codeBuffer.cpp revision 9111:a41fe5ffa839
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "compiler/disassembler.hpp"
28#include "gc/shared/gcLocker.hpp"
29#include "oops/methodData.hpp"
30#include "oops/oop.inline.hpp"
31#include "runtime/icache.hpp"
32#include "utilities/copy.hpp"
33#include "utilities/xmlstream.hpp"
34
35// The structure of a CodeSection:
36//
37//    _start ->           +----------------+
38//                        | machine code...|
39//    _end ->             |----------------|
40//                        |                |
41//                        |    (empty)     |
42//                        |                |
43//                        |                |
44//                        +----------------+
45//    _limit ->           |                |
46//
47//    _locs_start ->      +----------------+
48//                        |reloc records...|
49//                        |----------------|
50//    _locs_end ->        |                |
51//                        |                |
52//                        |    (empty)     |
53//                        |                |
54//                        |                |
55//                        +----------------+
56//    _locs_limit ->      |                |
57// The _end (resp. _limit) pointer refers to the first
58// unused (resp. unallocated) byte.
59
60// The structure of the CodeBuffer while code is being accumulated:
61//
62//    _total_start ->    \
63//    _insts._start ->              +----------------+
64//                                  |                |
65//                                  |     Code       |
66//                                  |                |
67//    _stubs._start ->              |----------------|
68//                                  |                |
69//                                  |    Stubs       | (also handlers for deopt/exception)
70//                                  |                |
71//    _consts._start ->             |----------------|
72//                                  |                |
73//                                  |   Constants    |
74//                                  |                |
75//                                  +----------------+
76//    + _total_size ->              |                |
77//
78// When the code and relocations are copied to the code cache,
79// the empty parts of each section are removed, and everything
80// is copied into contiguous locations.
81
82typedef CodeBuffer::csize_t csize_t;  // file-local definition
83
84// External buffer, in a predefined CodeBlob.
85// Important: The code_start must be taken exactly, and not realigned.
86CodeBuffer::CodeBuffer(CodeBlob* blob) {
87  initialize_misc("static buffer");
88  initialize(blob->content_begin(), blob->content_size());
89  verify_section_allocation();
90}
91
92void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
93  // Compute maximal alignment.
94  int align = _insts.alignment();
95  // Always allow for empty slop around each section.
96  int slop = (int) CodeSection::end_slop();
97
98  assert(blob() == NULL, "only once");
99  set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
100  if (blob() == NULL) {
101    // The assembler constructor will throw a fatal on an empty CodeBuffer.
102    return;  // caller must test this
103  }
104
105  // Set up various pointers into the blob.
106  initialize(_total_start, _total_size);
107
108  assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
109
110  pd_initialize();
111
112  if (locs_size != 0) {
113    _insts.initialize_locs(locs_size / sizeof(relocInfo));
114  }
115
116  verify_section_allocation();
117}
118
119
120CodeBuffer::~CodeBuffer() {
121  verify_section_allocation();
122
123  // If we allocate our code buffer from the CodeCache
124  // via a BufferBlob, and it's not permanent, then
125  // free the BufferBlob.
126  // The rest of the memory will be freed when the ResourceObj
127  // is released.
128  for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
129    // Previous incarnations of this buffer are held live, so that internal
130    // addresses constructed before expansions will not be confused.
131    cb->free_blob();
132  }
133
134  // free any overflow storage
135  delete _overflow_arena;
136
137  // Claim is that stack allocation ensures resources are cleaned up.
138  // This is resource clean up, let's hope that all were properly copied out.
139  free_strings();
140
141#ifdef ASSERT
142  // Save allocation type to execute assert in ~ResourceObj()
143  // which is called after this destructor.
144  assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
145  ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
146  Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
147  ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
148#endif
149}
150
151void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
152  assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
153  DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
154  _oop_recorder = r;
155}
156
157void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
158  assert(cs != &_insts, "insts is the memory provider, not the consumer");
159  csize_t slop = CodeSection::end_slop();  // margin between sections
160  int align = cs->alignment();
161  assert(is_power_of_2(align), "sanity");
162  address start  = _insts._start;
163  address limit  = _insts._limit;
164  address middle = limit - size;
165  middle -= (intptr_t)middle & (align-1);  // align the division point downward
166  guarantee(middle - slop > start, "need enough space to divide up");
167  _insts._limit = middle - slop;  // subtract desired space, plus slop
168  cs->initialize(middle, limit - middle);
169  assert(cs->start() == middle, "sanity");
170  assert(cs->limit() == limit,  "sanity");
171  // give it some relocations to start with, if the main section has them
172  if (_insts.has_locs())  cs->initialize_locs(1);
173}
174
175void CodeBuffer::freeze_section(CodeSection* cs) {
176  CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
177  csize_t frozen_size = cs->size();
178  if (next_cs != NULL) {
179    frozen_size = next_cs->align_at_start(frozen_size);
180  }
181  address old_limit = cs->limit();
182  address new_limit = cs->start() + frozen_size;
183  relocInfo* old_locs_limit = cs->locs_limit();
184  relocInfo* new_locs_limit = cs->locs_end();
185  // Patch the limits.
186  cs->_limit = new_limit;
187  cs->_locs_limit = new_locs_limit;
188  cs->_frozen = true;
189  if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
190    // Give remaining buffer space to the following section.
191    next_cs->initialize(new_limit, old_limit - new_limit);
192    next_cs->initialize_shared_locs(new_locs_limit,
193                                    old_locs_limit - new_locs_limit);
194  }
195}
196
197void CodeBuffer::set_blob(BufferBlob* blob) {
198  _blob = blob;
199  if (blob != NULL) {
200    address start = blob->content_begin();
201    address end   = blob->content_end();
202    // Round up the starting address.
203    int align = _insts.alignment();
204    start += (-(intptr_t)start) & (align-1);
205    _total_start = start;
206    _total_size  = end - start;
207  } else {
208#ifdef ASSERT
209    // Clean out dangling pointers.
210    _total_start    = badAddress;
211    _consts._start  = _consts._end  = badAddress;
212    _insts._start   = _insts._end   = badAddress;
213    _stubs._start   = _stubs._end   = badAddress;
214#endif //ASSERT
215  }
216}
217
218void CodeBuffer::free_blob() {
219  if (_blob != NULL) {
220    BufferBlob::free(_blob);
221    set_blob(NULL);
222  }
223}
224
225const char* CodeBuffer::code_section_name(int n) {
226#ifdef PRODUCT
227  return NULL;
228#else //PRODUCT
229  switch (n) {
230  case SECT_CONSTS:            return "consts";
231  case SECT_INSTS:             return "insts";
232  case SECT_STUBS:             return "stubs";
233  default:                     return NULL;
234  }
235#endif //PRODUCT
236}
237
238int CodeBuffer::section_index_of(address addr) const {
239  for (int n = 0; n < (int)SECT_LIMIT; n++) {
240    const CodeSection* cs = code_section(n);
241    if (cs->allocates(addr))  return n;
242  }
243  return SECT_NONE;
244}
245
246int CodeBuffer::locator(address addr) const {
247  for (int n = 0; n < (int)SECT_LIMIT; n++) {
248    const CodeSection* cs = code_section(n);
249    if (cs->allocates(addr)) {
250      return locator(addr - cs->start(), n);
251    }
252  }
253  return -1;
254}
255
256address CodeBuffer::locator_address(int locator) const {
257  if (locator < 0)  return NULL;
258  address start = code_section(locator_sect(locator))->start();
259  return start + locator_pos(locator);
260}
261
262bool CodeBuffer::is_backward_branch(Label& L) {
263  return L.is_bound() && insts_end() <= locator_address(L.loc());
264}
265
266address CodeBuffer::decode_begin() {
267  address begin = _insts.start();
268  if (_decode_begin != NULL && _decode_begin > begin)
269    begin = _decode_begin;
270  return begin;
271}
272
273
274GrowableArray<int>* CodeBuffer::create_patch_overflow() {
275  if (_overflow_arena == NULL) {
276    _overflow_arena = new (mtCode) Arena(mtCode);
277  }
278  return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
279}
280
281
282// Helper function for managing labels and their target addresses.
283// Returns a sensible address, and if it is not the label's final
284// address, notes the dependency (at 'branch_pc') on the label.
285address CodeSection::target(Label& L, address branch_pc) {
286  if (L.is_bound()) {
287    int loc = L.loc();
288    if (index() == CodeBuffer::locator_sect(loc)) {
289      return start() + CodeBuffer::locator_pos(loc);
290    } else {
291      return outer()->locator_address(loc);
292    }
293  } else {
294    assert(allocates2(branch_pc), "sanity");
295    address base = start();
296    int patch_loc = CodeBuffer::locator(branch_pc - base, index());
297    L.add_patch_at(outer(), patch_loc);
298
299    // Need to return a pc, doesn't matter what it is since it will be
300    // replaced during resolution later.
301    // Don't return NULL or badAddress, since branches shouldn't overflow.
302    // Don't return base either because that could overflow displacements
303    // for shorter branches.  It will get checked when bound.
304    return branch_pc;
305  }
306}
307
308void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
309  Relocation* reloc = spec.reloc();
310  relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
311  if (rtype == relocInfo::none)  return;
312
313  // The assertion below has been adjusted, to also work for
314  // relocation for fixup.  Sometimes we want to put relocation
315  // information for the next instruction, since it will be patched
316  // with a call.
317  assert(start() <= at && at <= end()+1,
318         "cannot relocate data outside code boundaries");
319
320  if (!has_locs()) {
321    // no space for relocation information provided => code cannot be
322    // relocated.  Make sure that relocate is only called with rtypes
323    // that can be ignored for this kind of code.
324    assert(rtype == relocInfo::none              ||
325           rtype == relocInfo::runtime_call_type ||
326           rtype == relocInfo::internal_word_type||
327           rtype == relocInfo::section_word_type ||
328           rtype == relocInfo::external_word_type,
329           "code needs relocation information");
330    // leave behind an indication that we attempted a relocation
331    DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
332    return;
333  }
334
335  // Advance the point, noting the offset we'll have to record.
336  csize_t offset = at - locs_point();
337  set_locs_point(at);
338
339  // Test for a couple of overflow conditions; maybe expand the buffer.
340  relocInfo* end = locs_end();
341  relocInfo* req = end + relocInfo::length_limit;
342  // Check for (potential) overflow
343  if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
344    req += (uint)offset / (uint)relocInfo::offset_limit();
345    if (req >= locs_limit()) {
346      // Allocate or reallocate.
347      expand_locs(locs_count() + (req - end));
348      // reload pointer
349      end = locs_end();
350    }
351  }
352
353  // If the offset is giant, emit filler relocs, of type 'none', but
354  // each carrying the largest possible offset, to advance the locs_point.
355  while (offset >= relocInfo::offset_limit()) {
356    assert(end < locs_limit(), "adjust previous paragraph of code");
357    *end++ = filler_relocInfo();
358    offset -= filler_relocInfo().addr_offset();
359  }
360
361  // If it's a simple reloc with no data, we'll just write (rtype | offset).
362  (*end) = relocInfo(rtype, offset, format);
363
364  // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
365  end->initialize(this, reloc);
366}
367
368void CodeSection::initialize_locs(int locs_capacity) {
369  assert(_locs_start == NULL, "only one locs init step, please");
370  // Apply a priori lower limits to relocation size:
371  csize_t min_locs = MAX2(size() / 16, (csize_t)4);
372  if (locs_capacity < min_locs)  locs_capacity = min_locs;
373  relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
374  _locs_start    = locs_start;
375  _locs_end      = locs_start;
376  _locs_limit    = locs_start + locs_capacity;
377  _locs_own      = true;
378}
379
380void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
381  assert(_locs_start == NULL, "do this before locs are allocated");
382  // Internal invariant:  locs buf must be fully aligned.
383  // See copy_relocations_to() below.
384  while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
385    ++buf; --length;
386  }
387  if (length > 0) {
388    _locs_start = buf;
389    _locs_end   = buf;
390    _locs_limit = buf + length;
391    _locs_own   = false;
392  }
393}
394
395void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
396  int lcount = source_cs->locs_count();
397  if (lcount != 0) {
398    initialize_shared_locs(source_cs->locs_start(), lcount);
399    _locs_end = _locs_limit = _locs_start + lcount;
400    assert(is_allocated(), "must have copied code already");
401    set_locs_point(start() + source_cs->locs_point_off());
402  }
403  assert(this->locs_count() == source_cs->locs_count(), "sanity");
404}
405
406void CodeSection::expand_locs(int new_capacity) {
407  if (_locs_start == NULL) {
408    initialize_locs(new_capacity);
409    return;
410  } else {
411    int old_count    = locs_count();
412    int old_capacity = locs_capacity();
413    if (new_capacity < old_capacity * 2)
414      new_capacity = old_capacity * 2;
415    relocInfo* locs_start;
416    if (_locs_own) {
417      locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
418    } else {
419      locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
420      Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
421      _locs_own = true;
422    }
423    _locs_start    = locs_start;
424    _locs_end      = locs_start + old_count;
425    _locs_limit    = locs_start + new_capacity;
426  }
427}
428
429
430/// Support for emitting the code to its final location.
431/// The pattern is the same for all functions.
432/// We iterate over all the sections, padding each to alignment.
433
434csize_t CodeBuffer::total_content_size() const {
435  csize_t size_so_far = 0;
436  for (int n = 0; n < (int)SECT_LIMIT; n++) {
437    const CodeSection* cs = code_section(n);
438    if (cs->is_empty())  continue;  // skip trivial section
439    size_so_far = cs->align_at_start(size_so_far);
440    size_so_far += cs->size();
441  }
442  return size_so_far;
443}
444
445void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
446  address buf = dest->_total_start;
447  csize_t buf_offset = 0;
448  assert(dest->_total_size >= total_content_size(), "must be big enough");
449
450  {
451    // not sure why this is here, but why not...
452    int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
453    assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
454  }
455
456  const CodeSection* prev_cs      = NULL;
457  CodeSection*       prev_dest_cs = NULL;
458
459  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
460    // figure compact layout of each section
461    const CodeSection* cs = code_section(n);
462    csize_t csize = cs->size();
463
464    CodeSection* dest_cs = dest->code_section(n);
465    if (!cs->is_empty()) {
466      // Compute initial padding; assign it to the previous non-empty guy.
467      // Cf. figure_expanded_capacities.
468      csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
469      if (padding != 0) {
470        buf_offset += padding;
471        assert(prev_dest_cs != NULL, "sanity");
472        prev_dest_cs->_limit += padding;
473      }
474      #ifdef ASSERT
475      if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
476        // Make sure the ends still match up.
477        // This is important because a branch in a frozen section
478        // might target code in a following section, via a Label,
479        // and without a relocation record.  See Label::patch_instructions.
480        address dest_start = buf+buf_offset;
481        csize_t start2start = cs->start() - prev_cs->start();
482        csize_t dest_start2start = dest_start - prev_dest_cs->start();
483        assert(start2start == dest_start2start, "cannot stretch frozen sect");
484      }
485      #endif //ASSERT
486      prev_dest_cs = dest_cs;
487      prev_cs      = cs;
488    }
489
490    debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
491    dest_cs->initialize(buf+buf_offset, csize);
492    dest_cs->set_end(buf+buf_offset+csize);
493    assert(dest_cs->is_allocated(), "must always be allocated");
494    assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
495
496    buf_offset += csize;
497  }
498
499  // Done calculating sections; did it come out to the right end?
500  assert(buf_offset == total_content_size(), "sanity");
501  dest->verify_section_allocation();
502}
503
504// Append an oop reference that keeps the class alive.
505static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
506  oop cl = k->klass_holder();
507  if (cl != NULL && !oops->contains(cl)) {
508    oops->append(cl);
509  }
510}
511
512void CodeBuffer::finalize_oop_references(methodHandle mh) {
513  No_Safepoint_Verifier nsv;
514
515  GrowableArray<oop> oops;
516
517  // Make sure that immediate metadata records something in the OopRecorder
518  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
519    // pull code out of each section
520    CodeSection* cs = code_section(n);
521    if (cs->is_empty())  continue;  // skip trivial section
522    RelocIterator iter(cs);
523    while (iter.next()) {
524      if (iter.type() == relocInfo::metadata_type) {
525        metadata_Relocation* md = iter.metadata_reloc();
526        if (md->metadata_is_immediate()) {
527          Metadata* m = md->metadata_value();
528          if (oop_recorder()->is_real(m)) {
529            if (m->is_methodData()) {
530              m = ((MethodData*)m)->method();
531            }
532            if (m->is_method()) {
533              m = ((Method*)m)->method_holder();
534            }
535            if (m->is_klass()) {
536              append_oop_references(&oops, (Klass*)m);
537            } else {
538              // XXX This will currently occur for MDO which don't
539              // have a backpointer.  This has to be fixed later.
540              m->print();
541              ShouldNotReachHere();
542            }
543          }
544        }
545      }
546    }
547  }
548
549  if (!oop_recorder()->is_unused()) {
550    for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
551      Metadata* m = oop_recorder()->metadata_at(i);
552      if (oop_recorder()->is_real(m)) {
553        if (m->is_methodData()) {
554          m = ((MethodData*)m)->method();
555        }
556        if (m->is_method()) {
557          m = ((Method*)m)->method_holder();
558        }
559        if (m->is_klass()) {
560          append_oop_references(&oops, (Klass*)m);
561        } else {
562          m->print();
563          ShouldNotReachHere();
564        }
565      }
566    }
567
568  }
569
570  // Add the class loader of Method* for the nmethod itself
571  append_oop_references(&oops, mh->method_holder());
572
573  // Add any oops that we've found
574  Thread* thread = Thread::current();
575  for (int i = 0; i < oops.length(); i++) {
576    oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
577  }
578}
579
580
581
582csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
583  csize_t size_so_far = 0;
584  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
585    const CodeSection* cur_cs = code_section(n);
586    if (!cur_cs->is_empty()) {
587      size_so_far = cur_cs->align_at_start(size_so_far);
588    }
589    if (cur_cs->index() == cs->index()) {
590      return size_so_far;
591    }
592    size_so_far += cur_cs->size();
593  }
594  ShouldNotReachHere();
595  return -1;
596}
597
598csize_t CodeBuffer::total_relocation_size() const {
599  csize_t lsize = copy_relocations_to(NULL);  // dry run only
600  csize_t csize = total_content_size();
601  csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
602  return (csize_t) align_size_up(total, HeapWordSize);
603}
604
605csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const {
606  csize_t buf_offset = 0;
607  csize_t code_end_so_far = 0;
608  csize_t code_point_so_far = 0;
609
610  assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
611  assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
612
613  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
614    if (only_inst && (n != (int)SECT_INSTS)) {
615      // Need only relocation info for code.
616      continue;
617    }
618    // pull relocs out of each section
619    const CodeSection* cs = code_section(n);
620    assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
621    if (cs->is_empty())  continue;  // skip trivial section
622    relocInfo* lstart = cs->locs_start();
623    relocInfo* lend   = cs->locs_end();
624    csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
625    csize_t    csize  = cs->size();
626    code_end_so_far = cs->align_at_start(code_end_so_far);
627
628    if (lsize > 0) {
629      // Figure out how to advance the combined relocation point
630      // first to the beginning of this section.
631      // We'll insert one or more filler relocs to span that gap.
632      // (Don't bother to improve this by editing the first reloc's offset.)
633      csize_t new_code_point = code_end_so_far;
634      for (csize_t jump;
635           code_point_so_far < new_code_point;
636           code_point_so_far += jump) {
637        jump = new_code_point - code_point_so_far;
638        relocInfo filler = filler_relocInfo();
639        if (jump >= filler.addr_offset()) {
640          jump = filler.addr_offset();
641        } else {  // else shrink the filler to fit
642          filler = relocInfo(relocInfo::none, jump);
643        }
644        if (buf != NULL) {
645          assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
646          *(relocInfo*)(buf+buf_offset) = filler;
647        }
648        buf_offset += sizeof(filler);
649      }
650
651      // Update code point and end to skip past this section:
652      csize_t last_code_point = code_end_so_far + cs->locs_point_off();
653      assert(code_point_so_far <= last_code_point, "sanity");
654      code_point_so_far = last_code_point; // advance past this guy's relocs
655    }
656    code_end_so_far += csize;  // advance past this guy's instructions too
657
658    // Done with filler; emit the real relocations:
659    if (buf != NULL && lsize != 0) {
660      assert(buf_offset + lsize <= buf_limit, "target in bounds");
661      assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
662      if (buf_offset % HeapWordSize == 0) {
663        // Use wordwise copies if possible:
664        Copy::disjoint_words((HeapWord*)lstart,
665                             (HeapWord*)(buf+buf_offset),
666                             (lsize + HeapWordSize-1) / HeapWordSize);
667      } else {
668        Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
669      }
670    }
671    buf_offset += lsize;
672  }
673
674  // Align end of relocation info in target.
675  while (buf_offset % HeapWordSize != 0) {
676    if (buf != NULL) {
677      relocInfo padding = relocInfo(relocInfo::none, 0);
678      assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
679      *(relocInfo*)(buf+buf_offset) = padding;
680    }
681    buf_offset += sizeof(relocInfo);
682  }
683
684  assert(only_inst || code_end_so_far == total_content_size(), "sanity");
685
686  return buf_offset;
687}
688
689csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
690  address buf = NULL;
691  csize_t buf_offset = 0;
692  csize_t buf_limit = 0;
693
694  if (dest != NULL) {
695    buf = (address)dest->relocation_begin();
696    buf_limit = (address)dest->relocation_end() - buf;
697  }
698  // if dest == NULL, this is just the sizing pass
699  //
700  buf_offset = copy_relocations_to(buf, buf_limit, false);
701
702  // Account for index:
703  if (buf != NULL) {
704    RelocIterator::create_index(dest->relocation_begin(),
705                                buf_offset / sizeof(relocInfo),
706                                dest->relocation_end());
707  }
708
709  return buf_offset;
710}
711
712void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
713#ifndef PRODUCT
714  if (PrintNMethods && (WizardMode || Verbose)) {
715    tty->print("done with CodeBuffer:");
716    ((CodeBuffer*)this)->print();
717  }
718#endif //PRODUCT
719
720  CodeBuffer dest(dest_blob);
721  assert(dest_blob->content_size() >= total_content_size(), "good sizing");
722  this->compute_final_layout(&dest);
723  relocate_code_to(&dest);
724
725  // transfer strings and comments from buffer to blob
726  dest_blob->set_strings(_code_strings);
727
728  // Done moving code bytes; were they the right size?
729  assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
730
731  // Flush generated code
732  ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
733}
734
735// Move all my code into another code buffer.  Consult applicable
736// relocs to repair embedded addresses.  The layout in the destination
737// CodeBuffer is different to the source CodeBuffer: the destination
738// CodeBuffer gets the final layout (consts, insts, stubs in order of
739// ascending address).
740void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
741  address dest_end = dest->_total_start + dest->_total_size;
742  address dest_filled = NULL;
743  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
744    // pull code out of each section
745    const CodeSection* cs = code_section(n);
746    if (cs->is_empty())  continue;  // skip trivial section
747    CodeSection* dest_cs = dest->code_section(n);
748    assert(cs->size() == dest_cs->size(), "sanity");
749    csize_t usize = dest_cs->size();
750    csize_t wsize = align_size_up(usize, HeapWordSize);
751    assert(dest_cs->start() + wsize <= dest_end, "no overflow");
752    // Copy the code as aligned machine words.
753    // This may also include an uninitialized partial word at the end.
754    Copy::disjoint_words((HeapWord*)cs->start(),
755                         (HeapWord*)dest_cs->start(),
756                         wsize / HeapWordSize);
757
758    if (dest->blob() == NULL) {
759      // Destination is a final resting place, not just another buffer.
760      // Normalize uninitialized bytes in the final padding.
761      Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
762                          Assembler::code_fill_byte());
763    }
764    // Keep track of the highest filled address
765    dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
766
767    assert(cs->locs_start() != (relocInfo*)badAddress,
768           "this section carries no reloc storage, but reloc was attempted");
769
770    // Make the new code copy use the old copy's relocations:
771    dest_cs->initialize_locs_from(cs);
772  }
773
774  // Do relocation after all sections are copied.
775  // This is necessary if the code uses constants in stubs, which are
776  // relocated when the corresponding instruction in the code (e.g., a
777  // call) is relocated. Stubs are placed behind the main code
778  // section, so that section has to be copied before relocating.
779  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
780    // pull code out of each section
781    const CodeSection* cs = code_section(n);
782    if (cs->is_empty()) continue;  // skip trivial section
783    CodeSection* dest_cs = dest->code_section(n);
784    { // Repair the pc relative information in the code after the move
785      RelocIterator iter(dest_cs);
786      while (iter.next()) {
787        iter.reloc()->fix_relocation_after_move(this, dest);
788      }
789    }
790  }
791
792  if (dest->blob() == NULL && dest_filled != NULL) {
793    // Destination is a final resting place, not just another buffer.
794    // Normalize uninitialized bytes in the final padding.
795    Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
796                        Assembler::code_fill_byte());
797
798  }
799}
800
801csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
802                                               csize_t amount,
803                                               csize_t* new_capacity) {
804  csize_t new_total_cap = 0;
805
806  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
807    const CodeSection* sect = code_section(n);
808
809    if (!sect->is_empty()) {
810      // Compute initial padding; assign it to the previous section,
811      // even if it's empty (e.g. consts section can be empty).
812      // Cf. compute_final_layout
813      csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
814      if (padding != 0) {
815        new_total_cap += padding;
816        assert(n - 1 >= SECT_FIRST, "sanity");
817        new_capacity[n - 1] += padding;
818      }
819    }
820
821    csize_t exp = sect->size();  // 100% increase
822    if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
823    if (sect == which_cs) {
824      if (exp < amount)  exp = amount;
825      if (StressCodeBuffers)  exp = amount;  // expand only slightly
826    } else if (n == SECT_INSTS) {
827      // scale down inst increases to a more modest 25%
828      exp = 4*K + ((exp - 4*K) >> 2);
829      if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
830    } else if (sect->is_empty()) {
831      // do not grow an empty secondary section
832      exp = 0;
833    }
834    // Allow for inter-section slop:
835    exp += CodeSection::end_slop();
836    csize_t new_cap = sect->size() + exp;
837    if (new_cap < sect->capacity()) {
838      // No need to expand after all.
839      new_cap = sect->capacity();
840    }
841    new_capacity[n] = new_cap;
842    new_total_cap += new_cap;
843  }
844
845  return new_total_cap;
846}
847
848void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
849#ifndef PRODUCT
850  if (PrintNMethods && (WizardMode || Verbose)) {
851    tty->print("expanding CodeBuffer:");
852    this->print();
853  }
854
855  if (StressCodeBuffers && blob() != NULL) {
856    static int expand_count = 0;
857    if (expand_count >= 0)  expand_count += 1;
858    if (expand_count > 100 && is_power_of_2(expand_count)) {
859      tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
860      // simulate an occasional allocation failure:
861      free_blob();
862    }
863  }
864#endif //PRODUCT
865
866  // Resizing must be allowed
867  {
868    if (blob() == NULL)  return;  // caller must check for blob == NULL
869    for (int n = 0; n < (int)SECT_LIMIT; n++) {
870      guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
871    }
872  }
873
874  // Figure new capacity for each section.
875  csize_t new_capacity[SECT_LIMIT];
876  csize_t new_total_cap
877    = figure_expanded_capacities(which_cs, amount, new_capacity);
878
879  // Create a new (temporary) code buffer to hold all the new data
880  CodeBuffer cb(name(), new_total_cap, 0);
881  if (cb.blob() == NULL) {
882    // Failed to allocate in code cache.
883    free_blob();
884    return;
885  }
886
887  // Create an old code buffer to remember which addresses used to go where.
888  // This will be useful when we do final assembly into the code cache,
889  // because we will need to know how to warp any internal address that
890  // has been created at any time in this CodeBuffer's past.
891  CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
892  bxp->take_over_code_from(this);  // remember the old undersized blob
893  DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
894  bxp->_before_expand = this->_before_expand;
895  this->_before_expand = bxp;
896
897  // Give each section its required (expanded) capacity.
898  for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
899    CodeSection* cb_sect   = cb.code_section(n);
900    CodeSection* this_sect = code_section(n);
901    if (new_capacity[n] == 0)  continue;  // already nulled out
902    if (n != SECT_INSTS) {
903      cb.initialize_section_size(cb_sect, new_capacity[n]);
904    }
905    assert(cb_sect->capacity() >= new_capacity[n], "big enough");
906    address cb_start = cb_sect->start();
907    cb_sect->set_end(cb_start + this_sect->size());
908    if (this_sect->mark() == NULL) {
909      cb_sect->clear_mark();
910    } else {
911      cb_sect->set_mark(cb_start + this_sect->mark_off());
912    }
913  }
914
915  // Move all the code and relocations to the new blob:
916  relocate_code_to(&cb);
917
918  // Copy the temporary code buffer into the current code buffer.
919  // Basically, do {*this = cb}, except for some control information.
920  this->take_over_code_from(&cb);
921  cb.set_blob(NULL);
922
923  // Zap the old code buffer contents, to avoid mistakenly using them.
924  debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
925                                 badCodeHeapFreeVal));
926
927  _decode_begin = NULL;  // sanity
928
929  // Make certain that the new sections are all snugly inside the new blob.
930  verify_section_allocation();
931
932#ifndef PRODUCT
933  if (PrintNMethods && (WizardMode || Verbose)) {
934    tty->print("expanded CodeBuffer:");
935    this->print();
936  }
937#endif //PRODUCT
938}
939
940void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
941  // Must already have disposed of the old blob somehow.
942  assert(blob() == NULL, "must be empty");
943  // Take the new blob away from cb.
944  set_blob(cb->blob());
945  // Take over all the section pointers.
946  for (int n = 0; n < (int)SECT_LIMIT; n++) {
947    CodeSection* cb_sect   = cb->code_section(n);
948    CodeSection* this_sect = code_section(n);
949    this_sect->take_over_code_from(cb_sect);
950  }
951  _overflow_arena = cb->_overflow_arena;
952  // Make sure the old cb won't try to use it or free it.
953  DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
954}
955
956void CodeBuffer::verify_section_allocation() {
957  address tstart = _total_start;
958  if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
959  address tend   = tstart + _total_size;
960  if (_blob != NULL) {
961
962    guarantee(tstart >= _blob->content_begin(), "sanity");
963    guarantee(tend   <= _blob->content_end(),   "sanity");
964  }
965  // Verify disjointness.
966  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
967    CodeSection* sect = code_section(n);
968    if (!sect->is_allocated() || sect->is_empty())  continue;
969    guarantee((intptr_t)sect->start() % sect->alignment() == 0
970           || sect->is_empty() || _blob == NULL,
971           "start is aligned");
972    for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
973      CodeSection* other = code_section(m);
974      if (!other->is_allocated() || other == sect)  continue;
975      guarantee(!other->contains(sect->start()    ), "sanity");
976      // limit is an exclusive address and can be the start of another
977      // section.
978      guarantee(!other->contains(sect->limit() - 1), "sanity");
979    }
980    guarantee(sect->end() <= tend, "sanity");
981    guarantee(sect->end() <= sect->limit(), "sanity");
982  }
983}
984
985void CodeBuffer::log_section_sizes(const char* name) {
986  if (xtty != NULL) {
987    ttyLocker ttyl;
988    // log info about buffer usage
989    xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
990    for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
991      CodeSection* sect = code_section(n);
992      if (!sect->is_allocated() || sect->is_empty())  continue;
993      xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
994                     n, sect->limit() - sect->start(), sect->limit() - sect->end());
995    }
996    xtty->print_cr("</blob>");
997  }
998}
999
1000#ifndef PRODUCT
1001
1002void CodeSection::dump() {
1003  address ptr = start();
1004  for (csize_t step; ptr < end(); ptr += step) {
1005    step = end() - ptr;
1006    if (step > jintSize * 4)  step = jintSize * 4;
1007    tty->print(INTPTR_FORMAT ": ", p2i(ptr));
1008    while (step > 0) {
1009      tty->print(" " PTR32_FORMAT, *(jint*)ptr);
1010      ptr += jintSize;
1011    }
1012    tty->cr();
1013  }
1014}
1015
1016
1017void CodeSection::decode() {
1018  Disassembler::decode(start(), end());
1019}
1020
1021
1022void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1023  _code_strings.add_comment(offset, comment);
1024}
1025
1026const char* CodeBuffer::code_string(const char* str) {
1027  return _code_strings.add_string(str);
1028}
1029
1030class CodeString: public CHeapObj<mtCode> {
1031 private:
1032  friend class CodeStrings;
1033  const char * _string;
1034  CodeString*  _next;
1035  intptr_t     _offset;
1036
1037  ~CodeString() {
1038    assert(_next == NULL, "wrong interface for freeing list");
1039    os::free((void*)_string);
1040  }
1041
1042  bool is_comment() const { return _offset >= 0; }
1043
1044 public:
1045  CodeString(const char * string, intptr_t offset = -1)
1046    : _next(NULL), _offset(offset) {
1047    _string = os::strdup(string, mtCode);
1048  }
1049
1050  const char * string() const { return _string; }
1051  intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1052  CodeString* next()    const { return _next; }
1053
1054  void set_next(CodeString* next) { _next = next; }
1055
1056  CodeString* first_comment() {
1057    if (is_comment()) {
1058      return this;
1059    } else {
1060      return next_comment();
1061    }
1062  }
1063  CodeString* next_comment() const {
1064    CodeString* s = _next;
1065    while (s != NULL && !s->is_comment()) {
1066      s = s->_next;
1067    }
1068    return s;
1069  }
1070};
1071
1072CodeString* CodeStrings::find(intptr_t offset) const {
1073  CodeString* a = _strings->first_comment();
1074  while (a != NULL && a->offset() != offset) {
1075    a = a->next_comment();
1076  }
1077  return a;
1078}
1079
1080// Convenience for add_comment.
1081CodeString* CodeStrings::find_last(intptr_t offset) const {
1082  CodeString* a = find(offset);
1083  if (a != NULL) {
1084    CodeString* c = NULL;
1085    while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1086      a = c;
1087    }
1088  }
1089  return a;
1090}
1091
1092void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1093  check_valid();
1094  CodeString* c      = new CodeString(comment, offset);
1095  CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1096
1097  if (inspos) {
1098    // insert after already existing comments with same offset
1099    c->set_next(inspos->next());
1100    inspos->set_next(c);
1101  } else {
1102    // no comments with such offset, yet. Insert before anything else.
1103    c->set_next(_strings);
1104    _strings = c;
1105  }
1106}
1107
1108void CodeStrings::assign(CodeStrings& other) {
1109  other.check_valid();
1110  assert(is_null(), "Cannot assign onto non-empty CodeStrings");
1111  _strings = other._strings;
1112#ifdef ASSERT
1113  _defunct = false;
1114#endif
1115  other.set_null_and_invalidate();
1116}
1117
1118// Deep copy of CodeStrings for consistent memory management.
1119// Only used for actual disassembly so this is cheaper than reference counting
1120// for the "normal" fastdebug case.
1121void CodeStrings::copy(CodeStrings& other) {
1122  other.check_valid();
1123  check_valid();
1124  assert(is_null(), "Cannot copy onto non-empty CodeStrings");
1125  CodeString* n = other._strings;
1126  CodeString** ps = &_strings;
1127  while (n != NULL) {
1128    *ps = new CodeString(n->string(),n->offset());
1129    ps = &((*ps)->_next);
1130    n = n->next();
1131  }
1132}
1133
1134const char* CodeStrings::_prefix = " ;; ";  // default: can be changed via set_prefix
1135
1136void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1137    check_valid();
1138    if (_strings != NULL) {
1139    CodeString* c = find(offset);
1140    while (c && c->offset() == offset) {
1141      stream->bol();
1142      stream->print("%s", _prefix);
1143      // Don't interpret as format strings since it could contain %
1144      stream->print_raw_cr(c->string());
1145      c = c->next_comment();
1146    }
1147  }
1148}
1149
1150// Also sets isNull()
1151void CodeStrings::free() {
1152  CodeString* n = _strings;
1153  while (n) {
1154    // unlink the node from the list saving a pointer to the next
1155    CodeString* p = n->next();
1156    n->set_next(NULL);
1157    delete n;
1158    n = p;
1159  }
1160  set_null_and_invalidate();
1161}
1162
1163const char* CodeStrings::add_string(const char * string) {
1164  check_valid();
1165  CodeString* s = new CodeString(string);
1166  s->set_next(_strings);
1167  _strings = s;
1168  assert(s->string() != NULL, "should have a string");
1169  return s->string();
1170}
1171
1172void CodeBuffer::decode() {
1173  ttyLocker ttyl;
1174  Disassembler::decode(decode_begin(), insts_end());
1175  _decode_begin = insts_end();
1176}
1177
1178
1179void CodeBuffer::skip_decode() {
1180  _decode_begin = insts_end();
1181}
1182
1183
1184void CodeBuffer::decode_all() {
1185  ttyLocker ttyl;
1186  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1187    // dump contents of each section
1188    CodeSection* cs = code_section(n);
1189    tty->print_cr("! %s:", code_section_name(n));
1190    if (cs != consts())
1191      cs->decode();
1192    else
1193      cs->dump();
1194  }
1195}
1196
1197
1198void CodeSection::print(const char* name) {
1199  csize_t locs_size = locs_end() - locs_start();
1200  tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1201                name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1202                is_frozen()? " [frozen]": "");
1203  tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1204                name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1205  if (PrintRelocations) {
1206    RelocIterator iter(this);
1207    iter.print();
1208  }
1209}
1210
1211void CodeBuffer::print() {
1212  if (this == NULL) {
1213    tty->print_cr("NULL CodeBuffer pointer");
1214    return;
1215  }
1216
1217  tty->print_cr("CodeBuffer:");
1218  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1219    // print each section
1220    CodeSection* cs = code_section(n);
1221    cs->print(code_section_name(n));
1222  }
1223}
1224
1225#endif // PRODUCT
1226