assembler.hpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_ASM_ASSEMBLER_HPP
26#define SHARE_VM_ASM_ASSEMBLER_HPP
27
28#include "asm/codeBuffer.hpp"
29#include "code/oopRecorder.hpp"
30#include "code/relocInfo.hpp"
31#include "memory/allocation.hpp"
32#include "utilities/debug.hpp"
33#include "utilities/growableArray.hpp"
34#include "utilities/top.hpp"
35
36#ifdef TARGET_ARCH_x86
37# include "register_x86.hpp"
38# include "vm_version_x86.hpp"
39#endif
40#ifdef TARGET_ARCH_sparc
41# include "register_sparc.hpp"
42# include "vm_version_sparc.hpp"
43#endif
44#ifdef TARGET_ARCH_zero
45# include "register_zero.hpp"
46# include "vm_version_zero.hpp"
47#endif
48#ifdef TARGET_ARCH_arm
49# include "register_arm.hpp"
50# include "vm_version_arm.hpp"
51#endif
52#ifdef TARGET_ARCH_ppc
53# include "register_ppc.hpp"
54# include "vm_version_ppc.hpp"
55#endif
56
57// This file contains platform-independent assembler declarations.
58
59class MacroAssembler;
60class AbstractAssembler;
61class Label;
62
63/**
64 * Labels represent destinations for control transfer instructions.  Such
65 * instructions can accept a Label as their target argument.  A Label is
66 * bound to the current location in the code stream by calling the
67 * MacroAssembler's 'bind' method, which in turn calls the Label's 'bind'
68 * method.  A Label may be referenced by an instruction before it's bound
69 * (i.e., 'forward referenced').  'bind' stores the current code offset
70 * in the Label object.
71 *
72 * If an instruction references a bound Label, the offset field(s) within
73 * the instruction are immediately filled in based on the Label's code
74 * offset.  If an instruction references an unbound label, that
75 * instruction is put on a list of instructions that must be patched
76 * (i.e., 'resolved') when the Label is bound.
77 *
78 * 'bind' will call the platform-specific 'patch_instruction' method to
79 * fill in the offset field(s) for each unresolved instruction (if there
80 * are any).  'patch_instruction' lives in one of the
81 * cpu/<arch>/vm/assembler_<arch>* files.
82 *
83 * Instead of using a linked list of unresolved instructions, a Label has
84 * an array of unresolved instruction code offsets.  _patch_index
85 * contains the total number of forward references.  If the Label's array
86 * overflows (i.e., _patch_index grows larger than the array size), a
87 * GrowableArray is allocated to hold the remaining offsets.  (The cache
88 * size is 4 for now, which handles over 99.5% of the cases)
89 *
90 * Labels may only be used within a single CodeSection.  If you need
91 * to create references between code sections, use explicit relocations.
92 */
93class Label VALUE_OBJ_CLASS_SPEC {
94 private:
95  enum { PatchCacheSize = 4 };
96
97  // _loc encodes both the binding state (via its sign)
98  // and the binding locator (via its value) of a label.
99  //
100  // _loc >= 0   bound label, loc() encodes the target (jump) position
101  // _loc == -1  unbound label
102  int _loc;
103
104  // References to instructions that jump to this unresolved label.
105  // These instructions need to be patched when the label is bound
106  // using the platform-specific patchInstruction() method.
107  //
108  // To avoid having to allocate from the C-heap each time, we provide
109  // a local cache and use the overflow only if we exceed the local cache
110  int _patches[PatchCacheSize];
111  int _patch_index;
112  GrowableArray<int>* _patch_overflow;
113
114  Label(const Label&) { ShouldNotReachHere(); }
115
116 public:
117
118  /**
119   * After binding, be sure 'patch_instructions' is called later to link
120   */
121  void bind_loc(int loc) {
122    assert(loc >= 0, "illegal locator");
123    assert(_loc == -1, "already bound");
124    _loc = loc;
125  }
126  void bind_loc(int pos, int sect) { bind_loc(CodeBuffer::locator(pos, sect)); }
127
128#ifndef PRODUCT
129  // Iterates over all unresolved instructions for printing
130  void print_instructions(MacroAssembler* masm) const;
131#endif // PRODUCT
132
133  /**
134   * Returns the position of the the Label in the code buffer
135   * The position is a 'locator', which encodes both offset and section.
136   */
137  int loc() const {
138    assert(_loc >= 0, "unbound label");
139    return _loc;
140  }
141  int loc_pos()  const { return CodeBuffer::locator_pos(loc()); }
142  int loc_sect() const { return CodeBuffer::locator_sect(loc()); }
143
144  bool is_bound() const    { return _loc >=  0; }
145  bool is_unbound() const  { return _loc == -1 && _patch_index > 0; }
146  bool is_unused() const   { return _loc == -1 && _patch_index == 0; }
147
148  /**
149   * Adds a reference to an unresolved displacement instruction to
150   * this unbound label
151   *
152   * @param cb         the code buffer being patched
153   * @param branch_loc the locator of the branch instruction in the code buffer
154   */
155  void add_patch_at(CodeBuffer* cb, int branch_loc);
156
157  /**
158   * Iterate over the list of patches, resolving the instructions
159   * Call patch_instruction on each 'branch_loc' value
160   */
161  void patch_instructions(MacroAssembler* masm);
162
163  void init() {
164    _loc = -1;
165    _patch_index = 0;
166    _patch_overflow = NULL;
167  }
168
169  Label() {
170    init();
171  }
172};
173
174// A union type for code which has to assemble both constant and
175// non-constant operands, when the distinction cannot be made
176// statically.
177class RegisterOrConstant VALUE_OBJ_CLASS_SPEC {
178 private:
179  Register _r;
180  intptr_t _c;
181
182 public:
183  RegisterOrConstant(): _r(noreg), _c(0) {}
184  RegisterOrConstant(Register r): _r(r), _c(0) {}
185  RegisterOrConstant(intptr_t c): _r(noreg), _c(c) {}
186
187  Register as_register() const { assert(is_register(),""); return _r; }
188  intptr_t as_constant() const { assert(is_constant(),""); return _c; }
189
190  Register register_or_noreg() const { return _r; }
191  intptr_t constant_or_zero() const  { return _c; }
192
193  bool is_register() const { return _r != noreg; }
194  bool is_constant() const { return _r == noreg; }
195};
196
197// The Abstract Assembler: Pure assembler doing NO optimizations on the
198// instruction level; i.e., what you write is what you get.
199// The Assembler is generating code into a CodeBuffer.
200class AbstractAssembler : public ResourceObj  {
201  friend class Label;
202
203 protected:
204  CodeSection* _code_section;          // section within the code buffer
205  OopRecorder* _oop_recorder;          // support for relocInfo::oop_type
206
207  // Code emission & accessing
208  address addr_at(int pos) const { return code_section()->start() + pos; }
209
210
211  // This routine is called with a label is used for an address.
212  // Labels and displacements truck in offsets, but target must return a PC.
213  address target(Label& L)             { return code_section()->target(L, pc()); }
214
215  bool is8bit(int x) const             { return -0x80 <= x && x < 0x80; }
216  bool isByte(int x) const             { return 0 <= x && x < 0x100; }
217  bool isShiftCount(int x) const       { return 0 <= x && x < 32; }
218
219  // Instruction boundaries (required when emitting relocatable values).
220  class InstructionMark: public StackObj {
221   private:
222    AbstractAssembler* _assm;
223
224   public:
225    InstructionMark(AbstractAssembler* assm) : _assm(assm) {
226      assert(assm->inst_mark() == NULL, "overlapping instructions");
227      _assm->set_inst_mark();
228    }
229    ~InstructionMark() {
230      _assm->clear_inst_mark();
231    }
232  };
233  friend class InstructionMark;
234#ifdef ASSERT
235  // Make it return true on platforms which need to verify
236  // instruction boundaries for some operations.
237  static bool pd_check_instruction_mark();
238
239  // Add delta to short branch distance to verify that it still fit into imm8.
240  int _short_branch_delta;
241
242  int  short_branch_delta() const { return _short_branch_delta; }
243  void set_short_branch_delta()   { _short_branch_delta = 32; }
244  void clear_short_branch_delta() { _short_branch_delta = 0; }
245
246  class ShortBranchVerifier: public StackObj {
247   private:
248    AbstractAssembler* _assm;
249
250   public:
251    ShortBranchVerifier(AbstractAssembler* assm) : _assm(assm) {
252      assert(assm->short_branch_delta() == 0, "overlapping instructions");
253      _assm->set_short_branch_delta();
254    }
255    ~ShortBranchVerifier() {
256      _assm->clear_short_branch_delta();
257    }
258  };
259#else
260  // Dummy in product.
261  class ShortBranchVerifier: public StackObj {
262   public:
263    ShortBranchVerifier(AbstractAssembler* assm) {}
264  };
265#endif
266
267 public:
268
269  // Creation
270  AbstractAssembler(CodeBuffer* code);
271
272  // ensure buf contains all code (call this before using/copying the code)
273  void flush();
274
275  void emit_int8(   int8_t  x) { code_section()->emit_int8(   x); }
276  void emit_int16(  int16_t x) { code_section()->emit_int16(  x); }
277  void emit_int32(  int32_t x) { code_section()->emit_int32(  x); }
278  void emit_int64(  int64_t x) { code_section()->emit_int64(  x); }
279
280  void emit_float(  jfloat  x) { code_section()->emit_float(  x); }
281  void emit_double( jdouble x) { code_section()->emit_double( x); }
282  void emit_address(address x) { code_section()->emit_address(x); }
283
284  // min and max values for signed immediate ranges
285  static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1))    ; }
286  static int max_simm(int nbits) { return  (intptr_t(1) << (nbits - 1)) - 1; }
287
288  // Define some:
289  static int min_simm10() { return min_simm(10); }
290  static int min_simm13() { return min_simm(13); }
291  static int min_simm16() { return min_simm(16); }
292
293  // Test if x is within signed immediate range for nbits
294  static bool is_simm(intptr_t x, int nbits) { return min_simm(nbits) <= x && x <= max_simm(nbits); }
295
296  // Define some:
297  static bool is_simm5( intptr_t x) { return is_simm(x, 5 ); }
298  static bool is_simm8( intptr_t x) { return is_simm(x, 8 ); }
299  static bool is_simm10(intptr_t x) { return is_simm(x, 10); }
300  static bool is_simm11(intptr_t x) { return is_simm(x, 11); }
301  static bool is_simm12(intptr_t x) { return is_simm(x, 12); }
302  static bool is_simm13(intptr_t x) { return is_simm(x, 13); }
303  static bool is_simm16(intptr_t x) { return is_simm(x, 16); }
304  static bool is_simm26(intptr_t x) { return is_simm(x, 26); }
305  static bool is_simm32(intptr_t x) { return is_simm(x, 32); }
306
307  // Accessors
308  CodeSection*  code_section() const   { return _code_section; }
309  CodeBuffer*   code()         const   { return code_section()->outer(); }
310  int           sect()         const   { return code_section()->index(); }
311  address       pc()           const   { return code_section()->end();   }
312  int           offset()       const   { return code_section()->size();  }
313  int           locator()      const   { return CodeBuffer::locator(offset(), sect()); }
314
315  OopRecorder*  oop_recorder() const   { return _oop_recorder; }
316  void      set_oop_recorder(OopRecorder* r) { _oop_recorder = r; }
317
318  address       inst_mark() const { return code_section()->mark();       }
319  void      set_inst_mark()       {        code_section()->set_mark();   }
320  void    clear_inst_mark()       {        code_section()->clear_mark(); }
321
322  // Constants in code
323  void relocate(RelocationHolder const& rspec, int format = 0) {
324    assert(!pd_check_instruction_mark()
325        || inst_mark() == NULL || inst_mark() == code_section()->end(),
326        "call relocate() between instructions");
327    code_section()->relocate(code_section()->end(), rspec, format);
328  }
329  void relocate(   relocInfo::relocType rtype, int format = 0) {
330    code_section()->relocate(code_section()->end(), rtype, format);
331  }
332
333  static int code_fill_byte();         // used to pad out odd-sized code buffers
334
335  // Associate a comment with the current offset.  It will be printed
336  // along with the disassembly when printing nmethods.  Currently
337  // only supported in the instruction section of the code buffer.
338  void block_comment(const char* comment);
339  // Copy str to a buffer that has the same lifetime as the CodeBuffer
340  const char* code_string(const char* str);
341
342  // Label functions
343  void bind(Label& L); // binds an unbound label L to the current code position
344
345  // Move to a different section in the same code buffer.
346  void set_code_section(CodeSection* cs);
347
348  // Inform assembler when generating stub code and relocation info
349  address    start_a_stub(int required_space);
350  void       end_a_stub();
351  // Ditto for constants.
352  address    start_a_const(int required_space, int required_align = sizeof(double));
353  void       end_a_const(CodeSection* cs);  // Pass the codesection to continue in (insts or stubs?).
354
355  // constants support
356  //
357  // We must remember the code section (insts or stubs) in c1
358  // so we can reset to the proper section in end_a_const().
359  address long_constant(jlong c) {
360    CodeSection* c1 = _code_section;
361    address ptr = start_a_const(sizeof(c), sizeof(c));
362    if (ptr != NULL) {
363      emit_int64(c);
364      end_a_const(c1);
365    }
366    return ptr;
367  }
368  address double_constant(jdouble c) {
369    CodeSection* c1 = _code_section;
370    address ptr = start_a_const(sizeof(c), sizeof(c));
371    if (ptr != NULL) {
372      emit_double(c);
373      end_a_const(c1);
374    }
375    return ptr;
376  }
377  address float_constant(jfloat c) {
378    CodeSection* c1 = _code_section;
379    address ptr = start_a_const(sizeof(c), sizeof(c));
380    if (ptr != NULL) {
381      emit_float(c);
382      end_a_const(c1);
383    }
384    return ptr;
385  }
386  address address_constant(address c) {
387    CodeSection* c1 = _code_section;
388    address ptr = start_a_const(sizeof(c), sizeof(c));
389    if (ptr != NULL) {
390      emit_address(c);
391      end_a_const(c1);
392    }
393    return ptr;
394  }
395  address address_constant(address c, RelocationHolder const& rspec) {
396    CodeSection* c1 = _code_section;
397    address ptr = start_a_const(sizeof(c), sizeof(c));
398    if (ptr != NULL) {
399      relocate(rspec);
400      emit_address(c);
401      end_a_const(c1);
402    }
403    return ptr;
404  }
405
406  // Bootstrapping aid to cope with delayed determination of constants.
407  // Returns a static address which will eventually contain the constant.
408  // The value zero (NULL) stands instead of a constant which is still uncomputed.
409  // Thus, the eventual value of the constant must not be zero.
410  // This is fine, since this is designed for embedding object field
411  // offsets in code which must be generated before the object class is loaded.
412  // Field offsets are never zero, since an object's header (mark word)
413  // is located at offset zero.
414  RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0);
415  RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0);
416  virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0;
417  // Last overloading is platform-dependent; look in assembler_<arch>.cpp.
418  static intptr_t* delayed_value_addr(int(*constant_fn)());
419  static intptr_t* delayed_value_addr(address(*constant_fn)());
420  static void update_delayed_values();
421
422  // Bang stack to trigger StackOverflowError at a safe location
423  // implementation delegates to machine-specific bang_stack_with_offset
424  void generate_stack_overflow_check( int frame_size_in_bytes );
425  virtual void bang_stack_with_offset(int offset) = 0;
426
427
428  /**
429   * A platform-dependent method to patch a jump instruction that refers
430   * to this label.
431   *
432   * @param branch the location of the instruction to patch
433   * @param masm the assembler which generated the branch
434   */
435  void pd_patch_instruction(address branch, address target);
436
437};
438
439#ifdef TARGET_ARCH_x86
440# include "assembler_x86.hpp"
441#endif
442#ifdef TARGET_ARCH_sparc
443# include "assembler_sparc.hpp"
444#endif
445#ifdef TARGET_ARCH_zero
446# include "assembler_zero.hpp"
447#endif
448#ifdef TARGET_ARCH_arm
449# include "assembler_arm.hpp"
450#endif
451#ifdef TARGET_ARCH_ppc
452# include "assembler_ppc.hpp"
453#endif
454
455
456#endif // SHARE_VM_ASM_ASSEMBLER_HPP
457