codeBuffer.cpp revision 196:d1605aabd0a1
1301169Slidl/*
2301169Slidl * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3301169Slidl * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4301169Slidl *
5301169Slidl * This code is free software; you can redistribute it and/or modify it
6301169Slidl * under the terms of the GNU General Public License version 2 only, as
7301169Slidl * published by the Free Software Foundation.
8301169Slidl *
9301169Slidl * This code is distributed in the hope that it will be useful, but WITHOUT
10301169Slidl * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11301169Slidl * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12301169Slidl * version 2 for more details (a copy is included in the LICENSE file that
13301169Slidl * accompanied this code).
14301169Slidl *
15301169Slidl * You should have received a copy of the GNU General Public License version
16301169Slidl * 2 along with this work; if not, write to the Free Software Foundation,
17301169Slidl * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18301169Slidl *
19301169Slidl * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20301169Slidl * CA 95054 USA or visit www.sun.com if you need additional information or
21301169Slidl * have any questions.
22301169Slidl *
23301169Slidl */
24301169Slidl
25301169Slidl# include "incls/_precompiled.incl"
26301169Slidl# include "incls/_codeBuffer.cpp.incl"
27301169Slidl
28301169Slidl// The structure of a CodeSection:
29301169Slidl//
30301169Slidl//    _start ->           +----------------+
31301169Slidl//                        | machine code...|
32301169Slidl//    _end ->             |----------------|
33301169Slidl//                        |                |
34301169Slidl//                        |    (empty)     |
35301169Slidl//                        |                |
36301169Slidl//                        |                |
37301169Slidl//                        +----------------+
38301169Slidl//    _limit ->           |                |
39301169Slidl//
40301169Slidl//    _locs_start ->      +----------------+
41301169Slidl//                        |reloc records...|
42301169Slidl//                        |----------------|
43301169Slidl//    _locs_end ->        |                |
44301169Slidl//                        |                |
45301169Slidl//                        |    (empty)     |
46301169Slidl//                        |                |
47301169Slidl//                        |                |
48301169Slidl//                        +----------------+
49301169Slidl//    _locs_limit ->      |                |
50301169Slidl// The _end (resp. _limit) pointer refers to the first
51301169Slidl// unused (resp. unallocated) byte.
52301169Slidl
53301169Slidl// The structure of the CodeBuffer while code is being accumulated:
54301169Slidl//
55301169Slidl//    _total_start ->    \
56301169Slidl//    _insts._start ->              +----------------+
57301169Slidl//                                  |                |
58301169Slidl//                                  |     Code       |
59301169Slidl//                                  |                |
60301169Slidl//    _stubs._start ->              |----------------|
61301169Slidl//                                  |                |
62301169Slidl//                                  |    Stubs       | (also handlers for deopt/exception)
63301169Slidl//                                  |                |
64301169Slidl//    _consts._start ->             |----------------|
65301169Slidl//                                  |                |
66301169Slidl//                                  |   Constants    |
67301169Slidl//                                  |                |
68301169Slidl//                                  +----------------+
69301169Slidl//    + _total_size ->              |                |
70301169Slidl//
71301169Slidl// When the code and relocations are copied to the code cache,
72301169Slidl// the empty parts of each section are removed, and everything
73301169Slidl// is copied into contiguous locations.
74301169Slidl
75301169Slidltypedef CodeBuffer::csize_t csize_t;  // file-local definition
76301169Slidl
77301169Slidl// external buffer, in a predefined CodeBlob or other buffer area
78301169Slidl// Important: The code_start must be taken exactly, and not realigned.
79301169SlidlCodeBuffer::CodeBuffer(address code_start, csize_t code_size) {
80301169Slidl  assert(code_start != NULL, "sanity");
81301169Slidl  initialize_misc("static buffer");
82301169Slidl  initialize(code_start, code_size);
83301169Slidl  assert(verify_section_allocation(), "initial use of buffer OK");
84301169Slidl}
85301169Slidl
86301169Slidlvoid CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
87301169Slidl  // Compute maximal alignment.
88301169Slidl  int align = _insts.alignment();
89301169Slidl  // Always allow for empty slop around each section.
90301169Slidl  int slop = (int) CodeSection::end_slop();
91301169Slidl
92301169Slidl  assert(blob() == NULL, "only once");
93301169Slidl  set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
94301169Slidl  if (blob() == NULL) {
95301169Slidl    // The assembler constructor will throw a fatal on an empty CodeBuffer.
96301169Slidl    return;  // caller must test this
97301169Slidl  }
98301169Slidl
99301169Slidl  // Set up various pointers into the blob.
100301169Slidl  initialize(_total_start, _total_size);
101301169Slidl
102301169Slidl  assert((uintptr_t)code_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
103301169Slidl
104301169Slidl  pd_initialize();
105301169Slidl
106301169Slidl  if (locs_size != 0) {
107301169Slidl    _insts.initialize_locs(locs_size / sizeof(relocInfo));
108301169Slidl  }
109301169Slidl
110301169Slidl  assert(verify_section_allocation(), "initial use of blob is OK");
111301169Slidl}
112301169Slidl
113301169Slidl
114301169SlidlCodeBuffer::~CodeBuffer() {
115301169Slidl  // If we allocate our code buffer from the CodeCache
116301169Slidl  // via a BufferBlob, and it's not permanent, then
117301169Slidl  // free the BufferBlob.
118301169Slidl  // The rest of the memory will be freed when the ResourceObj
119301169Slidl  // is released.
120301169Slidl  assert(verify_section_allocation(), "final storage configuration still OK");
121301169Slidl  for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
122301169Slidl    // Previous incarnations of this buffer are held live, so that internal
123301169Slidl    // addresses constructed before expansions will not be confused.
124301169Slidl    cb->free_blob();
125301169Slidl  }
126301169Slidl#ifdef ASSERT
127301169Slidl  Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
128301169Slidl#endif
129301169Slidl}
130301169Slidl
131301169Slidlvoid CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
132301169Slidl  assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
133301169Slidl  DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
134301169Slidl  _oop_recorder = r;
135301169Slidl}
136301169Slidl
137301169Slidlvoid CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
138301169Slidl  assert(cs != &_insts, "insts is the memory provider, not the consumer");
139301169Slidl#ifdef ASSERT
140301169Slidl  for (int n = (int)SECT_INSTS+1; n < (int)SECT_LIMIT; n++) {
141301169Slidl    CodeSection* prevCS = code_section(n);
142301169Slidl    if (prevCS == cs)  break;
143301169Slidl    assert(!prevCS->is_allocated(), "section allocation must be in reverse order");
144301169Slidl  }
145301169Slidl#endif
146301169Slidl  csize_t slop = CodeSection::end_slop();  // margin between sections
147301169Slidl  int align = cs->alignment();
148301169Slidl  assert(is_power_of_2(align), "sanity");
149301169Slidl  address start  = _insts._start;
150301169Slidl  address limit  = _insts._limit;
151301169Slidl  address middle = limit - size;
152301169Slidl  middle -= (intptr_t)middle & (align-1);  // align the division point downward
153301169Slidl  guarantee(middle - slop > start, "need enough space to divide up");
154301169Slidl  _insts._limit = middle - slop;  // subtract desired space, plus slop
155301169Slidl  cs->initialize(middle, limit - middle);
156301169Slidl  assert(cs->start() == middle, "sanity");
157301169Slidl  assert(cs->limit() == limit,  "sanity");
158  // give it some relocations to start with, if the main section has them
159  if (_insts.has_locs())  cs->initialize_locs(1);
160}
161
162void CodeBuffer::freeze_section(CodeSection* cs) {
163  CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
164  csize_t frozen_size = cs->size();
165  if (next_cs != NULL) {
166    frozen_size = next_cs->align_at_start(frozen_size);
167  }
168  address old_limit = cs->limit();
169  address new_limit = cs->start() + frozen_size;
170  relocInfo* old_locs_limit = cs->locs_limit();
171  relocInfo* new_locs_limit = cs->locs_end();
172  // Patch the limits.
173  cs->_limit = new_limit;
174  cs->_locs_limit = new_locs_limit;
175  cs->_frozen = true;
176  if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
177    // Give remaining buffer space to the following section.
178    next_cs->initialize(new_limit, old_limit - new_limit);
179    next_cs->initialize_shared_locs(new_locs_limit,
180                                    old_locs_limit - new_locs_limit);
181  }
182}
183
184void CodeBuffer::set_blob(BufferBlob* blob) {
185  _blob = blob;
186  if (blob != NULL) {
187    address start = blob->instructions_begin();
188    address end   = blob->instructions_end();
189    // Round up the starting address.
190    int align = _insts.alignment();
191    start += (-(intptr_t)start) & (align-1);
192    _total_start = start;
193    _total_size  = end - start;
194  } else {
195    #ifdef ASSERT
196    // Clean out dangling pointers.
197    _total_start    = badAddress;
198    _insts._start   = _insts._end   = badAddress;
199    _stubs._start   = _stubs._end   = badAddress;
200    _consts._start  = _consts._end  = badAddress;
201    #endif //ASSERT
202  }
203}
204
205void CodeBuffer::free_blob() {
206  if (_blob != NULL) {
207    BufferBlob::free(_blob);
208    set_blob(NULL);
209  }
210}
211
212const char* CodeBuffer::code_section_name(int n) {
213#ifdef PRODUCT
214  return NULL;
215#else //PRODUCT
216  switch (n) {
217  case SECT_INSTS:             return "insts";
218  case SECT_STUBS:             return "stubs";
219  case SECT_CONSTS:            return "consts";
220  default:                     return NULL;
221  }
222#endif //PRODUCT
223}
224
225int CodeBuffer::section_index_of(address addr) const {
226  for (int n = 0; n < (int)SECT_LIMIT; n++) {
227    const CodeSection* cs = code_section(n);
228    if (cs->allocates(addr))  return n;
229  }
230  return SECT_NONE;
231}
232
233int CodeBuffer::locator(address addr) const {
234  for (int n = 0; n < (int)SECT_LIMIT; n++) {
235    const CodeSection* cs = code_section(n);
236    if (cs->allocates(addr)) {
237      return locator(addr - cs->start(), n);
238    }
239  }
240  return -1;
241}
242
243address CodeBuffer::locator_address(int locator) const {
244  if (locator < 0)  return NULL;
245  address start = code_section(locator_sect(locator))->start();
246  return start + locator_pos(locator);
247}
248
249address CodeBuffer::decode_begin() {
250  address begin = _insts.start();
251  if (_decode_begin != NULL && _decode_begin > begin)
252    begin = _decode_begin;
253  return begin;
254}
255
256
257GrowableArray<int>* CodeBuffer::create_patch_overflow() {
258  if (_overflow_arena == NULL) {
259    _overflow_arena = new Arena();
260  }
261  return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
262}
263
264
265// Helper function for managing labels and their target addresses.
266// Returns a sensible address, and if it is not the label's final
267// address, notes the dependency (at 'branch_pc') on the label.
268address CodeSection::target(Label& L, address branch_pc) {
269  if (L.is_bound()) {
270    int loc = L.loc();
271    if (index() == CodeBuffer::locator_sect(loc)) {
272      return start() + CodeBuffer::locator_pos(loc);
273    } else {
274      return outer()->locator_address(loc);
275    }
276  } else {
277    assert(allocates2(branch_pc), "sanity");
278    address base = start();
279    int patch_loc = CodeBuffer::locator(branch_pc - base, index());
280    L.add_patch_at(outer(), patch_loc);
281
282    // Need to return a pc, doesn't matter what it is since it will be
283    // replaced during resolution later.
284    // Don't return NULL or badAddress, since branches shouldn't overflow.
285    // Don't return base either because that could overflow displacements
286    // for shorter branches.  It will get checked when bound.
287    return branch_pc;
288  }
289}
290
291void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
292  Relocation* reloc = spec.reloc();
293  relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
294  if (rtype == relocInfo::none)  return;
295
296  // The assertion below has been adjusted, to also work for
297  // relocation for fixup.  Sometimes we want to put relocation
298  // information for the next instruction, since it will be patched
299  // with a call.
300  assert(start() <= at && at <= end()+1,
301         "cannot relocate data outside code boundaries");
302
303  if (!has_locs()) {
304    // no space for relocation information provided => code cannot be
305    // relocated.  Make sure that relocate is only called with rtypes
306    // that can be ignored for this kind of code.
307    assert(rtype == relocInfo::none              ||
308           rtype == relocInfo::runtime_call_type ||
309           rtype == relocInfo::internal_word_type||
310           rtype == relocInfo::section_word_type ||
311           rtype == relocInfo::external_word_type,
312           "code needs relocation information");
313    // leave behind an indication that we attempted a relocation
314    DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
315    return;
316  }
317
318  // Advance the point, noting the offset we'll have to record.
319  csize_t offset = at - locs_point();
320  set_locs_point(at);
321
322  // Test for a couple of overflow conditions; maybe expand the buffer.
323  relocInfo* end = locs_end();
324  relocInfo* req = end + relocInfo::length_limit;
325  // Check for (potential) overflow
326  if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
327    req += (uint)offset / (uint)relocInfo::offset_limit();
328    if (req >= locs_limit()) {
329      // Allocate or reallocate.
330      expand_locs(locs_count() + (req - end));
331      // reload pointer
332      end = locs_end();
333    }
334  }
335
336  // If the offset is giant, emit filler relocs, of type 'none', but
337  // each carrying the largest possible offset, to advance the locs_point.
338  while (offset >= relocInfo::offset_limit()) {
339    assert(end < locs_limit(), "adjust previous paragraph of code");
340    *end++ = filler_relocInfo();
341    offset -= filler_relocInfo().addr_offset();
342  }
343
344  // If it's a simple reloc with no data, we'll just write (rtype | offset).
345  (*end) = relocInfo(rtype, offset, format);
346
347  // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
348  end->initialize(this, reloc);
349}
350
351void CodeSection::initialize_locs(int locs_capacity) {
352  assert(_locs_start == NULL, "only one locs init step, please");
353  // Apply a priori lower limits to relocation size:
354  csize_t min_locs = MAX2(size() / 16, (csize_t)4);
355  if (locs_capacity < min_locs)  locs_capacity = min_locs;
356  relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
357  _locs_start    = locs_start;
358  _locs_end      = locs_start;
359  _locs_limit    = locs_start + locs_capacity;
360  _locs_own      = true;
361}
362
363void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
364  assert(_locs_start == NULL, "do this before locs are allocated");
365  // Internal invariant:  locs buf must be fully aligned.
366  // See copy_relocations_to() below.
367  while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
368    ++buf; --length;
369  }
370  if (length > 0) {
371    _locs_start = buf;
372    _locs_end   = buf;
373    _locs_limit = buf + length;
374    _locs_own   = false;
375  }
376}
377
378void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
379  int lcount = source_cs->locs_count();
380  if (lcount != 0) {
381    initialize_shared_locs(source_cs->locs_start(), lcount);
382    _locs_end = _locs_limit = _locs_start + lcount;
383    assert(is_allocated(), "must have copied code already");
384    set_locs_point(start() + source_cs->locs_point_off());
385  }
386  assert(this->locs_count() == source_cs->locs_count(), "sanity");
387}
388
389void CodeSection::expand_locs(int new_capacity) {
390  if (_locs_start == NULL) {
391    initialize_locs(new_capacity);
392    return;
393  } else {
394    int old_count    = locs_count();
395    int old_capacity = locs_capacity();
396    if (new_capacity < old_capacity * 2)
397      new_capacity = old_capacity * 2;
398    relocInfo* locs_start;
399    if (_locs_own) {
400      locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
401    } else {
402      locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
403      Copy::conjoint_bytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
404      _locs_own = true;
405    }
406    _locs_start    = locs_start;
407    _locs_end      = locs_start + old_count;
408    _locs_limit    = locs_start + new_capacity;
409  }
410}
411
412
413/// Support for emitting the code to its final location.
414/// The pattern is the same for all functions.
415/// We iterate over all the sections, padding each to alignment.
416
417csize_t CodeBuffer::total_code_size() const {
418  csize_t code_size_so_far = 0;
419  for (int n = 0; n < (int)SECT_LIMIT; n++) {
420    const CodeSection* cs = code_section(n);
421    if (cs->is_empty())  continue;  // skip trivial section
422    code_size_so_far = cs->align_at_start(code_size_so_far);
423    code_size_so_far += cs->size();
424  }
425  return code_size_so_far;
426}
427
428void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
429  address buf = dest->_total_start;
430  csize_t buf_offset = 0;
431  assert(dest->_total_size >= total_code_size(), "must be big enough");
432
433  {
434    // not sure why this is here, but why not...
435    int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
436    assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
437  }
438
439  const CodeSection* prev_cs      = NULL;
440  CodeSection*       prev_dest_cs = NULL;
441  for (int n = 0; n < (int)SECT_LIMIT; n++) {
442    // figure compact layout of each section
443    const CodeSection* cs = code_section(n);
444    address cstart = cs->start();
445    address cend   = cs->end();
446    csize_t csize  = cend - cstart;
447
448    CodeSection* dest_cs = dest->code_section(n);
449    if (!cs->is_empty()) {
450      // Compute initial padding; assign it to the previous non-empty guy.
451      // Cf. figure_expanded_capacities.
452      csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
453      if (padding != 0) {
454        buf_offset += padding;
455        assert(prev_dest_cs != NULL, "sanity");
456        prev_dest_cs->_limit += padding;
457      }
458      #ifdef ASSERT
459      if (prev_cs != NULL && prev_cs->is_frozen() && n < SECT_CONSTS) {
460        // Make sure the ends still match up.
461        // This is important because a branch in a frozen section
462        // might target code in a following section, via a Label,
463        // and without a relocation record.  See Label::patch_instructions.
464        address dest_start = buf+buf_offset;
465        csize_t start2start = cs->start() - prev_cs->start();
466        csize_t dest_start2start = dest_start - prev_dest_cs->start();
467        assert(start2start == dest_start2start, "cannot stretch frozen sect");
468      }
469      #endif //ASSERT
470      prev_dest_cs = dest_cs;
471      prev_cs      = cs;
472    }
473
474    debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
475    dest_cs->initialize(buf+buf_offset, csize);
476    dest_cs->set_end(buf+buf_offset+csize);
477    assert(dest_cs->is_allocated(), "must always be allocated");
478    assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
479
480    buf_offset += csize;
481  }
482
483  // Done calculating sections; did it come out to the right end?
484  assert(buf_offset == total_code_size(), "sanity");
485  assert(dest->verify_section_allocation(), "final configuration works");
486}
487
488csize_t CodeBuffer::total_offset_of(address addr) const {
489  csize_t code_size_so_far = 0;
490  for (int n = 0; n < (int)SECT_LIMIT; n++) {
491    const CodeSection* cs = code_section(n);
492    if (!cs->is_empty()) {
493      code_size_so_far = cs->align_at_start(code_size_so_far);
494    }
495    if (cs->contains2(addr)) {
496      return code_size_so_far + (addr - cs->start());
497    }
498    code_size_so_far += cs->size();
499  }
500#ifndef PRODUCT
501  tty->print_cr("Dangling address " PTR_FORMAT " in:", addr);
502  ((CodeBuffer*)this)->print();
503#endif
504  ShouldNotReachHere();
505  return -1;
506}
507
508csize_t CodeBuffer::total_relocation_size() const {
509  csize_t lsize = copy_relocations_to(NULL);  // dry run only
510  csize_t csize = total_code_size();
511  csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
512  return (csize_t) align_size_up(total, HeapWordSize);
513}
514
515csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
516  address buf = NULL;
517  csize_t buf_offset = 0;
518  csize_t buf_limit = 0;
519  if (dest != NULL) {
520    buf = (address)dest->relocation_begin();
521    buf_limit = (address)dest->relocation_end() - buf;
522    assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
523    assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
524  }
525  // if dest == NULL, this is just the sizing pass
526
527  csize_t code_end_so_far = 0;
528  csize_t code_point_so_far = 0;
529  for (int n = 0; n < (int)SECT_LIMIT; n++) {
530    // pull relocs out of each section
531    const CodeSection* cs = code_section(n);
532    assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
533    if (cs->is_empty())  continue;  // skip trivial section
534    relocInfo* lstart = cs->locs_start();
535    relocInfo* lend   = cs->locs_end();
536    csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
537    csize_t    csize  = cs->size();
538    code_end_so_far = cs->align_at_start(code_end_so_far);
539
540    if (lsize > 0) {
541      // Figure out how to advance the combined relocation point
542      // first to the beginning of this section.
543      // We'll insert one or more filler relocs to span that gap.
544      // (Don't bother to improve this by editing the first reloc's offset.)
545      csize_t new_code_point = code_end_so_far;
546      for (csize_t jump;
547           code_point_so_far < new_code_point;
548           code_point_so_far += jump) {
549        jump = new_code_point - code_point_so_far;
550        relocInfo filler = filler_relocInfo();
551        if (jump >= filler.addr_offset()) {
552          jump = filler.addr_offset();
553        } else {  // else shrink the filler to fit
554          filler = relocInfo(relocInfo::none, jump);
555        }
556        if (buf != NULL) {
557          assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
558          *(relocInfo*)(buf+buf_offset) = filler;
559        }
560        buf_offset += sizeof(filler);
561      }
562
563      // Update code point and end to skip past this section:
564      csize_t last_code_point = code_end_so_far + cs->locs_point_off();
565      assert(code_point_so_far <= last_code_point, "sanity");
566      code_point_so_far = last_code_point; // advance past this guy's relocs
567    }
568    code_end_so_far += csize;  // advance past this guy's instructions too
569
570    // Done with filler; emit the real relocations:
571    if (buf != NULL && lsize != 0) {
572      assert(buf_offset + lsize <= buf_limit, "target in bounds");
573      assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
574      if (buf_offset % HeapWordSize == 0) {
575        // Use wordwise copies if possible:
576        Copy::disjoint_words((HeapWord*)lstart,
577                             (HeapWord*)(buf+buf_offset),
578                             (lsize + HeapWordSize-1) / HeapWordSize);
579      } else {
580        Copy::conjoint_bytes(lstart, buf+buf_offset, lsize);
581      }
582    }
583    buf_offset += lsize;
584  }
585
586  // Align end of relocation info in target.
587  while (buf_offset % HeapWordSize != 0) {
588    if (buf != NULL) {
589      relocInfo padding = relocInfo(relocInfo::none, 0);
590      assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
591      *(relocInfo*)(buf+buf_offset) = padding;
592    }
593    buf_offset += sizeof(relocInfo);
594  }
595
596  assert(code_end_so_far == total_code_size(), "sanity");
597
598  // Account for index:
599  if (buf != NULL) {
600    RelocIterator::create_index(dest->relocation_begin(),
601                                buf_offset / sizeof(relocInfo),
602                                dest->relocation_end());
603  }
604
605  return buf_offset;
606}
607
608void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
609#ifndef PRODUCT
610  if (PrintNMethods && (WizardMode || Verbose)) {
611    tty->print("done with CodeBuffer:");
612    ((CodeBuffer*)this)->print();
613  }
614#endif //PRODUCT
615
616  CodeBuffer dest(dest_blob->instructions_begin(),
617                  dest_blob->instructions_size());
618  assert(dest_blob->instructions_size() >= total_code_size(), "good sizing");
619  this->compute_final_layout(&dest);
620  relocate_code_to(&dest);
621
622  // transfer comments from buffer to blob
623  dest_blob->set_comments(_comments);
624
625  // Done moving code bytes; were they the right size?
626  assert(round_to(dest.total_code_size(), oopSize) == dest_blob->instructions_size(), "sanity");
627
628  // Flush generated code
629  ICache::invalidate_range(dest_blob->instructions_begin(),
630                           dest_blob->instructions_size());
631}
632
633// Move all my code into another code buffer.
634// Consult applicable relocs to repair embedded addresses.
635void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
636  DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
637  for (int n = 0; n < (int)SECT_LIMIT; n++) {
638    // pull code out of each section
639    const CodeSection* cs = code_section(n);
640    if (cs->is_empty())  continue;  // skip trivial section
641    CodeSection* dest_cs = dest->code_section(n);
642    assert(cs->size() == dest_cs->size(), "sanity");
643    csize_t usize = dest_cs->size();
644    csize_t wsize = align_size_up(usize, HeapWordSize);
645    assert(dest_cs->start() + wsize <= dest_end, "no overflow");
646    // Copy the code as aligned machine words.
647    // This may also include an uninitialized partial word at the end.
648    Copy::disjoint_words((HeapWord*)cs->start(),
649                         (HeapWord*)dest_cs->start(),
650                         wsize / HeapWordSize);
651
652    if (dest->blob() == NULL) {
653      // Destination is a final resting place, not just another buffer.
654      // Normalize uninitialized bytes in the final padding.
655      Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
656                          Assembler::code_fill_byte());
657    }
658
659    assert(cs->locs_start() != (relocInfo*)badAddress,
660           "this section carries no reloc storage, but reloc was attempted");
661
662    // Make the new code copy use the old copy's relocations:
663    dest_cs->initialize_locs_from(cs);
664
665    { // Repair the pc relative information in the code after the move
666      RelocIterator iter(dest_cs);
667      while (iter.next()) {
668        iter.reloc()->fix_relocation_after_move(this, dest);
669      }
670    }
671  }
672}
673
674csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
675                                               csize_t amount,
676                                               csize_t* new_capacity) {
677  csize_t new_total_cap = 0;
678
679  int prev_n = -1;
680  for (int n = 0; n < (int)SECT_LIMIT; n++) {
681    const CodeSection* sect = code_section(n);
682
683    if (!sect->is_empty()) {
684      // Compute initial padding; assign it to the previous non-empty guy.
685      // Cf. compute_final_layout.
686      csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
687      if (padding != 0) {
688        new_total_cap += padding;
689        assert(prev_n >= 0, "sanity");
690        new_capacity[prev_n] += padding;
691      }
692      prev_n = n;
693    }
694
695    csize_t exp = sect->size();  // 100% increase
696    if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
697    if (sect == which_cs) {
698      if (exp < amount)  exp = amount;
699      if (StressCodeBuffers)  exp = amount;  // expand only slightly
700    } else if (n == SECT_INSTS) {
701      // scale down inst increases to a more modest 25%
702      exp = 4*K + ((exp - 4*K) >> 2);
703      if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
704    } else if (sect->is_empty()) {
705      // do not grow an empty secondary section
706      exp = 0;
707    }
708    // Allow for inter-section slop:
709    exp += CodeSection::end_slop();
710    csize_t new_cap = sect->size() + exp;
711    if (new_cap < sect->capacity()) {
712      // No need to expand after all.
713      new_cap = sect->capacity();
714    }
715    new_capacity[n] = new_cap;
716    new_total_cap += new_cap;
717  }
718
719  return new_total_cap;
720}
721
722void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
723#ifndef PRODUCT
724  if (PrintNMethods && (WizardMode || Verbose)) {
725    tty->print("expanding CodeBuffer:");
726    this->print();
727  }
728
729  if (StressCodeBuffers && blob() != NULL) {
730    static int expand_count = 0;
731    if (expand_count >= 0)  expand_count += 1;
732    if (expand_count > 100 && is_power_of_2(expand_count)) {
733      tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
734      // simulate an occasional allocation failure:
735      free_blob();
736    }
737  }
738#endif //PRODUCT
739
740  // Resizing must be allowed
741  {
742    if (blob() == NULL)  return;  // caller must check for blob == NULL
743    for (int n = 0; n < (int)SECT_LIMIT; n++) {
744      guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
745    }
746  }
747
748  // Figure new capacity for each section.
749  csize_t new_capacity[SECT_LIMIT];
750  csize_t new_total_cap
751    = figure_expanded_capacities(which_cs, amount, new_capacity);
752
753  // Create a new (temporary) code buffer to hold all the new data
754  CodeBuffer cb(name(), new_total_cap, 0);
755  if (cb.blob() == NULL) {
756    // Failed to allocate in code cache.
757    free_blob();
758    return;
759  }
760
761  // Create an old code buffer to remember which addresses used to go where.
762  // This will be useful when we do final assembly into the code cache,
763  // because we will need to know how to warp any internal address that
764  // has been created at any time in this CodeBuffer's past.
765  CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
766  bxp->take_over_code_from(this);  // remember the old undersized blob
767  DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
768  bxp->_before_expand = this->_before_expand;
769  this->_before_expand = bxp;
770
771  // Give each section its required (expanded) capacity.
772  for (int n = (int)SECT_LIMIT-1; n >= SECT_INSTS; n--) {
773    CodeSection* cb_sect   = cb.code_section(n);
774    CodeSection* this_sect = code_section(n);
775    if (new_capacity[n] == 0)  continue;  // already nulled out
776    if (n > SECT_INSTS) {
777      cb.initialize_section_size(cb_sect, new_capacity[n]);
778    }
779    assert(cb_sect->capacity() >= new_capacity[n], "big enough");
780    address cb_start = cb_sect->start();
781    cb_sect->set_end(cb_start + this_sect->size());
782    if (this_sect->mark() == NULL) {
783      cb_sect->clear_mark();
784    } else {
785      cb_sect->set_mark(cb_start + this_sect->mark_off());
786    }
787  }
788
789  // Move all the code and relocations to the new blob:
790  relocate_code_to(&cb);
791
792  // Copy the temporary code buffer into the current code buffer.
793  // Basically, do {*this = cb}, except for some control information.
794  this->take_over_code_from(&cb);
795  cb.set_blob(NULL);
796
797  // Zap the old code buffer contents, to avoid mistakenly using them.
798  debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
799                                 badCodeHeapFreeVal));
800
801  _decode_begin = NULL;  // sanity
802
803  // Make certain that the new sections are all snugly inside the new blob.
804  assert(verify_section_allocation(), "expanded allocation is ship-shape");
805
806#ifndef PRODUCT
807  if (PrintNMethods && (WizardMode || Verbose)) {
808    tty->print("expanded CodeBuffer:");
809    this->print();
810  }
811#endif //PRODUCT
812}
813
814void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
815  // Must already have disposed of the old blob somehow.
816  assert(blob() == NULL, "must be empty");
817#ifdef ASSERT
818
819#endif
820  // Take the new blob away from cb.
821  set_blob(cb->blob());
822  // Take over all the section pointers.
823  for (int n = 0; n < (int)SECT_LIMIT; n++) {
824    CodeSection* cb_sect   = cb->code_section(n);
825    CodeSection* this_sect = code_section(n);
826    this_sect->take_over_code_from(cb_sect);
827  }
828  _overflow_arena = cb->_overflow_arena;
829  // Make sure the old cb won't try to use it or free it.
830  DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
831}
832
833#ifdef ASSERT
834bool CodeBuffer::verify_section_allocation() {
835  address tstart = _total_start;
836  if (tstart == badAddress)  return true;  // smashed by set_blob(NULL)
837  address tend   = tstart + _total_size;
838  if (_blob != NULL) {
839    assert(tstart >= _blob->instructions_begin(), "sanity");
840    assert(tend   <= _blob->instructions_end(),   "sanity");
841  }
842  address tcheck = tstart;  // advancing pointer to verify disjointness
843  for (int n = 0; n < (int)SECT_LIMIT; n++) {
844    CodeSection* sect = code_section(n);
845    if (!sect->is_allocated())  continue;
846    assert(sect->start() >= tcheck, "sanity");
847    tcheck = sect->start();
848    assert((intptr_t)tcheck % sect->alignment() == 0
849           || sect->is_empty() || _blob == NULL,
850           "start is aligned");
851    assert(sect->end()   >= tcheck, "sanity");
852    assert(sect->end()   <= tend,   "sanity");
853  }
854  return true;
855}
856#endif //ASSERT
857
858#ifndef PRODUCT
859
860void CodeSection::dump() {
861  address ptr = start();
862  for (csize_t step; ptr < end(); ptr += step) {
863    step = end() - ptr;
864    if (step > jintSize * 4)  step = jintSize * 4;
865    tty->print(PTR_FORMAT ": ", ptr);
866    while (step > 0) {
867      tty->print(" " PTR32_FORMAT, *(jint*)ptr);
868      ptr += jintSize;
869    }
870    tty->cr();
871  }
872}
873
874
875void CodeSection::decode() {
876  Disassembler::decode(start(), end());
877}
878
879
880void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
881  _comments.add_comment(offset, comment);
882}
883
884
885class CodeComment: public CHeapObj {
886 private:
887  friend class CodeComments;
888  intptr_t     _offset;
889  const char * _comment;
890  CodeComment* _next;
891
892  ~CodeComment() {
893    assert(_next == NULL, "wrong interface for freeing list");
894    os::free((void*)_comment);
895  }
896
897 public:
898  CodeComment(intptr_t offset, const char * comment) {
899    _offset = offset;
900    _comment = os::strdup(comment);
901    _next = NULL;
902  }
903
904  intptr_t     offset()  const { return _offset;  }
905  const char * comment() const { return _comment; }
906  CodeComment* next()          { return _next; }
907
908  void set_next(CodeComment* next) { _next = next; }
909
910  CodeComment* find(intptr_t offset) {
911    CodeComment* a = this;
912    while (a != NULL && a->_offset != offset) {
913      a = a->_next;
914    }
915    return a;
916  }
917};
918
919
920void CodeComments::add_comment(intptr_t offset, const char * comment) {
921  CodeComment* c = new CodeComment(offset, comment);
922  CodeComment* insert = NULL;
923  if (_comments != NULL) {
924    CodeComment* c = _comments->find(offset);
925    insert = c;
926    while (c && c->offset() == offset) {
927      insert = c;
928      c = c->next();
929    }
930  }
931  if (insert) {
932    // insert after comments with same offset
933    c->set_next(insert->next());
934    insert->set_next(c);
935  } else {
936    c->set_next(_comments);
937    _comments = c;
938  }
939}
940
941
942void CodeComments::assign(CodeComments& other) {
943  assert(_comments == NULL, "don't overwrite old value");
944  _comments = other._comments;
945}
946
947
948void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
949  if (_comments != NULL) {
950    CodeComment* c = _comments->find(offset);
951    while (c && c->offset() == offset) {
952      stream->bol();
953      stream->print("  ;; ");
954      stream->print_cr(c->comment());
955      c = c->next();
956    }
957  }
958}
959
960
961void CodeComments::free() {
962  CodeComment* n = _comments;
963  while (n) {
964    // unlink the node from the list saving a pointer to the next
965    CodeComment* p = n->_next;
966    n->_next = NULL;
967    delete n;
968    n = p;
969  }
970  _comments = NULL;
971}
972
973
974
975void CodeBuffer::decode() {
976  Disassembler::decode(decode_begin(), code_end());
977  _decode_begin = code_end();
978}
979
980
981void CodeBuffer::skip_decode() {
982  _decode_begin = code_end();
983}
984
985
986void CodeBuffer::decode_all() {
987  for (int n = 0; n < (int)SECT_LIMIT; n++) {
988    // dump contents of each section
989    CodeSection* cs = code_section(n);
990    tty->print_cr("! %s:", code_section_name(n));
991    if (cs != consts())
992      cs->decode();
993    else
994      cs->dump();
995  }
996}
997
998
999void CodeSection::print(const char* name) {
1000  csize_t locs_size = locs_end() - locs_start();
1001  tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1002                name, start(), end(), limit(), size(), capacity(),
1003                is_frozen()? " [frozen]": "");
1004  tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1005                name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
1006  if (PrintRelocations) {
1007    RelocIterator iter(this);
1008    iter.print();
1009  }
1010}
1011
1012void CodeBuffer::print() {
1013  if (this == NULL) {
1014    tty->print_cr("NULL CodeBuffer pointer");
1015    return;
1016  }
1017
1018  tty->print_cr("CodeBuffer:");
1019  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1020    // print each section
1021    CodeSection* cs = code_section(n);
1022    cs->print(code_section_name(n));
1023  }
1024}
1025
1026#endif // PRODUCT
1027