodeEmitInfo* safepoint_info = state_for(x, state);
2602    __ safepoint(safepoint_poll_register(), safepoint_info);
2603  }
2604
2605  // Gotos can be folded Ifs, handle this case.
2606  if (x->should_profile()) {
2607    ciMethod* method = x->profiled_method();
2608    assert(method != NULL, "method should be set if branch is profiled");
2609    ciMethodData* md = method->method_data_or_null();
2610    assert(md != NULL, "Sanity");
2611    ciProfileData* data = md->bci_to_data(x->profiled_bci());
2612    assert(data != NULL, "must have profiling data");
2613    int offset;
2614    if (x->direction() == Goto::taken) {
2615      assert(data->is_BranchData(), "need BranchData for two-way branches");
2616      offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2617    } else if (x->direction() == Goto::not_taken) {
2618      assert(data->is_BranchData(), "need BranchData for two-way branches");
2619      offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2620    } else {
2621      assert(data->is_JumpData(), "need JumpData for branches");
2622      offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2623    }
2624    LIR_Opr md_reg = new_register(T_METADATA);
2625    __ metadata2reg(md->constant_encoding(), md_reg);
2626
2627    increment_counter(new LIR_Address(md_reg, offset,
2628                                      NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2629  }
2630
2631  // emit phi-instruction move after safepoint since this simplifies
2632  // describing the state as the safepoint.
2633  move_to_phi(x->state());
2634
2635  __ jump(x->default_sux());
2636}
2637
2638/**
2639 * Emit profiling code if needed for arguments, parameters, return value types
2640 *
2641 * @param md                    MDO the code will update at runtime
2642 * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2643 * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2644 * @param profiled_k            current profile
2645 * @param obj                   IR node for the object to be profiled
2646 * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2647 *                              Set once we find an update to make and use for next ones.
2648 * @param not_null              true if we know obj cannot be null
2649 * @param signature_at_call_k   signature at call for obj
2650 * @param callee_signature_k    signature of callee for obj
2651 *                              at call and callee signatures differ at method handle call
2652 * @return                      the only klass we know will ever be seen at this profile point
2653 */
2654ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2655                                    Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2656                                    ciKlass* callee_signature_k) {
2657  ciKlass* result = NULL;
2658  bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2659  bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2660  // known not to be null or null bit already set and already set to
2661  // unknown: nothing we can do to improve profiling
2662  if (!do_null && !do_update) {
2663    return result;
2664  }
2665
2666  ciKlass* exact_klass = NULL;
2667  Compilation* comp = Compilation::current();
2668  if (do_update) {
2669    // try to find exact type, using CHA if possible, so that loading
2670    // the klass from the object can be avoided
2671    ciType* type = obj->exact_type();
2672    if (type == NULL) {
2673      type = obj->declared_type();
2674      type = comp->cha_exact_type(type);
2675    }
2676    assert(type == NULL || type->is_klass(), "type should be class");
2677    exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2678
2679    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2680  }
2681
2682  if (!do_null && !do_update) {
2683    return result;
2684  }
2685
2686  ciKlass* exact_signature_k = NULL;
2687  if (do_update) {
2688    // Is the type from the signature exact (the only one possible)?
2689    exact_signature_k = signature_at_call_k->exact_klass();
2690    if (exact_signature_k == NULL) {
2691      exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2692    } else {
2693      result = exact_signature_k;
2694      // Known statically. No need to emit any code: prevent
2695      // LIR_Assembler::emit_profile_type() from emitting useless code
2696      profiled_k = ciTypeEntries::with_status(result, profiled_k);
2697    }
2698    // exact_klass and exact_signature_k can be both non NULL but
2699    // different if exact_klass is loaded after the ciObject for
2700    // exact_signature_k is created.
2701    if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2702      // sometimes the type of the signature is better than the best type
2703      // the compiler has
2704      exact_klass = exact_signature_k;
2705    }
2706    if (callee_signature_k != NULL &&
2707        callee_signature_k != signature_at_call_k) {
2708      ciKlass* improved_klass = callee_signature_k->exact_klass();
2709      if (improved_klass == NULL) {
2710        improved_klass = comp->cha_exact_type(callee_signature_k);
2711      }
2712      if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2713        exact_klass = exact_signature_k;
2714      }
2715    }
2716    do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2717  }
2718
2719  if (!do_null && !do_update) {
2720    return result;
2721  }
2722
2723  if (mdp == LIR_OprFact::illegalOpr) {
2724    mdp = new_register(T_METADATA);
2725    __ metadata2reg(md->constant_encoding(), mdp);
2726    if (md_base_offset != 0) {
2727      LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2728      mdp = new_pointer_register();
2729      __ leal(LIR_OprFact::address(base_type_address), mdp);
2730    }
2731  }
2732  LIRItem value(obj, this);
2733  value.load_item();
2734  __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2735                  value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2736  return result;
2737}
2738
2739// profile parameters on entry to the root of the compilation
2740void LIRGenerator::profile_parameters(Base* x) {
2741  if (compilation()->profile_parameters()) {
2742    CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2743    ciMethodData* md = scope()->method()->method_data_or_null();
2744    assert(md != NULL, "Sanity");
2745
2746    if (md->parameters_type_data() != NULL) {
2747      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2748      ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2749      LIR_Opr mdp = LIR_OprFact::illegalOpr;
2750      for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2751        LIR_Opr src = args->at(i);
2752        assert(!src->is_illegal(), "check");
2753        BasicType t = src->type();
2754        if (t == T_OBJECT || t == T_ARRAY) {
2755          intptr_t profiled_k = parameters->type(j);
2756          Local* local = x->state()->local_at(java_index)->as_Local();
2757          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2758                                        in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2759                                        profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2760          // If the profile is known statically set it once for all and do not emit any code
2761          if (exact != NULL) {
2762            md->set_parameter_type(j, exact);
2763          }
2764          j++;
2765        }
2766        java_index += type2size[t];
2767      }
2768    }
2769  }
2770}
2771
2772void LIRGenerator::do_Base(Base* x) {
2773  __ std_entry(LIR_OprFact::illegalOpr);
2774  // Emit moves from physical registers / stack slots to virtual registers
2775  CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2776  IRScope* irScope = compilation()->hir()->top_scope();
2777  int java_index = 0;
2778  for (int i = 0; i < args->length(); i++) {
2779    LIR_Opr src = args->at(i);
2780    assert(!src->is_illegal(), "check");
2781    BasicType t = src->type();
2782
2783    // Types which are smaller than int are passed as int, so
2784    // correct the type which passed.
2785    switch (t) {
2786    case T_BYTE:
2787    case T_BOOLEAN:
2788    case T_SHORT:
2789    case T_CHAR:
2790      t = T_INT;
2791      break;
2792    }
2793
2794    LIR_Opr dest = new_register(t);
2795    __ move(src, dest);
2796
2797    // Assign new location to Local instruction for this local
2798    Local* local = x->state()->local_at(java_index)->as_Local();
2799    assert(local != NULL, "Locals for incoming arguments must have been created");
2800#ifndef __SOFTFP__
2801    // The java calling convention passes double as long and float as int.
2802    assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2803#endif // __SOFTFP__
2804    local->set_operand(dest);
2805    _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2806    java_index += type2size[t];
2807  }
2808
2809  if (compilation()->env()->dtrace_method_probes()) {
2810    BasicTypeList signature;
2811    signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2812    signature.append(T_METADATA); // Method*
2813    LIR_OprList* args = new LIR_OprList();
2814    args->append(getThreadPointer());
2815    LIR_Opr meth = new_register(T_METADATA);
2816    __ metadata2reg(method()->constant_encoding(), meth);
2817    args->append(meth);
2818    call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2819  }
2820
2821  if (method()->is_synchronized()) {
2822    LIR_Opr obj;
2823    if (method()->is_static()) {
2824      obj = new_register(T_OBJECT);
2825      __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2826    } else {
2827      Local* receiver = x->state()->local_at(0)->as_Local();
2828      assert(receiver != NULL, "must already exist");
2829      obj = receiver->operand();
2830    }
2831    assert(obj->is_valid(), "must be valid");
2832
2833    if (method()->is_synchronized() && GenerateSynchronizationCode) {
2834      LIR_Opr lock = syncLockOpr();
2835      __ load_stack_address_monitor(0, lock);
2836
2837      CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2838      CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2839
2840      // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2841      __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2842    }
2843  }
2844  if (compilation()->age_code()) {
2845    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2846    decrement_age(info);
2847  }
2848  // increment invocation counters if needed
2849  if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2850    profile_parameters(x);
2851    CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2852    increment_invocation_counter(info);
2853  }
2854
2855  // all blocks with a successor must end with an unconditional jump
2856  // to the successor even if they are consecutive
2857  __ jump(x->default_sux());
2858}
2859
2860
2861void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2862  // construct our frame and model the production of incoming pointer
2863  // to the OSR buffer.
2864  __ osr_entry(LIR_Assembler::osrBufferPointer());
2865  LIR_Opr result = rlock_result(x);
2866  __ move(LIR_Assembler::osrBufferPointer(), result);
2867}
2868
2869
2870void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2871  assert(args->length() == arg_list->length(),
2872         "args=%d, arg_list=%d", args->length(), arg_list->length());
2873  for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2874    LIRItem* param = args->at(i);
2875    LIR_Opr loc = arg_list->at(i);
2876    if (loc->is_register()) {
2877      param->load_item_force(loc);
2878    } else {
2879      LIR_Address* addr = loc->as_address_ptr();
2880      param->load_for_store(addr->type());
2881      if (addr->type() == T_OBJECT) {
2882        __ move_wide(param->result(), addr);
2883      } else
2884        if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2885          __ unaligned_move(param->result(), addr);
2886        } else {
2887          __ move(param->result(), addr);
2888        }
2889    }
2890  }
2891
2892  if (x->has_receiver()) {
2893    LIRItem* receiver = args->at(0);
2894    LIR_Opr loc = arg_list->at(0);
2895    if (loc->is_register()) {
2896      receiver->load_item_force(loc);
2897    } else {
2898      assert(loc->is_address(), "just checking");
2899      receiver->load_for_store(T_OBJECT);
2900      __ move_wide(receiver->result(), loc->as_address_ptr());
2901    }
2902  }
2903}
2904
2905
2906// Visits all arguments, returns appropriate items without loading them
2907LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2908  LIRItemList* argument_items = new LIRItemList();
2909  if (x->has_receiver()) {
2910    LIRItem* receiver = new LIRItem(x->receiver(), this);
2911    argument_items->append(receiver);
2912  }
2913  for (int i = 0; i < x->number_of_arguments(); i++) {
2914    LIRItem* param = new LIRItem(x->argument_at(i), this);
2915    argument_items->append(param);
2916  }
2917  return argument_items;
2918}
2919
2920
2921// The invoke with receiver has following phases:
2922//   a) traverse and load/lock receiver;
2923//   b) traverse all arguments -> item-array (invoke_visit_argument)
2924//   c) push receiver on stack
2925//   d) load each of the items and push on stack
2926//   e) unlock receiver
2927//   f) move receiver into receiver-register %o0
2928//   g) lock result registers and emit call operation
2929//
2930// Before issuing a call, we must spill-save all values on stack
2931// that are in caller-save register. "spill-save" moves those registers
2932// either in a free callee-save register or spills them if no free
2933// callee save register is available.
2934//
2935// The problem is where to invoke spill-save.
2936// - if invoked between e) and f), we may lock callee save
2937//   register in "spill-save" that destroys the receiver register
2938//   before f) is executed
2939// - if we rearrange f) to be earlier (by loading %o0) it
2940//   may destroy a value on the stack that is currently in %o0
2941//   and is waiting to be spilled
2942// - if we keep the receiver locked while doing spill-save,
2943//   we cannot spill it as it is spill-locked
2944//
2945void LIRGenerator::do_Invoke(Invoke* x) {
2946  CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2947
2948  LIR_OprList* arg_list = cc->args();
2949  LIRItemList* args = invoke_visit_arguments(x);
2950  LIR_Opr receiver = LIR_OprFact::illegalOpr;
2951
2952  // setup result register
2953  LIR_Opr result_register = LIR_OprFact::illegalOpr;
2954  if (x->type() != voidType) {
2955    result_register = result_register_for(x->type());
2956  }
2957
2958  CodeEmitInfo* info = state_for(x, x->state());
2959
2960  invoke_load_arguments(x, args, arg_list);
2961
2962  if (x->has_receiver()) {
2963    args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2964    receiver = args->at(0)->result();
2965  }
2966
2967  // emit invoke code
2968  bool optimized = x->target_is_loaded() && x->target_is_final();
2969  assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2970
2971  // JSR 292
2972  // Preserve the SP over MethodHandle call sites, if needed.
2973  ciMethod* target = x->target();
2974  bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2975                                  target->is_method_handle_intrinsic() ||
2976                                  target->is_compiled_lambda_form());
2977  if (is_method_handle_invoke) {
2978    info->set_is_method_handle_invoke(true);
2979    if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2980        __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2981    }
2982  }
2983
2984  switch (x->code()) {
2985    case Bytecodes::_invokestatic:
2986      __ call_static(target, result_register,
2987                     SharedRuntime::get_resolve_static_call_stub(),
2988                     arg_list, info);
2989      break;
2990    case Bytecodes::_invokespecial:
2991    case Bytecodes::_invokevirtual:
2992    case Bytecodes::_invokeinterface:
2993      // for final target we still produce an inline cache, in order
2994      // to be able to call mixed mode
2995      if (x->code() == Bytecodes::_invokespecial || optimized) {
2996        __ call_opt_virtual(target, receiver, result_register,
2997                            SharedRuntime::get_resolve_opt_virtual_call_stub(),
2998                            arg_list, info);
2999      } else if (x->vtable_index() < 0) {
3000        __ call_icvirtual(target, receiver, result_register,
3001                          SharedRuntime::get_resolve_virtual_call_stub(),
3002                          arg_list, info);
3003      } else {
3004        int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3005        int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3006        __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3007      }
3008      break;
3009    case Bytecodes::_invokedynamic: {
3010      __ call_dynamic(target, receiver, result_register,
3011                      SharedRuntime::get_resolve_static_call_stub(),
3012                      arg_list, info);
3013      break;
3014    }
3015    default:
3016      fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3017      break;
3018  }
3019
3020  // JSR 292
3021  // Restore the SP after MethodHandle call sites, if needed.
3022  if (is_method_handle_invoke
3023      && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3024    __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3025  }
3026
3027  if (x->type()->is_float() || x->type()->is_double()) {
3028    // Force rounding of results from non-strictfp when in strictfp
3029    // scope (or when we don't know the strictness of the callee, to
3030    // be safe.)
3031    if (method()->is_strict()) {
3032      if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3033        result_register = round_item(result_register);
3034      }
3035    }
3036  }
3037
3038  if (result_register->is_valid()) {
3039    LIR_Opr result = rlock_result(x);
3040    __ move(result_register, result);
3041  }
3042}
3043
3044
3045void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3046  assert(x->number_of_arguments() == 1, "wrong type");
3047  LIRItem value       (x->argument_at(0), this);
3048  LIR_Opr reg = rlock_result(x);
3049  value.load_item();
3050  LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3051  __ move(tmp, reg);
3052}
3053
3054
3055
3056// Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3057void LIRGenerator::do_IfOp(IfOp* x) {
3058#ifdef ASSERT
3059  {
3060    ValueTag xtag = x->x()->type()->tag();
3061    ValueTag ttag = x->tval()->type()->tag();
3062    assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3063    assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3064    assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3065  }
3066#endif
3067
3068  LIRItem left(x->x(), this);
3069  LIRItem right(x->y(), this);
3070  left.load_item();
3071  if (can_inline_as_constant(right.value())) {
3072    right.dont_load_item();
3073  } else {
3074    right.load_item();
3075  }
3076
3077  LIRItem t_val(x->tval(), this);
3078  LIRItem f_val(x->fval(), this);
3079  t_val.dont_load_item();
3080  f_val.dont_load_item();
3081  LIR_Opr reg = rlock_result(x);
3082
3083  __ cmp(lir_cond(x->cond()), left.result(), right.result());
3084  __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3085}
3086
3087void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3088  assert(x->number_of_arguments() == 0, "wrong type");
3089  // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3090  BasicTypeList signature;
3091  CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3092  LIR_Opr reg = result_register_for(x->type());
3093  __ call_runtime_leaf(routine, getThreadTemp(),
3094                       reg, new LIR_OprList());
3095  LIR_Opr result = rlock_result(x);
3096  __ move(reg, result);
3097}
3098
3099
3100
3101void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3102  switch (x->id()) {
3103  case vmIntrinsics::_intBitsToFloat      :
3104  case vmIntrinsics::_doubleToRawLongBits :
3105  case vmIntrinsics::_longBitsToDouble    :
3106  case vmIntrinsics::_floatToRawIntBits   : {
3107    do_FPIntrinsics(x);
3108    break;
3109  }
3110
3111#ifdef TRACE_HAVE_INTRINSICS
3112  case vmIntrinsics::_counterTime:
3113    do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3114    break;
3115#endif
3116
3117  case vmIntrinsics::_currentTimeMillis:
3118    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3119    break;
3120
3121  case vmIntrinsics::_nanoTime:
3122    do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3123    break;
3124
3125  case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3126  case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3127  case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3128  case vmIntrinsics::_getClass:       do_getClass(x);      break;
3129  case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3130
3131  case vmIntrinsics::_dlog:           // fall through
3132  case vmIntrinsics::_dlog10:         // fall through
3133  case vmIntrinsics::_dabs:           // fall through
3134  case vmIntrinsics::_dsqrt:          // fall through
3135  case vmIntrinsics::_dtan:           // fall through
3136  case vmIntrinsics::_dsin :          // fall through
3137  case vmIntrinsics::_dcos :          // fall through
3138  case vmIntrinsics::_dexp :          // fall through
3139  case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3140  case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3141
3142  // java.nio.Buffer.checkIndex
3143  case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3144
3145  case vmIntrinsics::_compareAndSwapObject:
3146    do_CompareAndSwap(x, objectType);
3147    break;
3148  case vmIntrinsics::_compareAndSwapInt:
3149    do_CompareAndSwap(x, intType);
3150    break;
3151  case vmIntrinsics::_compareAndSwapLong:
3152    do_CompareAndSwap(x, longType);
3153    break;
3154
3155  case vmIntrinsics::_loadFence :
3156    if (os::is_MP()) __ membar_acquire();
3157    break;
3158  case vmIntrinsics::_storeFence:
3159    if (os::is_MP()) __ membar_release();
3160    break;
3161  case vmIntrinsics::_fullFence :
3162    if (os::is_MP()) __ membar();
3163    break;
3164  case vmIntrinsics::_onSpinWait:
3165    __ on_spin_wait();
3166    break;
3167  case vmIntrinsics::_Reference_get:
3168    do_Reference_get(x);
3169    break;
3170
3171  case vmIntrinsics::_updateCRC32:
3172  case vmIntrinsics::_updateBytesCRC32:
3173  case vmIntrinsics::_updateByteBufferCRC32:
3174    do_update_CRC32(x);
3175    break;
3176
3177  default: ShouldNotReachHere(); break;
3178  }
3179}
3180
3181void LIRGenerator::profile_arguments(ProfileCall* x) {
3182  if (compilation()->profile_arguments()) {
3183    int bci = x->bci_of_invoke();
3184    ciMethodData* md = x->method()->method_data_or_null();
3185    ciProfileData* data = md->bci_to_data(bci);
3186    if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3187        (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3188      ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3189      int base_offset = md->byte_offset_of_slot(data, extra);
3190      LIR_Opr mdp = LIR_OprFact::illegalOpr;
3191      ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3192
3193      Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3194      int start = 0;
3195      int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3196      if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3197        // first argument is not profiled at call (method handle invoke)
3198        assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3199        start = 1;
3200      }
3201      ciSignature* callee_signature = x->callee()->signature();
3202      // method handle call to virtual method
3203      bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3204      ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3205
3206      bool ignored_will_link;
3207      ciSignature* signature_at_call = NULL;
3208      x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3209      ciSignatureStream signature_at_call_stream(signature_at_call);
3210
3211      // if called through method handle invoke, some arguments may have been popped
3212      for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3213        int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3214        ciKlass* exact = profile_type(md, base_offset, off,
3215                                      args->type(i), x->profiled_arg_at(i+start), mdp,
3216                                      !x->arg_needs_null_check(i+start),
3217                                      signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3218        if (exact != NULL) {
3219          md->set_argument_type(bci, i, exact);
3220        }
3221      }
3222    } else {
3223#ifdef ASSERT
3224      Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3225      int n = x->nb_profiled_args();
3226      assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3227                                                  (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3228             "only at JSR292 bytecodes");
3229#endif
3230    }
3231  }
3232}
3233
3234// profile parameters on entry to an inlined method
3235void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3236  if (compilation()->profile_parameters() && x->inlined()) {
3237    ciMethodData* md = x->callee()->method_data_or_null();
3238    if (md != NULL) {
3239      ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3240      if (parameters_type_data != NULL) {
3241        ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3242        LIR_Opr mdp = LIR_OprFact::illegalOpr;
3243        bool has_receiver = !x->callee()->is_static();
3244        ciSignature* sig = x->callee()->signature();
3245        ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3246        int i = 0; // to iterate on the Instructions
3247        Value arg = x->recv();
3248        bool not_null = false;
3249        int bci = x->bci_of_invoke();
3250        Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3251        // The first parameter is the receiver so that's what we start
3252        // with if it exists. One exception is method handle call to
3253        // virtual method: the receiver is in the args list
3254        if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3255          i = 1;
3256          arg = x->profiled_arg_at(0);
3257          not_null = !x->arg_needs_null_check(0);
3258        }
3259        int k = 0; // to iterate on the profile data
3260        for (;;) {
3261          intptr_t profiled_k = parameters->type(k);
3262          ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3263                                        in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3264                                        profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3265          // If the profile is known statically set it once for all and do not emit any code
3266          if (exact != NULL) {
3267            md->set_parameter_type(k, exact);
3268          }
3269          k++;
3270          if (k >= parameters_type_data->number_of_parameters()) {
3271#ifdef ASSERT
3272            int extra = 0;
3273            if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3274                x->nb_profiled_args() >= TypeProfileParmsLimit &&
3275                x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3276              extra += 1;
3277            }
3278            assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3279#endif
3280            break;
3281          }
3282          arg = x->profiled_arg_at(i);
3283          not_null = !x->arg_needs_null_check(i);
3284          i++;
3285        }
3286      }
3287    }
3288  }
3289}
3290
3291void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3292  // Need recv in a temporary register so it interferes with the other temporaries
3293  LIR_Opr recv = LIR_OprFact::illegalOpr;
3294  LIR_Opr mdo = new_register(T_OBJECT);
3295  // tmp is used to hold the counters on SPARC
3296  LIR_Opr tmp = new_pointer_register();
3297
3298  if (x->nb_profiled_args() > 0) {
3299    profile_arguments(x);
3300  }
3301
3302  // profile parameters on inlined method entry including receiver
3303  if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3304    profile_parameters_at_call(x);
3305  }
3306
3307  if (x->recv() != NULL) {
3308    LIRItem value(x->recv(), this);
3309    value.load_item();
3310    recv = new_register(T_OBJECT);
3311    __ move(value.result(), recv);
3312  }
3313  __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3314}
3315
3316void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3317  int bci = x->bci_of_invoke();
3318  ciMethodData* md = x->method()->method_data_or_null();
3319  ciProfileData* data = md->bci_to_data(bci);
3320  assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3321  ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3322  LIR_Opr mdp = LIR_OprFact::illegalOpr;
3323
3324  bool ignored_will_link;
3325  ciSignature* signature_at_call = NULL;
3326  x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3327
3328  // The offset within the MDO of the entry to update may be too large
3329  // to be used in load/store instructions on some platforms. So have
3330  // profile_type() compute the address of the profile in a register.
3331  ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3332                                ret->type(), x->ret(), mdp,
3333                                !x->needs_null_check(),
3334                                signature_at_call->return_type()->as_klass(),
3335                                x->callee()->signature()->return_type()->as_klass());
3336  if (exact != NULL) {
3337    md->set_return_type(bci, exact);
3338  }
3339}
3340
3341void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3342  // We can safely ignore accessors here, since c2 will inline them anyway,
3343  // accessors are also always mature.
3344  if (!x->inlinee()->is_accessor()) {
3345    CodeEmitInfo* info = state_for(x, x->state(), true);
3346    // Notify the runtime very infrequently only to take care of counter overflows
3347    int freq_log = Tier23InlineeNotifyFreqLog;
3348    double scale;
3349    if (_method->has_option_value("CompileThresholdScaling", scale)) {
3350      freq_log = Arguments::scaled_freq_log(freq_log, scale);
3351    }
3352    increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3353  }
3354}
3355
3356void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3357  int freq_log = 0;
3358  int level = compilation()->env()->comp_level();
3359  if (level == CompLevel_limited_profile) {
3360    freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3361  } else if (level == CompLevel_full_profile) {
3362    freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3363  } else {
3364    ShouldNotReachHere();
3365  }
3366  // Increment the appropriate invocation/backedge counter and notify the runtime.
3367  double scale;
3368  if (_method->has_option_value("CompileThresholdScaling", scale)) {
3369    freq_log = Arguments::scaled_freq_log(freq_log, scale);
3370  }
3371  increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3372}
3373
3374void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3375  ciMethod* method = info->scope()->method();
3376  MethodCounters* mc_adr = method->ensure_method_counters();
3377  if (mc_adr != NULL) {
3378    LIR_Opr mc = new_pointer_register();
3379    __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3380    int offset = in_bytes(MethodCounters::nmethod_age_offset());
3381    LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3382    LIR_Opr result = new_register(T_INT);
3383    __ load(counter, result);
3384    __ sub(result, LIR_OprFact::intConst(1), result);
3385    __ store(result, counter);
3386    // DeoptimizeStub will reexecute from the current state in code info.
3387    CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3388                                         Deoptimization::Action_make_not_entrant);
3389    __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3390    __ branch(lir_cond_lessEqual, T_INT, deopt);
3391  }
3392}
3393
3394
3395void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3396                                                ciMethod *method, int frequency,
3397                                                int bci, bool backedge, bool notify) {
3398  assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3399  int level = _compilation->env()->comp_level();
3400  assert(level > CompLevel_simple, "Shouldn't be here");
3401
3402  int offset = -1;
3403  LIR_Opr counter_holder = NULL;
3404  if (level == CompLevel_limited_profile) {
3405    MethodCounters* counters_adr = method->ensure_method_counters();
3406    if (counters_adr == NULL) {
3407      bailout("method counters allocation failed");
3408      return;
3409    }
3410    counter_holder = new_pointer_register();
3411    __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3412    offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3413                                 MethodCounters::invocation_counter_offset());
3414  } else if (level == CompLevel_full_profile) {
3415    counter_holder = new_register(T_METADATA);
3416    offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3417                                 MethodData::invocation_counter_offset());
3418    ciMethodData* md = method->method_data_or_null();
3419    assert(md != NULL, "Sanity");
3420    __ metadata2reg(md->constant_encoding(), counter_holder);
3421  } else {
3422    ShouldNotReachHere();
3423  }
3424  LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3425  LIR_Opr result = new_register(T_INT);
3426  __ load(counter, result);
3427  __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3428  __ store(result, counter);
3429  if (notify) {
3430    LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3431    // The bci for info can point to cmp for if's we want the if bci
3432    CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3433    int freq = frequency << InvocationCounter::count_shift;
3434    if (freq == 0) {
3435      __ branch(lir_cond_always, T_ILLEGAL, overflow);
3436    } else {
3437      LIR_Opr mask = load_immediate(freq, T_INT);
3438      __ logical_and(result, mask, result);
3439      __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3440      __ branch(lir_cond_equal, T_INT, overflow);
3441    }
3442    __ branch_destination(overflow->continuation());
3443  }
3444}
3445
3446void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3447  LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3448  BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3449
3450  if (x->pass_thread()) {
3451    signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3452    args->append(getThreadPointer());
3453  }
3454
3455  for (int i = 0; i < x->number_of_arguments(); i++) {
3456    Value a = x->argument_at(i);
3457    LIRItem* item = new LIRItem(a, this);
3458    item->load_item();
3459    args->append(item->result());
3460    signature->append(as_BasicType(a->type()));
3461  }
3462
3463  LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3464  if (x->type() == voidType) {
3465    set_no_result(x);
3466  } else {
3467    __ move(result, rlock_result(x));
3468  }
3469}
3470
3471#ifdef ASSERT
3472void LIRGenerator::do_Assert(Assert *x) {
3473  ValueTag tag = x->x()->type()->tag();
3474  If::Condition cond = x->cond();
3475
3476  LIRItem xitem(x->x(), this);
3477  LIRItem yitem(x->y(), this);
3478  LIRItem* xin = &xitem;
3479  LIRItem* yin = &yitem;
3480
3481  assert(tag == intTag, "Only integer assertions are valid!");
3482
3483  xin->load_item();
3484  yin->dont_load_item();
3485
3486  set_no_result(x);
3487
3488  LIR_Opr left = xin->result();
3489  LIR_Opr right = yin->result();
3490
3491  __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3492}
3493#endif
3494
3495void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3496
3497
3498  Instruction *a = x->x();
3499  Instruction *b = x->y();
3500  if (!a || StressRangeCheckElimination) {
3501    assert(!b || StressRangeCheckElimination, "B must also be null");
3502
3503    CodeEmitInfo *info = state_for(x, x->state());
3504    CodeStub* stub = new PredicateFailedStub(info);
3505
3506    __ jump(stub);
3507  } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3508    int a_int = a->type()->as_IntConstant()->value();
3509    int b_int = b->type()->as_IntConstant()->value();
3510
3511    bool ok = false;
3512
3513    switch(x->cond()) {
3514      case Instruction::eql: ok = (a_int == b_int); break;
3515      case Instruction::neq: ok = (a_int != b_int); break;
3516      case Instruction::lss: ok = (a_int < b_int); break;
3517      case Instruction::leq: ok = (a_int <= b_int); break;
3518      case Instruction::gtr: ok = (a_int > b_int); break;
3519      case Instruction::geq: ok = (a_int >= b_int); break;
3520      case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3521      case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3522      default: ShouldNotReachHere();
3523    }
3524
3525    if (ok) {
3526
3527      CodeEmitInfo *info = state_for(x, x->state());
3528      CodeStub* stub = new PredicateFailedStub(info);
3529
3530      __ jump(stub);
3531    }
3532  } else {
3533
3534    ValueTag tag = x->x()->type()->tag();
3535    If::Condition cond = x->cond();
3536    LIRItem xitem(x->x(), this);
3537    LIRItem yitem(x->y(), this);
3538    LIRItem* xin = &xitem;
3539    LIRItem* yin = &yitem;
3540
3541    assert(tag == intTag, "Only integer deoptimizations are valid!");
3542
3543    xin->load_item();
3544    yin->dont_load_item();
3545    set_no_result(x);
3546
3547    LIR_Opr left = xin->result();
3548    LIR_Opr right = yin->result();
3549
3550    CodeEmitInfo *info = state_for(x, x->state());
3551    CodeStub* stub = new PredicateFailedStub(info);
3552
3553    __ cmp(lir_cond(cond), left, right);
3554    __ branch(lir_cond(cond), right->type(), stub);
3555  }
3556}
3557
3558
3559LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3560  LIRItemList args(1);
3561  LIRItem value(arg1, this);
3562  args.append(&value);
3563  BasicTypeList signature;
3564  signature.append(as_BasicType(arg1->type()));
3565
3566  return call_runtime(&signature, &args, entry, result_type, info);
3567}
3568
3569
3570LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3571  LIRItemList args(2);
3572  LIRItem value1(arg1, this);
3573  LIRItem value2(arg2, this);
3574  args.append(&value1);
3575  args.append(&value2);
3576  BasicTypeList signature;
3577  signature.append(as_BasicType(arg1->type()));
3578  signature.append(as_BasicType(arg2->type()));
3579
3580  return call_runtime(&signature, &args, entry, result_type, info);
3581}
3582
3583
3584LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3585                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3586  // get a result register
3587  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3588  LIR_Opr result = LIR_OprFact::illegalOpr;
3589  if (result_type->tag() != voidTag) {
3590    result = new_register(result_type);
3591    phys_reg = result_register_for(result_type);
3592  }
3593
3594  // move the arguments into the correct location
3595  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3596  assert(cc->length() == args->length(), "argument mismatch");
3597  for (int i = 0; i < args->length(); i++) {
3598    LIR_Opr arg = args->at(i);
3599    LIR_Opr loc = cc->at(i);
3600    if (loc->is_register()) {
3601      __ move(arg, loc);
3602    } else {
3603      LIR_Address* addr = loc->as_address_ptr();
3604//           if (!can_store_as_constant(arg)) {
3605//             LIR_Opr tmp = new_register(arg->type());
3606//             __ move(arg, tmp);
3607//             arg = tmp;
3608//           }
3609      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3610        __ unaligned_move(arg, addr);
3611      } else {
3612        __ move(arg, addr);
3613      }
3614    }
3615  }
3616
3617  if (info) {
3618    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3619  } else {
3620    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3621  }
3622  if (result->is_valid()) {
3623    __ move(phys_reg, result);
3624  }
3625  return result;
3626}
3627
3628
3629LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3630                                   address entry, ValueType* result_type, CodeEmitInfo* info) {
3631  // get a result register
3632  LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3633  LIR_Opr result = LIR_OprFact::illegalOpr;
3634  if (result_type->tag() != voidTag) {
3635    result = new_register(result_type);
3636    phys_reg = result_register_for(result_type);
3637  }
3638
3639  // move the arguments into the correct location
3640  CallingConvention* cc = frame_map()->c_calling_convention(signature);
3641
3642  assert(cc->length() == args->length(), "argument mismatch");
3643  for (int i = 0; i < args->length(); i++) {
3644    LIRItem* arg = args->at(i);
3645    LIR_Opr loc = cc->at(i);
3646    if (loc->is_register()) {
3647      arg->load_item_force(loc);
3648    } else {
3649      LIR_Address* addr = loc->as_address_ptr();
3650      arg->load_for_store(addr->type());
3651      if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3652        __ unaligned_move(arg->result(), addr);
3653      } else {
3654        __ move(arg->result(), addr);
3655      }
3656    }
3657  }
3658
3659  if (info) {
3660    __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3661  } else {
3662    __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3663  }
3664  if (result->is_valid()) {
3665    __ move(phys_reg, result);
3666  }
3667  return result;
3668}
3669
3670void LIRGenerator::do_MemBar(MemBar* x) {
3671  if (os::is_MP()) {
3672    LIR_Code code = x->code();
3673    switch(code) {
3674      case lir_membar_acquire   : __ membar_acquire(); break;
3675      case lir_membar_release   : __ membar_release(); break;
3676      case lir_membar           : __ membar(); break;
3677      case lir_membar_loadload  : __ membar_loadload(); break;
3678      case lir_membar_storestore: __ membar_storestore(); break;
3679      case lir_membar_loadstore : __ membar_loadstore(); break;
3680      case lir_membar_storeload : __ membar_storeload(); break;
3681      default                   : ShouldNotReachHere(); break;
3682    }
3683  }
3684}
3685