c1_IR.cpp revision 3718:b9a9ed0f8eeb
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "c1/c1_Compilation.hpp"
27#include "c1/c1_FrameMap.hpp"
28#include "c1/c1_GraphBuilder.hpp"
29#include "c1/c1_IR.hpp"
30#include "c1/c1_InstructionPrinter.hpp"
31#include "c1/c1_Optimizer.hpp"
32#include "utilities/bitMap.inline.hpp"
33
34
35// Implementation of XHandlers
36//
37// Note: This code could eventually go away if we are
38//       just using the ciExceptionHandlerStream.
39
40XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
41  ciExceptionHandlerStream s(method);
42  while (!s.is_done()) {
43    _list.append(new XHandler(s.handler()));
44    s.next();
45  }
46  assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
47}
48
49// deep copy of all XHandler contained in list
50XHandlers::XHandlers(XHandlers* other) :
51  _list(other->length())
52{
53  for (int i = 0; i < other->length(); i++) {
54    _list.append(new XHandler(other->handler_at(i)));
55  }
56}
57
58// Returns whether a particular exception type can be caught.  Also
59// returns true if klass is unloaded or any exception handler
60// classes are unloaded.  type_is_exact indicates whether the throw
61// is known to be exactly that class or it might throw a subtype.
62bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
63  // the type is unknown so be conservative
64  if (!klass->is_loaded()) {
65    return true;
66  }
67
68  for (int i = 0; i < length(); i++) {
69    XHandler* handler = handler_at(i);
70    if (handler->is_catch_all()) {
71      // catch of ANY
72      return true;
73    }
74    ciInstanceKlass* handler_klass = handler->catch_klass();
75    // if it's unknown it might be catchable
76    if (!handler_klass->is_loaded()) {
77      return true;
78    }
79    // if the throw type is definitely a subtype of the catch type
80    // then it can be caught.
81    if (klass->is_subtype_of(handler_klass)) {
82      return true;
83    }
84    if (!type_is_exact) {
85      // If the type isn't exactly known then it can also be caught by
86      // catch statements where the inexact type is a subtype of the
87      // catch type.
88      // given: foo extends bar extends Exception
89      // throw bar can be caught by catch foo, catch bar, and catch
90      // Exception, however it can't be caught by any handlers without
91      // bar in its type hierarchy.
92      if (handler_klass->is_subtype_of(klass)) {
93        return true;
94      }
95    }
96  }
97
98  return false;
99}
100
101
102bool XHandlers::equals(XHandlers* others) const {
103  if (others == NULL) return false;
104  if (length() != others->length()) return false;
105
106  for (int i = 0; i < length(); i++) {
107    if (!handler_at(i)->equals(others->handler_at(i))) return false;
108  }
109  return true;
110}
111
112bool XHandler::equals(XHandler* other) const {
113  assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
114
115  if (entry_pco() != other->entry_pco()) return false;
116  if (scope_count() != other->scope_count()) return false;
117  if (_desc != other->_desc) return false;
118
119  assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
120  return true;
121}
122
123
124// Implementation of IRScope
125BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
126  GraphBuilder gm(compilation, this);
127  NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
128  if (compilation->bailed_out()) return NULL;
129  return gm.start();
130}
131
132
133IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
134: _callees(2)
135, _compilation(compilation)
136, _requires_phi_function(method->max_locals())
137{
138  _caller             = caller;
139  _level              = caller == NULL ?  0 : caller->level() + 1;
140  _method             = method;
141  _xhandlers          = new XHandlers(method);
142  _number_of_locks    = 0;
143  _monitor_pairing_ok = method->has_balanced_monitors();
144  _wrote_final        = false;
145  _start              = NULL;
146
147  if (osr_bci == -1) {
148    _requires_phi_function.clear();
149  } else {
150        // selective creation of phi functions is not possibel in osr-methods
151    _requires_phi_function.set_range(0, method->max_locals());
152  }
153
154  assert(method->holder()->is_loaded() , "method holder must be loaded");
155
156  // build graph if monitor pairing is ok
157  if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
158}
159
160
161int IRScope::max_stack() const {
162  int my_max = method()->max_stack();
163  int callee_max = 0;
164  for (int i = 0; i < number_of_callees(); i++) {
165    callee_max = MAX2(callee_max, callee_no(i)->max_stack());
166  }
167  return my_max + callee_max;
168}
169
170
171bool IRScopeDebugInfo::should_reexecute() {
172  ciMethod* cur_method = scope()->method();
173  int       cur_bci    = bci();
174  if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
175    Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
176    return Interpreter::bytecode_should_reexecute(code);
177  } else
178    return false;
179}
180
181
182// Implementation of CodeEmitInfo
183
184// Stack must be NON-null
185CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
186  : _scope(stack->scope())
187  , _scope_debug_info(NULL)
188  , _oop_map(NULL)
189  , _stack(stack)
190  , _exception_handlers(exception_handlers)
191  , _is_method_handle_invoke(false) {
192  assert(_stack != NULL, "must be non null");
193}
194
195
196CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
197  : _scope(info->_scope)
198  , _exception_handlers(NULL)
199  , _scope_debug_info(NULL)
200  , _oop_map(NULL)
201  , _stack(stack == NULL ? info->_stack : stack)
202  , _is_method_handle_invoke(info->_is_method_handle_invoke) {
203
204  // deep copy of exception handlers
205  if (info->_exception_handlers != NULL) {
206    _exception_handlers = new XHandlers(info->_exception_handlers);
207  }
208}
209
210
211void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
212  // record the safepoint before recording the debug info for enclosing scopes
213  recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
214  _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
215  recorder->end_safepoint(pc_offset);
216}
217
218
219void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
220  assert(_oop_map != NULL, "oop map must already exist");
221  assert(opr->is_single_cpu(), "should not call otherwise");
222
223  VMReg name = frame_map()->regname(opr);
224  _oop_map->set_oop(name);
225}
226
227
228
229
230// Implementation of IR
231
232IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
233    _locals_size(in_WordSize(-1))
234  , _num_loops(0) {
235  // setup IR fields
236  _compilation = compilation;
237  _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
238  _code        = NULL;
239}
240
241
242void IR::optimize() {
243  Optimizer opt(this);
244  if (!compilation()->profile_branches()) {
245    if (DoCEE) {
246      opt.eliminate_conditional_expressions();
247#ifndef PRODUCT
248      if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
249      if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
250#endif
251    }
252    if (EliminateBlocks) {
253      opt.eliminate_blocks();
254#ifndef PRODUCT
255      if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
256      if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
257#endif
258    }
259  }
260  if (EliminateNullChecks) {
261    opt.eliminate_null_checks();
262#ifndef PRODUCT
263    if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
264    if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
265#endif
266  }
267}
268
269
270static int sort_pairs(BlockPair** a, BlockPair** b) {
271  if ((*a)->from() == (*b)->from()) {
272    return (*a)->to()->block_id() - (*b)->to()->block_id();
273  } else {
274    return (*a)->from()->block_id() - (*b)->from()->block_id();
275  }
276}
277
278
279class CriticalEdgeFinder: public BlockClosure {
280  BlockPairList blocks;
281  IR*       _ir;
282
283 public:
284  CriticalEdgeFinder(IR* ir): _ir(ir) {}
285  void block_do(BlockBegin* bb) {
286    BlockEnd* be = bb->end();
287    int nos = be->number_of_sux();
288    if (nos >= 2) {
289      for (int i = 0; i < nos; i++) {
290        BlockBegin* sux = be->sux_at(i);
291        if (sux->number_of_preds() >= 2) {
292          blocks.append(new BlockPair(bb, sux));
293        }
294      }
295    }
296  }
297
298  void split_edges() {
299    BlockPair* last_pair = NULL;
300    blocks.sort(sort_pairs);
301    for (int i = 0; i < blocks.length(); i++) {
302      BlockPair* pair = blocks.at(i);
303      if (last_pair != NULL && pair->is_same(last_pair)) continue;
304      BlockBegin* from = pair->from();
305      BlockBegin* to = pair->to();
306      BlockBegin* split = from->insert_block_between(to);
307#ifndef PRODUCT
308      if ((PrintIR || PrintIR1) && Verbose) {
309        tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
310                      from->block_id(), to->block_id(), split->block_id());
311      }
312#endif
313      last_pair = pair;
314    }
315  }
316};
317
318void IR::split_critical_edges() {
319  CriticalEdgeFinder cef(this);
320
321  iterate_preorder(&cef);
322  cef.split_edges();
323}
324
325
326class UseCountComputer: public ValueVisitor, BlockClosure {
327 private:
328  void visit(Value* n) {
329    // Local instructions and Phis for expression stack values at the
330    // start of basic blocks are not added to the instruction list
331    if (!(*n)->is_linked() && (*n)->can_be_linked()) {
332      assert(false, "a node was not appended to the graph");
333      Compilation::current()->bailout("a node was not appended to the graph");
334    }
335    // use n's input if not visited before
336    if (!(*n)->is_pinned() && !(*n)->has_uses()) {
337      // note: a) if the instruction is pinned, it will be handled by compute_use_count
338      //       b) if the instruction has uses, it was touched before
339      //       => in both cases we don't need to update n's values
340      uses_do(n);
341    }
342    // use n
343    (*n)->_use_count++;
344  }
345
346  Values* worklist;
347  int depth;
348  enum {
349    max_recurse_depth = 20
350  };
351
352  void uses_do(Value* n) {
353    depth++;
354    if (depth > max_recurse_depth) {
355      // don't allow the traversal to recurse too deeply
356      worklist->push(*n);
357    } else {
358      (*n)->input_values_do(this);
359      // special handling for some instructions
360      if ((*n)->as_BlockEnd() != NULL) {
361        // note on BlockEnd:
362        //   must 'use' the stack only if the method doesn't
363        //   terminate, however, in those cases stack is empty
364        (*n)->state_values_do(this);
365      }
366    }
367    depth--;
368  }
369
370  void block_do(BlockBegin* b) {
371    depth = 0;
372    // process all pinned nodes as the roots of expression trees
373    for (Instruction* n = b; n != NULL; n = n->next()) {
374      if (n->is_pinned()) uses_do(&n);
375    }
376    assert(depth == 0, "should have counted back down");
377
378    // now process any unpinned nodes which recursed too deeply
379    while (worklist->length() > 0) {
380      Value t = worklist->pop();
381      if (!t->is_pinned()) {
382        // compute the use count
383        uses_do(&t);
384
385        // pin the instruction so that LIRGenerator doesn't recurse
386        // too deeply during it's evaluation.
387        t->pin();
388      }
389    }
390    assert(depth == 0, "should have counted back down");
391  }
392
393  UseCountComputer() {
394    worklist = new Values();
395    depth = 0;
396  }
397
398 public:
399  static void compute(BlockList* blocks) {
400    UseCountComputer ucc;
401    blocks->iterate_backward(&ucc);
402  }
403};
404
405
406// helper macro for short definition of trace-output inside code
407#ifndef PRODUCT
408  #define TRACE_LINEAR_SCAN(level, code)       \
409    if (TraceLinearScanLevel >= level) {       \
410      code;                                    \
411    }
412#else
413  #define TRACE_LINEAR_SCAN(level, code)
414#endif
415
416class ComputeLinearScanOrder : public StackObj {
417 private:
418  int        _max_block_id;        // the highest block_id of a block
419  int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
420  int        _num_loops;           // total number of loops
421  bool       _iterative_dominators;// method requires iterative computation of dominatiors
422
423  BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
424
425  BitMap     _visited_blocks;      // used for recursive processing of blocks
426  BitMap     _active_blocks;       // used for recursive processing of blocks
427  BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
428  intArray   _forward_branches;    // number of incoming forward branches for each block
429  BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
430  BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
431  BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
432
433  Compilation* _compilation;
434
435  // accessors for _visited_blocks and _active_blocks
436  void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
437  bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
438  bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
439  void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
440  void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
441  void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
442
443  // accessors for _forward_branches
444  void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
445  int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
446
447  // accessors for _loop_map
448  bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
449  void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
450  void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
451
452  // count edges between blocks
453  void count_edges(BlockBegin* cur, BlockBegin* parent);
454
455  // loop detection
456  void mark_loops();
457  void clear_non_natural_loops(BlockBegin* start_block);
458  void assign_loop_depth(BlockBegin* start_block);
459
460  // computation of final block order
461  BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
462  void compute_dominator(BlockBegin* cur, BlockBegin* parent);
463  int  compute_weight(BlockBegin* cur);
464  bool ready_for_processing(BlockBegin* cur);
465  void sort_into_work_list(BlockBegin* b);
466  void append_block(BlockBegin* cur);
467  void compute_order(BlockBegin* start_block);
468
469  // fixup of dominators for non-natural loops
470  bool compute_dominators_iter();
471  void compute_dominators();
472
473  // debug functions
474  NOT_PRODUCT(void print_blocks();)
475  DEBUG_ONLY(void verify();)
476
477  Compilation* compilation() const { return _compilation; }
478 public:
479  ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
480
481  // accessors for final result
482  BlockList* linear_scan_order() const    { return _linear_scan_order; }
483  int        num_loops() const            { return _num_loops; }
484};
485
486
487ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
488  _max_block_id(BlockBegin::number_of_blocks()),
489  _num_blocks(0),
490  _num_loops(0),
491  _iterative_dominators(false),
492  _visited_blocks(_max_block_id),
493  _active_blocks(_max_block_id),
494  _dominator_blocks(_max_block_id),
495  _forward_branches(_max_block_id, 0),
496  _loop_end_blocks(8),
497  _work_list(8),
498  _linear_scan_order(NULL), // initialized later with correct size
499  _loop_map(0, 0),          // initialized later with correct size
500  _compilation(c)
501{
502  TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
503
504  init_visited();
505  count_edges(start_block, NULL);
506
507  if (compilation()->is_profiling()) {
508    ciMethod *method = compilation()->method();
509    if (!method->is_accessor()) {
510      ciMethodData* md = method->method_data_or_null();
511      assert(md != NULL, "Sanity");
512      md->set_compilation_stats(_num_loops, _num_blocks);
513    }
514  }
515
516  if (_num_loops > 0) {
517    mark_loops();
518    clear_non_natural_loops(start_block);
519    assign_loop_depth(start_block);
520  }
521
522  compute_order(start_block);
523  compute_dominators();
524
525  NOT_PRODUCT(print_blocks());
526  DEBUG_ONLY(verify());
527}
528
529
530// Traverse the CFG:
531// * count total number of blocks
532// * count all incoming edges and backward incoming edges
533// * number loop header blocks
534// * create a list with all loop end blocks
535void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
536  TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
537  assert(cur->dominator() == NULL, "dominator already initialized");
538
539  if (is_active(cur)) {
540    TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
541    assert(is_visited(cur), "block must be visisted when block is active");
542    assert(parent != NULL, "must have parent");
543
544    cur->set(BlockBegin::linear_scan_loop_header_flag);
545    cur->set(BlockBegin::backward_branch_target_flag);
546
547    parent->set(BlockBegin::linear_scan_loop_end_flag);
548
549    // When a loop header is also the start of an exception handler, then the backward branch is
550    // an exception edge. Because such edges are usually critical edges which cannot be split, the
551    // loop must be excluded here from processing.
552    if (cur->is_set(BlockBegin::exception_entry_flag)) {
553      // Make sure that dominators are correct in this weird situation
554      _iterative_dominators = true;
555      return;
556    }
557    assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
558           "loop end blocks must have one successor (critical edges are split)");
559
560    _loop_end_blocks.append(parent);
561    return;
562  }
563
564  // increment number of incoming forward branches
565  inc_forward_branches(cur);
566
567  if (is_visited(cur)) {
568    TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
569    return;
570  }
571
572  _num_blocks++;
573  set_visited(cur);
574  set_active(cur);
575
576  // recursive call for all successors
577  int i;
578  for (i = cur->number_of_sux() - 1; i >= 0; i--) {
579    count_edges(cur->sux_at(i), cur);
580  }
581  for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
582    count_edges(cur->exception_handler_at(i), cur);
583  }
584
585  clear_active(cur);
586
587  // Each loop has a unique number.
588  // When multiple loops are nested, assign_loop_depth assumes that the
589  // innermost loop has the lowest number. This is guaranteed by setting
590  // the loop number after the recursive calls for the successors above
591  // have returned.
592  if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
593    assert(cur->loop_index() == -1, "cannot set loop-index twice");
594    TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
595
596    cur->set_loop_index(_num_loops);
597    _num_loops++;
598  }
599
600  TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
601}
602
603
604void ComputeLinearScanOrder::mark_loops() {
605  TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
606
607  _loop_map = BitMap2D(_num_loops, _max_block_id);
608  _loop_map.clear();
609
610  for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
611    BlockBegin* loop_end   = _loop_end_blocks.at(i);
612    BlockBegin* loop_start = loop_end->sux_at(0);
613    int         loop_idx   = loop_start->loop_index();
614
615    TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
616    assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
617    assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
618    assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
619    assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
620    assert(_work_list.is_empty(), "work list must be empty before processing");
621
622    // add the end-block of the loop to the working list
623    _work_list.push(loop_end);
624    set_block_in_loop(loop_idx, loop_end);
625    do {
626      BlockBegin* cur = _work_list.pop();
627
628      TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
629      assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
630
631      // recursive processing of all predecessors ends when start block of loop is reached
632      if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
633        for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
634          BlockBegin* pred = cur->pred_at(j);
635
636          if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
637            // this predecessor has not been processed yet, so add it to work list
638            TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
639            _work_list.push(pred);
640            set_block_in_loop(loop_idx, pred);
641          }
642        }
643      }
644    } while (!_work_list.is_empty());
645  }
646}
647
648
649// check for non-natural loops (loops where the loop header does not dominate
650// all other loop blocks = loops with mulitple entries).
651// such loops are ignored
652void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
653  for (int i = _num_loops - 1; i >= 0; i--) {
654    if (is_block_in_loop(i, start_block)) {
655      // loop i contains the entry block of the method
656      // -> this is not a natural loop, so ignore it
657      TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
658
659      for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
660        clear_block_in_loop(i, block_id);
661      }
662      _iterative_dominators = true;
663    }
664  }
665}
666
667void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
668  TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
669  init_visited();
670
671  assert(_work_list.is_empty(), "work list must be empty before processing");
672  _work_list.append(start_block);
673
674  do {
675    BlockBegin* cur = _work_list.pop();
676
677    if (!is_visited(cur)) {
678      set_visited(cur);
679      TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
680
681      // compute loop-depth and loop-index for the block
682      assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
683      int i;
684      int loop_depth = 0;
685      int min_loop_idx = -1;
686      for (i = _num_loops - 1; i >= 0; i--) {
687        if (is_block_in_loop(i, cur)) {
688          loop_depth++;
689          min_loop_idx = i;
690        }
691      }
692      cur->set_loop_depth(loop_depth);
693      cur->set_loop_index(min_loop_idx);
694
695      // append all unvisited successors to work list
696      for (i = cur->number_of_sux() - 1; i >= 0; i--) {
697        _work_list.append(cur->sux_at(i));
698      }
699      for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
700        _work_list.append(cur->exception_handler_at(i));
701      }
702    }
703  } while (!_work_list.is_empty());
704}
705
706
707BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
708  assert(a != NULL && b != NULL, "must have input blocks");
709
710  _dominator_blocks.clear();
711  while (a != NULL) {
712    _dominator_blocks.set_bit(a->block_id());
713    assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
714    a = a->dominator();
715  }
716  while (b != NULL && !_dominator_blocks.at(b->block_id())) {
717    assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
718    b = b->dominator();
719  }
720
721  assert(b != NULL, "could not find dominator");
722  return b;
723}
724
725void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
726  if (cur->dominator() == NULL) {
727    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
728    cur->set_dominator(parent);
729
730  } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
731    TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
732    assert(cur->number_of_preds() > 1, "");
733    cur->set_dominator(common_dominator(cur->dominator(), parent));
734  }
735}
736
737
738int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
739  BlockBegin* single_sux = NULL;
740  if (cur->number_of_sux() == 1) {
741    single_sux = cur->sux_at(0);
742  }
743
744  // limit loop-depth to 15 bit (only for security reason, it will never be so big)
745  int weight = (cur->loop_depth() & 0x7FFF) << 16;
746
747  // general macro for short definition of weight flags
748  // the first instance of INC_WEIGHT_IF has the highest priority
749  int cur_bit = 15;
750  #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
751
752  // this is necessery for the (very rare) case that two successing blocks have
753  // the same loop depth, but a different loop index (can happen for endless loops
754  // with exception handlers)
755  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
756
757  // loop end blocks (blocks that end with a backward branch) are added
758  // after all other blocks of the loop.
759  INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
760
761  // critical edge split blocks are prefered because than they have a bigger
762  // proability to be completely empty
763  INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
764
765  // exceptions should not be thrown in normal control flow, so these blocks
766  // are added as late as possible
767  INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
768  INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
769
770  // exceptions handlers are added as late as possible
771  INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
772
773  // guarantee that weight is > 0
774  weight |= 1;
775
776  #undef INC_WEIGHT_IF
777  assert(cur_bit >= 0, "too many flags");
778  assert(weight > 0, "weight cannot become negative");
779
780  return weight;
781}
782
783bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
784  // Discount the edge just traveled.
785  // When the number drops to zero, all forward branches were processed
786  if (dec_forward_branches(cur) != 0) {
787    return false;
788  }
789
790  assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
791  assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
792  return true;
793}
794
795void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
796  assert(_work_list.index_of(cur) == -1, "block already in work list");
797
798  int cur_weight = compute_weight(cur);
799
800  // the linear_scan_number is used to cache the weight of a block
801  cur->set_linear_scan_number(cur_weight);
802
803#ifndef PRODUCT
804  if (StressLinearScan) {
805    _work_list.insert_before(0, cur);
806    return;
807  }
808#endif
809
810  _work_list.append(NULL); // provide space for new element
811
812  int insert_idx = _work_list.length() - 1;
813  while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
814    _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
815    insert_idx--;
816  }
817  _work_list.at_put(insert_idx, cur);
818
819  TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
820  TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
821
822#ifdef ASSERT
823  for (int i = 0; i < _work_list.length(); i++) {
824    assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
825    assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
826  }
827#endif
828}
829
830void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
831  TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
832  assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
833
834  // currently, the linear scan order and code emit order are equal.
835  // therefore the linear_scan_number and the weight of a block must also
836  // be equal.
837  cur->set_linear_scan_number(_linear_scan_order->length());
838  _linear_scan_order->append(cur);
839}
840
841void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
842  TRACE_LINEAR_SCAN(3, "----- computing final block order");
843
844  // the start block is always the first block in the linear scan order
845  _linear_scan_order = new BlockList(_num_blocks);
846  append_block(start_block);
847
848  assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
849  BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
850  BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
851
852  BlockBegin* sux_of_osr_entry = NULL;
853  if (osr_entry != NULL) {
854    // special handling for osr entry:
855    // ignore the edge between the osr entry and its successor for processing
856    // the osr entry block is added manually below
857    assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
858    assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
859
860    sux_of_osr_entry = osr_entry->sux_at(0);
861    dec_forward_branches(sux_of_osr_entry);
862
863    compute_dominator(osr_entry, start_block);
864    _iterative_dominators = true;
865  }
866  compute_dominator(std_entry, start_block);
867
868  // start processing with standard entry block
869  assert(_work_list.is_empty(), "list must be empty before processing");
870
871  if (ready_for_processing(std_entry)) {
872    sort_into_work_list(std_entry);
873  } else {
874    assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
875  }
876
877  do {
878    BlockBegin* cur = _work_list.pop();
879
880    if (cur == sux_of_osr_entry) {
881      // the osr entry block is ignored in normal processing, it is never added to the
882      // work list. Instead, it is added as late as possible manually here.
883      append_block(osr_entry);
884      compute_dominator(cur, osr_entry);
885    }
886    append_block(cur);
887
888    int i;
889    int num_sux = cur->number_of_sux();
890    // changed loop order to get "intuitive" order of if- and else-blocks
891    for (i = 0; i < num_sux; i++) {
892      BlockBegin* sux = cur->sux_at(i);
893      compute_dominator(sux, cur);
894      if (ready_for_processing(sux)) {
895        sort_into_work_list(sux);
896      }
897    }
898    num_sux = cur->number_of_exception_handlers();
899    for (i = 0; i < num_sux; i++) {
900      BlockBegin* sux = cur->exception_handler_at(i);
901      compute_dominator(sux, cur);
902      if (ready_for_processing(sux)) {
903        sort_into_work_list(sux);
904      }
905    }
906  } while (_work_list.length() > 0);
907}
908
909
910bool ComputeLinearScanOrder::compute_dominators_iter() {
911  bool changed = false;
912  int num_blocks = _linear_scan_order->length();
913
914  assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
915  assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
916  for (int i = 1; i < num_blocks; i++) {
917    BlockBegin* block = _linear_scan_order->at(i);
918
919    BlockBegin* dominator = block->pred_at(0);
920    int num_preds = block->number_of_preds();
921    for (int i = 1; i < num_preds; i++) {
922      dominator = common_dominator(dominator, block->pred_at(i));
923    }
924
925    if (dominator != block->dominator()) {
926      TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
927
928      block->set_dominator(dominator);
929      changed = true;
930    }
931  }
932  return changed;
933}
934
935void ComputeLinearScanOrder::compute_dominators() {
936  TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
937
938  // iterative computation of dominators is only required for methods with non-natural loops
939  // and OSR-methods. For all other methods, the dominators computed when generating the
940  // linear scan block order are correct.
941  if (_iterative_dominators) {
942    do {
943      TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
944    } while (compute_dominators_iter());
945  }
946
947  // check that dominators are correct
948  assert(!compute_dominators_iter(), "fix point not reached");
949}
950
951
952#ifndef PRODUCT
953void ComputeLinearScanOrder::print_blocks() {
954  if (TraceLinearScanLevel >= 2) {
955    tty->print_cr("----- loop information:");
956    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
957      BlockBegin* cur = _linear_scan_order->at(block_idx);
958
959      tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
960      for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
961        tty->print ("%d ", is_block_in_loop(loop_idx, cur));
962      }
963      tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
964    }
965  }
966
967  if (TraceLinearScanLevel >= 1) {
968    tty->print_cr("----- linear-scan block order:");
969    for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
970      BlockBegin* cur = _linear_scan_order->at(block_idx);
971      tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
972
973      tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
974      tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
975      tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
976      tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
977
978      if (cur->dominator() != NULL) {
979        tty->print("    dom: B%d ", cur->dominator()->block_id());
980      } else {
981        tty->print("    dom: NULL ");
982      }
983
984      if (cur->number_of_preds() > 0) {
985        tty->print("    preds: ");
986        for (int j = 0; j < cur->number_of_preds(); j++) {
987          BlockBegin* pred = cur->pred_at(j);
988          tty->print("B%d ", pred->block_id());
989        }
990      }
991      if (cur->number_of_sux() > 0) {
992        tty->print("    sux: ");
993        for (int j = 0; j < cur->number_of_sux(); j++) {
994          BlockBegin* sux = cur->sux_at(j);
995          tty->print("B%d ", sux->block_id());
996        }
997      }
998      if (cur->number_of_exception_handlers() > 0) {
999        tty->print("    ex: ");
1000        for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1001          BlockBegin* ex = cur->exception_handler_at(j);
1002          tty->print("B%d ", ex->block_id());
1003        }
1004      }
1005      tty->cr();
1006    }
1007  }
1008}
1009#endif
1010
1011#ifdef ASSERT
1012void ComputeLinearScanOrder::verify() {
1013  assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1014
1015  if (StressLinearScan) {
1016    // blocks are scrambled when StressLinearScan is used
1017    return;
1018  }
1019
1020  // check that all successors of a block have a higher linear-scan-number
1021  // and that all predecessors of a block have a lower linear-scan-number
1022  // (only backward branches of loops are ignored)
1023  int i;
1024  for (i = 0; i < _linear_scan_order->length(); i++) {
1025    BlockBegin* cur = _linear_scan_order->at(i);
1026
1027    assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1028    assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1029
1030    int j;
1031    for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1032      BlockBegin* sux = cur->sux_at(j);
1033
1034      assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1035      if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
1036        assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1037      }
1038      if (cur->loop_depth() == sux->loop_depth()) {
1039        assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1040      }
1041    }
1042
1043    for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1044      BlockBegin* pred = cur->pred_at(j);
1045
1046      assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1047      if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1048        assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1049      }
1050      if (cur->loop_depth() == pred->loop_depth()) {
1051        assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1052      }
1053
1054      assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1055    }
1056
1057    // check dominator
1058    if (i == 0) {
1059      assert(cur->dominator() == NULL, "first block has no dominator");
1060    } else {
1061      assert(cur->dominator() != NULL, "all but first block must have dominator");
1062    }
1063    assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
1064  }
1065
1066  // check that all loops are continuous
1067  for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1068    int block_idx = 0;
1069    assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1070
1071    // skip blocks before the loop
1072    while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1073      block_idx++;
1074    }
1075    // skip blocks of loop
1076    while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1077      block_idx++;
1078    }
1079    // after the first non-loop block, there must not be another loop-block
1080    while (block_idx < _num_blocks) {
1081      assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1082      block_idx++;
1083    }
1084  }
1085}
1086#endif
1087
1088
1089void IR::compute_code() {
1090  assert(is_valid(), "IR must be valid");
1091
1092  ComputeLinearScanOrder compute_order(compilation(), start());
1093  _num_loops = compute_order.num_loops();
1094  _code = compute_order.linear_scan_order();
1095}
1096
1097
1098void IR::compute_use_counts() {
1099  // make sure all values coming out of this block get evaluated.
1100  int num_blocks = _code->length();
1101  for (int i = 0; i < num_blocks; i++) {
1102    _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1103  }
1104
1105  // compute use counts
1106  UseCountComputer::compute(_code);
1107}
1108
1109
1110void IR::iterate_preorder(BlockClosure* closure) {
1111  assert(is_valid(), "IR must be valid");
1112  start()->iterate_preorder(closure);
1113}
1114
1115
1116void IR::iterate_postorder(BlockClosure* closure) {
1117  assert(is_valid(), "IR must be valid");
1118  start()->iterate_postorder(closure);
1119}
1120
1121void IR::iterate_linear_scan_order(BlockClosure* closure) {
1122  linear_scan_order()->iterate_forward(closure);
1123}
1124
1125
1126#ifndef PRODUCT
1127class BlockPrinter: public BlockClosure {
1128 private:
1129  InstructionPrinter* _ip;
1130  bool                _cfg_only;
1131  bool                _live_only;
1132
1133 public:
1134  BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1135    _ip       = ip;
1136    _cfg_only = cfg_only;
1137    _live_only = live_only;
1138  }
1139
1140  virtual void block_do(BlockBegin* block) {
1141    if (_cfg_only) {
1142      _ip->print_instr(block); tty->cr();
1143    } else {
1144      block->print_block(*_ip, _live_only);
1145    }
1146  }
1147};
1148
1149
1150void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1151  ttyLocker ttyl;
1152  InstructionPrinter ip(!cfg_only);
1153  BlockPrinter bp(&ip, cfg_only, live_only);
1154  start->iterate_preorder(&bp);
1155  tty->cr();
1156}
1157
1158void IR::print(bool cfg_only, bool live_only) {
1159  if (is_valid()) {
1160    print(start(), cfg_only, live_only);
1161  } else {
1162    tty->print_cr("invalid IR");
1163  }
1164}
1165
1166
1167define_array(BlockListArray, BlockList*)
1168define_stack(BlockListList, BlockListArray)
1169
1170class PredecessorValidator : public BlockClosure {
1171 private:
1172  BlockListList* _predecessors;
1173  BlockList*     _blocks;
1174
1175  static int cmp(BlockBegin** a, BlockBegin** b) {
1176    return (*a)->block_id() - (*b)->block_id();
1177  }
1178
1179 public:
1180  PredecessorValidator(IR* hir) {
1181    ResourceMark rm;
1182    _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1183    _blocks = new BlockList();
1184
1185    int i;
1186    hir->start()->iterate_preorder(this);
1187    if (hir->code() != NULL) {
1188      assert(hir->code()->length() == _blocks->length(), "must match");
1189      for (i = 0; i < _blocks->length(); i++) {
1190        assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1191      }
1192    }
1193
1194    for (i = 0; i < _blocks->length(); i++) {
1195      BlockBegin* block = _blocks->at(i);
1196      BlockList* preds = _predecessors->at(block->block_id());
1197      if (preds == NULL) {
1198        assert(block->number_of_preds() == 0, "should be the same");
1199        continue;
1200      }
1201
1202      // clone the pred list so we can mutate it
1203      BlockList* pred_copy = new BlockList();
1204      int j;
1205      for (j = 0; j < block->number_of_preds(); j++) {
1206        pred_copy->append(block->pred_at(j));
1207      }
1208      // sort them in the same order
1209      preds->sort(cmp);
1210      pred_copy->sort(cmp);
1211      int length = MIN2(preds->length(), block->number_of_preds());
1212      for (j = 0; j < block->number_of_preds(); j++) {
1213        assert(preds->at(j) == pred_copy->at(j), "must match");
1214      }
1215
1216      assert(preds->length() == block->number_of_preds(), "should be the same");
1217    }
1218  }
1219
1220  virtual void block_do(BlockBegin* block) {
1221    _blocks->append(block);
1222    BlockEnd* be = block->end();
1223    int n = be->number_of_sux();
1224    int i;
1225    for (i = 0; i < n; i++) {
1226      BlockBegin* sux = be->sux_at(i);
1227      assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1228
1229      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1230      if (preds == NULL) {
1231        preds = new BlockList();
1232        _predecessors->at_put(sux->block_id(), preds);
1233      }
1234      preds->append(block);
1235    }
1236
1237    n = block->number_of_exception_handlers();
1238    for (i = 0; i < n; i++) {
1239      BlockBegin* sux = block->exception_handler_at(i);
1240      assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1241
1242      BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1243      if (preds == NULL) {
1244        preds = new BlockList();
1245        _predecessors->at_put(sux->block_id(), preds);
1246      }
1247      preds->append(block);
1248    }
1249  }
1250};
1251
1252void IR::verify() {
1253#ifdef ASSERT
1254  PredecessorValidator pv(this);
1255#endif
1256}
1257
1258#endif // PRODUCT
1259
1260void SubstitutionResolver::visit(Value* v) {
1261  Value v0 = *v;
1262  if (v0) {
1263    Value vs = v0->subst();
1264    if (vs != v0) {
1265      *v = v0->subst();
1266    }
1267  }
1268}
1269
1270#ifdef ASSERT
1271class SubstitutionChecker: public ValueVisitor {
1272  void visit(Value* v) {
1273    Value v0 = *v;
1274    if (v0) {
1275      Value vs = v0->subst();
1276      assert(vs == v0, "missed substitution");
1277    }
1278  }
1279};
1280#endif
1281
1282
1283void SubstitutionResolver::block_do(BlockBegin* block) {
1284  Instruction* last = NULL;
1285  for (Instruction* n = block; n != NULL;) {
1286    n->values_do(this);
1287    // need to remove this instruction from the instruction stream
1288    if (n->subst() != n) {
1289      assert(last != NULL, "must have last");
1290      last->set_next(n->next());
1291    } else {
1292      last = n;
1293    }
1294    n = last->next();
1295  }
1296
1297#ifdef ASSERT
1298  SubstitutionChecker check_substitute;
1299  if (block->state()) block->state()->values_do(&check_substitute);
1300  block->block_values_do(&check_substitute);
1301  if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1302#endif
1303}
1304