codeBuffer.cpp revision 6760:22b98ab2a69f
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "compiler/disassembler.hpp"
28#include "memory/gcLocker.hpp"
29#include "oops/methodData.hpp"
30#include "oops/oop.inline.hpp"
31#include "runtime/icache.hpp"
32#include "utilities/copy.hpp"
33#include "utilities/xmlstream.hpp"
34
35// The structure of a CodeSection:
36//
37//    _start ->           +----------------+
38//                        | machine code...|
39//    _end ->             |----------------|
40//                        |                |
41//                        |    (empty)     |
42//                        |                |
43//                        |                |
44//                        +----------------+
45//    _limit ->           |                |
46//
47//    _locs_start ->      +----------------+
48//                        |reloc records...|
49//                        |----------------|
50//    _locs_end ->        |                |
51//                        |                |
52//                        |    (empty)     |
53//                        |                |
54//                        |                |
55//                        +----------------+
56//    _locs_limit ->      |                |
57// The _end (resp. _limit) pointer refers to the first
58// unused (resp. unallocated) byte.
59
60// The structure of the CodeBuffer while code is being accumulated:
61//
62//    _total_start ->    \
63//    _insts._start ->              +----------------+
64//                                  |                |
65//                                  |     Code       |
66//                                  |                |
67//    _stubs._start ->              |----------------|
68//                                  |                |
69//                                  |    Stubs       | (also handlers for deopt/exception)
70//                                  |                |
71//    _consts._start ->             |----------------|
72//                                  |                |
73//                                  |   Constants    |
74//                                  |                |
75//                                  +----------------+
76//    + _total_size ->              |                |
77//
78// When the code and relocations are copied to the code cache,
79// the empty parts of each section are removed, and everything
80// is copied into contiguous locations.
81
82typedef CodeBuffer::csize_t csize_t;  // file-local definition
83
84// External buffer, in a predefined CodeBlob.
85// Important: The code_start must be taken exactly, and not realigned.
86CodeBuffer::CodeBuffer(CodeBlob* blob) {
87  initialize_misc("static buffer");
88  initialize(blob->content_begin(), blob->content_size());
89  verify_section_allocation();
90}
91
92void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
93  // Compute maximal alignment.
94  int align = _insts.alignment();
95  // Always allow for empty slop around each section.
96  int slop = (int) CodeSection::end_slop();
97
98  assert(blob() == NULL, "only once");
99  set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
100  if (blob() == NULL) {
101    // The assembler constructor will throw a fatal on an empty CodeBuffer.
102    return;  // caller must test this
103  }
104
105  // Set up various pointers into the blob.
106  initialize(_total_start, _total_size);
107
108  assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
109
110  pd_initialize();
111
112  if (locs_size != 0) {
113    _insts.initialize_locs(locs_size / sizeof(relocInfo));
114  }
115
116  verify_section_allocation();
117}
118
119
120CodeBuffer::~CodeBuffer() {
121  verify_section_allocation();
122
123  // If we allocate our code buffer from the CodeCache
124  // via a BufferBlob, and it's not permanent, then
125  // free the BufferBlob.
126  // The rest of the memory will be freed when the ResourceObj
127  // is released.
128  for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
129    // Previous incarnations of this buffer are held live, so that internal
130    // addresses constructed before expansions will not be confused.
131    cb->free_blob();
132  }
133
134  // free any overflow storage
135  delete _overflow_arena;
136
137#ifdef ASSERT
138  // Save allocation type to execute assert in ~ResourceObj()
139  // which is called after this destructor.
140  assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
141  ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
142  Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
143  ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
144#endif
145}
146
147void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
148  assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
149  DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
150  _oop_recorder = r;
151}
152
153void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
154  assert(cs != &_insts, "insts is the memory provider, not the consumer");
155  csize_t slop = CodeSection::end_slop();  // margin between sections
156  int align = cs->alignment();
157  assert(is_power_of_2(align), "sanity");
158  address start  = _insts._start;
159  address limit  = _insts._limit;
160  address middle = limit - size;
161  middle -= (intptr_t)middle & (align-1);  // align the division point downward
162  guarantee(middle - slop > start, "need enough space to divide up");
163  _insts._limit = middle - slop;  // subtract desired space, plus slop
164  cs->initialize(middle, limit - middle);
165  assert(cs->start() == middle, "sanity");
166  assert(cs->limit() == limit,  "sanity");
167  // give it some relocations to start with, if the main section has them
168  if (_insts.has_locs())  cs->initialize_locs(1);
169}
170
171void CodeBuffer::freeze_section(CodeSection* cs) {
172  CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
173  csize_t frozen_size = cs->size();
174  if (next_cs != NULL) {
175    frozen_size = next_cs->align_at_start(frozen_size);
176  }
177  address old_limit = cs->limit();
178  address new_limit = cs->start() + frozen_size;
179  relocInfo* old_locs_limit = cs->locs_limit();
180  relocInfo* new_locs_limit = cs->locs_end();
181  // Patch the limits.
182  cs->_limit = new_limit;
183  cs->_locs_limit = new_locs_limit;
184  cs->_frozen = true;
185  if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
186    // Give remaining buffer space to the following section.
187    next_cs->initialize(new_limit, old_limit - new_limit);
188    next_cs->initialize_shared_locs(new_locs_limit,
189                                    old_locs_limit - new_locs_limit);
190  }
191}
192
193void CodeBuffer::set_blob(BufferBlob* blob) {
194  _blob = blob;
195  if (blob != NULL) {
196    address start = blob->content_begin();
197    address end   = blob->content_end();
198    // Round up the starting address.
199    int align = _insts.alignment();
200    start += (-(intptr_t)start) & (align-1);
201    _total_start = start;
202    _total_size  = end - start;
203  } else {
204#ifdef ASSERT
205    // Clean out dangling pointers.
206    _total_start    = badAddress;
207    _consts._start  = _consts._end  = badAddress;
208    _insts._start   = _insts._end   = badAddress;
209    _stubs._start   = _stubs._end   = badAddress;
210#endif //ASSERT
211  }
212}
213
214void CodeBuffer::free_blob() {
215  if (_blob != NULL) {
216    BufferBlob::free(_blob);
217    set_blob(NULL);
218  }
219}
220
221const char* CodeBuffer::code_section_name(int n) {
222#ifdef PRODUCT
223  return NULL;
224#else //PRODUCT
225  switch (n) {
226  case SECT_CONSTS:            return "consts";
227  case SECT_INSTS:             return "insts";
228  case SECT_STUBS:             return "stubs";
229  default:                     return NULL;
230  }
231#endif //PRODUCT
232}
233
234int CodeBuffer::section_index_of(address addr) const {
235  for (int n = 0; n < (int)SECT_LIMIT; n++) {
236    const CodeSection* cs = code_section(n);
237    if (cs->allocates(addr))  return n;
238  }
239  return SECT_NONE;
240}
241
242int CodeBuffer::locator(address addr) const {
243  for (int n = 0; n < (int)SECT_LIMIT; n++) {
244    const CodeSection* cs = code_section(n);
245    if (cs->allocates(addr)) {
246      return locator(addr - cs->start(), n);
247    }
248  }
249  return -1;
250}
251
252address CodeBuffer::locator_address(int locator) const {
253  if (locator < 0)  return NULL;
254  address start = code_section(locator_sect(locator))->start();
255  return start + locator_pos(locator);
256}
257
258bool CodeBuffer::is_backward_branch(Label& L) {
259  return L.is_bound() && insts_end() <= locator_address(L.loc());
260}
261
262address CodeBuffer::decode_begin() {
263  address begin = _insts.start();
264  if (_decode_begin != NULL && _decode_begin > begin)
265    begin = _decode_begin;
266  return begin;
267}
268
269
270GrowableArray<int>* CodeBuffer::create_patch_overflow() {
271  if (_overflow_arena == NULL) {
272    _overflow_arena = new (mtCode) Arena();
273  }
274  return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
275}
276
277
278// Helper function for managing labels and their target addresses.
279// Returns a sensible address, and if it is not the label's final
280// address, notes the dependency (at 'branch_pc') on the label.
281address CodeSection::target(Label& L, address branch_pc) {
282  if (L.is_bound()) {
283    int loc = L.loc();
284    if (index() == CodeBuffer::locator_sect(loc)) {
285      return start() + CodeBuffer::locator_pos(loc);
286    } else {
287      return outer()->locator_address(loc);
288    }
289  } else {
290    assert(allocates2(branch_pc), "sanity");
291    address base = start();
292    int patch_loc = CodeBuffer::locator(branch_pc - base, index());
293    L.add_patch_at(outer(), patch_loc);
294
295    // Need to return a pc, doesn't matter what it is since it will be
296    // replaced during resolution later.
297    // Don't return NULL or badAddress, since branches shouldn't overflow.
298    // Don't return base either because that could overflow displacements
299    // for shorter branches.  It will get checked when bound.
300    return branch_pc;
301  }
302}
303
304void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
305  Relocation* reloc = spec.reloc();
306  relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
307  if (rtype == relocInfo::none)  return;
308
309  // The assertion below has been adjusted, to also work for
310  // relocation for fixup.  Sometimes we want to put relocation
311  // information for the next instruction, since it will be patched
312  // with a call.
313  assert(start() <= at && at <= end()+1,
314         "cannot relocate data outside code boundaries");
315
316  if (!has_locs()) {
317    // no space for relocation information provided => code cannot be
318    // relocated.  Make sure that relocate is only called with rtypes
319    // that can be ignored for this kind of code.
320    assert(rtype == relocInfo::none              ||
321           rtype == relocInfo::runtime_call_type ||
322           rtype == relocInfo::internal_word_type||
323           rtype == relocInfo::section_word_type ||
324           rtype == relocInfo::external_word_type,
325           "code needs relocation information");
326    // leave behind an indication that we attempted a relocation
327    DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
328    return;
329  }
330
331  // Advance the point, noting the offset we'll have to record.
332  csize_t offset = at - locs_point();
333  set_locs_point(at);
334
335  // Test for a couple of overflow conditions; maybe expand the buffer.
336  relocInfo* end = locs_end();
337  relocInfo* req = end + relocInfo::length_limit;
338  // Check for (potential) overflow
339  if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
340    req += (uint)offset / (uint)relocInfo::offset_limit();
341    if (req >= locs_limit()) {
342      // Allocate or reallocate.
343      expand_locs(locs_count() + (req - end));
344      // reload pointer
345      end = locs_end();
346    }
347  }
348
349  // If the offset is giant, emit filler relocs, of type 'none', but
350  // each carrying the largest possible offset, to advance the locs_point.
351  while (offset >= relocInfo::offset_limit()) {
352    assert(end < locs_limit(), "adjust previous paragraph of code");
353    *end++ = filler_relocInfo();
354    offset -= filler_relocInfo().addr_offset();
355  }
356
357  // If it's a simple reloc with no data, we'll just write (rtype | offset).
358  (*end) = relocInfo(rtype, offset, format);
359
360  // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
361  end->initialize(this, reloc);
362}
363
364void CodeSection::initialize_locs(int locs_capacity) {
365  assert(_locs_start == NULL, "only one locs init step, please");
366  // Apply a priori lower limits to relocation size:
367  csize_t min_locs = MAX2(size() / 16, (csize_t)4);
368  if (locs_capacity < min_locs)  locs_capacity = min_locs;
369  relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
370  _locs_start    = locs_start;
371  _locs_end      = locs_start;
372  _locs_limit    = locs_start + locs_capacity;
373  _locs_own      = true;
374}
375
376void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
377  assert(_locs_start == NULL, "do this before locs are allocated");
378  // Internal invariant:  locs buf must be fully aligned.
379  // See copy_relocations_to() below.
380  while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
381    ++buf; --length;
382  }
383  if (length > 0) {
384    _locs_start = buf;
385    _locs_end   = buf;
386    _locs_limit = buf + length;
387    _locs_own   = false;
388  }
389}
390
391void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
392  int lcount = source_cs->locs_count();
393  if (lcount != 0) {
394    initialize_shared_locs(source_cs->locs_start(), lcount);
395    _locs_end = _locs_limit = _locs_start + lcount;
396    assert(is_allocated(), "must have copied code already");
397    set_locs_point(start() + source_cs->locs_point_off());
398  }
399  assert(this->locs_count() == source_cs->locs_count(), "sanity");
400}
401
402void CodeSection::expand_locs(int new_capacity) {
403  if (_locs_start == NULL) {
404    initialize_locs(new_capacity);
405    return;
406  } else {
407    int old_count    = locs_count();
408    int old_capacity = locs_capacity();
409    if (new_capacity < old_capacity * 2)
410      new_capacity = old_capacity * 2;
411    relocInfo* locs_start;
412    if (_locs_own) {
413      locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
414    } else {
415      locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
416      Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
417      _locs_own = true;
418    }
419    _locs_start    = locs_start;
420    _locs_end      = locs_start + old_count;
421    _locs_limit    = locs_start + new_capacity;
422  }
423}
424
425
426/// Support for emitting the code to its final location.
427/// The pattern is the same for all functions.
428/// We iterate over all the sections, padding each to alignment.
429
430csize_t CodeBuffer::total_content_size() const {
431  csize_t size_so_far = 0;
432  for (int n = 0; n < (int)SECT_LIMIT; n++) {
433    const CodeSection* cs = code_section(n);
434    if (cs->is_empty())  continue;  // skip trivial section
435    size_so_far = cs->align_at_start(size_so_far);
436    size_so_far += cs->size();
437  }
438  return size_so_far;
439}
440
441void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
442  address buf = dest->_total_start;
443  csize_t buf_offset = 0;
444  assert(dest->_total_size >= total_content_size(), "must be big enough");
445
446  {
447    // not sure why this is here, but why not...
448    int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
449    assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
450  }
451
452  const CodeSection* prev_cs      = NULL;
453  CodeSection*       prev_dest_cs = NULL;
454
455  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
456    // figure compact layout of each section
457    const CodeSection* cs = code_section(n);
458    csize_t csize = cs->size();
459
460    CodeSection* dest_cs = dest->code_section(n);
461    if (!cs->is_empty()) {
462      // Compute initial padding; assign it to the previous non-empty guy.
463      // Cf. figure_expanded_capacities.
464      csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
465      if (padding != 0) {
466        buf_offset += padding;
467        assert(prev_dest_cs != NULL, "sanity");
468        prev_dest_cs->_limit += padding;
469      }
470      #ifdef ASSERT
471      if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
472        // Make sure the ends still match up.
473        // This is important because a branch in a frozen section
474        // might target code in a following section, via a Label,
475        // and without a relocation record.  See Label::patch_instructions.
476        address dest_start = buf+buf_offset;
477        csize_t start2start = cs->start() - prev_cs->start();
478        csize_t dest_start2start = dest_start - prev_dest_cs->start();
479        assert(start2start == dest_start2start, "cannot stretch frozen sect");
480      }
481      #endif //ASSERT
482      prev_dest_cs = dest_cs;
483      prev_cs      = cs;
484    }
485
486    debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
487    dest_cs->initialize(buf+buf_offset, csize);
488    dest_cs->set_end(buf+buf_offset+csize);
489    assert(dest_cs->is_allocated(), "must always be allocated");
490    assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
491
492    buf_offset += csize;
493  }
494
495  // Done calculating sections; did it come out to the right end?
496  assert(buf_offset == total_content_size(), "sanity");
497  dest->verify_section_allocation();
498}
499
500// Append an oop reference that keeps the class alive.
501static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
502  oop cl = k->klass_holder();
503  if (cl != NULL && !oops->contains(cl)) {
504    oops->append(cl);
505  }
506}
507
508void CodeBuffer::finalize_oop_references(methodHandle mh) {
509  No_Safepoint_Verifier nsv;
510
511  GrowableArray<oop> oops;
512
513  // Make sure that immediate metadata records something in the OopRecorder
514  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
515    // pull code out of each section
516    CodeSection* cs = code_section(n);
517    if (cs->is_empty())  continue;  // skip trivial section
518    RelocIterator iter(cs);
519    while (iter.next()) {
520      if (iter.type() == relocInfo::metadata_type) {
521        metadata_Relocation* md = iter.metadata_reloc();
522        if (md->metadata_is_immediate()) {
523          Metadata* m = md->metadata_value();
524          if (oop_recorder()->is_real(m)) {
525            if (m->is_methodData()) {
526              m = ((MethodData*)m)->method();
527            }
528            if (m->is_method()) {
529              m = ((Method*)m)->method_holder();
530            }
531            if (m->is_klass()) {
532              append_oop_references(&oops, (Klass*)m);
533            } else {
534              // XXX This will currently occur for MDO which don't
535              // have a backpointer.  This has to be fixed later.
536              m->print();
537              ShouldNotReachHere();
538            }
539          }
540        }
541      }
542    }
543  }
544
545  if (!oop_recorder()->is_unused()) {
546    for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
547      Metadata* m = oop_recorder()->metadata_at(i);
548      if (oop_recorder()->is_real(m)) {
549        if (m->is_methodData()) {
550          m = ((MethodData*)m)->method();
551        }
552        if (m->is_method()) {
553          m = ((Method*)m)->method_holder();
554        }
555        if (m->is_klass()) {
556          append_oop_references(&oops, (Klass*)m);
557        } else {
558          m->print();
559          ShouldNotReachHere();
560        }
561      }
562    }
563
564  }
565
566  // Add the class loader of Method* for the nmethod itself
567  append_oop_references(&oops, mh->method_holder());
568
569  // Add any oops that we've found
570  Thread* thread = Thread::current();
571  for (int i = 0; i < oops.length(); i++) {
572    oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
573  }
574}
575
576
577
578csize_t CodeBuffer::total_offset_of(CodeSection* cs) const {
579  csize_t size_so_far = 0;
580  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
581    const CodeSection* cur_cs = code_section(n);
582    if (!cur_cs->is_empty()) {
583      size_so_far = cur_cs->align_at_start(size_so_far);
584    }
585    if (cur_cs->index() == cs->index()) {
586      return size_so_far;
587    }
588    size_so_far += cur_cs->size();
589  }
590  ShouldNotReachHere();
591  return -1;
592}
593
594csize_t CodeBuffer::total_relocation_size() const {
595  csize_t lsize = copy_relocations_to(NULL);  // dry run only
596  csize_t csize = total_content_size();
597  csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
598  return (csize_t) align_size_up(total, HeapWordSize);
599}
600
601csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
602  address buf = NULL;
603  csize_t buf_offset = 0;
604  csize_t buf_limit = 0;
605  if (dest != NULL) {
606    buf = (address)dest->relocation_begin();
607    buf_limit = (address)dest->relocation_end() - buf;
608    assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
609    assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
610  }
611  // if dest == NULL, this is just the sizing pass
612
613  csize_t code_end_so_far = 0;
614  csize_t code_point_so_far = 0;
615  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
616    // pull relocs out of each section
617    const CodeSection* cs = code_section(n);
618    assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
619    if (cs->is_empty())  continue;  // skip trivial section
620    relocInfo* lstart = cs->locs_start();
621    relocInfo* lend   = cs->locs_end();
622    csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
623    csize_t    csize  = cs->size();
624    code_end_so_far = cs->align_at_start(code_end_so_far);
625
626    if (lsize > 0) {
627      // Figure out how to advance the combined relocation point
628      // first to the beginning of this section.
629      // We'll insert one or more filler relocs to span that gap.
630      // (Don't bother to improve this by editing the first reloc's offset.)
631      csize_t new_code_point = code_end_so_far;
632      for (csize_t jump;
633           code_point_so_far < new_code_point;
634           code_point_so_far += jump) {
635        jump = new_code_point - code_point_so_far;
636        relocInfo filler = filler_relocInfo();
637        if (jump >= filler.addr_offset()) {
638          jump = filler.addr_offset();
639        } else {  // else shrink the filler to fit
640          filler = relocInfo(relocInfo::none, jump);
641        }
642        if (buf != NULL) {
643          assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
644          *(relocInfo*)(buf+buf_offset) = filler;
645        }
646        buf_offset += sizeof(filler);
647      }
648
649      // Update code point and end to skip past this section:
650      csize_t last_code_point = code_end_so_far + cs->locs_point_off();
651      assert(code_point_so_far <= last_code_point, "sanity");
652      code_point_so_far = last_code_point; // advance past this guy's relocs
653    }
654    code_end_so_far += csize;  // advance past this guy's instructions too
655
656    // Done with filler; emit the real relocations:
657    if (buf != NULL && lsize != 0) {
658      assert(buf_offset + lsize <= buf_limit, "target in bounds");
659      assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
660      if (buf_offset % HeapWordSize == 0) {
661        // Use wordwise copies if possible:
662        Copy::disjoint_words((HeapWord*)lstart,
663                             (HeapWord*)(buf+buf_offset),
664                             (lsize + HeapWordSize-1) / HeapWordSize);
665      } else {
666        Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
667      }
668    }
669    buf_offset += lsize;
670  }
671
672  // Align end of relocation info in target.
673  while (buf_offset % HeapWordSize != 0) {
674    if (buf != NULL) {
675      relocInfo padding = relocInfo(relocInfo::none, 0);
676      assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
677      *(relocInfo*)(buf+buf_offset) = padding;
678    }
679    buf_offset += sizeof(relocInfo);
680  }
681
682  assert(code_end_so_far == total_content_size(), "sanity");
683
684  // Account for index:
685  if (buf != NULL) {
686    RelocIterator::create_index(dest->relocation_begin(),
687                                buf_offset / sizeof(relocInfo),
688                                dest->relocation_end());
689  }
690
691  return buf_offset;
692}
693
694void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
695#ifndef PRODUCT
696  if (PrintNMethods && (WizardMode || Verbose)) {
697    tty->print("done with CodeBuffer:");
698    ((CodeBuffer*)this)->print();
699  }
700#endif //PRODUCT
701
702  CodeBuffer dest(dest_blob);
703  assert(dest_blob->content_size() >= total_content_size(), "good sizing");
704  this->compute_final_layout(&dest);
705  relocate_code_to(&dest);
706
707  // transfer strings and comments from buffer to blob
708  dest_blob->set_strings(_strings);
709
710  // Done moving code bytes; were they the right size?
711  assert(round_to(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
712
713  // Flush generated code
714  ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
715}
716
717// Move all my code into another code buffer.  Consult applicable
718// relocs to repair embedded addresses.  The layout in the destination
719// CodeBuffer is different to the source CodeBuffer: the destination
720// CodeBuffer gets the final layout (consts, insts, stubs in order of
721// ascending address).
722void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
723  address dest_end = dest->_total_start + dest->_total_size;
724  address dest_filled = NULL;
725  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
726    // pull code out of each section
727    const CodeSection* cs = code_section(n);
728    if (cs->is_empty())  continue;  // skip trivial section
729    CodeSection* dest_cs = dest->code_section(n);
730    assert(cs->size() == dest_cs->size(), "sanity");
731    csize_t usize = dest_cs->size();
732    csize_t wsize = align_size_up(usize, HeapWordSize);
733    assert(dest_cs->start() + wsize <= dest_end, "no overflow");
734    // Copy the code as aligned machine words.
735    // This may also include an uninitialized partial word at the end.
736    Copy::disjoint_words((HeapWord*)cs->start(),
737                         (HeapWord*)dest_cs->start(),
738                         wsize / HeapWordSize);
739
740    if (dest->blob() == NULL) {
741      // Destination is a final resting place, not just another buffer.
742      // Normalize uninitialized bytes in the final padding.
743      Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
744                          Assembler::code_fill_byte());
745    }
746    // Keep track of the highest filled address
747    dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
748
749    assert(cs->locs_start() != (relocInfo*)badAddress,
750           "this section carries no reloc storage, but reloc was attempted");
751
752    // Make the new code copy use the old copy's relocations:
753    dest_cs->initialize_locs_from(cs);
754  }
755
756  // Do relocation after all sections are copied.
757  // This is necessary if the code uses constants in stubs, which are
758  // relocated when the corresponding instruction in the code (e.g., a
759  // call) is relocated. Stubs are placed behind the main code
760  // section, so that section has to be copied before relocating.
761  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
762    // pull code out of each section
763    const CodeSection* cs = code_section(n);
764    if (cs->is_empty()) continue;  // skip trivial section
765    CodeSection* dest_cs = dest->code_section(n);
766    { // Repair the pc relative information in the code after the move
767      RelocIterator iter(dest_cs);
768      while (iter.next()) {
769        iter.reloc()->fix_relocation_after_move(this, dest);
770      }
771    }
772  }
773
774  if (dest->blob() == NULL && dest_filled != NULL) {
775    // Destination is a final resting place, not just another buffer.
776    // Normalize uninitialized bytes in the final padding.
777    Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
778                        Assembler::code_fill_byte());
779
780  }
781}
782
783csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
784                                               csize_t amount,
785                                               csize_t* new_capacity) {
786  csize_t new_total_cap = 0;
787
788  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
789    const CodeSection* sect = code_section(n);
790
791    if (!sect->is_empty()) {
792      // Compute initial padding; assign it to the previous section,
793      // even if it's empty (e.g. consts section can be empty).
794      // Cf. compute_final_layout
795      csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
796      if (padding != 0) {
797        new_total_cap += padding;
798        assert(n - 1 >= SECT_FIRST, "sanity");
799        new_capacity[n - 1] += padding;
800      }
801    }
802
803    csize_t exp = sect->size();  // 100% increase
804    if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
805    if (sect == which_cs) {
806      if (exp < amount)  exp = amount;
807      if (StressCodeBuffers)  exp = amount;  // expand only slightly
808    } else if (n == SECT_INSTS) {
809      // scale down inst increases to a more modest 25%
810      exp = 4*K + ((exp - 4*K) >> 2);
811      if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
812    } else if (sect->is_empty()) {
813      // do not grow an empty secondary section
814      exp = 0;
815    }
816    // Allow for inter-section slop:
817    exp += CodeSection::end_slop();
818    csize_t new_cap = sect->size() + exp;
819    if (new_cap < sect->capacity()) {
820      // No need to expand after all.
821      new_cap = sect->capacity();
822    }
823    new_capacity[n] = new_cap;
824    new_total_cap += new_cap;
825  }
826
827  return new_total_cap;
828}
829
830void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
831#ifndef PRODUCT
832  if (PrintNMethods && (WizardMode || Verbose)) {
833    tty->print("expanding CodeBuffer:");
834    this->print();
835  }
836
837  if (StressCodeBuffers && blob() != NULL) {
838    static int expand_count = 0;
839    if (expand_count >= 0)  expand_count += 1;
840    if (expand_count > 100 && is_power_of_2(expand_count)) {
841      tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
842      // simulate an occasional allocation failure:
843      free_blob();
844    }
845  }
846#endif //PRODUCT
847
848  // Resizing must be allowed
849  {
850    if (blob() == NULL)  return;  // caller must check for blob == NULL
851    for (int n = 0; n < (int)SECT_LIMIT; n++) {
852      guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
853    }
854  }
855
856  // Figure new capacity for each section.
857  csize_t new_capacity[SECT_LIMIT];
858  csize_t new_total_cap
859    = figure_expanded_capacities(which_cs, amount, new_capacity);
860
861  // Create a new (temporary) code buffer to hold all the new data
862  CodeBuffer cb(name(), new_total_cap, 0);
863  if (cb.blob() == NULL) {
864    // Failed to allocate in code cache.
865    free_blob();
866    return;
867  }
868
869  // Create an old code buffer to remember which addresses used to go where.
870  // This will be useful when we do final assembly into the code cache,
871  // because we will need to know how to warp any internal address that
872  // has been created at any time in this CodeBuffer's past.
873  CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
874  bxp->take_over_code_from(this);  // remember the old undersized blob
875  DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
876  bxp->_before_expand = this->_before_expand;
877  this->_before_expand = bxp;
878
879  // Give each section its required (expanded) capacity.
880  for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
881    CodeSection* cb_sect   = cb.code_section(n);
882    CodeSection* this_sect = code_section(n);
883    if (new_capacity[n] == 0)  continue;  // already nulled out
884    if (n != SECT_INSTS) {
885      cb.initialize_section_size(cb_sect, new_capacity[n]);
886    }
887    assert(cb_sect->capacity() >= new_capacity[n], "big enough");
888    address cb_start = cb_sect->start();
889    cb_sect->set_end(cb_start + this_sect->size());
890    if (this_sect->mark() == NULL) {
891      cb_sect->clear_mark();
892    } else {
893      cb_sect->set_mark(cb_start + this_sect->mark_off());
894    }
895  }
896
897  // Move all the code and relocations to the new blob:
898  relocate_code_to(&cb);
899
900  // Copy the temporary code buffer into the current code buffer.
901  // Basically, do {*this = cb}, except for some control information.
902  this->take_over_code_from(&cb);
903  cb.set_blob(NULL);
904
905  // Zap the old code buffer contents, to avoid mistakenly using them.
906  debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
907                                 badCodeHeapFreeVal));
908
909  _decode_begin = NULL;  // sanity
910
911  // Make certain that the new sections are all snugly inside the new blob.
912  verify_section_allocation();
913
914#ifndef PRODUCT
915  if (PrintNMethods && (WizardMode || Verbose)) {
916    tty->print("expanded CodeBuffer:");
917    this->print();
918  }
919#endif //PRODUCT
920}
921
922void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
923  // Must already have disposed of the old blob somehow.
924  assert(blob() == NULL, "must be empty");
925#ifdef ASSERT
926
927#endif
928  // Take the new blob away from cb.
929  set_blob(cb->blob());
930  // Take over all the section pointers.
931  for (int n = 0; n < (int)SECT_LIMIT; n++) {
932    CodeSection* cb_sect   = cb->code_section(n);
933    CodeSection* this_sect = code_section(n);
934    this_sect->take_over_code_from(cb_sect);
935  }
936  _overflow_arena = cb->_overflow_arena;
937  // Make sure the old cb won't try to use it or free it.
938  DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
939}
940
941void CodeBuffer::verify_section_allocation() {
942  address tstart = _total_start;
943  if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
944  address tend   = tstart + _total_size;
945  if (_blob != NULL) {
946
947    guarantee(tstart >= _blob->content_begin(), "sanity");
948    guarantee(tend   <= _blob->content_end(),   "sanity");
949  }
950  // Verify disjointness.
951  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
952    CodeSection* sect = code_section(n);
953    if (!sect->is_allocated() || sect->is_empty())  continue;
954    guarantee((intptr_t)sect->start() % sect->alignment() == 0
955           || sect->is_empty() || _blob == NULL,
956           "start is aligned");
957    for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
958      CodeSection* other = code_section(m);
959      if (!other->is_allocated() || other == sect)  continue;
960      guarantee(!other->contains(sect->start()    ), "sanity");
961      // limit is an exclusive address and can be the start of another
962      // section.
963      guarantee(!other->contains(sect->limit() - 1), "sanity");
964    }
965    guarantee(sect->end() <= tend, "sanity");
966    guarantee(sect->end() <= sect->limit(), "sanity");
967  }
968}
969
970void CodeBuffer::log_section_sizes(const char* name) {
971  if (xtty != NULL) {
972    ttyLocker ttyl;
973    // log info about buffer usage
974    xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
975    for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
976      CodeSection* sect = code_section(n);
977      if (!sect->is_allocated() || sect->is_empty())  continue;
978      xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
979                     n, sect->limit() - sect->start(), sect->limit() - sect->end());
980    }
981    xtty->print_cr("</blob>");
982  }
983}
984
985#ifndef PRODUCT
986
987void CodeSection::dump() {
988  address ptr = start();
989  for (csize_t step; ptr < end(); ptr += step) {
990    step = end() - ptr;
991    if (step > jintSize * 4)  step = jintSize * 4;
992    tty->print(INTPTR_FORMAT ": ", p2i(ptr));
993    while (step > 0) {
994      tty->print(" " PTR32_FORMAT, *(jint*)ptr);
995      ptr += jintSize;
996    }
997    tty->cr();
998  }
999}
1000
1001
1002void CodeSection::decode() {
1003  Disassembler::decode(start(), end());
1004}
1005
1006
1007void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1008  _strings.add_comment(offset, comment);
1009}
1010
1011const char* CodeBuffer::code_string(const char* str) {
1012  return _strings.add_string(str);
1013}
1014
1015class CodeString: public CHeapObj<mtCode> {
1016 private:
1017  friend class CodeStrings;
1018  const char * _string;
1019  CodeString*  _next;
1020  intptr_t     _offset;
1021
1022  ~CodeString() {
1023    assert(_next == NULL, "wrong interface for freeing list");
1024    os::free((void*)_string, mtCode);
1025  }
1026
1027  bool is_comment() const { return _offset >= 0; }
1028
1029 public:
1030  CodeString(const char * string, intptr_t offset = -1)
1031    : _next(NULL), _offset(offset) {
1032    _string = os::strdup(string, mtCode);
1033  }
1034
1035  const char * string() const { return _string; }
1036  intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1037  CodeString* next()    const { return _next; }
1038
1039  void set_next(CodeString* next) { _next = next; }
1040
1041  CodeString* first_comment() {
1042    if (is_comment()) {
1043      return this;
1044    } else {
1045      return next_comment();
1046    }
1047  }
1048  CodeString* next_comment() const {
1049    CodeString* s = _next;
1050    while (s != NULL && !s->is_comment()) {
1051      s = s->_next;
1052    }
1053    return s;
1054  }
1055};
1056
1057CodeString* CodeStrings::find(intptr_t offset) const {
1058  CodeString* a = _strings->first_comment();
1059  while (a != NULL && a->offset() != offset) {
1060    a = a->next_comment();
1061  }
1062  return a;
1063}
1064
1065// Convenience for add_comment.
1066CodeString* CodeStrings::find_last(intptr_t offset) const {
1067  CodeString* a = find(offset);
1068  if (a != NULL) {
1069    CodeString* c = NULL;
1070    while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1071      a = c;
1072    }
1073  }
1074  return a;
1075}
1076
1077void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1078  CodeString* c      = new CodeString(comment, offset);
1079  CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1080
1081  if (inspos) {
1082    // insert after already existing comments with same offset
1083    c->set_next(inspos->next());
1084    inspos->set_next(c);
1085  } else {
1086    // no comments with such offset, yet. Insert before anything else.
1087    c->set_next(_strings);
1088    _strings = c;
1089  }
1090}
1091
1092void CodeStrings::assign(CodeStrings& other) {
1093  _strings = other._strings;
1094}
1095
1096void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1097  if (_strings != NULL) {
1098    CodeString* c = find(offset);
1099    while (c && c->offset() == offset) {
1100      stream->bol();
1101      stream->print("  ;; ");
1102      stream->print_cr("%s", c->string());
1103      c = c->next_comment();
1104    }
1105  }
1106}
1107
1108
1109void CodeStrings::free() {
1110  CodeString* n = _strings;
1111  while (n) {
1112    // unlink the node from the list saving a pointer to the next
1113    CodeString* p = n->next();
1114    n->set_next(NULL);
1115    delete n;
1116    n = p;
1117  }
1118  _strings = NULL;
1119}
1120
1121const char* CodeStrings::add_string(const char * string) {
1122  CodeString* s = new CodeString(string);
1123  s->set_next(_strings);
1124  _strings = s;
1125  assert(s->string() != NULL, "should have a string");
1126  return s->string();
1127}
1128
1129void CodeBuffer::decode() {
1130  ttyLocker ttyl;
1131  Disassembler::decode(decode_begin(), insts_end());
1132  _decode_begin = insts_end();
1133}
1134
1135
1136void CodeBuffer::skip_decode() {
1137  _decode_begin = insts_end();
1138}
1139
1140
1141void CodeBuffer::decode_all() {
1142  ttyLocker ttyl;
1143  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1144    // dump contents of each section
1145    CodeSection* cs = code_section(n);
1146    tty->print_cr("! %s:", code_section_name(n));
1147    if (cs != consts())
1148      cs->decode();
1149    else
1150      cs->dump();
1151  }
1152}
1153
1154
1155void CodeSection::print(const char* name) {
1156  csize_t locs_size = locs_end() - locs_start();
1157  tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1158                name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1159                is_frozen()? " [frozen]": "");
1160  tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1161                name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1162  if (PrintRelocations) {
1163    RelocIterator iter(this);
1164    iter.print();
1165  }
1166}
1167
1168void CodeBuffer::print() {
1169  if (this == NULL) {
1170    tty->print_cr("NULL CodeBuffer pointer");
1171    return;
1172  }
1173
1174  tty->print_cr("CodeBuffer:");
1175  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1176    // print each section
1177    CodeSection* cs = code_section(n);
1178    cs->print(code_section_name(n));
1179  }
1180}
1181
1182#endif // PRODUCT
1183