codeBuffer.cpp revision 13249:a2753984d2c1
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/codeBuffer.hpp"
27#include "compiler/disassembler.hpp"
28#include "gc/shared/gcLocker.hpp"
29#include "oops/methodData.hpp"
30#include "oops/oop.inline.hpp"
31#include "runtime/icache.hpp"
32#include "utilities/align.hpp"
33#include "utilities/copy.hpp"
34#include "utilities/xmlstream.hpp"
35
36// The structure of a CodeSection:
37//
38//    _start ->           +----------------+
39//                        | machine code...|
40//    _end ->             |----------------|
41//                        |                |
42//                        |    (empty)     |
43//                        |                |
44//                        |                |
45//                        +----------------+
46//    _limit ->           |                |
47//
48//    _locs_start ->      +----------------+
49//                        |reloc records...|
50//                        |----------------|
51//    _locs_end ->        |                |
52//                        |                |
53//                        |    (empty)     |
54//                        |                |
55//                        |                |
56//                        +----------------+
57//    _locs_limit ->      |                |
58// The _end (resp. _limit) pointer refers to the first
59// unused (resp. unallocated) byte.
60
61// The structure of the CodeBuffer while code is being accumulated:
62//
63//    _total_start ->    \
64//    _insts._start ->              +----------------+
65//                                  |                |
66//                                  |     Code       |
67//                                  |                |
68//    _stubs._start ->              |----------------|
69//                                  |                |
70//                                  |    Stubs       | (also handlers for deopt/exception)
71//                                  |                |
72//    _consts._start ->             |----------------|
73//                                  |                |
74//                                  |   Constants    |
75//                                  |                |
76//                                  +----------------+
77//    + _total_size ->              |                |
78//
79// When the code and relocations are copied to the code cache,
80// the empty parts of each section are removed, and everything
81// is copied into contiguous locations.
82
83typedef CodeBuffer::csize_t csize_t;  // file-local definition
84
85// External buffer, in a predefined CodeBlob.
86// Important: The code_start must be taken exactly, and not realigned.
87CodeBuffer::CodeBuffer(CodeBlob* blob) {
88  initialize_misc("static buffer");
89  initialize(blob->content_begin(), blob->content_size());
90  verify_section_allocation();
91}
92
93void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
94  // Compute maximal alignment.
95  int align = _insts.alignment();
96  // Always allow for empty slop around each section.
97  int slop = (int) CodeSection::end_slop();
98
99  assert(blob() == NULL, "only once");
100  set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
101  if (blob() == NULL) {
102    // The assembler constructor will throw a fatal on an empty CodeBuffer.
103    return;  // caller must test this
104  }
105
106  // Set up various pointers into the blob.
107  initialize(_total_start, _total_size);
108
109  assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
110
111  pd_initialize();
112
113  if (locs_size != 0) {
114    _insts.initialize_locs(locs_size / sizeof(relocInfo));
115  }
116
117  verify_section_allocation();
118}
119
120
121CodeBuffer::~CodeBuffer() {
122  verify_section_allocation();
123
124  // If we allocate our code buffer from the CodeCache
125  // via a BufferBlob, and it's not permanent, then
126  // free the BufferBlob.
127  // The rest of the memory will be freed when the ResourceObj
128  // is released.
129  for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
130    // Previous incarnations of this buffer are held live, so that internal
131    // addresses constructed before expansions will not be confused.
132    cb->free_blob();
133  }
134
135  // free any overflow storage
136  delete _overflow_arena;
137
138  // Claim is that stack allocation ensures resources are cleaned up.
139  // This is resource clean up, let's hope that all were properly copied out.
140  free_strings();
141
142#ifdef ASSERT
143  // Save allocation type to execute assert in ~ResourceObj()
144  // which is called after this destructor.
145  assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
146  ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
147  Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
148  ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
149#endif
150}
151
152void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
153  assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
154  DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
155  _oop_recorder = r;
156}
157
158void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
159  assert(cs != &_insts, "insts is the memory provider, not the consumer");
160  csize_t slop = CodeSection::end_slop();  // margin between sections
161  int align = cs->alignment();
162  assert(is_power_of_2(align), "sanity");
163  address start  = _insts._start;
164  address limit  = _insts._limit;
165  address middle = limit - size;
166  middle -= (intptr_t)middle & (align-1);  // align the division point downward
167  guarantee(middle - slop > start, "need enough space to divide up");
168  _insts._limit = middle - slop;  // subtract desired space, plus slop
169  cs->initialize(middle, limit - middle);
170  assert(cs->start() == middle, "sanity");
171  assert(cs->limit() == limit,  "sanity");
172  // give it some relocations to start with, if the main section has them
173  if (_insts.has_locs())  cs->initialize_locs(1);
174}
175
176void CodeBuffer::freeze_section(CodeSection* cs) {
177  CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
178  csize_t frozen_size = cs->size();
179  if (next_cs != NULL) {
180    frozen_size = next_cs->align_at_start(frozen_size);
181  }
182  address old_limit = cs->limit();
183  address new_limit = cs->start() + frozen_size;
184  relocInfo* old_locs_limit = cs->locs_limit();
185  relocInfo* new_locs_limit = cs->locs_end();
186  // Patch the limits.
187  cs->_limit = new_limit;
188  cs->_locs_limit = new_locs_limit;
189  cs->_frozen = true;
190  if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
191    // Give remaining buffer space to the following section.
192    next_cs->initialize(new_limit, old_limit - new_limit);
193    next_cs->initialize_shared_locs(new_locs_limit,
194                                    old_locs_limit - new_locs_limit);
195  }
196}
197
198void CodeBuffer::set_blob(BufferBlob* blob) {
199  _blob = blob;
200  if (blob != NULL) {
201    address start = blob->content_begin();
202    address end   = blob->content_end();
203    // Round up the starting address.
204    int align = _insts.alignment();
205    start += (-(intptr_t)start) & (align-1);
206    _total_start = start;
207    _total_size  = end - start;
208  } else {
209#ifdef ASSERT
210    // Clean out dangling pointers.
211    _total_start    = badAddress;
212    _consts._start  = _consts._end  = badAddress;
213    _insts._start   = _insts._end   = badAddress;
214    _stubs._start   = _stubs._end   = badAddress;
215#endif //ASSERT
216  }
217}
218
219void CodeBuffer::free_blob() {
220  if (_blob != NULL) {
221    BufferBlob::free(_blob);
222    set_blob(NULL);
223  }
224}
225
226const char* CodeBuffer::code_section_name(int n) {
227#ifdef PRODUCT
228  return NULL;
229#else //PRODUCT
230  switch (n) {
231  case SECT_CONSTS:            return "consts";
232  case SECT_INSTS:             return "insts";
233  case SECT_STUBS:             return "stubs";
234  default:                     return NULL;
235  }
236#endif //PRODUCT
237}
238
239int CodeBuffer::section_index_of(address addr) const {
240  for (int n = 0; n < (int)SECT_LIMIT; n++) {
241    const CodeSection* cs = code_section(n);
242    if (cs->allocates(addr))  return n;
243  }
244  return SECT_NONE;
245}
246
247int CodeBuffer::locator(address addr) const {
248  for (int n = 0; n < (int)SECT_LIMIT; n++) {
249    const CodeSection* cs = code_section(n);
250    if (cs->allocates(addr)) {
251      return locator(addr - cs->start(), n);
252    }
253  }
254  return -1;
255}
256
257address CodeBuffer::locator_address(int locator) const {
258  if (locator < 0)  return NULL;
259  address start = code_section(locator_sect(locator))->start();
260  return start + locator_pos(locator);
261}
262
263bool CodeBuffer::is_backward_branch(Label& L) {
264  return L.is_bound() && insts_end() <= locator_address(L.loc());
265}
266
267address CodeBuffer::decode_begin() {
268  address begin = _insts.start();
269  if (_decode_begin != NULL && _decode_begin > begin)
270    begin = _decode_begin;
271  return begin;
272}
273
274
275GrowableArray<int>* CodeBuffer::create_patch_overflow() {
276  if (_overflow_arena == NULL) {
277    _overflow_arena = new (mtCode) Arena(mtCode);
278  }
279  return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
280}
281
282
283// Helper function for managing labels and their target addresses.
284// Returns a sensible address, and if it is not the label's final
285// address, notes the dependency (at 'branch_pc') on the label.
286address CodeSection::target(Label& L, address branch_pc) {
287  if (L.is_bound()) {
288    int loc = L.loc();
289    if (index() == CodeBuffer::locator_sect(loc)) {
290      return start() + CodeBuffer::locator_pos(loc);
291    } else {
292      return outer()->locator_address(loc);
293    }
294  } else {
295    assert(allocates2(branch_pc), "sanity");
296    address base = start();
297    int patch_loc = CodeBuffer::locator(branch_pc - base, index());
298    L.add_patch_at(outer(), patch_loc);
299
300    // Need to return a pc, doesn't matter what it is since it will be
301    // replaced during resolution later.
302    // Don't return NULL or badAddress, since branches shouldn't overflow.
303    // Don't return base either because that could overflow displacements
304    // for shorter branches.  It will get checked when bound.
305    return branch_pc;
306  }
307}
308
309void CodeSection::relocate(address at, relocInfo::relocType rtype, int format, jint method_index) {
310  RelocationHolder rh;
311  switch (rtype) {
312    case relocInfo::none: return;
313    case relocInfo::opt_virtual_call_type: {
314      rh = opt_virtual_call_Relocation::spec(method_index);
315      break;
316    }
317    case relocInfo::static_call_type: {
318      rh = static_call_Relocation::spec(method_index);
319      break;
320    }
321    case relocInfo::virtual_call_type: {
322      assert(method_index == 0, "resolved method overriding is not supported");
323      rh = Relocation::spec_simple(rtype);
324      break;
325    }
326    default: {
327      rh = Relocation::spec_simple(rtype);
328      break;
329    }
330  }
331  relocate(at, rh, format);
332}
333
334void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
335  // Do not relocate in scratch buffers.
336  if (scratch_emit()) { return; }
337  Relocation* reloc = spec.reloc();
338  relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
339  if (rtype == relocInfo::none)  return;
340
341  // The assertion below has been adjusted, to also work for
342  // relocation for fixup.  Sometimes we want to put relocation
343  // information for the next instruction, since it will be patched
344  // with a call.
345  assert(start() <= at && at <= end()+1,
346         "cannot relocate data outside code boundaries");
347
348  if (!has_locs()) {
349    // no space for relocation information provided => code cannot be
350    // relocated.  Make sure that relocate is only called with rtypes
351    // that can be ignored for this kind of code.
352    assert(rtype == relocInfo::none              ||
353           rtype == relocInfo::runtime_call_type ||
354           rtype == relocInfo::internal_word_type||
355           rtype == relocInfo::section_word_type ||
356           rtype == relocInfo::external_word_type,
357           "code needs relocation information");
358    // leave behind an indication that we attempted a relocation
359    DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
360    return;
361  }
362
363  // Advance the point, noting the offset we'll have to record.
364  csize_t offset = at - locs_point();
365  set_locs_point(at);
366
367  // Test for a couple of overflow conditions; maybe expand the buffer.
368  relocInfo* end = locs_end();
369  relocInfo* req = end + relocInfo::length_limit;
370  // Check for (potential) overflow
371  if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
372    req += (uint)offset / (uint)relocInfo::offset_limit();
373    if (req >= locs_limit()) {
374      // Allocate or reallocate.
375      expand_locs(locs_count() + (req - end));
376      // reload pointer
377      end = locs_end();
378    }
379  }
380
381  // If the offset is giant, emit filler relocs, of type 'none', but
382  // each carrying the largest possible offset, to advance the locs_point.
383  while (offset >= relocInfo::offset_limit()) {
384    assert(end < locs_limit(), "adjust previous paragraph of code");
385    *end++ = filler_relocInfo();
386    offset -= filler_relocInfo().addr_offset();
387  }
388
389  // If it's a simple reloc with no data, we'll just write (rtype | offset).
390  (*end) = relocInfo(rtype, offset, format);
391
392  // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
393  end->initialize(this, reloc);
394}
395
396void CodeSection::initialize_locs(int locs_capacity) {
397  assert(_locs_start == NULL, "only one locs init step, please");
398  // Apply a priori lower limits to relocation size:
399  csize_t min_locs = MAX2(size() / 16, (csize_t)4);
400  if (locs_capacity < min_locs)  locs_capacity = min_locs;
401  relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
402  _locs_start    = locs_start;
403  _locs_end      = locs_start;
404  _locs_limit    = locs_start + locs_capacity;
405  _locs_own      = true;
406}
407
408void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
409  assert(_locs_start == NULL, "do this before locs are allocated");
410  // Internal invariant:  locs buf must be fully aligned.
411  // See copy_relocations_to() below.
412  while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
413    ++buf; --length;
414  }
415  if (length > 0) {
416    _locs_start = buf;
417    _locs_end   = buf;
418    _locs_limit = buf + length;
419    _locs_own   = false;
420  }
421}
422
423void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
424  int lcount = source_cs->locs_count();
425  if (lcount != 0) {
426    initialize_shared_locs(source_cs->locs_start(), lcount);
427    _locs_end = _locs_limit = _locs_start + lcount;
428    assert(is_allocated(), "must have copied code already");
429    set_locs_point(start() + source_cs->locs_point_off());
430  }
431  assert(this->locs_count() == source_cs->locs_count(), "sanity");
432}
433
434void CodeSection::expand_locs(int new_capacity) {
435  if (_locs_start == NULL) {
436    initialize_locs(new_capacity);
437    return;
438  } else {
439    int old_count    = locs_count();
440    int old_capacity = locs_capacity();
441    if (new_capacity < old_capacity * 2)
442      new_capacity = old_capacity * 2;
443    relocInfo* locs_start;
444    if (_locs_own) {
445      locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
446    } else {
447      locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
448      Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
449      _locs_own = true;
450    }
451    _locs_start    = locs_start;
452    _locs_end      = locs_start + old_count;
453    _locs_limit    = locs_start + new_capacity;
454  }
455}
456
457
458/// Support for emitting the code to its final location.
459/// The pattern is the same for all functions.
460/// We iterate over all the sections, padding each to alignment.
461
462csize_t CodeBuffer::total_content_size() const {
463  csize_t size_so_far = 0;
464  for (int n = 0; n < (int)SECT_LIMIT; n++) {
465    const CodeSection* cs = code_section(n);
466    if (cs->is_empty())  continue;  // skip trivial section
467    size_so_far = cs->align_at_start(size_so_far);
468    size_so_far += cs->size();
469  }
470  return size_so_far;
471}
472
473void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
474  address buf = dest->_total_start;
475  csize_t buf_offset = 0;
476  assert(dest->_total_size >= total_content_size(), "must be big enough");
477
478  {
479    // not sure why this is here, but why not...
480    int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
481    assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
482  }
483
484  const CodeSection* prev_cs      = NULL;
485  CodeSection*       prev_dest_cs = NULL;
486
487  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
488    // figure compact layout of each section
489    const CodeSection* cs = code_section(n);
490    csize_t csize = cs->size();
491
492    CodeSection* dest_cs = dest->code_section(n);
493    if (!cs->is_empty()) {
494      // Compute initial padding; assign it to the previous non-empty guy.
495      // Cf. figure_expanded_capacities.
496      csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
497      if (padding != 0) {
498        buf_offset += padding;
499        assert(prev_dest_cs != NULL, "sanity");
500        prev_dest_cs->_limit += padding;
501      }
502      #ifdef ASSERT
503      if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
504        // Make sure the ends still match up.
505        // This is important because a branch in a frozen section
506        // might target code in a following section, via a Label,
507        // and without a relocation record.  See Label::patch_instructions.
508        address dest_start = buf+buf_offset;
509        csize_t start2start = cs->start() - prev_cs->start();
510        csize_t dest_start2start = dest_start - prev_dest_cs->start();
511        assert(start2start == dest_start2start, "cannot stretch frozen sect");
512      }
513      #endif //ASSERT
514      prev_dest_cs = dest_cs;
515      prev_cs      = cs;
516    }
517
518    debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
519    dest_cs->initialize(buf+buf_offset, csize);
520    dest_cs->set_end(buf+buf_offset+csize);
521    assert(dest_cs->is_allocated(), "must always be allocated");
522    assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
523
524    buf_offset += csize;
525  }
526
527  // Done calculating sections; did it come out to the right end?
528  assert(buf_offset == total_content_size(), "sanity");
529  dest->verify_section_allocation();
530}
531
532// Append an oop reference that keeps the class alive.
533static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
534  oop cl = k->klass_holder();
535  if (cl != NULL && !oops->contains(cl)) {
536    oops->append(cl);
537  }
538}
539
540void CodeBuffer::finalize_oop_references(const methodHandle& mh) {
541  NoSafepointVerifier nsv;
542
543  GrowableArray<oop> oops;
544
545  // Make sure that immediate metadata records something in the OopRecorder
546  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
547    // pull code out of each section
548    CodeSection* cs = code_section(n);
549    if (cs->is_empty())  continue;  // skip trivial section
550    RelocIterator iter(cs);
551    while (iter.next()) {
552      if (iter.type() == relocInfo::metadata_type) {
553        metadata_Relocation* md = iter.metadata_reloc();
554        if (md->metadata_is_immediate()) {
555          Metadata* m = md->metadata_value();
556          if (oop_recorder()->is_real(m)) {
557            if (m->is_methodData()) {
558              m = ((MethodData*)m)->method();
559            }
560            if (m->is_method()) {
561              m = ((Method*)m)->method_holder();
562            }
563            if (m->is_klass()) {
564              append_oop_references(&oops, (Klass*)m);
565            } else {
566              // XXX This will currently occur for MDO which don't
567              // have a backpointer.  This has to be fixed later.
568              m->print();
569              ShouldNotReachHere();
570            }
571          }
572        }
573      }
574    }
575  }
576
577  if (!oop_recorder()->is_unused()) {
578    for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
579      Metadata* m = oop_recorder()->metadata_at(i);
580      if (oop_recorder()->is_real(m)) {
581        if (m->is_methodData()) {
582          m = ((MethodData*)m)->method();
583        }
584        if (m->is_method()) {
585          m = ((Method*)m)->method_holder();
586        }
587        if (m->is_klass()) {
588          append_oop_references(&oops, (Klass*)m);
589        } else {
590          m->print();
591          ShouldNotReachHere();
592        }
593      }
594    }
595
596  }
597
598  // Add the class loader of Method* for the nmethod itself
599  append_oop_references(&oops, mh->method_holder());
600
601  // Add any oops that we've found
602  Thread* thread = Thread::current();
603  for (int i = 0; i < oops.length(); i++) {
604    oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
605  }
606}
607
608
609
610csize_t CodeBuffer::total_offset_of(const CodeSection* cs) const {
611  csize_t size_so_far = 0;
612  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
613    const CodeSection* cur_cs = code_section(n);
614    if (!cur_cs->is_empty()) {
615      size_so_far = cur_cs->align_at_start(size_so_far);
616    }
617    if (cur_cs->index() == cs->index()) {
618      return size_so_far;
619    }
620    size_so_far += cur_cs->size();
621  }
622  ShouldNotReachHere();
623  return -1;
624}
625
626csize_t CodeBuffer::total_relocation_size() const {
627  csize_t total = copy_relocations_to(NULL);  // dry run only
628  return (csize_t) align_up(total, HeapWordSize);
629}
630
631csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const {
632  csize_t buf_offset = 0;
633  csize_t code_end_so_far = 0;
634  csize_t code_point_so_far = 0;
635
636  assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
637  assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
638
639  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
640    if (only_inst && (n != (int)SECT_INSTS)) {
641      // Need only relocation info for code.
642      continue;
643    }
644    // pull relocs out of each section
645    const CodeSection* cs = code_section(n);
646    assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
647    if (cs->is_empty())  continue;  // skip trivial section
648    relocInfo* lstart = cs->locs_start();
649    relocInfo* lend   = cs->locs_end();
650    csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
651    csize_t    csize  = cs->size();
652    code_end_so_far = cs->align_at_start(code_end_so_far);
653
654    if (lsize > 0) {
655      // Figure out how to advance the combined relocation point
656      // first to the beginning of this section.
657      // We'll insert one or more filler relocs to span that gap.
658      // (Don't bother to improve this by editing the first reloc's offset.)
659      csize_t new_code_point = code_end_so_far;
660      for (csize_t jump;
661           code_point_so_far < new_code_point;
662           code_point_so_far += jump) {
663        jump = new_code_point - code_point_so_far;
664        relocInfo filler = filler_relocInfo();
665        if (jump >= filler.addr_offset()) {
666          jump = filler.addr_offset();
667        } else {  // else shrink the filler to fit
668          filler = relocInfo(relocInfo::none, jump);
669        }
670        if (buf != NULL) {
671          assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
672          *(relocInfo*)(buf+buf_offset) = filler;
673        }
674        buf_offset += sizeof(filler);
675      }
676
677      // Update code point and end to skip past this section:
678      csize_t last_code_point = code_end_so_far + cs->locs_point_off();
679      assert(code_point_so_far <= last_code_point, "sanity");
680      code_point_so_far = last_code_point; // advance past this guy's relocs
681    }
682    code_end_so_far += csize;  // advance past this guy's instructions too
683
684    // Done with filler; emit the real relocations:
685    if (buf != NULL && lsize != 0) {
686      assert(buf_offset + lsize <= buf_limit, "target in bounds");
687      assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
688      if (buf_offset % HeapWordSize == 0) {
689        // Use wordwise copies if possible:
690        Copy::disjoint_words((HeapWord*)lstart,
691                             (HeapWord*)(buf+buf_offset),
692                             (lsize + HeapWordSize-1) / HeapWordSize);
693      } else {
694        Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
695      }
696    }
697    buf_offset += lsize;
698  }
699
700  // Align end of relocation info in target.
701  while (buf_offset % HeapWordSize != 0) {
702    if (buf != NULL) {
703      relocInfo padding = relocInfo(relocInfo::none, 0);
704      assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
705      *(relocInfo*)(buf+buf_offset) = padding;
706    }
707    buf_offset += sizeof(relocInfo);
708  }
709
710  assert(only_inst || code_end_so_far == total_content_size(), "sanity");
711
712  return buf_offset;
713}
714
715csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
716  address buf = NULL;
717  csize_t buf_offset = 0;
718  csize_t buf_limit = 0;
719
720  if (dest != NULL) {
721    buf = (address)dest->relocation_begin();
722    buf_limit = (address)dest->relocation_end() - buf;
723  }
724  // if dest == NULL, this is just the sizing pass
725  //
726  buf_offset = copy_relocations_to(buf, buf_limit, false);
727
728  return buf_offset;
729}
730
731void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
732#ifndef PRODUCT
733  if (PrintNMethods && (WizardMode || Verbose)) {
734    tty->print("done with CodeBuffer:");
735    ((CodeBuffer*)this)->print();
736  }
737#endif //PRODUCT
738
739  CodeBuffer dest(dest_blob);
740  assert(dest_blob->content_size() >= total_content_size(), "good sizing");
741  this->compute_final_layout(&dest);
742
743  // Set beginning of constant table before relocating.
744  dest_blob->set_ctable_begin(dest.consts()->start());
745
746  relocate_code_to(&dest);
747
748  // transfer strings and comments from buffer to blob
749  dest_blob->set_strings(_code_strings);
750
751  // Done moving code bytes; were they the right size?
752  assert((int)align_up(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
753
754  // Flush generated code
755  ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
756}
757
758// Move all my code into another code buffer.  Consult applicable
759// relocs to repair embedded addresses.  The layout in the destination
760// CodeBuffer is different to the source CodeBuffer: the destination
761// CodeBuffer gets the final layout (consts, insts, stubs in order of
762// ascending address).
763void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
764  address dest_end = dest->_total_start + dest->_total_size;
765  address dest_filled = NULL;
766  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
767    // pull code out of each section
768    const CodeSection* cs = code_section(n);
769    if (cs->is_empty())  continue;  // skip trivial section
770    CodeSection* dest_cs = dest->code_section(n);
771    assert(cs->size() == dest_cs->size(), "sanity");
772    csize_t usize = dest_cs->size();
773    csize_t wsize = align_up(usize, HeapWordSize);
774    assert(dest_cs->start() + wsize <= dest_end, "no overflow");
775    // Copy the code as aligned machine words.
776    // This may also include an uninitialized partial word at the end.
777    Copy::disjoint_words((HeapWord*)cs->start(),
778                         (HeapWord*)dest_cs->start(),
779                         wsize / HeapWordSize);
780
781    if (dest->blob() == NULL) {
782      // Destination is a final resting place, not just another buffer.
783      // Normalize uninitialized bytes in the final padding.
784      Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
785                          Assembler::code_fill_byte());
786    }
787    // Keep track of the highest filled address
788    dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
789
790    assert(cs->locs_start() != (relocInfo*)badAddress,
791           "this section carries no reloc storage, but reloc was attempted");
792
793    // Make the new code copy use the old copy's relocations:
794    dest_cs->initialize_locs_from(cs);
795  }
796
797  // Do relocation after all sections are copied.
798  // This is necessary if the code uses constants in stubs, which are
799  // relocated when the corresponding instruction in the code (e.g., a
800  // call) is relocated. Stubs are placed behind the main code
801  // section, so that section has to be copied before relocating.
802  for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
803    // pull code out of each section
804    const CodeSection* cs = code_section(n);
805    if (cs->is_empty()) continue;  // skip trivial section
806    CodeSection* dest_cs = dest->code_section(n);
807    { // Repair the pc relative information in the code after the move
808      RelocIterator iter(dest_cs);
809      while (iter.next()) {
810        iter.reloc()->fix_relocation_after_move(this, dest);
811      }
812    }
813  }
814
815  if (dest->blob() == NULL && dest_filled != NULL) {
816    // Destination is a final resting place, not just another buffer.
817    // Normalize uninitialized bytes in the final padding.
818    Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
819                        Assembler::code_fill_byte());
820
821  }
822}
823
824csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
825                                               csize_t amount,
826                                               csize_t* new_capacity) {
827  csize_t new_total_cap = 0;
828
829  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
830    const CodeSection* sect = code_section(n);
831
832    if (!sect->is_empty()) {
833      // Compute initial padding; assign it to the previous section,
834      // even if it's empty (e.g. consts section can be empty).
835      // Cf. compute_final_layout
836      csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
837      if (padding != 0) {
838        new_total_cap += padding;
839        assert(n - 1 >= SECT_FIRST, "sanity");
840        new_capacity[n - 1] += padding;
841      }
842    }
843
844    csize_t exp = sect->size();  // 100% increase
845    if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
846    if (sect == which_cs) {
847      if (exp < amount)  exp = amount;
848      if (StressCodeBuffers)  exp = amount;  // expand only slightly
849    } else if (n == SECT_INSTS) {
850      // scale down inst increases to a more modest 25%
851      exp = 4*K + ((exp - 4*K) >> 2);
852      if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
853    } else if (sect->is_empty()) {
854      // do not grow an empty secondary section
855      exp = 0;
856    }
857    // Allow for inter-section slop:
858    exp += CodeSection::end_slop();
859    csize_t new_cap = sect->size() + exp;
860    if (new_cap < sect->capacity()) {
861      // No need to expand after all.
862      new_cap = sect->capacity();
863    }
864    new_capacity[n] = new_cap;
865    new_total_cap += new_cap;
866  }
867
868  return new_total_cap;
869}
870
871void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
872#ifndef PRODUCT
873  if (PrintNMethods && (WizardMode || Verbose)) {
874    tty->print("expanding CodeBuffer:");
875    this->print();
876  }
877
878  if (StressCodeBuffers && blob() != NULL) {
879    static int expand_count = 0;
880    if (expand_count >= 0)  expand_count += 1;
881    if (expand_count > 100 && is_power_of_2(expand_count)) {
882      tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
883      // simulate an occasional allocation failure:
884      free_blob();
885    }
886  }
887#endif //PRODUCT
888
889  // Resizing must be allowed
890  {
891    if (blob() == NULL)  return;  // caller must check for blob == NULL
892    for (int n = 0; n < (int)SECT_LIMIT; n++) {
893      guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
894    }
895  }
896
897  // Figure new capacity for each section.
898  csize_t new_capacity[SECT_LIMIT];
899  memset(new_capacity, 0, sizeof(csize_t) * SECT_LIMIT);
900  csize_t new_total_cap
901    = figure_expanded_capacities(which_cs, amount, new_capacity);
902
903  // Create a new (temporary) code buffer to hold all the new data
904  CodeBuffer cb(name(), new_total_cap, 0);
905  if (cb.blob() == NULL) {
906    // Failed to allocate in code cache.
907    free_blob();
908    return;
909  }
910
911  // Create an old code buffer to remember which addresses used to go where.
912  // This will be useful when we do final assembly into the code cache,
913  // because we will need to know how to warp any internal address that
914  // has been created at any time in this CodeBuffer's past.
915  CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
916  bxp->take_over_code_from(this);  // remember the old undersized blob
917  DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
918  bxp->_before_expand = this->_before_expand;
919  this->_before_expand = bxp;
920
921  // Give each section its required (expanded) capacity.
922  for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
923    CodeSection* cb_sect   = cb.code_section(n);
924    CodeSection* this_sect = code_section(n);
925    if (new_capacity[n] == 0)  continue;  // already nulled out
926    if (n != SECT_INSTS) {
927      cb.initialize_section_size(cb_sect, new_capacity[n]);
928    }
929    assert(cb_sect->capacity() >= new_capacity[n], "big enough");
930    address cb_start = cb_sect->start();
931    cb_sect->set_end(cb_start + this_sect->size());
932    if (this_sect->mark() == NULL) {
933      cb_sect->clear_mark();
934    } else {
935      cb_sect->set_mark(cb_start + this_sect->mark_off());
936    }
937  }
938
939  // Needs to be initialized when calling fix_relocation_after_move.
940  cb.blob()->set_ctable_begin(cb.consts()->start());
941
942  // Move all the code and relocations to the new blob:
943  relocate_code_to(&cb);
944
945  // Copy the temporary code buffer into the current code buffer.
946  // Basically, do {*this = cb}, except for some control information.
947  this->take_over_code_from(&cb);
948  cb.set_blob(NULL);
949
950  // Zap the old code buffer contents, to avoid mistakenly using them.
951  debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
952                                 badCodeHeapFreeVal));
953
954  _decode_begin = NULL;  // sanity
955
956  // Make certain that the new sections are all snugly inside the new blob.
957  verify_section_allocation();
958
959#ifndef PRODUCT
960  if (PrintNMethods && (WizardMode || Verbose)) {
961    tty->print("expanded CodeBuffer:");
962    this->print();
963  }
964#endif //PRODUCT
965}
966
967void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
968  // Must already have disposed of the old blob somehow.
969  assert(blob() == NULL, "must be empty");
970  // Take the new blob away from cb.
971  set_blob(cb->blob());
972  // Take over all the section pointers.
973  for (int n = 0; n < (int)SECT_LIMIT; n++) {
974    CodeSection* cb_sect   = cb->code_section(n);
975    CodeSection* this_sect = code_section(n);
976    this_sect->take_over_code_from(cb_sect);
977  }
978  _overflow_arena = cb->_overflow_arena;
979  // Make sure the old cb won't try to use it or free it.
980  DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
981}
982
983void CodeBuffer::verify_section_allocation() {
984  address tstart = _total_start;
985  if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
986  address tend   = tstart + _total_size;
987  if (_blob != NULL) {
988
989    guarantee(tstart >= _blob->content_begin(), "sanity");
990    guarantee(tend   <= _blob->content_end(),   "sanity");
991  }
992  // Verify disjointness.
993  for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
994    CodeSection* sect = code_section(n);
995    if (!sect->is_allocated() || sect->is_empty())  continue;
996    guarantee((intptr_t)sect->start() % sect->alignment() == 0
997           || sect->is_empty() || _blob == NULL,
998           "start is aligned");
999    for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
1000      CodeSection* other = code_section(m);
1001      if (!other->is_allocated() || other == sect)  continue;
1002      guarantee(!other->contains(sect->start()    ), "sanity");
1003      // limit is an exclusive address and can be the start of another
1004      // section.
1005      guarantee(!other->contains(sect->limit() - 1), "sanity");
1006    }
1007    guarantee(sect->end() <= tend, "sanity");
1008    guarantee(sect->end() <= sect->limit(), "sanity");
1009  }
1010}
1011
1012void CodeBuffer::log_section_sizes(const char* name) {
1013  if (xtty != NULL) {
1014    ttyLocker ttyl;
1015    // log info about buffer usage
1016    xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
1017    for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
1018      CodeSection* sect = code_section(n);
1019      if (!sect->is_allocated() || sect->is_empty())  continue;
1020      xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
1021                     n, sect->limit() - sect->start(), sect->limit() - sect->end());
1022    }
1023    xtty->print_cr("</blob>");
1024  }
1025}
1026
1027#ifndef PRODUCT
1028
1029void CodeSection::dump() {
1030  address ptr = start();
1031  for (csize_t step; ptr < end(); ptr += step) {
1032    step = end() - ptr;
1033    if (step > jintSize * 4)  step = jintSize * 4;
1034    tty->print(INTPTR_FORMAT ": ", p2i(ptr));
1035    while (step > 0) {
1036      tty->print(" " PTR32_FORMAT, *(jint*)ptr);
1037      ptr += jintSize;
1038    }
1039    tty->cr();
1040  }
1041}
1042
1043
1044void CodeSection::decode() {
1045  Disassembler::decode(start(), end());
1046}
1047
1048
1049void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1050  _code_strings.add_comment(offset, comment);
1051}
1052
1053const char* CodeBuffer::code_string(const char* str) {
1054  return _code_strings.add_string(str);
1055}
1056
1057class CodeString: public CHeapObj<mtCode> {
1058 private:
1059  friend class CodeStrings;
1060  const char * _string;
1061  CodeString*  _next;
1062  intptr_t     _offset;
1063
1064  ~CodeString() {
1065    assert(_next == NULL, "wrong interface for freeing list");
1066    os::free((void*)_string);
1067  }
1068
1069  bool is_comment() const { return _offset >= 0; }
1070
1071 public:
1072  CodeString(const char * string, intptr_t offset = -1)
1073    : _next(NULL), _offset(offset) {
1074    _string = os::strdup(string, mtCode);
1075  }
1076
1077  const char * string() const { return _string; }
1078  intptr_t     offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset;  }
1079  CodeString* next()    const { return _next; }
1080
1081  void set_next(CodeString* next) { _next = next; }
1082
1083  CodeString* first_comment() {
1084    if (is_comment()) {
1085      return this;
1086    } else {
1087      return next_comment();
1088    }
1089  }
1090  CodeString* next_comment() const {
1091    CodeString* s = _next;
1092    while (s != NULL && !s->is_comment()) {
1093      s = s->_next;
1094    }
1095    return s;
1096  }
1097};
1098
1099CodeString* CodeStrings::find(intptr_t offset) const {
1100  CodeString* a = _strings->first_comment();
1101  while (a != NULL && a->offset() != offset) {
1102    a = a->next_comment();
1103  }
1104  return a;
1105}
1106
1107// Convenience for add_comment.
1108CodeString* CodeStrings::find_last(intptr_t offset) const {
1109  CodeString* a = find(offset);
1110  if (a != NULL) {
1111    CodeString* c = NULL;
1112    while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1113      a = c;
1114    }
1115  }
1116  return a;
1117}
1118
1119void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1120  check_valid();
1121  CodeString* c      = new CodeString(comment, offset);
1122  CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1123
1124  if (inspos) {
1125    // insert after already existing comments with same offset
1126    c->set_next(inspos->next());
1127    inspos->set_next(c);
1128  } else {
1129    // no comments with such offset, yet. Insert before anything else.
1130    c->set_next(_strings);
1131    _strings = c;
1132  }
1133}
1134
1135void CodeStrings::assign(CodeStrings& other) {
1136  other.check_valid();
1137  assert(is_null(), "Cannot assign onto non-empty CodeStrings");
1138  _strings = other._strings;
1139#ifdef ASSERT
1140  _defunct = false;
1141#endif
1142  other.set_null_and_invalidate();
1143}
1144
1145// Deep copy of CodeStrings for consistent memory management.
1146// Only used for actual disassembly so this is cheaper than reference counting
1147// for the "normal" fastdebug case.
1148void CodeStrings::copy(CodeStrings& other) {
1149  other.check_valid();
1150  check_valid();
1151  assert(is_null(), "Cannot copy onto non-empty CodeStrings");
1152  CodeString* n = other._strings;
1153  CodeString** ps = &_strings;
1154  while (n != NULL) {
1155    *ps = new CodeString(n->string(),n->offset());
1156    ps = &((*ps)->_next);
1157    n = n->next();
1158  }
1159}
1160
1161const char* CodeStrings::_prefix = " ;; ";  // default: can be changed via set_prefix
1162
1163void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1164    check_valid();
1165    if (_strings != NULL) {
1166    CodeString* c = find(offset);
1167    while (c && c->offset() == offset) {
1168      stream->bol();
1169      stream->print("%s", _prefix);
1170      // Don't interpret as format strings since it could contain %
1171      stream->print_raw_cr(c->string());
1172      c = c->next_comment();
1173    }
1174  }
1175}
1176
1177// Also sets isNull()
1178void CodeStrings::free() {
1179  CodeString* n = _strings;
1180  while (n) {
1181    // unlink the node from the list saving a pointer to the next
1182    CodeString* p = n->next();
1183    n->set_next(NULL);
1184    delete n;
1185    n = p;
1186  }
1187  set_null_and_invalidate();
1188}
1189
1190const char* CodeStrings::add_string(const char * string) {
1191  check_valid();
1192  CodeString* s = new CodeString(string);
1193  s->set_next(_strings);
1194  _strings = s;
1195  assert(s->string() != NULL, "should have a string");
1196  return s->string();
1197}
1198
1199void CodeBuffer::decode() {
1200  ttyLocker ttyl;
1201  Disassembler::decode(decode_begin(), insts_end());
1202  _decode_begin = insts_end();
1203}
1204
1205
1206void CodeBuffer::skip_decode() {
1207  _decode_begin = insts_end();
1208}
1209
1210
1211void CodeBuffer::decode_all() {
1212  ttyLocker ttyl;
1213  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1214    // dump contents of each section
1215    CodeSection* cs = code_section(n);
1216    tty->print_cr("! %s:", code_section_name(n));
1217    if (cs != consts())
1218      cs->decode();
1219    else
1220      cs->dump();
1221  }
1222}
1223
1224
1225void CodeSection::print(const char* name) {
1226  csize_t locs_size = locs_end() - locs_start();
1227  tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1228                name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1229                is_frozen()? " [frozen]": "");
1230  tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1231                name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1232  if (PrintRelocations) {
1233    RelocIterator iter(this);
1234    iter.print();
1235  }
1236}
1237
1238void CodeBuffer::print() {
1239  if (this == NULL) {
1240    tty->print_cr("NULL CodeBuffer pointer");
1241    return;
1242  }
1243
1244  tty->print_cr("CodeBuffer:");
1245  for (int n = 0; n < (int)SECT_LIMIT; n++) {
1246    // print each section
1247    CodeSection* cs = code_section(n);
1248    cs->print(code_section_name(n));
1249  }
1250}
1251
1252#endif // PRODUCT
1253