assembler.hpp revision 7877:cc8363b030d5
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_ASM_ASSEMBLER_HPP
26#define SHARE_VM_ASM_ASSEMBLER_HPP
27
28#include "asm/codeBuffer.hpp"
29#include "asm/register.hpp"
30#include "code/oopRecorder.hpp"
31#include "code/relocInfo.hpp"
32#include "memory/allocation.hpp"
33#include "runtime/vm_version.hpp"
34#include "utilities/debug.hpp"
35#include "utilities/growableArray.hpp"
36#include "utilities/top.hpp"
37
38// This file contains platform-independent assembler declarations.
39
40class MacroAssembler;
41class AbstractAssembler;
42class Label;
43
44/**
45 * Labels represent destinations for control transfer instructions.  Such
46 * instructions can accept a Label as their target argument.  A Label is
47 * bound to the current location in the code stream by calling the
48 * MacroAssembler's 'bind' method, which in turn calls the Label's 'bind'
49 * method.  A Label may be referenced by an instruction before it's bound
50 * (i.e., 'forward referenced').  'bind' stores the current code offset
51 * in the Label object.
52 *
53 * If an instruction references a bound Label, the offset field(s) within
54 * the instruction are immediately filled in based on the Label's code
55 * offset.  If an instruction references an unbound label, that
56 * instruction is put on a list of instructions that must be patched
57 * (i.e., 'resolved') when the Label is bound.
58 *
59 * 'bind' will call the platform-specific 'patch_instruction' method to
60 * fill in the offset field(s) for each unresolved instruction (if there
61 * are any).  'patch_instruction' lives in one of the
62 * cpu/<arch>/vm/assembler_<arch>* files.
63 *
64 * Instead of using a linked list of unresolved instructions, a Label has
65 * an array of unresolved instruction code offsets.  _patch_index
66 * contains the total number of forward references.  If the Label's array
67 * overflows (i.e., _patch_index grows larger than the array size), a
68 * GrowableArray is allocated to hold the remaining offsets.  (The cache
69 * size is 4 for now, which handles over 99.5% of the cases)
70 *
71 * Labels may only be used within a single CodeSection.  If you need
72 * to create references between code sections, use explicit relocations.
73 */
74class Label VALUE_OBJ_CLASS_SPEC {
75 private:
76  enum { PatchCacheSize = 4 };
77
78  // _loc encodes both the binding state (via its sign)
79  // and the binding locator (via its value) of a label.
80  //
81  // _loc >= 0   bound label, loc() encodes the target (jump) position
82  // _loc == -1  unbound label
83  int _loc;
84
85  // References to instructions that jump to this unresolved label.
86  // These instructions need to be patched when the label is bound
87  // using the platform-specific patchInstruction() method.
88  //
89  // To avoid having to allocate from the C-heap each time, we provide
90  // a local cache and use the overflow only if we exceed the local cache
91  int _patches[PatchCacheSize];
92  int _patch_index;
93  GrowableArray<int>* _patch_overflow;
94
95  Label(const Label&) { ShouldNotReachHere(); }
96
97 public:
98
99  /**
100   * After binding, be sure 'patch_instructions' is called later to link
101   */
102  void bind_loc(int loc) {
103    assert(loc >= 0, "illegal locator");
104    assert(_loc == -1, "already bound");
105    _loc = loc;
106  }
107  void bind_loc(int pos, int sect) { bind_loc(CodeBuffer::locator(pos, sect)); }
108
109#ifndef PRODUCT
110  // Iterates over all unresolved instructions for printing
111  void print_instructions(MacroAssembler* masm) const;
112#endif // PRODUCT
113
114  /**
115   * Returns the position of the the Label in the code buffer
116   * The position is a 'locator', which encodes both offset and section.
117   */
118  int loc() const {
119    assert(_loc >= 0, "unbound label");
120    return _loc;
121  }
122  int loc_pos()  const { return CodeBuffer::locator_pos(loc()); }
123  int loc_sect() const { return CodeBuffer::locator_sect(loc()); }
124
125  bool is_bound() const    { return _loc >=  0; }
126  bool is_unbound() const  { return _loc == -1 && _patch_index > 0; }
127  bool is_unused() const   { return _loc == -1 && _patch_index == 0; }
128
129  /**
130   * Adds a reference to an unresolved displacement instruction to
131   * this unbound label
132   *
133   * @param cb         the code buffer being patched
134   * @param branch_loc the locator of the branch instruction in the code buffer
135   */
136  void add_patch_at(CodeBuffer* cb, int branch_loc);
137
138  /**
139   * Iterate over the list of patches, resolving the instructions
140   * Call patch_instruction on each 'branch_loc' value
141   */
142  void patch_instructions(MacroAssembler* masm);
143
144  void init() {
145    _loc = -1;
146    _patch_index = 0;
147    _patch_overflow = NULL;
148  }
149
150  Label() {
151    init();
152  }
153};
154
155// A union type for code which has to assemble both constant and
156// non-constant operands, when the distinction cannot be made
157// statically.
158class RegisterOrConstant VALUE_OBJ_CLASS_SPEC {
159 private:
160  Register _r;
161  intptr_t _c;
162
163 public:
164  RegisterOrConstant(): _r(noreg), _c(0) {}
165  RegisterOrConstant(Register r): _r(r), _c(0) {}
166  RegisterOrConstant(intptr_t c): _r(noreg), _c(c) {}
167
168  Register as_register() const { assert(is_register(),""); return _r; }
169  intptr_t as_constant() const { assert(is_constant(),""); return _c; }
170
171  Register register_or_noreg() const { return _r; }
172  intptr_t constant_or_zero() const  { return _c; }
173
174  bool is_register() const { return _r != noreg; }
175  bool is_constant() const { return _r == noreg; }
176};
177
178// The Abstract Assembler: Pure assembler doing NO optimizations on the
179// instruction level; i.e., what you write is what you get.
180// The Assembler is generating code into a CodeBuffer.
181class AbstractAssembler : public ResourceObj  {
182  friend class Label;
183
184 protected:
185  CodeSection* _code_section;          // section within the code buffer
186  OopRecorder* _oop_recorder;          // support for relocInfo::oop_type
187
188 public:
189  // Code emission & accessing
190  address addr_at(int pos) const { return code_section()->start() + pos; }
191
192 protected:
193  // This routine is called with a label is used for an address.
194  // Labels and displacements truck in offsets, but target must return a PC.
195  address target(Label& L)             { return code_section()->target(L, pc()); }
196
197  bool is8bit(int x) const             { return -0x80 <= x && x < 0x80; }
198  bool isByte(int x) const             { return 0 <= x && x < 0x100; }
199  bool isShiftCount(int x) const       { return 0 <= x && x < 32; }
200
201  // Instruction boundaries (required when emitting relocatable values).
202  class InstructionMark: public StackObj {
203   private:
204    AbstractAssembler* _assm;
205
206   public:
207    InstructionMark(AbstractAssembler* assm) : _assm(assm) {
208      assert(assm->inst_mark() == NULL, "overlapping instructions");
209      _assm->set_inst_mark();
210    }
211    ~InstructionMark() {
212      _assm->clear_inst_mark();
213    }
214  };
215  friend class InstructionMark;
216#ifdef ASSERT
217  // Make it return true on platforms which need to verify
218  // instruction boundaries for some operations.
219  static bool pd_check_instruction_mark();
220
221  // Add delta to short branch distance to verify that it still fit into imm8.
222  int _short_branch_delta;
223
224  int  short_branch_delta() const { return _short_branch_delta; }
225  void set_short_branch_delta()   { _short_branch_delta = 32; }
226  void clear_short_branch_delta() { _short_branch_delta = 0; }
227
228  class ShortBranchVerifier: public StackObj {
229   private:
230    AbstractAssembler* _assm;
231
232   public:
233    ShortBranchVerifier(AbstractAssembler* assm) : _assm(assm) {
234      assert(assm->short_branch_delta() == 0, "overlapping instructions");
235      _assm->set_short_branch_delta();
236    }
237    ~ShortBranchVerifier() {
238      _assm->clear_short_branch_delta();
239    }
240  };
241#else
242  // Dummy in product.
243  class ShortBranchVerifier: public StackObj {
244   public:
245    ShortBranchVerifier(AbstractAssembler* assm) {}
246  };
247#endif
248
249 public:
250
251  // Creation
252  AbstractAssembler(CodeBuffer* code);
253
254  // ensure buf contains all code (call this before using/copying the code)
255  void flush();
256
257  void emit_int8(   int8_t  x) { code_section()->emit_int8(   x); }
258  void emit_int16(  int16_t x) { code_section()->emit_int16(  x); }
259  void emit_int32(  int32_t x) { code_section()->emit_int32(  x); }
260  void emit_int64(  int64_t x) { code_section()->emit_int64(  x); }
261
262  void emit_float(  jfloat  x) { code_section()->emit_float(  x); }
263  void emit_double( jdouble x) { code_section()->emit_double( x); }
264  void emit_address(address x) { code_section()->emit_address(x); }
265
266  // min and max values for signed immediate ranges
267  static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1))    ; }
268  static int max_simm(int nbits) { return  (intptr_t(1) << (nbits - 1)) - 1; }
269
270  // Define some:
271  static int min_simm10() { return min_simm(10); }
272  static int min_simm13() { return min_simm(13); }
273  static int min_simm16() { return min_simm(16); }
274
275  // Test if x is within signed immediate range for nbits
276  static bool is_simm(intptr_t x, int nbits) { return min_simm(nbits) <= x && x <= max_simm(nbits); }
277
278  // Define some:
279  static bool is_simm5( intptr_t x) { return is_simm(x, 5 ); }
280  static bool is_simm8( intptr_t x) { return is_simm(x, 8 ); }
281  static bool is_simm10(intptr_t x) { return is_simm(x, 10); }
282  static bool is_simm11(intptr_t x) { return is_simm(x, 11); }
283  static bool is_simm12(intptr_t x) { return is_simm(x, 12); }
284  static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
285  static bool is_simm16(intptr_t x) { return is_simm(x, 16); }
286  static bool is_simm26(intptr_t x) { return is_simm(x, 26); }
287  static bool is_simm32(intptr_t x) { return is_simm(x, 32); }
288
289  // Accessors
290  CodeSection*  code_section() const   { return _code_section; }
291  CodeBuffer*   code()         const   { return code_section()->outer(); }
292  int           sect()         const   { return code_section()->index(); }
293  address       pc()           const   { return code_section()->end();   }
294  int           offset()       const   { return code_section()->size();  }
295  int           locator()      const   { return CodeBuffer::locator(offset(), sect()); }
296
297  OopRecorder*  oop_recorder() const   { return _oop_recorder; }
298  void      set_oop_recorder(OopRecorder* r) { _oop_recorder = r; }
299
300  address       inst_mark() const { return code_section()->mark();       }
301  void      set_inst_mark()       {        code_section()->set_mark();   }
302  void    clear_inst_mark()       {        code_section()->clear_mark(); }
303
304  // Constants in code
305  void relocate(RelocationHolder const& rspec, int format = 0) {
306    assert(!pd_check_instruction_mark()
307        || inst_mark() == NULL || inst_mark() == code_section()->end(),
308        "call relocate() between instructions");
309    code_section()->relocate(code_section()->end(), rspec, format);
310  }
311  void relocate(   relocInfo::relocType rtype, int format = 0) {
312    code_section()->relocate(code_section()->end(), rtype, format);
313  }
314
315  static int code_fill_byte();         // used to pad out odd-sized code buffers
316
317  // Associate a comment with the current offset.  It will be printed
318  // along with the disassembly when printing nmethods.  Currently
319  // only supported in the instruction section of the code buffer.
320  void block_comment(const char* comment);
321  // Copy str to a buffer that has the same lifetime as the CodeBuffer
322  const char* code_string(const char* str);
323
324  // Label functions
325  void bind(Label& L); // binds an unbound label L to the current code position
326
327  // Move to a different section in the same code buffer.
328  void set_code_section(CodeSection* cs);
329
330  // Inform assembler when generating stub code and relocation info
331  address    start_a_stub(int required_space);
332  void       end_a_stub();
333  // Ditto for constants.
334  address    start_a_const(int required_space, int required_align = sizeof(double));
335  void       end_a_const(CodeSection* cs);  // Pass the codesection to continue in (insts or stubs?).
336
337  // constants support
338  //
339  // We must remember the code section (insts or stubs) in c1
340  // so we can reset to the proper section in end_a_const().
341  address long_constant(jlong c) {
342    CodeSection* c1 = _code_section;
343    address ptr = start_a_const(sizeof(c), sizeof(c));
344    if (ptr != NULL) {
345      emit_int64(c);
346      end_a_const(c1);
347    }
348    return ptr;
349  }
350  address double_constant(jdouble c) {
351    CodeSection* c1 = _code_section;
352    address ptr = start_a_const(sizeof(c), sizeof(c));
353    if (ptr != NULL) {
354      emit_double(c);
355      end_a_const(c1);
356    }
357    return ptr;
358  }
359  address float_constant(jfloat c) {
360    CodeSection* c1 = _code_section;
361    address ptr = start_a_const(sizeof(c), sizeof(c));
362    if (ptr != NULL) {
363      emit_float(c);
364      end_a_const(c1);
365    }
366    return ptr;
367  }
368  address address_constant(address c) {
369    CodeSection* c1 = _code_section;
370    address ptr = start_a_const(sizeof(c), sizeof(c));
371    if (ptr != NULL) {
372      emit_address(c);
373      end_a_const(c1);
374    }
375    return ptr;
376  }
377  address address_constant(address c, RelocationHolder const& rspec) {
378    CodeSection* c1 = _code_section;
379    address ptr = start_a_const(sizeof(c), sizeof(c));
380    if (ptr != NULL) {
381      relocate(rspec);
382      emit_address(c);
383      end_a_const(c1);
384    }
385    return ptr;
386  }
387
388  // Bootstrapping aid to cope with delayed determination of constants.
389  // Returns a static address which will eventually contain the constant.
390  // The value zero (NULL) stands instead of a constant which is still uncomputed.
391  // Thus, the eventual value of the constant must not be zero.
392  // This is fine, since this is designed for embedding object field
393  // offsets in code which must be generated before the object class is loaded.
394  // Field offsets are never zero, since an object's header (mark word)
395  // is located at offset zero.
396  RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0);
397  RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0);
398  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0;
399  // Last overloading is platform-dependent; look in assembler_<arch>.cpp.
400  static intptr_t* delayed_value_addr(int(*constant_fn)());
401  static intptr_t* delayed_value_addr(address(*constant_fn)());
402  static void update_delayed_values();
403
404  // Bang stack to trigger StackOverflowError at a safe location
405  // implementation delegates to machine-specific bang_stack_with_offset
406  void generate_stack_overflow_check( int frame_size_in_bytes );
407  virtual void bang_stack_with_offset(int offset) = 0;
408
409
410  /**
411   * A platform-dependent method to patch a jump instruction that refers
412   * to this label.
413   *
414   * @param branch the location of the instruction to patch
415   * @param masm the assembler which generated the branch
416   */
417  void pd_patch_instruction(address branch, address target);
418
419};
420
421#ifdef TARGET_ARCH_x86
422# include "assembler_x86.hpp"
423#endif
424#ifdef TARGET_ARCH_sparc
425# include "assembler_sparc.hpp"
426#endif
427#ifdef TARGET_ARCH_zero
428# include "assembler_zero.hpp"
429#endif
430#ifdef TARGET_ARCH_arm
431# include "assembler_arm.hpp"
432#endif
433#ifdef TARGET_ARCH_ppc
434# include "assembler_ppc.hpp"
435#endif
436#ifdef TARGET_ARCH_aarch64
437# include "assembler_aarch64.hpp"
438#endif
439
440
441#endif // SHARE_VM_ASM_ASSEMBLER_HPP
442