output_h.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// output_h.cpp - Class HPP file output routines for architecture definition
26#include "adlc.hpp"
27
28
29// Generate the #define that describes the number of registers.
30static void defineRegCount(FILE *fp, RegisterForm *registers) {
31  if (registers) {
32    int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
33    fprintf(fp,"\n");
34    fprintf(fp,"// the number of reserved registers + machine registers.\n");
35    fprintf(fp,"#define REG_COUNT    %d\n", regCount);
36  }
37}
38
39// Output enumeration of machine register numbers
40// (1)
41// // Enumerate machine registers starting after reserved regs.
42// // in the order of occurrence in the register block.
43// enum MachRegisterNumbers {
44//   EAX_num = 0,
45//   ...
46//   _last_Mach_Reg
47// }
48void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
49  if (_register) {
50    RegDef *reg_def = NULL;
51
52    // Output a #define for the number of machine registers
53    defineRegCount(fp_hpp, _register);
54
55    // Count all the Save_On_Entry and Always_Save registers
56    int    saved_on_entry = 0;
57    int  c_saved_on_entry = 0;
58    _register->reset_RegDefs();
59    while( (reg_def = _register->iter_RegDefs()) != NULL ) {
60      if( strcmp(reg_def->_callconv,"SOE") == 0 ||
61          strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
62      if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
63          strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
64    }
65    fprintf(fp_hpp, "\n");
66    fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
67    fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
68    fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
69    fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
70
71    // (1)
72    // Build definition for enumeration of register numbers
73    fprintf(fp_hpp, "\n");
74    fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
75    fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
76    fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
77
78    // Output the register number for each register in the allocation classes
79    _register->reset_RegDefs();
80    int i = 0;
81    while( (reg_def = _register->iter_RegDefs()) != NULL ) {
82      fprintf(fp_hpp,"  %s_num,\t\t// %d\n", reg_def->_regname, i++);
83    }
84    // Finish defining enumeration
85    fprintf(fp_hpp, "  _last_Mach_Reg\t// %d\n", i);
86    fprintf(fp_hpp, "};\n");
87  }
88
89  fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
90  fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
91  fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
92  fprintf(fp_hpp, "#define FORALL_BODY ");
93  int len = RegisterForm::RegMask_Size();
94  for( int i = 0; i < len; i++ )
95    fprintf(fp_hpp, "BODY(%d) ",i);
96  fprintf(fp_hpp, "\n\n");
97
98  fprintf(fp_hpp,"class RegMask;\n");
99  // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
100  // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
101}
102
103
104// Output enumeration of machine register encodings
105// (2)
106// // Enumerate machine registers starting after reserved regs.
107// // in the order of occurrence in the alloc_class(es).
108// enum MachRegisterEncodes {
109//   EAX_enc = 0x00,
110//   ...
111// }
112void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
113  if (_register) {
114    RegDef *reg_def = NULL;
115    RegDef *reg_def_next = NULL;
116
117    // (2)
118    // Build definition for enumeration of encode values
119    fprintf(fp_hpp, "\n");
120    fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
121    fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
122    fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
123
124    // Output the register encoding for each register in the allocation classes
125    _register->reset_RegDefs();
126    reg_def_next = _register->iter_RegDefs();
127    while( (reg_def = reg_def_next) != NULL ) {
128      reg_def_next = _register->iter_RegDefs();
129      fprintf(fp_hpp,"  %s_enc = %s%s\n",
130              reg_def->_regname, reg_def->register_encode(), reg_def_next == NULL? "" : "," );
131    }
132    // Finish defining enumeration
133    fprintf(fp_hpp, "};\n");
134
135  } // Done with register form
136}
137
138
139// Declare an array containing the machine register names, strings.
140static void declareRegNames(FILE *fp, RegisterForm *registers) {
141  if (registers) {
142//    fprintf(fp,"\n");
143//    fprintf(fp,"// An array of character pointers to machine register names.\n");
144//    fprintf(fp,"extern const char *regName[];\n");
145  }
146}
147
148// Declare an array containing the machine register sizes in 32-bit words.
149void ArchDesc::declareRegSizes(FILE *fp) {
150// regSize[] is not used
151}
152
153// Declare an array containing the machine register encoding values
154static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
155  if (registers) {
156    // // //
157    // fprintf(fp,"\n");
158    // fprintf(fp,"// An array containing the machine register encode values\n");
159    // fprintf(fp,"extern const char  regEncode[];\n");
160  }
161}
162
163
164// ---------------------------------------------------------------------------
165//------------------------------Utilities to build Instruction Classes--------
166// ---------------------------------------------------------------------------
167static void out_RegMask(FILE *fp) {
168  fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
169}
170
171// ---------------------------------------------------------------------------
172//--------Utilities to build MachOper and MachNode derived Classes------------
173// ---------------------------------------------------------------------------
174
175//------------------------------Utilities to build Operand Classes------------
176static void in_RegMask(FILE *fp) {
177  fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
178}
179
180static void declare_hash(FILE *fp) {
181  fprintf(fp,"  virtual uint           hash() const;\n");
182}
183
184static void declare_cmp(FILE *fp) {
185  fprintf(fp,"  virtual uint           cmp( const MachOper &oper ) const;\n");
186}
187
188static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
189  int i = 0;
190  Component *comp;
191
192  if (oper->num_consts(globals) == 0) return;
193  // Iterate over the component list looking for constants
194  oper->_components.reset();
195  if ((comp = oper->_components.iter()) == NULL) {
196    assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
197    const char *type = oper->ideal_type(globals);
198    if (!strcmp(type, "ConI")) {
199      if (i > 0) fprintf(fp,", ");
200      fprintf(fp,"  int32          _c%d;\n", i);
201    }
202    else if (!strcmp(type, "ConP")) {
203      if (i > 0) fprintf(fp,", ");
204      fprintf(fp,"  const TypePtr *_c%d;\n", i);
205    }
206    else if (!strcmp(type, "ConN")) {
207      if (i > 0) fprintf(fp,", ");
208      fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
209    }
210    else if (!strcmp(type, "ConL")) {
211      if (i > 0) fprintf(fp,", ");
212      fprintf(fp,"  jlong          _c%d;\n", i);
213    }
214    else if (!strcmp(type, "ConF")) {
215      if (i > 0) fprintf(fp,", ");
216      fprintf(fp,"  jfloat         _c%d;\n", i);
217    }
218    else if (!strcmp(type, "ConD")) {
219      if (i > 0) fprintf(fp,", ");
220      fprintf(fp,"  jdouble        _c%d;\n", i);
221    }
222    else if (!strcmp(type, "Bool")) {
223      fprintf(fp,"private:\n");
224      fprintf(fp,"  BoolTest::mask _c%d;\n", i);
225      fprintf(fp,"public:\n");
226    }
227    else {
228      assert(0, "Non-constant operand lacks component list.");
229    }
230  } // end if NULL
231  else {
232    oper->_components.reset();
233    while ((comp = oper->_components.iter()) != NULL) {
234      if (!strcmp(comp->base_type(globals), "ConI")) {
235        fprintf(fp,"  jint             _c%d;\n", i);
236        i++;
237      }
238      else if (!strcmp(comp->base_type(globals), "ConP")) {
239        fprintf(fp,"  const TypePtr *_c%d;\n", i);
240        i++;
241      }
242      else if (!strcmp(comp->base_type(globals), "ConN")) {
243        fprintf(fp,"  const TypePtr *_c%d;\n", i);
244        i++;
245      }
246      else if (!strcmp(comp->base_type(globals), "ConL")) {
247        fprintf(fp,"  jlong            _c%d;\n", i);
248        i++;
249      }
250      else if (!strcmp(comp->base_type(globals), "ConF")) {
251        fprintf(fp,"  jfloat           _c%d;\n", i);
252        i++;
253      }
254      else if (!strcmp(comp->base_type(globals), "ConD")) {
255        fprintf(fp,"  jdouble          _c%d;\n", i);
256        i++;
257      }
258    }
259  }
260}
261
262// Declare constructor.
263// Parameters start with condition code, then all other constants
264//
265// (0) public:
266// (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
267// (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
268//
269static void defineConstructor(FILE *fp, const char *name, uint num_consts,
270                              ComponentList &lst, bool is_ideal_bool,
271                              Form::DataType constant_type, FormDict &globals) {
272  fprintf(fp,"public:\n");
273  // generate line (1)
274  fprintf(fp,"  %sOper(", name);
275  if( num_consts == 0 ) {
276    fprintf(fp,") {}\n");
277    return;
278  }
279
280  // generate parameters for constants
281  uint i = 0;
282  Component *comp;
283  lst.reset();
284  if ((comp = lst.iter()) == NULL) {
285    assert(num_consts == 1, "Bad component list detected.\n");
286    switch( constant_type ) {
287    case Form::idealI : {
288      fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
289      break;
290    }
291    case Form::idealN : { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
292    case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
293    case Form::idealL : { fprintf(fp,"jlong c%d", i);   break;        }
294    case Form::idealF : { fprintf(fp,"jfloat c%d", i);  break;        }
295    case Form::idealD : { fprintf(fp,"jdouble c%d", i); break;        }
296    default:
297      assert(!is_ideal_bool, "Non-constant operand lacks component list.");
298      break;
299    }
300  } // end if NULL
301  else {
302    lst.reset();
303    while((comp = lst.iter()) != NULL) {
304      if (!strcmp(comp->base_type(globals), "ConI")) {
305        if (i > 0) fprintf(fp,", ");
306        fprintf(fp,"int32 c%d", i);
307        i++;
308      }
309      else if (!strcmp(comp->base_type(globals), "ConP")) {
310        if (i > 0) fprintf(fp,", ");
311        fprintf(fp,"const TypePtr *c%d", i);
312        i++;
313      }
314      else if (!strcmp(comp->base_type(globals), "ConN")) {
315        if (i > 0) fprintf(fp,", ");
316        fprintf(fp,"const TypePtr *c%d", i);
317        i++;
318      }
319      else if (!strcmp(comp->base_type(globals), "ConL")) {
320        if (i > 0) fprintf(fp,", ");
321        fprintf(fp,"jlong c%d", i);
322        i++;
323      }
324      else if (!strcmp(comp->base_type(globals), "ConF")) {
325        if (i > 0) fprintf(fp,", ");
326        fprintf(fp,"jfloat c%d", i);
327        i++;
328      }
329      else if (!strcmp(comp->base_type(globals), "ConD")) {
330        if (i > 0) fprintf(fp,", ");
331        fprintf(fp,"jdouble c%d", i);
332        i++;
333      }
334      else if (!strcmp(comp->base_type(globals), "Bool")) {
335        if (i > 0) fprintf(fp,", ");
336        fprintf(fp,"BoolTest::mask c%d", i);
337        i++;
338      }
339    }
340  }
341  // finish line (1) and start line (2)
342  fprintf(fp,")  : ");
343  // generate initializers for constants
344  i = 0;
345  fprintf(fp,"_c%d(c%d)", i, i);
346  for( i = 1; i < num_consts; ++i) {
347    fprintf(fp,", _c%d(c%d)", i, i);
348  }
349  // The body for the constructor is empty
350  fprintf(fp," {}\n");
351}
352
353// ---------------------------------------------------------------------------
354// Utilities to generate format rules for machine operands and instructions
355// ---------------------------------------------------------------------------
356
357// Generate the format rule for condition codes
358static void defineCCodeDump(FILE *fp, int i) {
359  fprintf(fp, "         if( _c%d == BoolTest::eq ) st->print(\"eq\");\n",i);
360  fprintf(fp, "    else if( _c%d == BoolTest::ne ) st->print(\"ne\");\n",i);
361  fprintf(fp, "    else if( _c%d == BoolTest::le ) st->print(\"le\");\n",i);
362  fprintf(fp, "    else if( _c%d == BoolTest::ge ) st->print(\"ge\");\n",i);
363  fprintf(fp, "    else if( _c%d == BoolTest::lt ) st->print(\"lt\");\n",i);
364  fprintf(fp, "    else if( _c%d == BoolTest::gt ) st->print(\"gt\");\n",i);
365}
366
367// Output code that dumps constant values, increment "i" if type is constant
368static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i) {
369  if (!strcmp(ideal_type, "ConI")) {
370    fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
371    ++i;
372  }
373  else if (!strcmp(ideal_type, "ConP")) {
374    fprintf(fp,"    _c%d->dump_on(st);\n", i);
375    ++i;
376  }
377  else if (!strcmp(ideal_type, "ConN")) {
378    fprintf(fp,"    _c%d->dump();\n", i);
379    ++i;
380  }
381  else if (!strcmp(ideal_type, "ConL")) {
382    fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
383    ++i;
384  }
385  else if (!strcmp(ideal_type, "ConF")) {
386    fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
387    ++i;
388  }
389  else if (!strcmp(ideal_type, "ConD")) {
390    fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
391    ++i;
392  }
393  else if (!strcmp(ideal_type, "Bool")) {
394    defineCCodeDump(fp,i);
395    ++i;
396  }
397
398  return i;
399}
400
401// Generate the format rule for an operand
402void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
403  if (!for_c_file) {
404    // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
405    // compile the bodies separately, to cut down on recompilations
406    fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
407    fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
408    return;
409  }
410
411  // Local pointer indicates remaining part of format rule
412  uint  idx = 0;                   // position of operand in match rule
413
414  // Generate internal format function, used when stored locally
415  fprintf(fp, "\n#ifndef PRODUCT\n");
416  fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
417  // Generate the user-defined portion of the format
418  if (oper._format) {
419    if ( oper._format->_strings.count() != 0 ) {
420      // No initialization code for int_format
421
422      // Build the format from the entries in strings and rep_vars
423      const char  *string  = NULL;
424      oper._format->_rep_vars.reset();
425      oper._format->_strings.reset();
426      while ( (string = oper._format->_strings.iter()) != NULL ) {
427        fprintf(fp,"  ");
428
429        // Check if this is a standard string or a replacement variable
430        if ( string != NameList::_signal ) {
431          // Normal string
432          // Pass through to st->print
433          fprintf(fp,"st->print(\"%s\");\n", string);
434        } else {
435          // Replacement variable
436          const char *rep_var = oper._format->_rep_vars.iter();
437          // Check that it is a local name, and an operand
438          const Form* form = oper._localNames[rep_var];
439          if (form == NULL) {
440            globalAD->syntax_err(oper._linenum,
441                                 "\'%s\' not found in format for %s\n", rep_var, oper._ident);
442            assert(form, "replacement variable was not found in local names");
443          }
444          OperandForm *op      = form->is_operand();
445          // Get index if register or constant
446          if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
447            idx  = oper.register_position( globals, rep_var);
448          }
449          else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
450            idx  = oper.constant_position( globals, rep_var);
451          } else {
452            idx = 0;
453          }
454
455          // output invocation of "$..."s format function
456          if ( op != NULL )   op->int_format(fp, globals, idx);
457
458          if ( idx == -1 ) {
459            fprintf(stderr,
460                    "Using a name, %s, that isn't in match rule\n", rep_var);
461            assert( strcmp(op->_ident,"label")==0, "Unimplemented");
462          }
463        } // Done with a replacement variable
464      } // Done with all format strings
465    } else {
466      // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
467      oper.int_format(fp, globals, 0);
468    }
469
470  } else { // oper._format == NULL
471    // Provide a few special case formats where the AD writer cannot.
472    if ( strcmp(oper._ident,"Universe")==0 ) {
473      fprintf(fp, "  st->print(\"$$univ\");\n");
474    }
475    // labelOper::int_format is defined in ad_<...>.cpp
476  }
477  // ALWAYS! Provide a special case output for condition codes.
478  if( oper.is_ideal_bool() ) {
479    defineCCodeDump(fp,0);
480  }
481  fprintf(fp,"}\n");
482
483  // Generate external format function, when data is stored externally
484  fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
485  // Generate the user-defined portion of the format
486  if (oper._format) {
487    if ( oper._format->_strings.count() != 0 ) {
488
489      // Check for a replacement string "$..."
490      if ( oper._format->_rep_vars.count() != 0 ) {
491        // Initialization code for ext_format
492      }
493
494      // Build the format from the entries in strings and rep_vars
495      const char  *string  = NULL;
496      oper._format->_rep_vars.reset();
497      oper._format->_strings.reset();
498      while ( (string = oper._format->_strings.iter()) != NULL ) {
499        fprintf(fp,"  ");
500
501        // Check if this is a standard string or a replacement variable
502        if ( string != NameList::_signal ) {
503          // Normal string
504          // Pass through to st->print
505          fprintf(fp,"st->print(\"%s\");\n", string);
506        } else {
507          // Replacement variable
508          const char *rep_var = oper._format->_rep_vars.iter();
509         // Check that it is a local name, and an operand
510          const Form* form = oper._localNames[rep_var];
511          if (form == NULL) {
512            globalAD->syntax_err(oper._linenum,
513                                 "\'%s\' not found in format for %s\n", rep_var, oper._ident);
514            assert(form, "replacement variable was not found in local names");
515          }
516          OperandForm *op      = form->is_operand();
517          // Get index if register or constant
518          if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
519            idx  = oper.register_position( globals, rep_var);
520          }
521          else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
522            idx  = oper.constant_position( globals, rep_var);
523          } else {
524            idx = 0;
525          }
526          // output invocation of "$..."s format function
527          if ( op != NULL )   op->ext_format(fp, globals, idx);
528
529          // Lookup the index position of the replacement variable
530          idx      = oper._components.operand_position_format(rep_var);
531          if ( idx == -1 ) {
532            fprintf(stderr,
533                    "Using a name, %s, that isn't in match rule\n", rep_var);
534            assert( strcmp(op->_ident,"label")==0, "Unimplemented");
535          }
536        } // Done with a replacement variable
537      } // Done with all format strings
538
539    } else {
540      // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
541      oper.ext_format(fp, globals, 0);
542    }
543  } else { // oper._format == NULL
544    // Provide a few special case formats where the AD writer cannot.
545    if ( strcmp(oper._ident,"Universe")==0 ) {
546      fprintf(fp, "  st->print(\"$$univ\");\n");
547    }
548    // labelOper::ext_format is defined in ad_<...>.cpp
549  }
550  // ALWAYS! Provide a special case output for condition codes.
551  if( oper.is_ideal_bool() ) {
552    defineCCodeDump(fp,0);
553  }
554  fprintf(fp, "}\n");
555  fprintf(fp, "#endif\n");
556}
557
558
559// Generate the format rule for an instruction
560void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
561  if (!for_c_file) {
562    // compile the bodies separately, to cut down on recompilations
563    // #ifndef PRODUCT region generated by caller
564    fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
565    return;
566  }
567
568  // Define the format function
569  fprintf(fp, "#ifndef PRODUCT\n");
570  fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
571
572  // Generate the user-defined portion of the format
573  if( inst._format ) {
574    // If there are replacement variables,
575    // Generate index values needed for determing the operand position
576    if( inst._format->_rep_vars.count() )
577      inst.index_temps(fp, globals);
578
579    // Build the format from the entries in strings and rep_vars
580    const char  *string  = NULL;
581    inst._format->_rep_vars.reset();
582    inst._format->_strings.reset();
583    while( (string = inst._format->_strings.iter()) != NULL ) {
584      fprintf(fp,"    ");
585      // Check if this is a standard string or a replacement variable
586      if( string != NameList::_signal )  // Normal string.  Pass through.
587        fprintf(fp,"st->print(\"%s\");\n", string);
588      else                      // Replacement variable
589        inst.rep_var_format( fp, inst._format->_rep_vars.iter() );
590    } // Done with all format strings
591  } // Done generating the user-defined portion of the format
592
593  // Add call debug info automatically
594  Form::CallType call_type = inst.is_ideal_call();
595  if( call_type != Form::invalid_type ) {
596    switch( call_type ) {
597    case Form::JAVA_DYNAMIC:
598      fprintf(fp,"    _method->print_short_name();\n");
599      break;
600    case Form::JAVA_STATIC:
601      fprintf(fp,"    if( _method ) _method->print_short_name(st); else st->print(\" wrapper for: %%s\", _name);\n");
602      fprintf(fp,"    if( !_method ) dump_trap_args(st);\n");
603      break;
604    case Form::JAVA_COMPILED:
605    case Form::JAVA_INTERP:
606      break;
607    case Form::JAVA_RUNTIME:
608    case Form::JAVA_LEAF:
609    case Form::JAVA_NATIVE:
610      fprintf(fp,"    st->print(\" %%s\", _name);");
611      break;
612    default:
613      assert(0,"ShouldNotReacHere");
614    }
615    fprintf(fp,  "    st->print_cr(\"\");\n" );
616    fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
617    fprintf(fp,  "    st->print(\"        # \");\n" );
618    fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
619  }
620  else if(inst.is_ideal_safepoint()) {
621    fprintf(fp,  "    st->print(\"\");\n" );
622    fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
623    fprintf(fp,  "    st->print(\"        # \");\n" );
624    fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
625  }
626  else if( inst.is_ideal_if() ) {
627    fprintf(fp,  "    st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
628  }
629  else if( inst.is_ideal_mem() ) {
630    // Print out the field name if available to improve readability
631    fprintf(fp,  "    if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
632    fprintf(fp,  "      st->print(\" ! Field \");\n");
633    fprintf(fp,  "      if( ra->C->alias_type(adr_type())->is_volatile() )\n");
634    fprintf(fp,  "        st->print(\" Volatile\");\n");
635    fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->holder()->name()->print_symbol_on(st);\n");
636    fprintf(fp,  "      st->print(\".\");\n");
637    fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->name()->print_symbol_on(st);\n");
638    fprintf(fp,  "    } else\n");
639    // Make sure 'Volatile' gets printed out
640    fprintf(fp,  "    if( ra->C->alias_type(adr_type())->is_volatile() )\n");
641    fprintf(fp,  "      st->print(\" Volatile!\");\n");
642  }
643
644  // Complete the definition of the format function
645  fprintf(fp, "  }\n#endif\n");
646}
647
648static bool is_non_constant(char* x) {
649  // Tells whether the string (part of an operator interface) is non-constant.
650  // Simply detect whether there is an occurrence of a formal parameter,
651  // which will always begin with '$'.
652  return strchr(x, '$') == 0;
653}
654
655void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
656  if (!_pipeline)
657    return;
658
659  fprintf(fp_hpp, "\n");
660  fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
661  fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
662
663  if (_pipeline->_maxcycleused <=
664#ifdef SPARC
665    64
666#else
667    32
668#endif
669      ) {
670    fprintf(fp_hpp, "protected:\n");
671    fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
672    fprintf(fp_hpp, "public:\n");
673    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
674    if (_pipeline->_maxcycleused <= 32)
675      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
676    else {
677      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
678      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
679    }
680    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
681    fprintf(fp_hpp, "    _mask = in._mask;\n");
682    fprintf(fp_hpp, "    return *this;\n");
683    fprintf(fp_hpp, "  }\n\n");
684    fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
685    fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
686    fprintf(fp_hpp, "  }\n\n");
687    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
688    fprintf(fp_hpp, "    _mask <<= n;\n");
689    fprintf(fp_hpp, "    return *this;\n");
690    fprintf(fp_hpp, "  }\n\n");
691    fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
692    fprintf(fp_hpp, "    _mask |= in2._mask;\n");
693    fprintf(fp_hpp, "  }\n\n");
694    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
695    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
696  }
697  else {
698    fprintf(fp_hpp, "protected:\n");
699    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
700    uint l;
701    fprintf(fp_hpp, "  uint ");
702    for (l = 1; l <= masklen; l++)
703      fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
704    fprintf(fp_hpp, "public:\n");
705    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
706    for (l = 1; l <= masklen; l++)
707      fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
708    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
709    for (l = 1; l <= masklen; l++)
710      fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
711    for (l = 1; l <= masklen; l++)
712      fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
713
714    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
715    for (l = 1; l <= masklen; l++)
716      fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
717    fprintf(fp_hpp, "    return *this;\n");
718    fprintf(fp_hpp, "  }\n\n");
719    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
720    fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
721    for (l = 1; l <= masklen; l++)
722      fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
723    fprintf(fp_hpp, "    return out;\n");
724    fprintf(fp_hpp, "  }\n\n");
725    fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
726    fprintf(fp_hpp, "    return (");
727    for (l = 1; l <= masklen; l++)
728      fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
729    fprintf(fp_hpp, ") ? true : false;\n");
730    fprintf(fp_hpp, "  }\n\n");
731    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
732    fprintf(fp_hpp, "    if (n >= 32)\n");
733    fprintf(fp_hpp, "      do {\n       ");
734    for (l = masklen; l > 1; l--)
735      fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
736    fprintf(fp_hpp, " _mask%d = 0;\n", 1);
737    fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
738    fprintf(fp_hpp, "    if (n > 0) {\n");
739    fprintf(fp_hpp, "      uint m = 32 - n;\n");
740    fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
741    fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
742    for (l = 2; l < masklen; l++) {
743      fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
744    }
745    fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
746    fprintf(fp_hpp, "    }\n");
747
748    fprintf(fp_hpp, "    return *this;\n");
749    fprintf(fp_hpp, "  }\n\n");
750    fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
751    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
752    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
753  }
754
755  fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
756  fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
757  fprintf(fp_hpp, "};\n\n");
758
759  uint rescount = 0;
760  const char *resource;
761
762  for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
763      int mask = _pipeline->_resdict[resource]->is_resource()->mask();
764      if ((mask & (mask-1)) == 0)
765        rescount++;
766    }
767
768  fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
769  fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
770  fprintf(fp_hpp, "protected:\n");
771  fprintf(fp_hpp, "  // Mask of used functional units\n");
772  fprintf(fp_hpp, "  uint _used;\n\n");
773  fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
774  fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
775  fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
776  fprintf(fp_hpp, "  bool _multiple;\n\n");
777  fprintf(fp_hpp, "  // Mask of specific used cycles\n");
778  fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
779  fprintf(fp_hpp, "public:\n");
780  fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
781  fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
782  fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
783  fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
784  fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
785  fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
786  fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
787  fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
788  fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
789  fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
790  fprintf(fp_hpp, "  }\n\n");
791  fprintf(fp_hpp, "  void step(uint cycles) {\n");
792  fprintf(fp_hpp, "    _used = 0;\n");
793  fprintf(fp_hpp, "    _mask <<= cycles;\n");
794  fprintf(fp_hpp, "  }\n\n");
795  fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
796  fprintf(fp_hpp, "};\n\n");
797
798  fprintf(fp_hpp, "// Pipeline_Use Class\n");
799  fprintf(fp_hpp, "class Pipeline_Use {\n");
800  fprintf(fp_hpp, "protected:\n");
801  fprintf(fp_hpp, "  // These resources can be used\n");
802  fprintf(fp_hpp, "  uint _resources_used;\n\n");
803  fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
804  fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
805  fprintf(fp_hpp, "  // Number of elements\n");
806  fprintf(fp_hpp, "  uint _count;\n\n");
807  fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
808  fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
809  fprintf(fp_hpp, "public:\n");
810  fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
811  fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
812  fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
813  fprintf(fp_hpp, "  , _count(count)\n");
814  fprintf(fp_hpp, "  , _elements(elements)\n");
815  fprintf(fp_hpp, "  {}\n\n");
816  fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
817  fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
818  fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
819  fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
820  fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
821  fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
822  fprintf(fp_hpp, "  void reset() {\n");
823  fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
824  fprintf(fp_hpp, "  };\n\n");
825  fprintf(fp_hpp, "  void step(uint cycles) {\n");
826  fprintf(fp_hpp, "    reset();\n");
827  fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
828    rescount);
829  fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
830  fprintf(fp_hpp, "  };\n\n");
831  fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
832  fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
833    rescount);
834  fprintf(fp_hpp, "  friend class Pipeline;\n");
835  fprintf(fp_hpp, "};\n\n");
836
837  fprintf(fp_hpp, "// Pipeline Class\n");
838  fprintf(fp_hpp, "class Pipeline {\n");
839  fprintf(fp_hpp, "public:\n");
840
841  fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
842    _pipeline ? "true" : "false" );
843
844  assert( _pipeline->_maxInstrsPerBundle &&
845        ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
846          _pipeline->_instrFetchUnitSize &&
847          _pipeline->_instrFetchUnits,
848    "unspecified pipeline architecture units");
849
850  uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
851
852  fprintf(fp_hpp, "  enum {\n");
853  fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
854    _pipeline->_variableSizeInstrs ? 1 : 0);
855  fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
856    _pipeline->_variableSizeInstrs ? 0 : 1);
857  fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
858    _pipeline->_branchHasDelaySlot ? 1 : 0);
859  fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
860    _pipeline->_maxInstrsPerBundle);
861  fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
862    _pipeline->_maxBundlesPerCycle);
863  fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
864    _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
865  fprintf(fp_hpp, "  };\n\n");
866
867  fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
868    _pipeline->_instrUnitSize != 0 ? "true" : "false" );
869  if( _pipeline->_bundleUnitSize != 0 )
870    if( _pipeline->_instrUnitSize != 0 )
871      fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
872    else
873      fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
874  else
875    fprintf(fp_hpp, "// Bundling is not supported\n\n");
876  if( _pipeline->_instrUnitSize != 0 )
877    fprintf(fp_hpp, "  // Size of an instruction\n");
878  else
879    fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
880  fprintf(fp_hpp, "  static uint instr_unit_size() {");
881  if( _pipeline->_instrUnitSize == 0 )
882    fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
883  fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
884
885  if( _pipeline->_bundleUnitSize != 0 )
886    fprintf(fp_hpp, "  // Size of a bundle\n");
887  else
888    fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
889  fprintf(fp_hpp, "  static uint bundle_unit_size() {");
890  if( _pipeline->_bundleUnitSize == 0 )
891    fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
892  fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
893
894  fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
895    _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
896
897  fprintf(fp_hpp, "private:\n");
898  fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
899  fprintf(fp_hpp, "\n");
900  fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
901  fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
902  fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
903  fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
904  fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
905  fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
906  fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
907  fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
908  fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
909  fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
910  fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
911  fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
912  fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
913  fprintf(fp_hpp, "\n");
914  fprintf(fp_hpp, "public:\n");
915  fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
916  fprintf(fp_hpp, "           uint                            count,\n");
917  fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
918  fprintf(fp_hpp, "           uint                            fixed_latency,\n");
919  fprintf(fp_hpp, "           uint                            instruction_count,\n");
920  fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
921  fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
922  fprintf(fp_hpp, "           bool                            force_serialization,\n");
923  fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
924  fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
925  fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
926  fprintf(fp_hpp, "           uint                    * const cycles,\n");
927  fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
928  fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
929  fprintf(fp_hpp, "  , _read_stage_count(count)\n");
930  fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
931  fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
932  fprintf(fp_hpp, "  , _read_stages(dst)\n");
933  fprintf(fp_hpp, "  , _resource_stage(stage)\n");
934  fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
935  fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
936  fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
937  fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
938  fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
939  fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
940  fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
941  fprintf(fp_hpp, "  {};\n");
942  fprintf(fp_hpp, "\n");
943  fprintf(fp_hpp, "  uint writeStage() const {\n");
944  fprintf(fp_hpp, "    return (_write_stage);\n");
945  fprintf(fp_hpp, "  }\n");
946  fprintf(fp_hpp, "\n");
947  fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
948  fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
949  fprintf(fp_hpp, "  }\n\n");
950  fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
951  fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
952  fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
953  fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
954  fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
955  fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
956  fprintf(fp_hpp, "  uint fixedLatency() const {\n");
957  fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
958  fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
959  fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
960  fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
961  fprintf(fp_hpp, "    return (_resource_use); }\n\n");
962  fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
963  fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
964  fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
965  fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
966  fprintf(fp_hpp, "  uint instructionCount() const {\n");
967  fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
968  fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
969  fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
970  fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
971  fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
972  fprintf(fp_hpp, "  bool forceSerialization() const {\n");
973  fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
974  fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
975  fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
976  fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
977  fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
978  fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
979  fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
980  fprintf(fp_hpp, "#endif\n");
981  fprintf(fp_hpp, "};\n\n");
982
983  fprintf(fp_hpp, "// Bundle class\n");
984  fprintf(fp_hpp, "class Bundle {\n");
985
986  uint mshift = 0;
987  for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
988    mshift++;
989
990  uint rshift = rescount;
991
992  fprintf(fp_hpp, "protected:\n");
993  fprintf(fp_hpp, "  enum {\n");
994  fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
995  fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
996  fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
997  fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
998  fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
999  fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
1000  fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
1001  fprintf(fp_hpp, "\n");
1002  fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
1003  fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
1004  fprintf(fp_hpp, "  };\n\n");
1005  fprintf(fp_hpp, "  uint _flags          : 3,\n");
1006  fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
1007  fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
1008  fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
1009  fprintf(fp_hpp, "public:\n");
1010  fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
1011  fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
1012  fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
1013  fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
1014  fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
1015
1016  fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
1017  fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
1018  fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
1019  fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
1020
1021  fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
1022  fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
1023  fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
1024  fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
1025  fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
1026  fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
1027
1028  fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1029  fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1030  fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1031  fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1032  fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1033  fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1034  fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1035  fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1036
1037  fprintf(fp_hpp, "  enum {\n");
1038  fprintf(fp_hpp, "    _nop_count = %d\n",
1039    _pipeline->_nopcnt);
1040  fprintf(fp_hpp, "  };\n\n");
1041  fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
1042    _pipeline->_nopcnt);
1043  fprintf(fp_hpp, "#ifndef PRODUCT\n");
1044  fprintf(fp_hpp, "  void dump() const;\n");
1045  fprintf(fp_hpp, "#endif\n");
1046  fprintf(fp_hpp, "};\n\n");
1047
1048//  const char *classname;
1049//  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1050//    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1051//    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1052//  }
1053}
1054
1055//------------------------------declareClasses---------------------------------
1056// Construct the class hierarchy of MachNode classes from the instruction &
1057// operand lists
1058void ArchDesc::declareClasses(FILE *fp) {
1059
1060  // Declare an array containing the machine register names, strings.
1061  declareRegNames(fp, _register);
1062
1063  // Declare an array containing the machine register encoding values
1064  declareRegEncodes(fp, _register);
1065
1066  // Generate declarations for the total number of operands
1067  fprintf(fp,"\n");
1068  fprintf(fp,"// Total number of operands defined in architecture definition\n");
1069  int num_operands = 0;
1070  OperandForm *op;
1071  for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1072    // Ensure this is a machine-world instruction
1073    if (op->ideal_only()) continue;
1074
1075    ++num_operands;
1076  }
1077  int first_operand_class = num_operands;
1078  OpClassForm *opc;
1079  for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1080    // Ensure this is a machine-world instruction
1081    if (opc->ideal_only()) continue;
1082
1083    ++num_operands;
1084  }
1085  fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
1086  fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
1087  fprintf(fp,"\n");
1088  // Generate declarations for the total number of instructions
1089  fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1090  fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
1091
1092
1093  // Generate Machine Classes for each operand defined in AD file
1094  fprintf(fp,"\n");
1095  fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1096  // Iterate through all operands
1097  _operands.reset();
1098  OperandForm *oper;
1099  for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1100    // Ensure this is a machine-world instruction
1101    if (oper->ideal_only() ) continue;
1102    // The declaration of labelOper is in machine-independent file: machnode
1103    if ( strcmp(oper->_ident,"label")  == 0 ) continue;
1104    // The declaration of methodOper is in machine-independent file: machnode
1105    if ( strcmp(oper->_ident,"method") == 0 ) continue;
1106
1107    // Build class definition for this operand
1108    fprintf(fp,"\n");
1109    fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1110    fprintf(fp,"private:\n");
1111    // Operand definitions that depend upon number of input edges
1112    {
1113      uint num_edges = oper->num_edges(_globalNames);
1114      if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1115        fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
1116              num_edges );
1117      }
1118      if( num_edges > 0 ) {
1119        in_RegMask(fp);
1120      }
1121    }
1122
1123    // Support storing constants inside the MachOper
1124    declareConstStorage(fp,_globalNames,oper);
1125
1126    // Support storage of the condition codes
1127    if( oper->is_ideal_bool() ) {
1128      fprintf(fp,"  virtual int ccode() const { \n");
1129      fprintf(fp,"    switch (_c0) {\n");
1130      fprintf(fp,"    case  BoolTest::eq : return equal();\n");
1131      fprintf(fp,"    case  BoolTest::gt : return greater();\n");
1132      fprintf(fp,"    case  BoolTest::lt : return less();\n");
1133      fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
1134      fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
1135      fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
1136      fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
1137      fprintf(fp,"    }\n");
1138      fprintf(fp,"  };\n");
1139    }
1140
1141    // Support storage of the condition codes
1142    if( oper->is_ideal_bool() ) {
1143      fprintf(fp,"  virtual void negate() { \n");
1144      fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1145      fprintf(fp,"  };\n");
1146    }
1147
1148    // Declare constructor.
1149    // Parameters start with condition code, then all other constants
1150    //
1151    // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1152    // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1153    //
1154    Form::DataType constant_type = oper->simple_type(_globalNames);
1155    defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1156                      oper->_components, oper->is_ideal_bool(),
1157                      constant_type, _globalNames);
1158
1159    // Clone function
1160    fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
1161
1162    // Support setting a spill offset into a constant operand.
1163    // We only support setting an 'int' offset, while in the
1164    // LP64 build spill offsets are added with an AddP which
1165    // requires a long constant.  Thus we don't support spilling
1166    // in frames larger than 4Gig.
1167    if( oper->has_conI(_globalNames) ||
1168        oper->has_conL(_globalNames) )
1169      fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1170
1171    // virtual functions for encoding and format
1172    //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
1173    //            (oper->_encrule)?(oper->_encrule->_encrule):"");
1174    // Check the interface type, and generate the correct query functions
1175    // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1176
1177    fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
1178            machOperEnum(oper->_ident));
1179
1180    // virtual function to look up ideal return type of machine instruction
1181    //
1182    // (1)  virtual const Type    *type() const { return .....; }
1183    //
1184    if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1185        (oper->_matrule->_rChild == NULL)) {
1186      unsigned int position = 0;
1187      const char  *opret, *opname, *optype;
1188      oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1189      fprintf(fp,"  virtual const Type *type() const {");
1190      const char *type = getIdealType(optype);
1191      if( type != NULL ) {
1192        Form::DataType data_type = oper->is_base_constant(_globalNames);
1193        // Check if we are an ideal pointer type
1194        if( data_type == Form::idealP || data_type == Form::idealN ) {
1195          // Return the ideal type we already have: <TypePtr *>
1196          fprintf(fp," return _c0;");
1197        } else {
1198          // Return the appropriate bottom type
1199          fprintf(fp," return %s;", getIdealType(optype));
1200        }
1201      } else {
1202        fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1203      }
1204      fprintf(fp," }\n");
1205    } else {
1206      // Check for user-defined stack slots, based upon sRegX
1207      Form::DataType data_type = oper->is_user_name_for_sReg();
1208      if( data_type != Form::none ){
1209        const char *type = NULL;
1210        switch( data_type ) {
1211        case Form::idealI: type = "TypeInt::INT";   break;
1212        case Form::idealP: type = "TypePtr::BOTTOM";break;
1213        case Form::idealF: type = "Type::FLOAT";    break;
1214        case Form::idealD: type = "Type::DOUBLE";   break;
1215        case Form::idealL: type = "TypeLong::LONG"; break;
1216        case Form::none: // fall through
1217        default:
1218          assert( false, "No support for this type of stackSlot");
1219        }
1220        fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
1221      }
1222    }
1223
1224
1225    //
1226    // virtual functions for defining the encoding interface.
1227    //
1228    // Access the linearized ideal register mask,
1229    // map to physical register encoding
1230    if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1231      // Just use the default virtual 'reg' call
1232    } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1233      // Special handling for operand 'sReg', a Stack Slot Register.
1234      // Map linearized ideal register mask to stack slot number
1235      fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1236      fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1237      fprintf(fp,"  }\n");
1238      fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1239      fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1240      fprintf(fp,"  }\n");
1241    }
1242
1243    // Output the operand specific access functions used by an enc_class
1244    // These are only defined when we want to override the default virtual func
1245    if (oper->_interface != NULL) {
1246      fprintf(fp,"\n");
1247      // Check if it is a Memory Interface
1248      if ( oper->_interface->is_MemInterface() != NULL ) {
1249        MemInterface *mem_interface = oper->_interface->is_MemInterface();
1250        const char *base = mem_interface->_base;
1251        if( base != NULL ) {
1252          define_oper_interface(fp, *oper, _globalNames, "base", base);
1253        }
1254        char *index = mem_interface->_index;
1255        if( index != NULL ) {
1256          define_oper_interface(fp, *oper, _globalNames, "index", index);
1257        }
1258        const char *scale = mem_interface->_scale;
1259        if( scale != NULL ) {
1260          define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1261        }
1262        const char *disp = mem_interface->_disp;
1263        if( disp != NULL ) {
1264          define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1265          oper->disp_is_oop(fp, _globalNames);
1266        }
1267        if( oper->stack_slots_only(_globalNames) ) {
1268          // should not call this:
1269          fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
1270        } else if ( disp != NULL ) {
1271          define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1272        }
1273      } // end Memory Interface
1274      // Check if it is a Conditional Interface
1275      else if (oper->_interface->is_CondInterface() != NULL) {
1276        CondInterface *cInterface = oper->_interface->is_CondInterface();
1277        const char *equal = cInterface->_equal;
1278        if( equal != NULL ) {
1279          define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1280        }
1281        const char *not_equal = cInterface->_not_equal;
1282        if( not_equal != NULL ) {
1283          define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1284        }
1285        const char *less = cInterface->_less;
1286        if( less != NULL ) {
1287          define_oper_interface(fp, *oper, _globalNames, "less", less);
1288        }
1289        const char *greater_equal = cInterface->_greater_equal;
1290        if( greater_equal != NULL ) {
1291          define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1292        }
1293        const char *less_equal = cInterface->_less_equal;
1294        if( less_equal != NULL ) {
1295          define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1296        }
1297        const char *greater = cInterface->_greater;
1298        if( greater != NULL ) {
1299          define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1300        }
1301      } // end Conditional Interface
1302      // Check if it is a Constant Interface
1303      else if (oper->_interface->is_ConstInterface() != NULL ) {
1304        assert( oper->num_consts(_globalNames) == 1,
1305                "Must have one constant when using CONST_INTER encoding");
1306        if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1307          // Access the locally stored constant
1308          fprintf(fp,"  virtual intptr_t       constant() const {");
1309          fprintf(fp,   " return (intptr_t)_c0;");
1310          fprintf(fp,"  }\n");
1311        }
1312        else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1313          // Access the locally stored constant
1314          fprintf(fp,"  virtual intptr_t       constant() const {");
1315          fprintf(fp,   " return _c0->get_con();");
1316          fprintf(fp, " }\n");
1317          // Generate query to determine if this pointer is an oop
1318          fprintf(fp,"  virtual bool           constant_is_oop() const {");
1319          fprintf(fp,   " return _c0->isa_oop_ptr();");
1320          fprintf(fp, " }\n");
1321        }
1322        else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
1323          // Access the locally stored constant
1324          fprintf(fp,"  virtual intptr_t       constant() const {");
1325          fprintf(fp,   " return _c0->make_oopptr()->get_con();");
1326          fprintf(fp, " }\n");
1327          // Generate query to determine if this pointer is an oop
1328          fprintf(fp,"  virtual bool           constant_is_oop() const {");
1329          fprintf(fp,   " return _c0->make_oopptr()->isa_oop_ptr();");
1330          fprintf(fp, " }\n");
1331        }
1332        else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1333          fprintf(fp,"  virtual intptr_t       constant() const {");
1334          // We don't support addressing modes with > 4Gig offsets.
1335          // Truncate to int.
1336          fprintf(fp,   "  return (intptr_t)_c0;");
1337          fprintf(fp, " }\n");
1338          fprintf(fp,"  virtual jlong          constantL() const {");
1339          fprintf(fp,   " return _c0;");
1340          fprintf(fp, " }\n");
1341        }
1342        else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1343          fprintf(fp,"  virtual intptr_t       constant() const {");
1344          fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1345          fprintf(fp, " }\n");
1346          fprintf(fp,"  virtual jfloat         constantF() const {");
1347          fprintf(fp,   " return (jfloat)_c0;");
1348          fprintf(fp, " }\n");
1349        }
1350        else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1351          fprintf(fp,"  virtual intptr_t       constant() const {");
1352          fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1353          fprintf(fp, " }\n");
1354          fprintf(fp,"  virtual jdouble        constantD() const {");
1355          fprintf(fp,   " return _c0;");
1356          fprintf(fp, " }\n");
1357        }
1358      }
1359      else if (oper->_interface->is_RegInterface() != NULL) {
1360        // make sure that a fixed format string isn't used for an
1361        // operand which might be assiged to multiple registers.
1362        // Otherwise the opto assembly output could be misleading.
1363        if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1364          syntax_err(oper->_linenum,
1365                     "Only bound registers can have fixed formats: %s\n",
1366                     oper->_ident);
1367        }
1368      }
1369      else {
1370        assert( false, "ShouldNotReachHere();");
1371      }
1372    }
1373
1374    fprintf(fp,"\n");
1375    // // Currently all XXXOper::hash() methods are identical (990820)
1376    // declare_hash(fp);
1377    // // Currently all XXXOper::Cmp() methods are identical (990820)
1378    // declare_cmp(fp);
1379
1380    // Do not place dump_spec() and Name() into PRODUCT code
1381    // int_format and ext_format are not needed in PRODUCT code either
1382    fprintf(fp, "#ifndef PRODUCT\n");
1383
1384    // Declare int_format() and ext_format()
1385    gen_oper_format(fp, _globalNames, *oper);
1386
1387    // Machine independent print functionality for debugging
1388    // IF we have constants, create a dump_spec function for the derived class
1389    //
1390    // (1)  virtual void           dump_spec() const {
1391    // (2)    st->print("#%d", _c#);        // Constant != ConP
1392    //  OR    _c#->dump_on(st);             // Type ConP
1393    //  ...
1394    // (3)  }
1395    uint num_consts = oper->num_consts(_globalNames);
1396    if( num_consts > 0 ) {
1397      // line (1)
1398      fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
1399      // generate format string for st->print
1400      // Iterate over the component list & spit out the right thing
1401      uint i = 0;
1402      const char *type = oper->ideal_type(_globalNames);
1403      Component  *comp;
1404      oper->_components.reset();
1405      if ((comp = oper->_components.iter()) == NULL) {
1406        assert(num_consts == 1, "Bad component list detected.\n");
1407        i = dump_spec_constant( fp, type, i );
1408        // Check that type actually matched
1409        assert( i != 0, "Non-constant operand lacks component list.");
1410      } // end if NULL
1411      else {
1412        // line (2)
1413        // dump all components
1414        oper->_components.reset();
1415        while((comp = oper->_components.iter()) != NULL) {
1416          type = comp->base_type(_globalNames);
1417          i = dump_spec_constant( fp, type, i );
1418        }
1419      }
1420      // finish line (3)
1421      fprintf(fp,"  }\n");
1422    }
1423
1424    fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1425            oper->_ident);
1426
1427    fprintf(fp,"#endif\n");
1428
1429    // Close definition of this XxxMachOper
1430    fprintf(fp,"};\n");
1431  }
1432
1433
1434  // Generate Machine Classes for each instruction defined in AD file
1435  fprintf(fp,"\n");
1436  fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1437  declare_pipe_classes(fp);
1438
1439  // Generate Machine Classes for each instruction defined in AD file
1440  fprintf(fp,"\n");
1441  fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1442  _instructions.reset();
1443  InstructForm *instr;
1444  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1445    // Ensure this is a machine-world instruction
1446    if ( instr->ideal_only() ) continue;
1447
1448    // Build class definition for this instruction
1449    fprintf(fp,"\n");
1450    fprintf(fp,"class %sNode : public %s { \n",
1451            instr->_ident, instr->mach_base_class() );
1452    fprintf(fp,"private:\n");
1453    fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1454    if ( instr->is_ideal_jump() ) {
1455      fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
1456    }
1457    fprintf(fp,"public:\n");
1458    fprintf(fp,"  MachOper *opnd_array(uint operand_index) const { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); return _opnd_array[operand_index]; }\n");
1459    fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); _opnd_array[operand_index] = operand; }\n");
1460    fprintf(fp,"private:\n");
1461    if ( instr->is_ideal_jump() ) {
1462      fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
1463      fprintf(fp,"                                          _index2label.at_put_grow(index_num, blockLabel);}\n");
1464    }
1465    if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1466      fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
1467    }
1468
1469    out_RegMask(fp);                      // output register mask
1470    fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
1471            instr->_ident);
1472
1473    // If this instruction contains a labelOper
1474    // Declare Node::methods that set operand Label's contents
1475    int label_position = instr->label_position();
1476    if( label_position != -1 ) {
1477      // Set the label, stored in labelOper::_branch_label
1478      fprintf(fp,"  virtual void           label_set( Label& label, uint block_num );\n");
1479    }
1480
1481    // If this instruction contains a methodOper
1482    // Declare Node::methods that set operand method's contents
1483    int method_position = instr->method_position();
1484    if( method_position != -1 ) {
1485      // Set the address method, stored in methodOper::_method
1486      fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
1487    }
1488
1489    // virtual functions for attributes
1490    //
1491    // Each instruction attribute results in a virtual call of same name.
1492    // The ins_cost is not handled here.
1493    Attribute *attr = instr->_attribs;
1494    bool is_pc_relative = false;
1495    while (attr != NULL) {
1496      if (strcmp(attr->_ident,"ins_cost") &&
1497          strcmp(attr->_ident,"ins_pc_relative")) {
1498        fprintf(fp,"  int             %s() const { return %s; }\n",
1499                attr->_ident, attr->_val);
1500      }
1501      // Check value for ins_pc_relative, and if it is true (1), set the flag
1502      if (!strcmp(attr->_ident,"ins_pc_relative") && attr->int_val(*this) != 0)
1503        is_pc_relative = true;
1504      attr = (Attribute *)attr->_next;
1505    }
1506
1507    // virtual functions for encode and format
1508    //
1509    // Output the opcode function and the encode function here using the
1510    // encoding class information in the _insencode slot.
1511    if ( instr->_insencode ) {
1512      fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1513    }
1514
1515    // virtual function for getting the size of an instruction
1516    if ( instr->_size ) {
1517       fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
1518    }
1519
1520    // Return the top-level ideal opcode.
1521    // Use MachNode::ideal_Opcode() for nodes based on MachNode class
1522    // if the ideal_Opcode == Op_Node.
1523    if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
1524         strcmp("MachNode", instr->mach_base_class()) != 0 ) {
1525      fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
1526            instr->ideal_Opcode(_globalNames) );
1527    }
1528
1529    // Allow machine-independent optimization, invert the sense of the IF test
1530    if( instr->is_ideal_if() ) {
1531      fprintf(fp,"  virtual void           negate() { \n");
1532      // Identify which operand contains the negate(able) ideal condition code
1533      int   idx = 0;
1534      instr->_components.reset();
1535      for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1536        // Check that component is an operand
1537        Form *form = (Form*)_globalNames[comp->_type];
1538        OperandForm *opForm = form ? form->is_operand() : NULL;
1539        if( opForm == NULL ) continue;
1540
1541        // Lookup the position of the operand in the instruction.
1542        if( opForm->is_ideal_bool() ) {
1543          idx = instr->operand_position(comp->_name, comp->_usedef);
1544          assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1545          break;
1546        }
1547      }
1548      fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
1549      fprintf(fp,"    _prob = 1.0f - _prob;\n");
1550      fprintf(fp,"  };\n");
1551    }
1552
1553
1554    // Identify which input register matches the input register.
1555    uint  matching_input = instr->two_address(_globalNames);
1556
1557    // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1558    if( matching_input != 0 ) {
1559      fprintf(fp,"  virtual uint           two_adr() const  ");
1560      fprintf(fp,"{ return oper_input_base()");
1561      for( uint i = 2; i <= matching_input; i++ )
1562        fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1563      fprintf(fp,"; }\n");
1564    }
1565
1566    // Declare cisc_version, if applicable
1567    //   MachNode *cisc_version( int offset /* ,... */ );
1568    instr->declare_cisc_version(*this, fp);
1569
1570    // If there is an explicit peephole rule, build it
1571    if ( instr->peepholes() != NULL ) {
1572      fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
1573    }
1574
1575    // Output the declaration for number of relocation entries
1576    if ( instr->reloc(_globalNames) != 0 ) {
1577      fprintf(fp,"  virtual int            reloc()   const;\n");
1578    }
1579
1580    if (instr->alignment() != 1) {
1581      fprintf(fp,"  virtual int            alignment_required()   const { return %d; }\n", instr->alignment());
1582      fprintf(fp,"  virtual int            compute_padding(int current_offset)   const;\n");
1583    }
1584
1585    // Starting point for inputs matcher wants.
1586    // Use MachNode::oper_input_base() for nodes based on MachNode class
1587    // if the base == 1.
1588    if ( instr->oper_input_base(_globalNames) != 1 ||
1589         strcmp("MachNode", instr->mach_base_class()) != 0 ) {
1590      fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
1591            instr->oper_input_base(_globalNames));
1592    }
1593
1594    // Make the constructor and following methods 'public:'
1595    fprintf(fp,"public:\n");
1596
1597    // Constructor
1598    if ( instr->is_ideal_jump() ) {
1599      fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1600    } else {
1601      fprintf(fp,"  %sNode() { ", instr->_ident);
1602      if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1603        fprintf(fp,"_cisc_RegMask = NULL; ");
1604      }
1605    }
1606
1607    fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1608
1609    bool node_flags_set = false;
1610    // flag: if this instruction matches an ideal 'Goto' node
1611    if ( instr->is_ideal_goto() ) {
1612      fprintf(fp,"init_flags(Flag_is_Goto");
1613      node_flags_set = true;
1614    }
1615
1616    // flag: if this instruction matches an ideal 'Copy*' node
1617    if ( instr->is_ideal_copy() != 0 ) {
1618      if ( node_flags_set ) {
1619        fprintf(fp," | Flag_is_Copy");
1620      } else {
1621        fprintf(fp,"init_flags(Flag_is_Copy");
1622        node_flags_set = true;
1623      }
1624    }
1625
1626    // Is an instruction is a constant?  If so, get its type
1627    Form::DataType  data_type;
1628    const char     *opType = NULL;
1629    const char     *result = NULL;
1630    data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
1631    // Check if this instruction is a constant
1632    if ( data_type != Form::none ) {
1633      if ( node_flags_set ) {
1634        fprintf(fp," | Flag_is_Con");
1635      } else {
1636        fprintf(fp,"init_flags(Flag_is_Con");
1637        node_flags_set = true;
1638      }
1639    }
1640
1641    // flag: if instruction matches 'If' | 'Goto' | 'CountedLoopEnd | 'Jump'
1642    if ( instr->is_ideal_branch() ) {
1643      if ( node_flags_set ) {
1644        fprintf(fp," | Flag_is_Branch");
1645      } else {
1646        fprintf(fp,"init_flags(Flag_is_Branch");
1647        node_flags_set = true;
1648      }
1649    }
1650
1651    // flag: if this instruction is cisc alternate
1652    if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1653      if ( node_flags_set ) {
1654        fprintf(fp," | Flag_is_cisc_alternate");
1655      } else {
1656        fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1657        node_flags_set = true;
1658      }
1659    }
1660
1661    // flag: if this instruction is pc relative
1662    if ( is_pc_relative ) {
1663      if ( node_flags_set ) {
1664        fprintf(fp," | Flag_is_pc_relative");
1665      } else {
1666        fprintf(fp,"init_flags(Flag_is_pc_relative");
1667        node_flags_set = true;
1668      }
1669    }
1670
1671    // flag: if this instruction has short branch form
1672    if ( instr->has_short_branch_form() ) {
1673      if ( node_flags_set ) {
1674        fprintf(fp," | Flag_may_be_short_branch");
1675      } else {
1676        fprintf(fp,"init_flags(Flag_may_be_short_branch");
1677        node_flags_set = true;
1678      }
1679    }
1680
1681    // Check if machine instructions that USE memory, but do not DEF memory,
1682    // depend upon a node that defines memory in machine-independent graph.
1683    if ( instr->needs_anti_dependence_check(_globalNames) ) {
1684      if ( node_flags_set ) {
1685        fprintf(fp," | Flag_needs_anti_dependence_check");
1686      } else {
1687        fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1688        node_flags_set = true;
1689      }
1690    }
1691
1692    if ( node_flags_set ) {
1693      fprintf(fp,"); ");
1694    }
1695
1696    if (instr->is_ideal_unlock() || instr->is_ideal_call_leaf()) {
1697      fprintf(fp,"clear_flag(Flag_is_safepoint_node); ");
1698    }
1699
1700    fprintf(fp,"}\n");
1701
1702    // size_of, used by base class's clone to obtain the correct size.
1703    fprintf(fp,"  virtual uint           size_of() const {");
1704    fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
1705    fprintf(fp, " }\n");
1706
1707    // Virtual methods which are only generated to override base class
1708    if( instr->expands() || instr->needs_projections() ||
1709        instr->has_temps() ||
1710        instr->_matrule != NULL &&
1711        instr->num_opnds() != instr->num_unique_opnds() ) {
1712      fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list);\n");
1713    }
1714
1715    if (instr->is_pinned(_globalNames)) {
1716      fprintf(fp,"  virtual bool           pinned() const { return ");
1717      if (instr->is_parm(_globalNames)) {
1718        fprintf(fp,"_in[0]->pinned();");
1719      } else {
1720        fprintf(fp,"true;");
1721      }
1722      fprintf(fp," }\n");
1723    }
1724    if (instr->is_projection(_globalNames)) {
1725      fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
1726    }
1727    if ( instr->num_post_match_opnds() != 0
1728         || instr->is_chain_of_constant(_globalNames) ) {
1729      fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
1730    }
1731    if ( instr->rematerialize(_globalNames, get_registers()) ) {
1732      fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
1733    }
1734
1735    // Declare short branch methods, if applicable
1736    instr->declare_short_branch_methods(fp);
1737
1738    // Instructions containing a constant that will be entered into the
1739    // float/double table redefine the base virtual function
1740#ifdef SPARC
1741    // Sparc doubles entries in the constant table require more space for
1742    // alignment. (expires 9/98)
1743    int table_entries = (3 * instr->num_consts( _globalNames, Form::idealD ))
1744      + instr->num_consts( _globalNames, Form::idealF );
1745#else
1746    int table_entries = instr->num_consts( _globalNames, Form::idealD )
1747      + instr->num_consts( _globalNames, Form::idealF );
1748#endif
1749    if( table_entries != 0 ) {
1750      fprintf(fp,"  virtual int            const_size() const {");
1751      fprintf(fp,   " return %d;", table_entries);
1752      fprintf(fp, " }\n");
1753    }
1754
1755
1756    // See if there is an "ins_pipe" declaration for this instruction
1757    if (instr->_ins_pipe) {
1758      fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
1759      fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
1760    }
1761
1762    // Generate virtual function for MachNodeX::bottom_type when necessary
1763    //
1764    // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
1765    // or else alias analysis on the matched graph may produce bad code.
1766    // Moreover, the aliasing decisions made on machine-node graph must be
1767    // no less accurate than those made on the ideal graph, or else the graph
1768    // may fail to schedule.  (Reason:  Memory ops which are reordered in
1769    // the ideal graph might look interdependent in the machine graph,
1770    // thereby removing degrees of scheduling freedom that the optimizer
1771    // assumed would be available.)
1772    //
1773    // %%% We should handle many of these cases with an explicit ADL clause:
1774    // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1775    if( data_type != Form::none ) {
1776      // A constant's bottom_type returns a Type containing its constant value
1777
1778      // !!!!!
1779      // Convert all ints, floats, ... to machine-independent TypeXs
1780      // as is done for pointers
1781      //
1782      // Construct appropriate constant type containing the constant value.
1783      fprintf(fp,"  virtual const class Type *bottom_type() const{\n");
1784      switch( data_type ) {
1785      case Form::idealI:
1786        fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
1787        break;
1788      case Form::idealP:
1789      case Form::idealN:
1790        fprintf(fp,"    return  opnd_array(1)->type();\n",result);
1791        break;
1792      case Form::idealD:
1793        fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
1794        break;
1795      case Form::idealF:
1796        fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
1797        break;
1798      case Form::idealL:
1799        fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
1800        break;
1801      default:
1802        assert( false, "Unimplemented()" );
1803        break;
1804      }
1805      fprintf(fp,"  };\n");
1806    }
1807/*    else if ( instr->_matrule && instr->_matrule->_rChild &&
1808        (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1809        || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1810      // !!!!! !!!!!
1811      // Provide explicit bottom type for conversions to int
1812      // On Intel the result operand is a stackSlot, untyped.
1813      fprintf(fp,"  virtual const class Type *bottom_type() const{");
1814      fprintf(fp,   " return  TypeInt::INT;");
1815      fprintf(fp, " };\n");
1816    }*/
1817    else if( instr->is_ideal_copy() &&
1818              !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1819      // !!!!!
1820      // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
1821      fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1822    }
1823    else if( instr->is_ideal_loadPC() ) {
1824      // LoadPCNode provides the return address of a call to native code.
1825      // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1826      // since it is a pointer to an internal VM location and must have a zero offset.
1827      // Allocation detects derived pointers, in part, by their non-zero offsets.
1828      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1829    }
1830    else if( instr->is_ideal_box() ) {
1831      // BoxNode provides the address of a stack slot.
1832      // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1833      // This prevent s insert_anti_dependencies from complaining. It will
1834      // complain if it see that the pointer base is TypePtr::BOTTOM since
1835      // it doesn't understand what that might alias.
1836      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1837    }
1838    else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1839      int offset = 1;
1840      // Special special hack to see if the Cmp? has been incorporated in the conditional move
1841      MatchNode *rl = instr->_matrule->_rChild->_lChild;
1842      if( rl && !strcmp(rl->_opType, "Binary") ) {
1843          MatchNode *rlr = rl->_rChild;
1844          if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1845            offset = 2;
1846      }
1847      // Special hack for ideal CMoveP; ideal type depends on inputs
1848      fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1849        offset, offset+1, offset+1);
1850    }
1851    else if( instr->needs_base_oop_edge(_globalNames) ) {
1852      // Special hack for ideal AddP.  Bottom type is an oop IFF it has a
1853      // legal base-pointer input.  Otherwise it is NOT an oop.
1854      fprintf(fp,"  const Type *bottom_type() const { return AddPNode::mach_bottom_type(this); } // AddP\n");
1855    }
1856    else if (instr->is_tls_instruction()) {
1857      // Special hack for tlsLoadP
1858      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1859    }
1860    else if ( instr->is_ideal_if() ) {
1861      fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1862    }
1863    else if ( instr->is_ideal_membar() ) {
1864      fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1865    }
1866
1867    // Check where 'ideal_type' must be customized
1868    /*
1869    if ( instr->_matrule && instr->_matrule->_rChild &&
1870        (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1871        || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1872      fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
1873    }*/
1874
1875    // Analyze machine instructions that either USE or DEF memory.
1876    int memory_operand = instr->memory_operand(_globalNames);
1877    // Some guys kill all of memory
1878    if ( instr->is_wide_memory_kill(_globalNames) ) {
1879      memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
1880    }
1881    if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1882      if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
1883        fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
1884      }
1885      fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
1886    }
1887
1888    fprintf(fp, "#ifndef PRODUCT\n");
1889
1890    // virtual function for generating the user's assembler output
1891    gen_inst_format(fp, _globalNames,*instr);
1892
1893    // Machine independent print functionality for debugging
1894    fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1895            instr->_ident);
1896
1897    fprintf(fp, "#endif\n");
1898
1899    // Close definition of this XxxMachNode
1900    fprintf(fp,"};\n");
1901  };
1902
1903}
1904
1905void ArchDesc::defineStateClass(FILE *fp) {
1906  static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
1907  static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
1908
1909  fprintf(fp,"\n");
1910  fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
1911  fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
1912  fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
1913  fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
1914  fprintf(fp,"#define STATE__VALID(index) ");
1915  fprintf(fp,"    (%s)\n", state__valid);
1916  fprintf(fp,"\n");
1917  fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
1918  fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
1919  fprintf(fp,"\n");
1920  fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
1921  fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
1922  fprintf(fp,"\n");
1923  fprintf(fp,"#define STATE__SET_VALID(index) ");
1924  fprintf(fp,"  (%s)\n", state__set_valid);
1925  fprintf(fp,"\n");
1926  fprintf(fp,
1927          "//---------------------------State-------------------------------------------\n");
1928  fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
1929  fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
1930  fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
1931  fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
1932  fprintf(fp,"// two for convenience, but this could change).\n");
1933  fprintf(fp,"class State : public ResourceObj {\n");
1934  fprintf(fp,"public:\n");
1935  fprintf(fp,"  int    _id;         // State identifier\n");
1936  fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
1937  fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
1938  fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
1939  fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
1940  fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
1941  fprintf(fp,"\n");
1942  fprintf(fp,"  State(void);                      // Constructor\n");
1943  fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
1944  fprintf(fp,"\n");
1945  fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
1946  fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
1947  fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
1948  fprintf(fp,"\n");
1949  fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
1950  fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
1951  fprintf(fp,"\n");
1952  fprintf(fp,"  // Access function for _valid bit vector\n");
1953  fprintf(fp,"  bool valid(uint index) {\n");
1954  fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
1955  fprintf(fp,"  }\n");
1956  fprintf(fp,"\n");
1957  fprintf(fp,"  // Set function for _valid bit vector\n");
1958  fprintf(fp,"  void set_valid(uint index) {\n");
1959  fprintf(fp,"    STATE__SET_VALID(index);\n");
1960  fprintf(fp,"  }\n");
1961  fprintf(fp,"\n");
1962  fprintf(fp,"#ifndef PRODUCT\n");
1963  fprintf(fp,"  void dump();                // Debugging prints\n");
1964  fprintf(fp,"  void dump(int depth);\n");
1965  fprintf(fp,"#endif\n");
1966  if (_dfa_small) {
1967    // Generate the routine name we'll need
1968    for (int i = 1; i < _last_opcode; i++) {
1969      if (_mlistab[i] == NULL) continue;
1970      fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
1971    }
1972  }
1973  fprintf(fp,"};\n");
1974  fprintf(fp,"\n");
1975  fprintf(fp,"\n");
1976
1977}
1978
1979
1980//---------------------------buildMachOperEnum---------------------------------
1981// Build enumeration for densely packed operands.
1982// This enumeration is used to index into the arrays in the State objects
1983// that indicate cost and a successfull rule match.
1984
1985// Information needed to generate the ReduceOp mapping for the DFA
1986class OutputMachOperands : public OutputMap {
1987public:
1988  OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
1989    : OutputMap(hpp, cpp, globals, AD) {};
1990
1991  void declaration() { }
1992  void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
1993  void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
1994                       OutputMap::closing();
1995  }
1996  void map(OpClassForm &opc)  { fprintf(_cpp, "  %s", _AD.machOperEnum(opc._ident) ); }
1997  void map(OperandForm &oper) { fprintf(_cpp, "  %s", _AD.machOperEnum(oper._ident) ); }
1998  void map(char        *name) { fprintf(_cpp, "  %s", _AD.machOperEnum(name)); }
1999
2000  bool do_instructions()      { return false; }
2001  void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
2002};
2003
2004
2005void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
2006  // Construct the table for MachOpcodes
2007  OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
2008  build_map(output_mach_operands);
2009}
2010
2011
2012//---------------------------buildMachEnum----------------------------------
2013// Build enumeration for all MachOpers and all MachNodes
2014
2015// Information needed to generate the ReduceOp mapping for the DFA
2016class OutputMachOpcodes : public OutputMap {
2017  int begin_inst_chain_rule;
2018  int end_inst_chain_rule;
2019  int begin_rematerialize;
2020  int end_rematerialize;
2021  int end_instructions;
2022public:
2023  OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2024    : OutputMap(hpp, cpp, globals, AD),
2025      begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
2026  {};
2027
2028  void declaration() { }
2029  void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
2030  void closing()     {
2031    if( begin_inst_chain_rule != -1 )
2032      fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
2033    if( end_inst_chain_rule   != -1 )
2034      fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
2035    if( begin_rematerialize   != -1 )
2036      fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
2037    if( end_rematerialize     != -1 )
2038      fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
2039    // always execute since do_instructions() is true, and avoids trailing comma
2040    fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
2041    OutputMap::closing();
2042  }
2043  void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
2044  void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
2045  void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
2046                                else      fprintf(_cpp, "  0"); }
2047  void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
2048
2049  void record_position(OutputMap::position place, int idx ) {
2050    switch(place) {
2051    case OutputMap::BEGIN_INST_CHAIN_RULES :
2052      begin_inst_chain_rule = idx;
2053      break;
2054    case OutputMap::END_INST_CHAIN_RULES :
2055      end_inst_chain_rule   = idx;
2056      break;
2057    case OutputMap::BEGIN_REMATERIALIZE :
2058      begin_rematerialize   = idx;
2059      break;
2060    case OutputMap::END_REMATERIALIZE :
2061      end_rematerialize     = idx;
2062      break;
2063    case OutputMap::END_INSTRUCTIONS :
2064      end_instructions      = idx;
2065      break;
2066    default:
2067      break;
2068    }
2069  }
2070};
2071
2072
2073void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2074  // Construct the table for MachOpcodes
2075  OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2076  build_map(output_mach_opcodes);
2077}
2078
2079
2080// Generate an enumeration of the pipeline states, and both
2081// the functional units (resources) and the masks for
2082// specifying resources
2083void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2084  int stagelen = (int)strlen("undefined");
2085  int stagenum = 0;
2086
2087  if (_pipeline) {              // Find max enum string length
2088    const char *stage;
2089    for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2090      int len = (int)strlen(stage);
2091      if (stagelen < len) stagelen = len;
2092    }
2093  }
2094
2095  // Generate a list of stages
2096  fprintf(fp_hpp, "\n");
2097  fprintf(fp_hpp, "// Pipeline Stages\n");
2098  fprintf(fp_hpp, "enum machPipelineStages {\n");
2099  fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
2100
2101  if( _pipeline ) {
2102    const char *stage;
2103    for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2104      fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2105  }
2106
2107  fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
2108  fprintf(fp_hpp, "};\n");
2109
2110  fprintf(fp_hpp, "\n");
2111  fprintf(fp_hpp, "// Pipeline Resources\n");
2112  fprintf(fp_hpp, "enum machPipelineResources {\n");
2113  int rescount = 0;
2114
2115  if( _pipeline ) {
2116    const char *resource;
2117    int reslen = 0;
2118
2119    // Generate a list of resources, and masks
2120    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2121      int len = (int)strlen(resource);
2122      if (reslen < len)
2123        reslen = len;
2124    }
2125
2126    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2127      const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2128      int mask = resform->mask();
2129      if ((mask & (mask-1)) == 0)
2130        fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
2131    }
2132    fprintf(fp_hpp, "\n");
2133    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2134      const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2135      fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2136    }
2137    fprintf(fp_hpp, "\n");
2138  }
2139  fprintf(fp_hpp, "   resource_count = %d\n", rescount);
2140  fprintf(fp_hpp, "};\n");
2141}
2142