c1_LIR.hpp revision 7877:cc8363b030d5
1/*
2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_C1_C1_LIR_HPP
26#define SHARE_VM_C1_C1_LIR_HPP
27
28#include "c1/c1_ValueType.hpp"
29#include "oops/method.hpp"
30
31class BlockBegin;
32class BlockList;
33class LIR_Assembler;
34class CodeEmitInfo;
35class CodeStub;
36class CodeStubList;
37class ArrayCopyStub;
38class LIR_Op;
39class ciType;
40class ValueType;
41class LIR_OpVisitState;
42class FpuStackSim;
43
44//---------------------------------------------------------------------
45//                 LIR Operands
46//  LIR_OprDesc
47//    LIR_OprPtr
48//      LIR_Const
49//      LIR_Address
50//---------------------------------------------------------------------
51class LIR_OprDesc;
52class LIR_OprPtr;
53class LIR_Const;
54class LIR_Address;
55class LIR_OprVisitor;
56
57
58typedef LIR_OprDesc* LIR_Opr;
59typedef int          RegNr;
60
61define_array(LIR_OprArray, LIR_Opr)
62define_stack(LIR_OprList, LIR_OprArray)
63
64define_array(LIR_OprRefArray, LIR_Opr*)
65define_stack(LIR_OprRefList, LIR_OprRefArray)
66
67define_array(CodeEmitInfoArray, CodeEmitInfo*)
68define_stack(CodeEmitInfoList, CodeEmitInfoArray)
69
70define_array(LIR_OpArray, LIR_Op*)
71define_stack(LIR_OpList, LIR_OpArray)
72
73// define LIR_OprPtr early so LIR_OprDesc can refer to it
74class LIR_OprPtr: public CompilationResourceObj {
75 public:
76  bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
77  bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
78
79  virtual LIR_Const*  as_constant()              { return NULL; }
80  virtual LIR_Address* as_address()              { return NULL; }
81  virtual BasicType type() const                 = 0;
82  virtual void print_value_on(outputStream* out) const = 0;
83};
84
85
86
87// LIR constants
88class LIR_Const: public LIR_OprPtr {
89 private:
90  JavaValue _value;
91
92  void type_check(BasicType t) const   { assert(type() == t, "type check"); }
93  void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
94  void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
95
96 public:
97  LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
98  LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
99  LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
100  LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
101  LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
102  LIR_Const(void* p) {
103#ifdef _LP64
104    assert(sizeof(jlong) >= sizeof(p), "too small");;
105    _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
106#else
107    assert(sizeof(jint) >= sizeof(p), "too small");;
108    _value.set_type(T_INT);     _value.set_jint((jint)p);
109#endif
110  }
111  LIR_Const(Metadata* m) {
112    _value.set_type(T_METADATA);
113#ifdef _LP64
114    _value.set_jlong((jlong)m);
115#else
116    _value.set_jint((jint)m);
117#endif // _LP64
118  }
119
120  virtual BasicType type()       const { return _value.get_type(); }
121  virtual LIR_Const* as_constant()     { return this; }
122
123  jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
124  jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
125  jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
126  jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
127  jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
128  jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
129  jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
130
131#ifdef _LP64
132  address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
133  Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
134#else
135  address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
136  Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
137#endif
138
139
140  jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
141  jint      as_jint_lo_bits() const    {
142    if (type() == T_DOUBLE) {
143      return low(jlong_cast(_value.get_jdouble()));
144    } else {
145      return as_jint_lo();
146    }
147  }
148  jint      as_jint_hi_bits() const    {
149    if (type() == T_DOUBLE) {
150      return high(jlong_cast(_value.get_jdouble()));
151    } else {
152      return as_jint_hi();
153    }
154  }
155  jlong      as_jlong_bits() const    {
156    if (type() == T_DOUBLE) {
157      return jlong_cast(_value.get_jdouble());
158    } else {
159      return as_jlong();
160    }
161  }
162
163  virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
164
165
166  bool is_zero_float() {
167    jfloat f = as_jfloat();
168    jfloat ok = 0.0f;
169    return jint_cast(f) == jint_cast(ok);
170  }
171
172  bool is_one_float() {
173    jfloat f = as_jfloat();
174    return !g_isnan(f) && g_isfinite(f) && f == 1.0;
175  }
176
177  bool is_zero_double() {
178    jdouble d = as_jdouble();
179    jdouble ok = 0.0;
180    return jlong_cast(d) == jlong_cast(ok);
181  }
182
183  bool is_one_double() {
184    jdouble d = as_jdouble();
185    return !g_isnan(d) && g_isfinite(d) && d == 1.0;
186  }
187};
188
189
190//---------------------LIR Operand descriptor------------------------------------
191//
192// The class LIR_OprDesc represents a LIR instruction operand;
193// it can be a register (ALU/FPU), stack location or a constant;
194// Constants and addresses are represented as resource area allocated
195// structures (see above).
196// Registers and stack locations are inlined into the this pointer
197// (see value function).
198
199class LIR_OprDesc: public CompilationResourceObj {
200 public:
201  // value structure:
202  //     data       opr-type opr-kind
203  // +--------------+-------+-------+
204  // [max...........|7 6 5 4|3 2 1 0]
205  //                             ^
206  //                    is_pointer bit
207  //
208  // lowest bit cleared, means it is a structure pointer
209  // we need  4 bits to represent types
210
211 private:
212  friend class LIR_OprFact;
213
214  // Conversion
215  intptr_t value() const                         { return (intptr_t) this; }
216
217  bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
218    return (value() & mask) == masked_value;
219  }
220
221  enum OprKind {
222      pointer_value      = 0
223    , stack_value        = 1
224    , cpu_register       = 3
225    , fpu_register       = 5
226    , illegal_value      = 7
227  };
228
229  enum OprBits {
230      pointer_bits   = 1
231    , kind_bits      = 3
232    , type_bits      = 4
233    , size_bits      = 2
234    , destroys_bits  = 1
235    , virtual_bits   = 1
236    , is_xmm_bits    = 1
237    , last_use_bits  = 1
238    , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
239    , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
240                       is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
241    , data_bits      = BitsPerInt - non_data_bits
242    , reg_bits       = data_bits / 2      // for two registers in one value encoding
243  };
244
245  enum OprShift {
246      kind_shift     = 0
247    , type_shift     = kind_shift     + kind_bits
248    , size_shift     = type_shift     + type_bits
249    , destroys_shift = size_shift     + size_bits
250    , last_use_shift = destroys_shift + destroys_bits
251    , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
252    , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
253    , is_xmm_shift   = virtual_shift + virtual_bits
254    , data_shift     = is_xmm_shift + is_xmm_bits
255    , reg1_shift = data_shift
256    , reg2_shift = data_shift + reg_bits
257
258  };
259
260  enum OprSize {
261      single_size = 0 << size_shift
262    , double_size = 1 << size_shift
263  };
264
265  enum OprMask {
266      kind_mask      = right_n_bits(kind_bits)
267    , type_mask      = right_n_bits(type_bits) << type_shift
268    , size_mask      = right_n_bits(size_bits) << size_shift
269    , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
270    , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
271    , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
272    , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
273    , pointer_mask   = right_n_bits(pointer_bits)
274    , lower_reg_mask = right_n_bits(reg_bits)
275    , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
276  };
277
278  uintptr_t data() const                         { return value() >> data_shift; }
279  int lo_reg_half() const                        { return data() & lower_reg_mask; }
280  int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
281  OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
282  OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
283
284  static char type_char(BasicType t);
285
286 public:
287  enum {
288    vreg_base = ConcreteRegisterImpl::number_of_registers,
289    vreg_max = (1 << data_bits) - 1
290  };
291
292  static inline LIR_Opr illegalOpr();
293
294  enum OprType {
295      unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
296    , int_type      = 1 << type_shift
297    , long_type     = 2 << type_shift
298    , object_type   = 3 << type_shift
299    , address_type  = 4 << type_shift
300    , float_type    = 5 << type_shift
301    , double_type   = 6 << type_shift
302    , metadata_type = 7 << type_shift
303  };
304  friend OprType as_OprType(BasicType t);
305  friend BasicType as_BasicType(OprType t);
306
307  OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
308  OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
309
310  static OprSize size_for(BasicType t) {
311    switch (t) {
312      case T_LONG:
313      case T_DOUBLE:
314        return double_size;
315        break;
316
317      case T_FLOAT:
318      case T_BOOLEAN:
319      case T_CHAR:
320      case T_BYTE:
321      case T_SHORT:
322      case T_INT:
323      case T_ADDRESS:
324      case T_OBJECT:
325      case T_ARRAY:
326      case T_METADATA:
327        return single_size;
328        break;
329
330      default:
331        ShouldNotReachHere();
332        return single_size;
333      }
334  }
335
336
337  void validate_type() const PRODUCT_RETURN;
338
339  BasicType type() const {
340    if (is_pointer()) {
341      return pointer()->type();
342    }
343    return as_BasicType(type_field());
344  }
345
346
347  ValueType* value_type() const                  { return as_ValueType(type()); }
348
349  char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
350
351  bool is_equal(LIR_Opr opr) const         { return this == opr; }
352  // checks whether types are same
353  bool is_same_type(LIR_Opr opr) const     {
354    assert(type_field() != unknown_type &&
355           opr->type_field() != unknown_type, "shouldn't see unknown_type");
356    return type_field() == opr->type_field();
357  }
358  bool is_same_register(LIR_Opr opr) {
359    return (is_register() && opr->is_register() &&
360            kind_field() == opr->kind_field() &&
361            (value() & no_type_mask) == (opr->value() & no_type_mask));
362  }
363
364  bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
365  bool is_illegal() const      { return kind_field() == illegal_value; }
366  bool is_valid() const        { return kind_field() != illegal_value; }
367
368  bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
369  bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
370
371  bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
372  bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
373
374  bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
375  bool is_oop() const;
376
377  // semantic for fpu- and xmm-registers:
378  // * is_float and is_double return true for xmm_registers
379  //   (so is_single_fpu and is_single_xmm are true)
380  // * So you must always check for is_???_xmm prior to is_???_fpu to
381  //   distinguish between fpu- and xmm-registers
382
383  bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
384  bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
385  bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
386
387  bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
388  bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
389  bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
390  bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
391  bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
392
393  bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
394  bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
395  bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
396  bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
397  bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
398
399  bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
400  bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
401  bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
402
403  // fast accessor functions for special bits that do not work for pointers
404  // (in this functions, the check for is_pointer() is omitted)
405  bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
406  bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
407  bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
408  bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
409  BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
410
411  bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
412  bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
413  LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
414  LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
415
416
417  int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
418  int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
419  RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
420  RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
421  RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
422  RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
423  RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
424  RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
425  RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
426  RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
427  RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
428  int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
429
430  LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
431  LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
432  LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
433
434  Register as_register()    const;
435  Register as_register_lo() const;
436  Register as_register_hi() const;
437
438  Register as_pointer_register() {
439#ifdef _LP64
440    if (is_double_cpu()) {
441      assert(as_register_lo() == as_register_hi(), "should be a single register");
442      return as_register_lo();
443    }
444#endif
445    return as_register();
446  }
447
448#ifdef X86
449  XMMRegister as_xmm_float_reg() const;
450  XMMRegister as_xmm_double_reg() const;
451  // for compatibility with RInfo
452  int fpu () const                                  { return lo_reg_half(); }
453#endif
454#if defined(SPARC) || defined(ARM) || defined(PPC) || defined(AARCH64)
455  FloatRegister as_float_reg   () const;
456  FloatRegister as_double_reg  () const;
457#endif
458
459  jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
460  jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
461  jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
462  jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
463  jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
464
465  void print() const PRODUCT_RETURN;
466  void print(outputStream* out) const PRODUCT_RETURN;
467};
468
469
470inline LIR_OprDesc::OprType as_OprType(BasicType type) {
471  switch (type) {
472  case T_INT:      return LIR_OprDesc::int_type;
473  case T_LONG:     return LIR_OprDesc::long_type;
474  case T_FLOAT:    return LIR_OprDesc::float_type;
475  case T_DOUBLE:   return LIR_OprDesc::double_type;
476  case T_OBJECT:
477  case T_ARRAY:    return LIR_OprDesc::object_type;
478  case T_ADDRESS:  return LIR_OprDesc::address_type;
479  case T_METADATA: return LIR_OprDesc::metadata_type;
480  case T_ILLEGAL:  // fall through
481  default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
482  }
483}
484
485inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
486  switch (t) {
487  case LIR_OprDesc::int_type:     return T_INT;
488  case LIR_OprDesc::long_type:    return T_LONG;
489  case LIR_OprDesc::float_type:   return T_FLOAT;
490  case LIR_OprDesc::double_type:  return T_DOUBLE;
491  case LIR_OprDesc::object_type:  return T_OBJECT;
492  case LIR_OprDesc::address_type: return T_ADDRESS;
493  case LIR_OprDesc::metadata_type:return T_METADATA;
494  case LIR_OprDesc::unknown_type: // fall through
495  default: ShouldNotReachHere();  return T_ILLEGAL;
496  }
497}
498
499
500// LIR_Address
501class LIR_Address: public LIR_OprPtr {
502 friend class LIR_OpVisitState;
503
504 public:
505  // NOTE: currently these must be the log2 of the scale factor (and
506  // must also be equivalent to the ScaleFactor enum in
507  // assembler_i486.hpp)
508  enum Scale {
509    times_1  =  0,
510    times_2  =  1,
511    times_4  =  2,
512    times_8  =  3
513  };
514
515 private:
516  LIR_Opr   _base;
517  LIR_Opr   _index;
518  Scale     _scale;
519  intx      _disp;
520  BasicType _type;
521
522 public:
523  LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
524       _base(base)
525     , _index(index)
526     , _scale(times_1)
527     , _type(type)
528     , _disp(0) { verify(); }
529
530  LIR_Address(LIR_Opr base, intx disp, BasicType type):
531       _base(base)
532     , _index(LIR_OprDesc::illegalOpr())
533     , _scale(times_1)
534     , _type(type)
535     , _disp(disp) { verify(); }
536
537  LIR_Address(LIR_Opr base, BasicType type):
538       _base(base)
539     , _index(LIR_OprDesc::illegalOpr())
540     , _scale(times_1)
541     , _type(type)
542     , _disp(0) { verify(); }
543
544#if defined(X86) || defined(ARM) || defined(AARCH64)
545  LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
546       _base(base)
547     , _index(index)
548     , _scale(scale)
549     , _type(type)
550     , _disp(disp) { verify(); }
551#endif // X86 || ARM
552
553  LIR_Opr base()  const                          { return _base;  }
554  LIR_Opr index() const                          { return _index; }
555  Scale   scale() const                          { return _scale; }
556  intx    disp()  const                          { return _disp;  }
557
558  bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
559
560  virtual LIR_Address* as_address()              { return this;   }
561  virtual BasicType type() const                 { return _type; }
562  virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
563
564  void verify() const PRODUCT_RETURN;
565
566  static Scale scale(BasicType type);
567};
568
569
570// operand factory
571class LIR_OprFact: public AllStatic {
572 public:
573
574  static LIR_Opr illegalOpr;
575
576  static LIR_Opr single_cpu(int reg) {
577    return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
578                               LIR_OprDesc::int_type             |
579                               LIR_OprDesc::cpu_register         |
580                               LIR_OprDesc::single_size);
581  }
582  static LIR_Opr single_cpu_oop(int reg) {
583    return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
584                               LIR_OprDesc::object_type          |
585                               LIR_OprDesc::cpu_register         |
586                               LIR_OprDesc::single_size);
587  }
588  static LIR_Opr single_cpu_address(int reg) {
589    return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
590                               LIR_OprDesc::address_type         |
591                               LIR_OprDesc::cpu_register         |
592                               LIR_OprDesc::single_size);
593  }
594  static LIR_Opr single_cpu_metadata(int reg) {
595    return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
596                               LIR_OprDesc::metadata_type        |
597                               LIR_OprDesc::cpu_register         |
598                               LIR_OprDesc::single_size);
599  }
600  static LIR_Opr double_cpu(int reg1, int reg2) {
601    LP64_ONLY(assert(reg1 == reg2, "must be identical"));
602    return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
603                               (reg2 << LIR_OprDesc::reg2_shift) |
604                               LIR_OprDesc::long_type            |
605                               LIR_OprDesc::cpu_register         |
606                               LIR_OprDesc::double_size);
607  }
608
609  static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
610                                                                             LIR_OprDesc::float_type           |
611                                                                             LIR_OprDesc::fpu_register         |
612                                                                             LIR_OprDesc::single_size); }
613#if defined(ARM)
614  static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
615  static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
616  static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
617#endif
618#ifdef SPARC
619  static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
620                                                                             (reg2 << LIR_OprDesc::reg2_shift) |
621                                                                             LIR_OprDesc::double_type          |
622                                                                             LIR_OprDesc::fpu_register         |
623                                                                             LIR_OprDesc::double_size); }
624#endif
625#if defined(X86) || defined(AARCH64)
626  static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
627                                                                             (reg  << LIR_OprDesc::reg2_shift) |
628                                                                             LIR_OprDesc::double_type          |
629                                                                             LIR_OprDesc::fpu_register         |
630                                                                             LIR_OprDesc::double_size); }
631
632  static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
633                                                                             LIR_OprDesc::float_type           |
634                                                                             LIR_OprDesc::fpu_register         |
635                                                                             LIR_OprDesc::single_size          |
636                                                                             LIR_OprDesc::is_xmm_mask); }
637  static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
638                                                                             (reg  << LIR_OprDesc::reg2_shift) |
639                                                                             LIR_OprDesc::double_type          |
640                                                                             LIR_OprDesc::fpu_register         |
641                                                                             LIR_OprDesc::double_size          |
642                                                                             LIR_OprDesc::is_xmm_mask); }
643#endif // X86
644#ifdef PPC
645  static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
646                                                                             (reg  << LIR_OprDesc::reg2_shift) |
647                                                                             LIR_OprDesc::double_type          |
648                                                                             LIR_OprDesc::fpu_register         |
649                                                                             LIR_OprDesc::double_size); }
650  static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
651                                                                             LIR_OprDesc::float_type           |
652                                                                             LIR_OprDesc::cpu_register         |
653                                                                             LIR_OprDesc::single_size); }
654  static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
655                                                                             (reg1 << LIR_OprDesc::reg2_shift) |
656                                                                             LIR_OprDesc::double_type          |
657                                                                             LIR_OprDesc::cpu_register         |
658                                                                             LIR_OprDesc::double_size); }
659#endif // PPC
660
661  static LIR_Opr virtual_register(int index, BasicType type) {
662    LIR_Opr res;
663    switch (type) {
664      case T_OBJECT: // fall through
665      case T_ARRAY:
666        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
667                                            LIR_OprDesc::object_type  |
668                                            LIR_OprDesc::cpu_register |
669                                            LIR_OprDesc::single_size  |
670                                            LIR_OprDesc::virtual_mask);
671        break;
672
673      case T_METADATA:
674        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
675                                            LIR_OprDesc::metadata_type|
676                                            LIR_OprDesc::cpu_register |
677                                            LIR_OprDesc::single_size  |
678                                            LIR_OprDesc::virtual_mask);
679        break;
680
681      case T_INT:
682        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
683                                  LIR_OprDesc::int_type              |
684                                  LIR_OprDesc::cpu_register          |
685                                  LIR_OprDesc::single_size           |
686                                  LIR_OprDesc::virtual_mask);
687        break;
688
689      case T_ADDRESS:
690        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
691                                  LIR_OprDesc::address_type          |
692                                  LIR_OprDesc::cpu_register          |
693                                  LIR_OprDesc::single_size           |
694                                  LIR_OprDesc::virtual_mask);
695        break;
696
697      case T_LONG:
698        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
699                                  LIR_OprDesc::long_type             |
700                                  LIR_OprDesc::cpu_register          |
701                                  LIR_OprDesc::double_size           |
702                                  LIR_OprDesc::virtual_mask);
703        break;
704
705#ifdef __SOFTFP__
706      case T_FLOAT:
707        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
708                                  LIR_OprDesc::float_type  |
709                                  LIR_OprDesc::cpu_register |
710                                  LIR_OprDesc::single_size |
711                                  LIR_OprDesc::virtual_mask);
712        break;
713      case T_DOUBLE:
714        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
715                                  LIR_OprDesc::double_type |
716                                  LIR_OprDesc::cpu_register |
717                                  LIR_OprDesc::double_size |
718                                  LIR_OprDesc::virtual_mask);
719        break;
720#else // __SOFTFP__
721      case T_FLOAT:
722        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
723                                  LIR_OprDesc::float_type           |
724                                  LIR_OprDesc::fpu_register         |
725                                  LIR_OprDesc::single_size          |
726                                  LIR_OprDesc::virtual_mask);
727        break;
728
729      case
730        T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
731                                            LIR_OprDesc::double_type           |
732                                            LIR_OprDesc::fpu_register          |
733                                            LIR_OprDesc::double_size           |
734                                            LIR_OprDesc::virtual_mask);
735        break;
736#endif // __SOFTFP__
737      default:       ShouldNotReachHere(); res = illegalOpr;
738    }
739
740#ifdef ASSERT
741    res->validate_type();
742    assert(res->vreg_number() == index, "conversion check");
743    assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
744    assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
745
746    // old-style calculation; check if old and new method are equal
747    LIR_OprDesc::OprType t = as_OprType(type);
748#ifdef __SOFTFP__
749    LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
750                               t |
751                               LIR_OprDesc::cpu_register |
752                               LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
753#else // __SOFTFP__
754    LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
755                                          ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
756                               LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
757    assert(res == old_res, "old and new method not equal");
758#endif // __SOFTFP__
759#endif // ASSERT
760
761    return res;
762  }
763
764  // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
765  // the index is platform independent; a double stack useing indeces 2 and 3 has always
766  // index 2.
767  static LIR_Opr stack(int index, BasicType type) {
768    LIR_Opr res;
769    switch (type) {
770      case T_OBJECT: // fall through
771      case T_ARRAY:
772        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
773                                  LIR_OprDesc::object_type           |
774                                  LIR_OprDesc::stack_value           |
775                                  LIR_OprDesc::single_size);
776        break;
777
778      case T_METADATA:
779        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
780                                  LIR_OprDesc::metadata_type         |
781                                  LIR_OprDesc::stack_value           |
782                                  LIR_OprDesc::single_size);
783        break;
784      case T_INT:
785        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
786                                  LIR_OprDesc::int_type              |
787                                  LIR_OprDesc::stack_value           |
788                                  LIR_OprDesc::single_size);
789        break;
790
791      case T_ADDRESS:
792        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
793                                  LIR_OprDesc::address_type          |
794                                  LIR_OprDesc::stack_value           |
795                                  LIR_OprDesc::single_size);
796        break;
797
798      case T_LONG:
799        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
800                                  LIR_OprDesc::long_type             |
801                                  LIR_OprDesc::stack_value           |
802                                  LIR_OprDesc::double_size);
803        break;
804
805      case T_FLOAT:
806        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
807                                  LIR_OprDesc::float_type            |
808                                  LIR_OprDesc::stack_value           |
809                                  LIR_OprDesc::single_size);
810        break;
811      case T_DOUBLE:
812        res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
813                                  LIR_OprDesc::double_type           |
814                                  LIR_OprDesc::stack_value           |
815                                  LIR_OprDesc::double_size);
816        break;
817
818      default:       ShouldNotReachHere(); res = illegalOpr;
819    }
820
821#ifdef ASSERT
822    assert(index >= 0, "index must be positive");
823    assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
824
825    LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
826                                          LIR_OprDesc::stack_value           |
827                                          as_OprType(type)                   |
828                                          LIR_OprDesc::size_for(type));
829    assert(res == old_res, "old and new method not equal");
830#endif
831
832    return res;
833  }
834
835  static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
836  static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
837  static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
838  static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
839  static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
840  static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
841  static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
842  static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
843  static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
844  static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
845  static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
846
847  static LIR_Opr value_type(ValueType* type);
848  static LIR_Opr dummy_value_type(ValueType* type);
849};
850
851
852//-------------------------------------------------------------------------------
853//                   LIR Instructions
854//-------------------------------------------------------------------------------
855//
856// Note:
857//  - every instruction has a result operand
858//  - every instruction has an CodeEmitInfo operand (can be revisited later)
859//  - every instruction has a LIR_OpCode operand
860//  - LIR_OpN, means an instruction that has N input operands
861//
862// class hierarchy:
863//
864class  LIR_Op;
865class    LIR_Op0;
866class      LIR_OpLabel;
867class    LIR_Op1;
868class      LIR_OpBranch;
869class      LIR_OpConvert;
870class      LIR_OpAllocObj;
871class      LIR_OpRoundFP;
872class    LIR_Op2;
873class    LIR_OpDelay;
874class    LIR_Op3;
875class      LIR_OpAllocArray;
876class    LIR_OpCall;
877class      LIR_OpJavaCall;
878class      LIR_OpRTCall;
879class    LIR_OpArrayCopy;
880class    LIR_OpUpdateCRC32;
881class    LIR_OpLock;
882class    LIR_OpTypeCheck;
883class    LIR_OpCompareAndSwap;
884class    LIR_OpProfileCall;
885class    LIR_OpProfileType;
886#ifdef ASSERT
887class    LIR_OpAssert;
888#endif
889
890// LIR operation codes
891enum LIR_Code {
892    lir_none
893  , begin_op0
894      , lir_word_align
895      , lir_label
896      , lir_nop
897      , lir_backwardbranch_target
898      , lir_std_entry
899      , lir_osr_entry
900      , lir_build_frame
901      , lir_fpop_raw
902      , lir_24bit_FPU
903      , lir_reset_FPU
904      , lir_breakpoint
905      , lir_rtcall
906      , lir_membar
907      , lir_membar_acquire
908      , lir_membar_release
909      , lir_membar_loadload
910      , lir_membar_storestore
911      , lir_membar_loadstore
912      , lir_membar_storeload
913      , lir_get_thread
914  , end_op0
915  , begin_op1
916      , lir_fxch
917      , lir_fld
918      , lir_ffree
919      , lir_push
920      , lir_pop
921      , lir_null_check
922      , lir_return
923      , lir_leal
924      , lir_neg
925      , lir_branch
926      , lir_cond_float_branch
927      , lir_move
928      , lir_prefetchr
929      , lir_prefetchw
930      , lir_convert
931      , lir_alloc_object
932      , lir_monaddr
933      , lir_roundfp
934      , lir_safepoint
935      , lir_pack64
936      , lir_unpack64
937      , lir_unwind
938  , end_op1
939  , begin_op2
940      , lir_cmp
941      , lir_cmp_l2i
942      , lir_ucmp_fd2i
943      , lir_cmp_fd2i
944      , lir_cmove
945      , lir_add
946      , lir_sub
947      , lir_mul
948      , lir_mul_strictfp
949      , lir_div
950      , lir_div_strictfp
951      , lir_rem
952      , lir_sqrt
953      , lir_abs
954      , lir_sin
955      , lir_cos
956      , lir_tan
957      , lir_log
958      , lir_log10
959      , lir_exp
960      , lir_pow
961      , lir_logic_and
962      , lir_logic_or
963      , lir_logic_xor
964      , lir_shl
965      , lir_shr
966      , lir_ushr
967      , lir_alloc_array
968      , lir_throw
969      , lir_compare_to
970      , lir_xadd
971      , lir_xchg
972  , end_op2
973  , begin_op3
974      , lir_idiv
975      , lir_irem
976  , end_op3
977  , begin_opJavaCall
978      , lir_static_call
979      , lir_optvirtual_call
980      , lir_icvirtual_call
981      , lir_virtual_call
982      , lir_dynamic_call
983  , end_opJavaCall
984  , begin_opArrayCopy
985      , lir_arraycopy
986  , end_opArrayCopy
987  , begin_opUpdateCRC32
988      , lir_updatecrc32
989  , end_opUpdateCRC32
990  , begin_opLock
991    , lir_lock
992    , lir_unlock
993  , end_opLock
994  , begin_delay_slot
995    , lir_delay_slot
996  , end_delay_slot
997  , begin_opTypeCheck
998    , lir_instanceof
999    , lir_checkcast
1000    , lir_store_check
1001  , end_opTypeCheck
1002  , begin_opCompareAndSwap
1003    , lir_cas_long
1004    , lir_cas_obj
1005    , lir_cas_int
1006  , end_opCompareAndSwap
1007  , begin_opMDOProfile
1008    , lir_profile_call
1009    , lir_profile_type
1010  , end_opMDOProfile
1011  , begin_opAssert
1012    , lir_assert
1013  , end_opAssert
1014};
1015
1016
1017enum LIR_Condition {
1018    lir_cond_equal
1019  , lir_cond_notEqual
1020  , lir_cond_less
1021  , lir_cond_lessEqual
1022  , lir_cond_greaterEqual
1023  , lir_cond_greater
1024  , lir_cond_belowEqual
1025  , lir_cond_aboveEqual
1026  , lir_cond_always
1027  , lir_cond_unknown = -1
1028};
1029
1030
1031enum LIR_PatchCode {
1032  lir_patch_none,
1033  lir_patch_low,
1034  lir_patch_high,
1035  lir_patch_normal
1036};
1037
1038
1039enum LIR_MoveKind {
1040  lir_move_normal,
1041  lir_move_volatile,
1042  lir_move_unaligned,
1043  lir_move_wide,
1044  lir_move_max_flag
1045};
1046
1047
1048// --------------------------------------------------
1049// LIR_Op
1050// --------------------------------------------------
1051class LIR_Op: public CompilationResourceObj {
1052 friend class LIR_OpVisitState;
1053
1054#ifdef ASSERT
1055 private:
1056  const char *  _file;
1057  int           _line;
1058#endif
1059
1060 protected:
1061  LIR_Opr       _result;
1062  unsigned short _code;
1063  unsigned short _flags;
1064  CodeEmitInfo* _info;
1065  int           _id;     // value id for register allocation
1066  int           _fpu_pop_count;
1067  Instruction*  _source; // for debugging
1068
1069  static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1070
1071 protected:
1072  static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1073
1074 public:
1075  LIR_Op()
1076    : _result(LIR_OprFact::illegalOpr)
1077    , _code(lir_none)
1078    , _flags(0)
1079    , _info(NULL)
1080#ifdef ASSERT
1081    , _file(NULL)
1082    , _line(0)
1083#endif
1084    , _fpu_pop_count(0)
1085    , _source(NULL)
1086    , _id(-1)                             {}
1087
1088  LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1089    : _result(result)
1090    , _code(code)
1091    , _flags(0)
1092    , _info(info)
1093#ifdef ASSERT
1094    , _file(NULL)
1095    , _line(0)
1096#endif
1097    , _fpu_pop_count(0)
1098    , _source(NULL)
1099    , _id(-1)                             {}
1100
1101  CodeEmitInfo* info() const                  { return _info;   }
1102  LIR_Code code()      const                  { return (LIR_Code)_code;   }
1103  LIR_Opr result_opr() const                  { return _result; }
1104  void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1105
1106#ifdef ASSERT
1107  void set_file_and_line(const char * file, int line) {
1108    _file = file;
1109    _line = line;
1110  }
1111#endif
1112
1113  virtual const char * name() const PRODUCT_RETURN0;
1114
1115  int id()             const                  { return _id;     }
1116  void set_id(int id)                         { _id = id; }
1117
1118  // FPU stack simulation helpers -- only used on Intel
1119  void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1120  int  fpu_pop_count() const                  { return _fpu_pop_count; }
1121  bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1122
1123  Instruction* source() const                 { return _source; }
1124  void set_source(Instruction* ins)           { _source = ins; }
1125
1126  virtual void emit_code(LIR_Assembler* masm) = 0;
1127  virtual void print_instr(outputStream* out) const   = 0;
1128  virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1129
1130  virtual bool is_patching() { return false; }
1131  virtual LIR_OpCall* as_OpCall() { return NULL; }
1132  virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1133  virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1134  virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1135  virtual LIR_OpLock* as_OpLock() { return NULL; }
1136  virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1137  virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1138  virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1139  virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1140  virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1141  virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1142  virtual LIR_Op0* as_Op0() { return NULL; }
1143  virtual LIR_Op1* as_Op1() { return NULL; }
1144  virtual LIR_Op2* as_Op2() { return NULL; }
1145  virtual LIR_Op3* as_Op3() { return NULL; }
1146  virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1147  virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1148  virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1149  virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1150  virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1151  virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1152#ifdef ASSERT
1153  virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1154#endif
1155
1156  virtual void verify() const {}
1157};
1158
1159// for calls
1160class LIR_OpCall: public LIR_Op {
1161 friend class LIR_OpVisitState;
1162
1163 protected:
1164  address      _addr;
1165  LIR_OprList* _arguments;
1166 protected:
1167  LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1168             LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1169    : LIR_Op(code, result, info)
1170    , _arguments(arguments)
1171    , _addr(addr) {}
1172
1173 public:
1174  address addr() const                           { return _addr; }
1175  const LIR_OprList* arguments() const           { return _arguments; }
1176  virtual LIR_OpCall* as_OpCall()                { return this; }
1177};
1178
1179
1180// --------------------------------------------------
1181// LIR_OpJavaCall
1182// --------------------------------------------------
1183class LIR_OpJavaCall: public LIR_OpCall {
1184 friend class LIR_OpVisitState;
1185
1186 private:
1187  ciMethod* _method;
1188  LIR_Opr   _receiver;
1189  LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1190
1191 public:
1192  LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1193                 LIR_Opr receiver, LIR_Opr result,
1194                 address addr, LIR_OprList* arguments,
1195                 CodeEmitInfo* info)
1196  : LIR_OpCall(code, addr, result, arguments, info)
1197  , _receiver(receiver)
1198  , _method(method)
1199  , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1200  { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1201
1202  LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1203                 LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1204                 LIR_OprList* arguments, CodeEmitInfo* info)
1205  : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1206  , _receiver(receiver)
1207  , _method(method)
1208  , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1209  { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1210
1211  LIR_Opr receiver() const                       { return _receiver; }
1212  ciMethod* method() const                       { return _method;   }
1213
1214  // JSR 292 support.
1215  bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1216  bool is_method_handle_invoke() const {
1217    return
1218      method()->is_compiled_lambda_form()  // Java-generated adapter
1219      ||
1220      method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1221  }
1222
1223  intptr_t vtable_offset() const {
1224    assert(_code == lir_virtual_call, "only have vtable for real vcall");
1225    return (intptr_t) addr();
1226  }
1227
1228  virtual void emit_code(LIR_Assembler* masm);
1229  virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1230  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1231};
1232
1233// --------------------------------------------------
1234// LIR_OpLabel
1235// --------------------------------------------------
1236// Location where a branch can continue
1237class LIR_OpLabel: public LIR_Op {
1238 friend class LIR_OpVisitState;
1239
1240 private:
1241  Label* _label;
1242 public:
1243  LIR_OpLabel(Label* lbl)
1244   : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1245   , _label(lbl)                                 {}
1246  Label* label() const                           { return _label; }
1247
1248  virtual void emit_code(LIR_Assembler* masm);
1249  virtual LIR_OpLabel* as_OpLabel() { return this; }
1250  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1251};
1252
1253// LIR_OpArrayCopy
1254class LIR_OpArrayCopy: public LIR_Op {
1255 friend class LIR_OpVisitState;
1256
1257 private:
1258  ArrayCopyStub*  _stub;
1259  LIR_Opr   _src;
1260  LIR_Opr   _src_pos;
1261  LIR_Opr   _dst;
1262  LIR_Opr   _dst_pos;
1263  LIR_Opr   _length;
1264  LIR_Opr   _tmp;
1265  ciArrayKlass* _expected_type;
1266  int       _flags;
1267
1268public:
1269  enum Flags {
1270    src_null_check         = 1 << 0,
1271    dst_null_check         = 1 << 1,
1272    src_pos_positive_check = 1 << 2,
1273    dst_pos_positive_check = 1 << 3,
1274    length_positive_check  = 1 << 4,
1275    src_range_check        = 1 << 5,
1276    dst_range_check        = 1 << 6,
1277    type_check             = 1 << 7,
1278    overlapping            = 1 << 8,
1279    unaligned              = 1 << 9,
1280    src_objarray           = 1 << 10,
1281    dst_objarray           = 1 << 11,
1282    all_flags              = (1 << 12) - 1
1283  };
1284
1285  LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1286                  ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1287
1288  LIR_Opr src() const                            { return _src; }
1289  LIR_Opr src_pos() const                        { return _src_pos; }
1290  LIR_Opr dst() const                            { return _dst; }
1291  LIR_Opr dst_pos() const                        { return _dst_pos; }
1292  LIR_Opr length() const                         { return _length; }
1293  LIR_Opr tmp() const                            { return _tmp; }
1294  int flags() const                              { return _flags; }
1295  ciArrayKlass* expected_type() const            { return _expected_type; }
1296  ArrayCopyStub* stub() const                    { return _stub; }
1297
1298  virtual void emit_code(LIR_Assembler* masm);
1299  virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1300  void print_instr(outputStream* out) const PRODUCT_RETURN;
1301};
1302
1303// LIR_OpUpdateCRC32
1304class LIR_OpUpdateCRC32: public LIR_Op {
1305  friend class LIR_OpVisitState;
1306
1307private:
1308  LIR_Opr   _crc;
1309  LIR_Opr   _val;
1310
1311public:
1312
1313  LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1314
1315  LIR_Opr crc() const                            { return _crc; }
1316  LIR_Opr val() const                            { return _val; }
1317
1318  virtual void emit_code(LIR_Assembler* masm);
1319  virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1320  void print_instr(outputStream* out) const PRODUCT_RETURN;
1321};
1322
1323// --------------------------------------------------
1324// LIR_Op0
1325// --------------------------------------------------
1326class LIR_Op0: public LIR_Op {
1327 friend class LIR_OpVisitState;
1328
1329 public:
1330  LIR_Op0(LIR_Code code)
1331   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1332  LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1333   : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1334
1335  virtual void emit_code(LIR_Assembler* masm);
1336  virtual LIR_Op0* as_Op0() { return this; }
1337  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1338};
1339
1340
1341// --------------------------------------------------
1342// LIR_Op1
1343// --------------------------------------------------
1344
1345class LIR_Op1: public LIR_Op {
1346 friend class LIR_OpVisitState;
1347
1348 protected:
1349  LIR_Opr         _opr;   // input operand
1350  BasicType       _type;  // Operand types
1351  LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1352
1353  static void print_patch_code(outputStream* out, LIR_PatchCode code);
1354
1355  void set_kind(LIR_MoveKind kind) {
1356    assert(code() == lir_move, "must be");
1357    _flags = kind;
1358  }
1359
1360 public:
1361  LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1362    : LIR_Op(code, result, info)
1363    , _opr(opr)
1364    , _patch(patch)
1365    , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1366
1367  LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1368    : LIR_Op(code, result, info)
1369    , _opr(opr)
1370    , _patch(patch)
1371    , _type(type)                      {
1372    assert(code == lir_move, "must be");
1373    set_kind(kind);
1374  }
1375
1376  LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1377    : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1378    , _opr(opr)
1379    , _patch(lir_patch_none)
1380    , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1381
1382  LIR_Opr in_opr()           const               { return _opr;   }
1383  LIR_PatchCode patch_code() const               { return _patch; }
1384  BasicType type()           const               { return _type;  }
1385
1386  LIR_MoveKind move_kind() const {
1387    assert(code() == lir_move, "must be");
1388    return (LIR_MoveKind)_flags;
1389  }
1390
1391  virtual bool is_patching() { return _patch != lir_patch_none; }
1392  virtual void emit_code(LIR_Assembler* masm);
1393  virtual LIR_Op1* as_Op1() { return this; }
1394  virtual const char * name() const PRODUCT_RETURN0;
1395
1396  void set_in_opr(LIR_Opr opr) { _opr = opr; }
1397
1398  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1399  virtual void verify() const;
1400};
1401
1402
1403// for runtime calls
1404class LIR_OpRTCall: public LIR_OpCall {
1405 friend class LIR_OpVisitState;
1406
1407 private:
1408  LIR_Opr _tmp;
1409 public:
1410  LIR_OpRTCall(address addr, LIR_Opr tmp,
1411               LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1412    : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1413    , _tmp(tmp) {}
1414
1415  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1416  virtual void emit_code(LIR_Assembler* masm);
1417  virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1418
1419  LIR_Opr tmp() const                            { return _tmp; }
1420
1421  virtual void verify() const;
1422};
1423
1424
1425class LIR_OpBranch: public LIR_Op {
1426 friend class LIR_OpVisitState;
1427
1428 private:
1429  LIR_Condition _cond;
1430  BasicType     _type;
1431  Label*        _label;
1432  BlockBegin*   _block;  // if this is a branch to a block, this is the block
1433  BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1434  CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1435
1436 public:
1437  LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1438    : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1439    , _cond(cond)
1440    , _type(type)
1441    , _label(lbl)
1442    , _block(NULL)
1443    , _ublock(NULL)
1444    , _stub(NULL) { }
1445
1446  LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1447  LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1448
1449  // for unordered comparisons
1450  LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1451
1452  LIR_Condition cond()        const              { return _cond;        }
1453  BasicType     type()        const              { return _type;        }
1454  Label*        label()       const              { return _label;       }
1455  BlockBegin*   block()       const              { return _block;       }
1456  BlockBegin*   ublock()      const              { return _ublock;      }
1457  CodeStub*     stub()        const              { return _stub;       }
1458
1459  void          change_block(BlockBegin* b);
1460  void          change_ublock(BlockBegin* b);
1461  void          negate_cond();
1462
1463  virtual void emit_code(LIR_Assembler* masm);
1464  virtual LIR_OpBranch* as_OpBranch() { return this; }
1465  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1466};
1467
1468
1469class ConversionStub;
1470
1471class LIR_OpConvert: public LIR_Op1 {
1472 friend class LIR_OpVisitState;
1473
1474 private:
1475   Bytecodes::Code _bytecode;
1476   ConversionStub* _stub;
1477#ifdef PPC
1478  LIR_Opr _tmp1;
1479  LIR_Opr _tmp2;
1480#endif
1481
1482 public:
1483   LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1484     : LIR_Op1(lir_convert, opr, result)
1485     , _stub(stub)
1486#ifdef PPC
1487     , _tmp1(LIR_OprDesc::illegalOpr())
1488     , _tmp2(LIR_OprDesc::illegalOpr())
1489#endif
1490     , _bytecode(code)                           {}
1491
1492#ifdef PPC
1493   LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1494                 ,LIR_Opr tmp1, LIR_Opr tmp2)
1495     : LIR_Op1(lir_convert, opr, result)
1496     , _stub(stub)
1497     , _tmp1(tmp1)
1498     , _tmp2(tmp2)
1499     , _bytecode(code)                           {}
1500#endif
1501
1502  Bytecodes::Code bytecode() const               { return _bytecode; }
1503  ConversionStub* stub() const                   { return _stub; }
1504#ifdef PPC
1505  LIR_Opr tmp1() const                           { return _tmp1; }
1506  LIR_Opr tmp2() const                           { return _tmp2; }
1507#endif
1508
1509  virtual void emit_code(LIR_Assembler* masm);
1510  virtual LIR_OpConvert* as_OpConvert() { return this; }
1511  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1512
1513  static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1514};
1515
1516
1517// LIR_OpAllocObj
1518class LIR_OpAllocObj : public LIR_Op1 {
1519 friend class LIR_OpVisitState;
1520
1521 private:
1522  LIR_Opr _tmp1;
1523  LIR_Opr _tmp2;
1524  LIR_Opr _tmp3;
1525  LIR_Opr _tmp4;
1526  int     _hdr_size;
1527  int     _obj_size;
1528  CodeStub* _stub;
1529  bool    _init_check;
1530
1531 public:
1532  LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1533                 LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1534                 int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1535    : LIR_Op1(lir_alloc_object, klass, result)
1536    , _tmp1(t1)
1537    , _tmp2(t2)
1538    , _tmp3(t3)
1539    , _tmp4(t4)
1540    , _hdr_size(hdr_size)
1541    , _obj_size(obj_size)
1542    , _init_check(init_check)
1543    , _stub(stub)                                { }
1544
1545  LIR_Opr klass()        const                   { return in_opr();     }
1546  LIR_Opr obj()          const                   { return result_opr(); }
1547  LIR_Opr tmp1()         const                   { return _tmp1;        }
1548  LIR_Opr tmp2()         const                   { return _tmp2;        }
1549  LIR_Opr tmp3()         const                   { return _tmp3;        }
1550  LIR_Opr tmp4()         const                   { return _tmp4;        }
1551  int     header_size()  const                   { return _hdr_size;    }
1552  int     object_size()  const                   { return _obj_size;    }
1553  bool    init_check()   const                   { return _init_check;  }
1554  CodeStub* stub()       const                   { return _stub;        }
1555
1556  virtual void emit_code(LIR_Assembler* masm);
1557  virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1558  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1559};
1560
1561
1562// LIR_OpRoundFP
1563class LIR_OpRoundFP : public LIR_Op1 {
1564 friend class LIR_OpVisitState;
1565
1566 private:
1567  LIR_Opr _tmp;
1568
1569 public:
1570  LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1571    : LIR_Op1(lir_roundfp, reg, result)
1572    , _tmp(stack_loc_temp) {}
1573
1574  LIR_Opr tmp() const                            { return _tmp; }
1575  virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1576  void print_instr(outputStream* out) const PRODUCT_RETURN;
1577};
1578
1579// LIR_OpTypeCheck
1580class LIR_OpTypeCheck: public LIR_Op {
1581 friend class LIR_OpVisitState;
1582
1583 private:
1584  LIR_Opr       _object;
1585  LIR_Opr       _array;
1586  ciKlass*      _klass;
1587  LIR_Opr       _tmp1;
1588  LIR_Opr       _tmp2;
1589  LIR_Opr       _tmp3;
1590  bool          _fast_check;
1591  CodeEmitInfo* _info_for_patch;
1592  CodeEmitInfo* _info_for_exception;
1593  CodeStub*     _stub;
1594  ciMethod*     _profiled_method;
1595  int           _profiled_bci;
1596  bool          _should_profile;
1597
1598public:
1599  LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1600                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1601                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1602  LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1603                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1604
1605  LIR_Opr object() const                         { return _object;         }
1606  LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1607  LIR_Opr tmp1() const                           { return _tmp1;           }
1608  LIR_Opr tmp2() const                           { return _tmp2;           }
1609  LIR_Opr tmp3() const                           { return _tmp3;           }
1610  ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1611  bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1612  CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1613  CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1614  CodeStub* stub() const                         { return _stub;           }
1615
1616  // MethodData* profiling
1617  void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1618  void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1619  void set_should_profile(bool b)                { _should_profile = b;       }
1620  ciMethod* profiled_method() const              { return _profiled_method;   }
1621  int       profiled_bci() const                 { return _profiled_bci;      }
1622  bool      should_profile() const               { return _should_profile;    }
1623
1624  virtual bool is_patching() { return _info_for_patch != NULL; }
1625  virtual void emit_code(LIR_Assembler* masm);
1626  virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1627  void print_instr(outputStream* out) const PRODUCT_RETURN;
1628};
1629
1630// LIR_Op2
1631class LIR_Op2: public LIR_Op {
1632 friend class LIR_OpVisitState;
1633
1634  int  _fpu_stack_size; // for sin/cos implementation on Intel
1635
1636 protected:
1637  LIR_Opr   _opr1;
1638  LIR_Opr   _opr2;
1639  BasicType _type;
1640  LIR_Opr   _tmp1;
1641  LIR_Opr   _tmp2;
1642  LIR_Opr   _tmp3;
1643  LIR_Opr   _tmp4;
1644  LIR_Opr   _tmp5;
1645  LIR_Condition _condition;
1646
1647  void verify() const;
1648
1649 public:
1650  LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1651    : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1652    , _opr1(opr1)
1653    , _opr2(opr2)
1654    , _type(T_ILLEGAL)
1655    , _condition(condition)
1656    , _fpu_stack_size(0)
1657    , _tmp1(LIR_OprFact::illegalOpr)
1658    , _tmp2(LIR_OprFact::illegalOpr)
1659    , _tmp3(LIR_OprFact::illegalOpr)
1660    , _tmp4(LIR_OprFact::illegalOpr)
1661    , _tmp5(LIR_OprFact::illegalOpr) {
1662    assert(code == lir_cmp || code == lir_assert, "code check");
1663  }
1664
1665  LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1666    : LIR_Op(code, result, NULL)
1667    , _opr1(opr1)
1668    , _opr2(opr2)
1669    , _type(type)
1670    , _condition(condition)
1671    , _fpu_stack_size(0)
1672    , _tmp1(LIR_OprFact::illegalOpr)
1673    , _tmp2(LIR_OprFact::illegalOpr)
1674    , _tmp3(LIR_OprFact::illegalOpr)
1675    , _tmp4(LIR_OprFact::illegalOpr)
1676    , _tmp5(LIR_OprFact::illegalOpr) {
1677    assert(code == lir_cmove, "code check");
1678    assert(type != T_ILLEGAL, "cmove should have type");
1679  }
1680
1681  LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1682          CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1683    : LIR_Op(code, result, info)
1684    , _opr1(opr1)
1685    , _opr2(opr2)
1686    , _type(type)
1687    , _condition(lir_cond_unknown)
1688    , _fpu_stack_size(0)
1689    , _tmp1(LIR_OprFact::illegalOpr)
1690    , _tmp2(LIR_OprFact::illegalOpr)
1691    , _tmp3(LIR_OprFact::illegalOpr)
1692    , _tmp4(LIR_OprFact::illegalOpr)
1693    , _tmp5(LIR_OprFact::illegalOpr) {
1694    assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1695  }
1696
1697  LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1698          LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1699    : LIR_Op(code, result, NULL)
1700    , _opr1(opr1)
1701    , _opr2(opr2)
1702    , _type(T_ILLEGAL)
1703    , _condition(lir_cond_unknown)
1704    , _fpu_stack_size(0)
1705    , _tmp1(tmp1)
1706    , _tmp2(tmp2)
1707    , _tmp3(tmp3)
1708    , _tmp4(tmp4)
1709    , _tmp5(tmp5) {
1710    assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1711  }
1712
1713  LIR_Opr in_opr1() const                        { return _opr1; }
1714  LIR_Opr in_opr2() const                        { return _opr2; }
1715  BasicType type()  const                        { return _type; }
1716  LIR_Opr tmp1_opr() const                       { return _tmp1; }
1717  LIR_Opr tmp2_opr() const                       { return _tmp2; }
1718  LIR_Opr tmp3_opr() const                       { return _tmp3; }
1719  LIR_Opr tmp4_opr() const                       { return _tmp4; }
1720  LIR_Opr tmp5_opr() const                       { return _tmp5; }
1721  LIR_Condition condition() const  {
1722    assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1723  }
1724  void set_condition(LIR_Condition condition) {
1725    assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1726  }
1727
1728  void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1729  int  fpu_stack_size() const                    { return _fpu_stack_size; }
1730
1731  void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1732  void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1733
1734  virtual void emit_code(LIR_Assembler* masm);
1735  virtual LIR_Op2* as_Op2() { return this; }
1736  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1737};
1738
1739class LIR_OpAllocArray : public LIR_Op {
1740 friend class LIR_OpVisitState;
1741
1742 private:
1743  LIR_Opr   _klass;
1744  LIR_Opr   _len;
1745  LIR_Opr   _tmp1;
1746  LIR_Opr   _tmp2;
1747  LIR_Opr   _tmp3;
1748  LIR_Opr   _tmp4;
1749  BasicType _type;
1750  CodeStub* _stub;
1751
1752 public:
1753  LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1754    : LIR_Op(lir_alloc_array, result, NULL)
1755    , _klass(klass)
1756    , _len(len)
1757    , _tmp1(t1)
1758    , _tmp2(t2)
1759    , _tmp3(t3)
1760    , _tmp4(t4)
1761    , _type(type)
1762    , _stub(stub) {}
1763
1764  LIR_Opr   klass()   const                      { return _klass;       }
1765  LIR_Opr   len()     const                      { return _len;         }
1766  LIR_Opr   obj()     const                      { return result_opr(); }
1767  LIR_Opr   tmp1()    const                      { return _tmp1;        }
1768  LIR_Opr   tmp2()    const                      { return _tmp2;        }
1769  LIR_Opr   tmp3()    const                      { return _tmp3;        }
1770  LIR_Opr   tmp4()    const                      { return _tmp4;        }
1771  BasicType type()    const                      { return _type;        }
1772  CodeStub* stub()    const                      { return _stub;        }
1773
1774  virtual void emit_code(LIR_Assembler* masm);
1775  virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1776  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1777};
1778
1779
1780class LIR_Op3: public LIR_Op {
1781 friend class LIR_OpVisitState;
1782
1783 private:
1784  LIR_Opr _opr1;
1785  LIR_Opr _opr2;
1786  LIR_Opr _opr3;
1787 public:
1788  LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1789    : LIR_Op(code, result, info)
1790    , _opr1(opr1)
1791    , _opr2(opr2)
1792    , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1793  LIR_Opr in_opr1() const                        { return _opr1; }
1794  LIR_Opr in_opr2() const                        { return _opr2; }
1795  LIR_Opr in_opr3() const                        { return _opr3; }
1796
1797  virtual void emit_code(LIR_Assembler* masm);
1798  virtual LIR_Op3* as_Op3() { return this; }
1799  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1800};
1801
1802
1803//--------------------------------
1804class LabelObj: public CompilationResourceObj {
1805 private:
1806  Label _label;
1807 public:
1808  LabelObj()                                     {}
1809  Label* label()                                 { return &_label; }
1810};
1811
1812
1813class LIR_OpLock: public LIR_Op {
1814 friend class LIR_OpVisitState;
1815
1816 private:
1817  LIR_Opr _hdr;
1818  LIR_Opr _obj;
1819  LIR_Opr _lock;
1820  LIR_Opr _scratch;
1821  CodeStub* _stub;
1822 public:
1823  LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1824    : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1825    , _hdr(hdr)
1826    , _obj(obj)
1827    , _lock(lock)
1828    , _scratch(scratch)
1829    , _stub(stub)                      {}
1830
1831  LIR_Opr hdr_opr() const                        { return _hdr; }
1832  LIR_Opr obj_opr() const                        { return _obj; }
1833  LIR_Opr lock_opr() const                       { return _lock; }
1834  LIR_Opr scratch_opr() const                    { return _scratch; }
1835  CodeStub* stub() const                         { return _stub; }
1836
1837  virtual void emit_code(LIR_Assembler* masm);
1838  virtual LIR_OpLock* as_OpLock() { return this; }
1839  void print_instr(outputStream* out) const PRODUCT_RETURN;
1840};
1841
1842
1843class LIR_OpDelay: public LIR_Op {
1844 friend class LIR_OpVisitState;
1845
1846 private:
1847  LIR_Op* _op;
1848
1849 public:
1850  LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1851    LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1852    _op(op) {
1853    assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1854  }
1855  virtual void emit_code(LIR_Assembler* masm);
1856  virtual LIR_OpDelay* as_OpDelay() { return this; }
1857  void print_instr(outputStream* out) const PRODUCT_RETURN;
1858  LIR_Op* delay_op() const { return _op; }
1859  CodeEmitInfo* call_info() const { return info(); }
1860};
1861
1862#ifdef ASSERT
1863// LIR_OpAssert
1864class LIR_OpAssert : public LIR_Op2 {
1865 friend class LIR_OpVisitState;
1866
1867 private:
1868  const char* _msg;
1869  bool        _halt;
1870
1871 public:
1872  LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1873    : LIR_Op2(lir_assert, condition, opr1, opr2)
1874    , _halt(halt)
1875    , _msg(msg) {
1876  }
1877
1878  const char* msg() const                        { return _msg; }
1879  bool        halt() const                       { return _halt; }
1880
1881  virtual void emit_code(LIR_Assembler* masm);
1882  virtual LIR_OpAssert* as_OpAssert()            { return this; }
1883  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1884};
1885#endif
1886
1887// LIR_OpCompareAndSwap
1888class LIR_OpCompareAndSwap : public LIR_Op {
1889 friend class LIR_OpVisitState;
1890
1891 private:
1892  LIR_Opr _addr;
1893  LIR_Opr _cmp_value;
1894  LIR_Opr _new_value;
1895  LIR_Opr _tmp1;
1896  LIR_Opr _tmp2;
1897
1898 public:
1899  LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1900                       LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1901    : LIR_Op(code, result, NULL)  // no result, no info
1902    , _addr(addr)
1903    , _cmp_value(cmp_value)
1904    , _new_value(new_value)
1905    , _tmp1(t1)
1906    , _tmp2(t2)                                  { }
1907
1908  LIR_Opr addr()        const                    { return _addr;  }
1909  LIR_Opr cmp_value()   const                    { return _cmp_value; }
1910  LIR_Opr new_value()   const                    { return _new_value; }
1911  LIR_Opr tmp1()        const                    { return _tmp1;      }
1912  LIR_Opr tmp2()        const                    { return _tmp2;      }
1913
1914  virtual void emit_code(LIR_Assembler* masm);
1915  virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1916  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1917};
1918
1919// LIR_OpProfileCall
1920class LIR_OpProfileCall : public LIR_Op {
1921 friend class LIR_OpVisitState;
1922
1923 private:
1924  ciMethod* _profiled_method;
1925  int       _profiled_bci;
1926  ciMethod* _profiled_callee;
1927  LIR_Opr   _mdo;
1928  LIR_Opr   _recv;
1929  LIR_Opr   _tmp1;
1930  ciKlass*  _known_holder;
1931
1932 public:
1933  // Destroys recv
1934  LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1935    : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1936    , _profiled_method(profiled_method)
1937    , _profiled_bci(profiled_bci)
1938    , _profiled_callee(profiled_callee)
1939    , _mdo(mdo)
1940    , _recv(recv)
1941    , _tmp1(t1)
1942    , _known_holder(known_holder)                { }
1943
1944  ciMethod* profiled_method() const              { return _profiled_method;  }
1945  int       profiled_bci()    const              { return _profiled_bci;     }
1946  ciMethod* profiled_callee() const              { return _profiled_callee;  }
1947  LIR_Opr   mdo()             const              { return _mdo;              }
1948  LIR_Opr   recv()            const              { return _recv;             }
1949  LIR_Opr   tmp1()            const              { return _tmp1;             }
1950  ciKlass*  known_holder()    const              { return _known_holder;     }
1951
1952  virtual void emit_code(LIR_Assembler* masm);
1953  virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1954  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1955};
1956
1957// LIR_OpProfileType
1958class LIR_OpProfileType : public LIR_Op {
1959 friend class LIR_OpVisitState;
1960
1961 private:
1962  LIR_Opr      _mdp;
1963  LIR_Opr      _obj;
1964  LIR_Opr      _tmp;
1965  ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1966  intptr_t     _current_klass; // what the profiling currently reports
1967  bool         _not_null;      // true if we know statically that _obj cannot be null
1968  bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1969                               // _exact_klass it the only possible type for this parameter in any context.
1970
1971 public:
1972  // Destroys recv
1973  LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1974    : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1975    , _mdp(mdp)
1976    , _obj(obj)
1977    , _exact_klass(exact_klass)
1978    , _current_klass(current_klass)
1979    , _tmp(tmp)
1980    , _not_null(not_null)
1981    , _no_conflict(no_conflict) { }
1982
1983  LIR_Opr      mdp()              const             { return _mdp;              }
1984  LIR_Opr      obj()              const             { return _obj;              }
1985  LIR_Opr      tmp()              const             { return _tmp;              }
1986  ciKlass*     exact_klass()      const             { return _exact_klass;      }
1987  intptr_t     current_klass()    const             { return _current_klass;    }
1988  bool         not_null()         const             { return _not_null;         }
1989  bool         no_conflict()      const             { return _no_conflict;      }
1990
1991  virtual void emit_code(LIR_Assembler* masm);
1992  virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1993  virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1994};
1995
1996class LIR_InsertionBuffer;
1997
1998//--------------------------------LIR_List---------------------------------------------------
1999// Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2000// The LIR instructions are appended by the LIR_List class itself;
2001//
2002// Notes:
2003// - all offsets are(should be) in bytes
2004// - local positions are specified with an offset, with offset 0 being local 0
2005
2006class LIR_List: public CompilationResourceObj {
2007 private:
2008  LIR_OpList  _operations;
2009
2010  Compilation*  _compilation;
2011#ifndef PRODUCT
2012  BlockBegin*   _block;
2013#endif
2014#ifdef ASSERT
2015  const char *  _file;
2016  int           _line;
2017#endif
2018
2019  void append(LIR_Op* op) {
2020    if (op->source() == NULL)
2021      op->set_source(_compilation->current_instruction());
2022#ifndef PRODUCT
2023    if (PrintIRWithLIR) {
2024      _compilation->maybe_print_current_instruction();
2025      op->print(); tty->cr();
2026    }
2027#endif // PRODUCT
2028
2029    _operations.append(op);
2030
2031#ifdef ASSERT
2032    op->verify();
2033    op->set_file_and_line(_file, _line);
2034    _file = NULL;
2035    _line = 0;
2036#endif
2037  }
2038
2039 public:
2040  LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2041
2042#ifdef ASSERT
2043  void set_file_and_line(const char * file, int line);
2044#endif
2045
2046  //---------- accessors ---------------
2047  LIR_OpList* instructions_list()                { return &_operations; }
2048  int         length() const                     { return _operations.length(); }
2049  LIR_Op*     at(int i) const                    { return _operations.at(i); }
2050
2051  NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2052
2053  // insert LIR_Ops in buffer to right places in LIR_List
2054  void append(LIR_InsertionBuffer* buffer);
2055
2056  //---------- mutators ---------------
2057  void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2058  void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2059  void remove_at(int i)                          { _operations.remove_at(i); }
2060
2061  //---------- printing -------------
2062  void print_instructions() PRODUCT_RETURN;
2063
2064
2065  //---------- instructions -------------
2066  void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2067                        address dest, LIR_OprList* arguments,
2068                        CodeEmitInfo* info) {
2069    append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2070  }
2071  void call_static(ciMethod* method, LIR_Opr result,
2072                   address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2073    append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2074  }
2075  void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2076                      address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2077    append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2078  }
2079  void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2080                    intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2081    append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2082  }
2083  void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2084                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2085    append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2086  }
2087
2088  void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2089  void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2090  void membar()                                  { append(new LIR_Op0(lir_membar)); }
2091  void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2092  void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2093  void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2094  void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2095  void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2096  void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2097
2098  void nop()                                     { append(new LIR_Op0(lir_nop)); }
2099  void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2100
2101  void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2102  void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2103
2104  void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2105
2106  void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2107  void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2108
2109  // result is a stack location for old backend and vreg for UseLinearScan
2110  // stack_loc_temp is an illegal register for old backend
2111  void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2112  void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2113  void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2114  void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2115  void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2116  void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2117  void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2118  void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2119    if (UseCompressedOops) {
2120      append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2121    } else {
2122      move(src, dst, info);
2123    }
2124  }
2125  void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2126    if (UseCompressedOops) {
2127      append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2128    } else {
2129      move(src, dst, info);
2130    }
2131  }
2132  void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2133
2134  void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2135  void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2136
2137  void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2138  void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2139
2140  void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2141
2142  void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2143
2144#ifdef PPC
2145  void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2146#endif
2147  void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2148
2149  void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2150  void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2151  void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2152
2153  void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2154  void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2155
2156  void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
2157  void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2158    append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2159  }
2160  void unwind_exception(LIR_Opr exceptionOop) {
2161    append(new LIR_Op1(lir_unwind, exceptionOop));
2162  }
2163
2164  void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2165    append(new LIR_Op2(lir_compare_to,  left, right, dst));
2166  }
2167
2168  void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2169  void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2170
2171  void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2172    append(new LIR_Op2(lir_cmp, condition, left, right, info));
2173  }
2174  void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2175    cmp(condition, left, LIR_OprFact::intConst(right), info);
2176  }
2177
2178  void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2179  void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2180
2181  void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2182    append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2183  }
2184
2185  void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2186                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2187  void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2188               LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2189  void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2190               LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2191
2192  void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2193  void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2194  void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
2195  void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2196  void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
2197  void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
2198  void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2199  void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
2200  void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
2201
2202  void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2203  void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2204  void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2205  void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2206  void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2207  void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2208  void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2209
2210  void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2211  void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2212
2213  void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2214
2215  void prefetch(LIR_Address* addr, bool is_store);
2216
2217  void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2218  void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2219  void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2220  void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2221  void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2222
2223  void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2224  void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2225  void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2226  void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2227
2228  void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2229  void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2230
2231  // jump is an unconditional branch
2232  void jump(BlockBegin* block) {
2233    append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2234  }
2235  void jump(CodeStub* stub) {
2236    append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2237  }
2238  void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2239  void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2240    assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2241    append(new LIR_OpBranch(cond, type, block));
2242  }
2243  void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2244    assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2245    append(new LIR_OpBranch(cond, type, stub));
2246  }
2247  void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2248    assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2249    append(new LIR_OpBranch(cond, type, block, unordered));
2250  }
2251
2252  void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2253  void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2254  void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2255
2256  void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2257  void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2258  void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2259
2260  void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2261  void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2262
2263  void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2264    append(new LIR_OpRTCall(routine, tmp, result, arguments));
2265  }
2266
2267  void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2268                    LIR_OprList* arguments, CodeEmitInfo* info) {
2269    append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2270  }
2271
2272  void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2273  void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2274  void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2275
2276  void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2277  void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2278  void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2279
2280  void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2281
2282  void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2283
2284  void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2285
2286  void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2287  void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2288
2289  void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2290                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2291                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2292                  ciMethod* profiled_method, int profiled_bci);
2293  // MethodData* profiling
2294  void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2295    append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2296  }
2297  void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2298    append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2299  }
2300
2301  void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2302  void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2303#ifdef ASSERT
2304  void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2305#endif
2306};
2307
2308void print_LIR(BlockList* blocks);
2309
2310class LIR_InsertionBuffer : public CompilationResourceObj {
2311 private:
2312  LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2313
2314  // list of insertion points. index and count are stored alternately:
2315  // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2316  // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2317  intStack    _index_and_count;
2318
2319  // the LIR_Ops to be inserted
2320  LIR_OpList  _ops;
2321
2322  void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2323  void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2324  void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2325
2326#ifdef ASSERT
2327  void verify();
2328#endif
2329 public:
2330  LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2331
2332  // must be called before using the insertion buffer
2333  void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2334  bool initialized() const  { return _lir != NULL; }
2335  // called automatically when the buffer is appended to the LIR_List
2336  void finish()             { _lir = NULL; }
2337
2338  // accessors
2339  LIR_List*  lir_list() const             { return _lir; }
2340  int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2341  int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2342  int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2343
2344  int number_of_ops() const               { return _ops.length(); }
2345  LIR_Op* op_at(int i) const              { return _ops.at(i); }
2346
2347  // append an instruction to the buffer
2348  void append(int index, LIR_Op* op);
2349
2350  // instruction
2351  void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2352};
2353
2354
2355//
2356// LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2357// Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2358// information about the input, output and temporaries used by the
2359// op to be recorded.  It also records whether the op has call semantics
2360// and also records all the CodeEmitInfos used by this op.
2361//
2362
2363
2364class LIR_OpVisitState: public StackObj {
2365 public:
2366  typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2367
2368  enum {
2369    maxNumberOfOperands = 20,
2370    maxNumberOfInfos = 4
2371  };
2372
2373 private:
2374  LIR_Op*          _op;
2375
2376  // optimization: the operands and infos are not stored in a variable-length
2377  //               list, but in a fixed-size array to save time of size checks and resizing
2378  int              _oprs_len[numModes];
2379  LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2380  int _info_len;
2381  CodeEmitInfo*    _info_new[maxNumberOfInfos];
2382
2383  bool             _has_call;
2384  bool             _has_slow_case;
2385
2386
2387  // only include register operands
2388  // addresses are decomposed to the base and index registers
2389  // constants and stack operands are ignored
2390  void append(LIR_Opr& opr, OprMode mode) {
2391    assert(opr->is_valid(), "should not call this otherwise");
2392    assert(mode >= 0 && mode < numModes, "bad mode");
2393
2394    if (opr->is_register()) {
2395       assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2396      _oprs_new[mode][_oprs_len[mode]++] = &opr;
2397
2398    } else if (opr->is_pointer()) {
2399      LIR_Address* address = opr->as_address_ptr();
2400      if (address != NULL) {
2401        // special handling for addresses: add base and index register of the address
2402        // both are always input operands or temp if we want to extend
2403        // their liveness!
2404        if (mode == outputMode) {
2405          mode = inputMode;
2406        }
2407        assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2408        if (address->_base->is_valid()) {
2409          assert(address->_base->is_register(), "must be");
2410          assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2411          _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2412        }
2413        if (address->_index->is_valid()) {
2414          assert(address->_index->is_register(), "must be");
2415          assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2416          _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2417        }
2418
2419      } else {
2420        assert(opr->is_constant(), "constant operands are not processed");
2421      }
2422    } else {
2423      assert(opr->is_stack(), "stack operands are not processed");
2424    }
2425  }
2426
2427  void append(CodeEmitInfo* info) {
2428    assert(info != NULL, "should not call this otherwise");
2429    assert(_info_len < maxNumberOfInfos, "array overflow");
2430    _info_new[_info_len++] = info;
2431  }
2432
2433 public:
2434  LIR_OpVisitState()         { reset(); }
2435
2436  LIR_Op* op() const         { return _op; }
2437  void set_op(LIR_Op* op)    { reset(); _op = op; }
2438
2439  bool has_call() const      { return _has_call; }
2440  bool has_slow_case() const { return _has_slow_case; }
2441
2442  void reset() {
2443    _op = NULL;
2444    _has_call = false;
2445    _has_slow_case = false;
2446
2447    _oprs_len[inputMode] = 0;
2448    _oprs_len[tempMode] = 0;
2449    _oprs_len[outputMode] = 0;
2450    _info_len = 0;
2451  }
2452
2453
2454  int opr_count(OprMode mode) const {
2455    assert(mode >= 0 && mode < numModes, "bad mode");
2456    return _oprs_len[mode];
2457  }
2458
2459  LIR_Opr opr_at(OprMode mode, int index) const {
2460    assert(mode >= 0 && mode < numModes, "bad mode");
2461    assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2462    return *_oprs_new[mode][index];
2463  }
2464
2465  void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2466    assert(mode >= 0 && mode < numModes, "bad mode");
2467    assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2468    *_oprs_new[mode][index] = opr;
2469  }
2470
2471  int info_count() const {
2472    return _info_len;
2473  }
2474
2475  CodeEmitInfo* info_at(int index) const {
2476    assert(index < _info_len, "index out of bounds");
2477    return _info_new[index];
2478  }
2479
2480  XHandlers* all_xhandler();
2481
2482  // collects all register operands of the instruction
2483  void visit(LIR_Op* op);
2484
2485#ifdef ASSERT
2486  // check that an operation has no operands
2487  bool no_operands(LIR_Op* op);
2488#endif
2489
2490  // LIR_Op visitor functions use these to fill in the state
2491  void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2492  void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2493  void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2494  void do_info(CodeEmitInfo* info)        { append(info); }
2495
2496  void do_stub(CodeStub* stub);
2497  void do_call()                          { _has_call = true; }
2498  void do_slow_case()                     { _has_slow_case = true; }
2499  void do_slow_case(CodeEmitInfo* info) {
2500    _has_slow_case = true;
2501    append(info);
2502  }
2503};
2504
2505
2506inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2507
2508#endif // SHARE_VM_C1_C1_LIR_HPP
2509