output_h.cpp revision 1915:2f644f85485d
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// output_h.cpp - Class HPP file output routines for architecture definition
26#include "adlc.hpp"
27
28
29// Generate the #define that describes the number of registers.
30static void defineRegCount(FILE *fp, RegisterForm *registers) {
31  if (registers) {
32    int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
33    fprintf(fp,"\n");
34    fprintf(fp,"// the number of reserved registers + machine registers.\n");
35    fprintf(fp,"#define REG_COUNT    %d\n", regCount);
36  }
37}
38
39// Output enumeration of machine register numbers
40// (1)
41// // Enumerate machine registers starting after reserved regs.
42// // in the order of occurrence in the register block.
43// enum MachRegisterNumbers {
44//   EAX_num = 0,
45//   ...
46//   _last_Mach_Reg
47// }
48void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
49  if (_register) {
50    RegDef *reg_def = NULL;
51
52    // Output a #define for the number of machine registers
53    defineRegCount(fp_hpp, _register);
54
55    // Count all the Save_On_Entry and Always_Save registers
56    int    saved_on_entry = 0;
57    int  c_saved_on_entry = 0;
58    _register->reset_RegDefs();
59    while( (reg_def = _register->iter_RegDefs()) != NULL ) {
60      if( strcmp(reg_def->_callconv,"SOE") == 0 ||
61          strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
62      if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
63          strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
64    }
65    fprintf(fp_hpp, "\n");
66    fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
67    fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
68    fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
69    fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
70
71    // (1)
72    // Build definition for enumeration of register numbers
73    fprintf(fp_hpp, "\n");
74    fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
75    fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
76    fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
77
78    // Output the register number for each register in the allocation classes
79    _register->reset_RegDefs();
80    int i = 0;
81    while( (reg_def = _register->iter_RegDefs()) != NULL ) {
82      fprintf(fp_hpp,"  %s_num,\t\t// %d\n", reg_def->_regname, i++);
83    }
84    // Finish defining enumeration
85    fprintf(fp_hpp, "  _last_Mach_Reg\t// %d\n", i);
86    fprintf(fp_hpp, "};\n");
87  }
88
89  fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
90  fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
91  fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
92  fprintf(fp_hpp, "#define FORALL_BODY ");
93  int len = RegisterForm::RegMask_Size();
94  for( int i = 0; i < len; i++ )
95    fprintf(fp_hpp, "BODY(%d) ",i);
96  fprintf(fp_hpp, "\n\n");
97
98  fprintf(fp_hpp,"class RegMask;\n");
99  // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
100  // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
101}
102
103
104// Output enumeration of machine register encodings
105// (2)
106// // Enumerate machine registers starting after reserved regs.
107// // in the order of occurrence in the alloc_class(es).
108// enum MachRegisterEncodes {
109//   EAX_enc = 0x00,
110//   ...
111// }
112void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
113  if (_register) {
114    RegDef *reg_def = NULL;
115    RegDef *reg_def_next = NULL;
116
117    // (2)
118    // Build definition for enumeration of encode values
119    fprintf(fp_hpp, "\n");
120    fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
121    fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
122    fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
123
124    // Output the register encoding for each register in the allocation classes
125    _register->reset_RegDefs();
126    reg_def_next = _register->iter_RegDefs();
127    while( (reg_def = reg_def_next) != NULL ) {
128      reg_def_next = _register->iter_RegDefs();
129      fprintf(fp_hpp,"  %s_enc = %s%s\n",
130              reg_def->_regname, reg_def->register_encode(), reg_def_next == NULL? "" : "," );
131    }
132    // Finish defining enumeration
133    fprintf(fp_hpp, "};\n");
134
135  } // Done with register form
136}
137
138
139// Declare an array containing the machine register names, strings.
140static void declareRegNames(FILE *fp, RegisterForm *registers) {
141  if (registers) {
142//    fprintf(fp,"\n");
143//    fprintf(fp,"// An array of character pointers to machine register names.\n");
144//    fprintf(fp,"extern const char *regName[];\n");
145  }
146}
147
148// Declare an array containing the machine register sizes in 32-bit words.
149void ArchDesc::declareRegSizes(FILE *fp) {
150// regSize[] is not used
151}
152
153// Declare an array containing the machine register encoding values
154static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
155  if (registers) {
156    // // //
157    // fprintf(fp,"\n");
158    // fprintf(fp,"// An array containing the machine register encode values\n");
159    // fprintf(fp,"extern const char  regEncode[];\n");
160  }
161}
162
163
164// ---------------------------------------------------------------------------
165//------------------------------Utilities to build Instruction Classes--------
166// ---------------------------------------------------------------------------
167static void out_RegMask(FILE *fp) {
168  fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
169}
170
171// ---------------------------------------------------------------------------
172//--------Utilities to build MachOper and MachNode derived Classes------------
173// ---------------------------------------------------------------------------
174
175//------------------------------Utilities to build Operand Classes------------
176static void in_RegMask(FILE *fp) {
177  fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
178}
179
180static void declare_hash(FILE *fp) {
181  fprintf(fp,"  virtual uint           hash() const;\n");
182}
183
184static void declare_cmp(FILE *fp) {
185  fprintf(fp,"  virtual uint           cmp( const MachOper &oper ) const;\n");
186}
187
188static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
189  int i = 0;
190  Component *comp;
191
192  if (oper->num_consts(globals) == 0) return;
193  // Iterate over the component list looking for constants
194  oper->_components.reset();
195  if ((comp = oper->_components.iter()) == NULL) {
196    assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
197    const char *type = oper->ideal_type(globals);
198    if (!strcmp(type, "ConI")) {
199      if (i > 0) fprintf(fp,", ");
200      fprintf(fp,"  int32          _c%d;\n", i);
201    }
202    else if (!strcmp(type, "ConP")) {
203      if (i > 0) fprintf(fp,", ");
204      fprintf(fp,"  const TypePtr *_c%d;\n", i);
205    }
206    else if (!strcmp(type, "ConN")) {
207      if (i > 0) fprintf(fp,", ");
208      fprintf(fp,"  const TypeNarrowOop *_c%d;\n", i);
209    }
210    else if (!strcmp(type, "ConL")) {
211      if (i > 0) fprintf(fp,", ");
212      fprintf(fp,"  jlong          _c%d;\n", i);
213    }
214    else if (!strcmp(type, "ConF")) {
215      if (i > 0) fprintf(fp,", ");
216      fprintf(fp,"  jfloat         _c%d;\n", i);
217    }
218    else if (!strcmp(type, "ConD")) {
219      if (i > 0) fprintf(fp,", ");
220      fprintf(fp,"  jdouble        _c%d;\n", i);
221    }
222    else if (!strcmp(type, "Bool")) {
223      fprintf(fp,"private:\n");
224      fprintf(fp,"  BoolTest::mask _c%d;\n", i);
225      fprintf(fp,"public:\n");
226    }
227    else {
228      assert(0, "Non-constant operand lacks component list.");
229    }
230  } // end if NULL
231  else {
232    oper->_components.reset();
233    while ((comp = oper->_components.iter()) != NULL) {
234      if (!strcmp(comp->base_type(globals), "ConI")) {
235        fprintf(fp,"  jint             _c%d;\n", i);
236        i++;
237      }
238      else if (!strcmp(comp->base_type(globals), "ConP")) {
239        fprintf(fp,"  const TypePtr *_c%d;\n", i);
240        i++;
241      }
242      else if (!strcmp(comp->base_type(globals), "ConN")) {
243        fprintf(fp,"  const TypePtr *_c%d;\n", i);
244        i++;
245      }
246      else if (!strcmp(comp->base_type(globals), "ConL")) {
247        fprintf(fp,"  jlong            _c%d;\n", i);
248        i++;
249      }
250      else if (!strcmp(comp->base_type(globals), "ConF")) {
251        fprintf(fp,"  jfloat           _c%d;\n", i);
252        i++;
253      }
254      else if (!strcmp(comp->base_type(globals), "ConD")) {
255        fprintf(fp,"  jdouble          _c%d;\n", i);
256        i++;
257      }
258    }
259  }
260}
261
262// Declare constructor.
263// Parameters start with condition code, then all other constants
264//
265// (0) public:
266// (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
267// (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
268//
269static void defineConstructor(FILE *fp, const char *name, uint num_consts,
270                              ComponentList &lst, bool is_ideal_bool,
271                              Form::DataType constant_type, FormDict &globals) {
272  fprintf(fp,"public:\n");
273  // generate line (1)
274  fprintf(fp,"  %sOper(", name);
275  if( num_consts == 0 ) {
276    fprintf(fp,") {}\n");
277    return;
278  }
279
280  // generate parameters for constants
281  uint i = 0;
282  Component *comp;
283  lst.reset();
284  if ((comp = lst.iter()) == NULL) {
285    assert(num_consts == 1, "Bad component list detected.\n");
286    switch( constant_type ) {
287    case Form::idealI : {
288      fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
289      break;
290    }
291    case Form::idealN : { fprintf(fp,"const TypeNarrowOop *c%d", i); break; }
292    case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
293    case Form::idealL : { fprintf(fp,"jlong c%d", i);   break;        }
294    case Form::idealF : { fprintf(fp,"jfloat c%d", i);  break;        }
295    case Form::idealD : { fprintf(fp,"jdouble c%d", i); break;        }
296    default:
297      assert(!is_ideal_bool, "Non-constant operand lacks component list.");
298      break;
299    }
300  } // end if NULL
301  else {
302    lst.reset();
303    while((comp = lst.iter()) != NULL) {
304      if (!strcmp(comp->base_type(globals), "ConI")) {
305        if (i > 0) fprintf(fp,", ");
306        fprintf(fp,"int32 c%d", i);
307        i++;
308      }
309      else if (!strcmp(comp->base_type(globals), "ConP")) {
310        if (i > 0) fprintf(fp,", ");
311        fprintf(fp,"const TypePtr *c%d", i);
312        i++;
313      }
314      else if (!strcmp(comp->base_type(globals), "ConN")) {
315        if (i > 0) fprintf(fp,", ");
316        fprintf(fp,"const TypePtr *c%d", i);
317        i++;
318      }
319      else if (!strcmp(comp->base_type(globals), "ConL")) {
320        if (i > 0) fprintf(fp,", ");
321        fprintf(fp,"jlong c%d", i);
322        i++;
323      }
324      else if (!strcmp(comp->base_type(globals), "ConF")) {
325        if (i > 0) fprintf(fp,", ");
326        fprintf(fp,"jfloat c%d", i);
327        i++;
328      }
329      else if (!strcmp(comp->base_type(globals), "ConD")) {
330        if (i > 0) fprintf(fp,", ");
331        fprintf(fp,"jdouble c%d", i);
332        i++;
333      }
334      else if (!strcmp(comp->base_type(globals), "Bool")) {
335        if (i > 0) fprintf(fp,", ");
336        fprintf(fp,"BoolTest::mask c%d", i);
337        i++;
338      }
339    }
340  }
341  // finish line (1) and start line (2)
342  fprintf(fp,")  : ");
343  // generate initializers for constants
344  i = 0;
345  fprintf(fp,"_c%d(c%d)", i, i);
346  for( i = 1; i < num_consts; ++i) {
347    fprintf(fp,", _c%d(c%d)", i, i);
348  }
349  // The body for the constructor is empty
350  fprintf(fp," {}\n");
351}
352
353// ---------------------------------------------------------------------------
354// Utilities to generate format rules for machine operands and instructions
355// ---------------------------------------------------------------------------
356
357// Generate the format rule for condition codes
358static void defineCCodeDump(OperandForm* oper, FILE *fp, int i) {
359  assert(oper != NULL, "what");
360  CondInterface* cond = oper->_interface->is_CondInterface();
361  fprintf(fp, "         if( _c%d == BoolTest::eq ) st->print(\"%s\");\n",i,cond->_equal_format);
362  fprintf(fp, "    else if( _c%d == BoolTest::ne ) st->print(\"%s\");\n",i,cond->_not_equal_format);
363  fprintf(fp, "    else if( _c%d == BoolTest::le ) st->print(\"%s\");\n",i,cond->_less_equal_format);
364  fprintf(fp, "    else if( _c%d == BoolTest::ge ) st->print(\"%s\");\n",i,cond->_greater_equal_format);
365  fprintf(fp, "    else if( _c%d == BoolTest::lt ) st->print(\"%s\");\n",i,cond->_less_format);
366  fprintf(fp, "    else if( _c%d == BoolTest::gt ) st->print(\"%s\");\n",i,cond->_greater_format);
367}
368
369// Output code that dumps constant values, increment "i" if type is constant
370static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i, OperandForm* oper) {
371  if (!strcmp(ideal_type, "ConI")) {
372    fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
373    ++i;
374  }
375  else if (!strcmp(ideal_type, "ConP")) {
376    fprintf(fp,"    _c%d->dump_on(st);\n", i);
377    ++i;
378  }
379  else if (!strcmp(ideal_type, "ConN")) {
380    fprintf(fp,"    _c%d->dump_on(st);\n", i);
381    ++i;
382  }
383  else if (!strcmp(ideal_type, "ConL")) {
384    fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
385    ++i;
386  }
387  else if (!strcmp(ideal_type, "ConF")) {
388    fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
389    ++i;
390  }
391  else if (!strcmp(ideal_type, "ConD")) {
392    fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
393    ++i;
394  }
395  else if (!strcmp(ideal_type, "Bool")) {
396    defineCCodeDump(oper, fp,i);
397    ++i;
398  }
399
400  return i;
401}
402
403// Generate the format rule for an operand
404void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
405  if (!for_c_file) {
406    // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
407    // compile the bodies separately, to cut down on recompilations
408    fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
409    fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
410    return;
411  }
412
413  // Local pointer indicates remaining part of format rule
414  uint  idx = 0;                   // position of operand in match rule
415
416  // Generate internal format function, used when stored locally
417  fprintf(fp, "\n#ifndef PRODUCT\n");
418  fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
419  // Generate the user-defined portion of the format
420  if (oper._format) {
421    if ( oper._format->_strings.count() != 0 ) {
422      // No initialization code for int_format
423
424      // Build the format from the entries in strings and rep_vars
425      const char  *string  = NULL;
426      oper._format->_rep_vars.reset();
427      oper._format->_strings.reset();
428      while ( (string = oper._format->_strings.iter()) != NULL ) {
429        fprintf(fp,"  ");
430
431        // Check if this is a standard string or a replacement variable
432        if ( string != NameList::_signal ) {
433          // Normal string
434          // Pass through to st->print
435          fprintf(fp,"st->print(\"%s\");\n", string);
436        } else {
437          // Replacement variable
438          const char *rep_var = oper._format->_rep_vars.iter();
439          // Check that it is a local name, and an operand
440          const Form* form = oper._localNames[rep_var];
441          if (form == NULL) {
442            globalAD->syntax_err(oper._linenum,
443                                 "\'%s\' not found in format for %s\n", rep_var, oper._ident);
444            assert(form, "replacement variable was not found in local names");
445          }
446          OperandForm *op      = form->is_operand();
447          // Get index if register or constant
448          if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
449            idx  = oper.register_position( globals, rep_var);
450          }
451          else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
452            idx  = oper.constant_position( globals, rep_var);
453          } else {
454            idx = 0;
455          }
456
457          // output invocation of "$..."s format function
458          if ( op != NULL )   op->int_format(fp, globals, idx);
459
460          if ( idx == -1 ) {
461            fprintf(stderr,
462                    "Using a name, %s, that isn't in match rule\n", rep_var);
463            assert( strcmp(op->_ident,"label")==0, "Unimplemented");
464          }
465        } // Done with a replacement variable
466      } // Done with all format strings
467    } else {
468      // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
469      oper.int_format(fp, globals, 0);
470    }
471
472  } else { // oper._format == NULL
473    // Provide a few special case formats where the AD writer cannot.
474    if ( strcmp(oper._ident,"Universe")==0 ) {
475      fprintf(fp, "  st->print(\"$$univ\");\n");
476    }
477    // labelOper::int_format is defined in ad_<...>.cpp
478  }
479  // ALWAYS! Provide a special case output for condition codes.
480  if( oper.is_ideal_bool() ) {
481    defineCCodeDump(&oper, fp,0);
482  }
483  fprintf(fp,"}\n");
484
485  // Generate external format function, when data is stored externally
486  fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
487  // Generate the user-defined portion of the format
488  if (oper._format) {
489    if ( oper._format->_strings.count() != 0 ) {
490
491      // Check for a replacement string "$..."
492      if ( oper._format->_rep_vars.count() != 0 ) {
493        // Initialization code for ext_format
494      }
495
496      // Build the format from the entries in strings and rep_vars
497      const char  *string  = NULL;
498      oper._format->_rep_vars.reset();
499      oper._format->_strings.reset();
500      while ( (string = oper._format->_strings.iter()) != NULL ) {
501        fprintf(fp,"  ");
502
503        // Check if this is a standard string or a replacement variable
504        if ( string != NameList::_signal ) {
505          // Normal string
506          // Pass through to st->print
507          fprintf(fp,"st->print(\"%s\");\n", string);
508        } else {
509          // Replacement variable
510          const char *rep_var = oper._format->_rep_vars.iter();
511         // Check that it is a local name, and an operand
512          const Form* form = oper._localNames[rep_var];
513          if (form == NULL) {
514            globalAD->syntax_err(oper._linenum,
515                                 "\'%s\' not found in format for %s\n", rep_var, oper._ident);
516            assert(form, "replacement variable was not found in local names");
517          }
518          OperandForm *op      = form->is_operand();
519          // Get index if register or constant
520          if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
521            idx  = oper.register_position( globals, rep_var);
522          }
523          else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
524            idx  = oper.constant_position( globals, rep_var);
525          } else {
526            idx = 0;
527          }
528          // output invocation of "$..."s format function
529          if ( op != NULL )   op->ext_format(fp, globals, idx);
530
531          // Lookup the index position of the replacement variable
532          idx      = oper._components.operand_position_format(rep_var);
533          if ( idx == -1 ) {
534            fprintf(stderr,
535                    "Using a name, %s, that isn't in match rule\n", rep_var);
536            assert( strcmp(op->_ident,"label")==0, "Unimplemented");
537          }
538        } // Done with a replacement variable
539      } // Done with all format strings
540
541    } else {
542      // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
543      oper.ext_format(fp, globals, 0);
544    }
545  } else { // oper._format == NULL
546    // Provide a few special case formats where the AD writer cannot.
547    if ( strcmp(oper._ident,"Universe")==0 ) {
548      fprintf(fp, "  st->print(\"$$univ\");\n");
549    }
550    // labelOper::ext_format is defined in ad_<...>.cpp
551  }
552  // ALWAYS! Provide a special case output for condition codes.
553  if( oper.is_ideal_bool() ) {
554    defineCCodeDump(&oper, fp,0);
555  }
556  fprintf(fp, "}\n");
557  fprintf(fp, "#endif\n");
558}
559
560
561// Generate the format rule for an instruction
562void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
563  if (!for_c_file) {
564    // compile the bodies separately, to cut down on recompilations
565    // #ifndef PRODUCT region generated by caller
566    fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
567    return;
568  }
569
570  // Define the format function
571  fprintf(fp, "#ifndef PRODUCT\n");
572  fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
573
574  // Generate the user-defined portion of the format
575  if( inst._format ) {
576    // If there are replacement variables,
577    // Generate index values needed for determining the operand position
578    if( inst._format->_rep_vars.count() )
579      inst.index_temps(fp, globals);
580
581    // Build the format from the entries in strings and rep_vars
582    const char  *string  = NULL;
583    inst._format->_rep_vars.reset();
584    inst._format->_strings.reset();
585    while( (string = inst._format->_strings.iter()) != NULL ) {
586      fprintf(fp,"    ");
587      // Check if this is a standard string or a replacement variable
588      if( string == NameList::_signal ) { // Replacement variable
589        const char* rep_var =  inst._format->_rep_vars.iter();
590        inst.rep_var_format( fp, rep_var);
591      } else if( string == NameList::_signal3 ) { // Replacement variable in raw text
592        const char* rep_var =  inst._format->_rep_vars.iter();
593        const Form *form   = inst._localNames[rep_var];
594        if (form == NULL) {
595          fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
596          assert(false, "ShouldNotReachHere()");
597        }
598        OpClassForm *opc   = form->is_opclass();
599        assert( opc, "replacement variable was not found in local names");
600        // Lookup the index position of the replacement variable
601        int idx  = inst.operand_position_format(rep_var);
602        if ( idx == -1 ) {
603          assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
604          assert( false, "ShouldNotReachHere()");
605        }
606
607        if (inst.is_noninput_operand(idx)) {
608          assert( false, "ShouldNotReachHere()");
609        } else {
610          // Output the format call for this operand
611          fprintf(fp,"opnd_array(%d)",idx);
612        }
613        rep_var =  inst._format->_rep_vars.iter();
614        inst._format->_strings.iter();
615        if ( strcmp(rep_var,"$constant") == 0 && opc->is_operand()) {
616          Form::DataType constant_type = form->is_operand()->is_base_constant(globals);
617          if ( constant_type == Form::idealD ) {
618            fprintf(fp,"->constantD()");
619          } else if ( constant_type == Form::idealF ) {
620            fprintf(fp,"->constantF()");
621          } else if ( constant_type == Form::idealL ) {
622            fprintf(fp,"->constantL()");
623          } else {
624            fprintf(fp,"->constant()");
625          }
626        } else if ( strcmp(rep_var,"$cmpcode") == 0) {
627            fprintf(fp,"->ccode()");
628        } else {
629          assert( false, "ShouldNotReachHere()");
630        }
631      } else if( string == NameList::_signal2 ) // Raw program text
632        fputs(inst._format->_strings.iter(), fp);
633      else
634        fprintf(fp,"st->print(\"%s\");\n", string);
635    } // Done with all format strings
636  } // Done generating the user-defined portion of the format
637
638  // Add call debug info automatically
639  Form::CallType call_type = inst.is_ideal_call();
640  if( call_type != Form::invalid_type ) {
641    switch( call_type ) {
642    case Form::JAVA_DYNAMIC:
643      fprintf(fp,"    _method->print_short_name();\n");
644      break;
645    case Form::JAVA_STATIC:
646      fprintf(fp,"    if( _method ) _method->print_short_name(st); else st->print(\" wrapper for: %%s\", _name);\n");
647      fprintf(fp,"    if( !_method ) dump_trap_args(st);\n");
648      break;
649    case Form::JAVA_COMPILED:
650    case Form::JAVA_INTERP:
651      break;
652    case Form::JAVA_RUNTIME:
653    case Form::JAVA_LEAF:
654    case Form::JAVA_NATIVE:
655      fprintf(fp,"    st->print(\" %%s\", _name);");
656      break;
657    default:
658      assert(0,"ShouldNotReacHere");
659    }
660    fprintf(fp,  "    st->print_cr(\"\");\n" );
661    fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
662    fprintf(fp,  "    st->print(\"        # \");\n" );
663    fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
664  }
665  else if(inst.is_ideal_safepoint()) {
666    fprintf(fp,  "    st->print(\"\");\n" );
667    fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
668    fprintf(fp,  "    st->print(\"        # \");\n" );
669    fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
670  }
671  else if( inst.is_ideal_if() ) {
672    fprintf(fp,  "    st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
673  }
674  else if( inst.is_ideal_mem() ) {
675    // Print out the field name if available to improve readability
676    fprintf(fp,  "    if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
677    fprintf(fp,  "      st->print(\" ! Field \");\n");
678    fprintf(fp,  "      if( ra->C->alias_type(adr_type())->is_volatile() )\n");
679    fprintf(fp,  "        st->print(\" Volatile\");\n");
680    fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->holder()->name()->print_symbol_on(st);\n");
681    fprintf(fp,  "      st->print(\".\");\n");
682    fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->name()->print_symbol_on(st);\n");
683    fprintf(fp,  "    } else\n");
684    // Make sure 'Volatile' gets printed out
685    fprintf(fp,  "    if( ra->C->alias_type(adr_type())->is_volatile() )\n");
686    fprintf(fp,  "      st->print(\" Volatile!\");\n");
687  }
688
689  // Complete the definition of the format function
690  fprintf(fp, "  }\n#endif\n");
691}
692
693static bool is_non_constant(char* x) {
694  // Tells whether the string (part of an operator interface) is non-constant.
695  // Simply detect whether there is an occurrence of a formal parameter,
696  // which will always begin with '$'.
697  return strchr(x, '$') == 0;
698}
699
700void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
701  if (!_pipeline)
702    return;
703
704  fprintf(fp_hpp, "\n");
705  fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
706  fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
707
708  if (_pipeline->_maxcycleused <=
709#ifdef SPARC
710    64
711#else
712    32
713#endif
714      ) {
715    fprintf(fp_hpp, "protected:\n");
716    fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
717    fprintf(fp_hpp, "public:\n");
718    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
719    if (_pipeline->_maxcycleused <= 32)
720      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
721    else {
722      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
723      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
724    }
725    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
726    fprintf(fp_hpp, "    _mask = in._mask;\n");
727    fprintf(fp_hpp, "    return *this;\n");
728    fprintf(fp_hpp, "  }\n\n");
729    fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
730    fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
731    fprintf(fp_hpp, "  }\n\n");
732    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
733    fprintf(fp_hpp, "    _mask <<= n;\n");
734    fprintf(fp_hpp, "    return *this;\n");
735    fprintf(fp_hpp, "  }\n\n");
736    fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
737    fprintf(fp_hpp, "    _mask |= in2._mask;\n");
738    fprintf(fp_hpp, "  }\n\n");
739    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
740    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
741  }
742  else {
743    fprintf(fp_hpp, "protected:\n");
744    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
745    uint l;
746    fprintf(fp_hpp, "  uint ");
747    for (l = 1; l <= masklen; l++)
748      fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
749    fprintf(fp_hpp, "public:\n");
750    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
751    for (l = 1; l <= masklen; l++)
752      fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
753    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
754    for (l = 1; l <= masklen; l++)
755      fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
756    for (l = 1; l <= masklen; l++)
757      fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
758
759    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
760    for (l = 1; l <= masklen; l++)
761      fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
762    fprintf(fp_hpp, "    return *this;\n");
763    fprintf(fp_hpp, "  }\n\n");
764    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
765    fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
766    for (l = 1; l <= masklen; l++)
767      fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
768    fprintf(fp_hpp, "    return out;\n");
769    fprintf(fp_hpp, "  }\n\n");
770    fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
771    fprintf(fp_hpp, "    return (");
772    for (l = 1; l <= masklen; l++)
773      fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
774    fprintf(fp_hpp, ") ? true : false;\n");
775    fprintf(fp_hpp, "  }\n\n");
776    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
777    fprintf(fp_hpp, "    if (n >= 32)\n");
778    fprintf(fp_hpp, "      do {\n       ");
779    for (l = masklen; l > 1; l--)
780      fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
781    fprintf(fp_hpp, " _mask%d = 0;\n", 1);
782    fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
783    fprintf(fp_hpp, "    if (n > 0) {\n");
784    fprintf(fp_hpp, "      uint m = 32 - n;\n");
785    fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
786    fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
787    for (l = 2; l < masklen; l++) {
788      fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
789    }
790    fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
791    fprintf(fp_hpp, "    }\n");
792
793    fprintf(fp_hpp, "    return *this;\n");
794    fprintf(fp_hpp, "  }\n\n");
795    fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
796    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
797    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
798  }
799
800  fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
801  fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
802  fprintf(fp_hpp, "};\n\n");
803
804  uint rescount = 0;
805  const char *resource;
806
807  for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
808      int mask = _pipeline->_resdict[resource]->is_resource()->mask();
809      if ((mask & (mask-1)) == 0)
810        rescount++;
811    }
812
813  fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
814  fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
815  fprintf(fp_hpp, "protected:\n");
816  fprintf(fp_hpp, "  // Mask of used functional units\n");
817  fprintf(fp_hpp, "  uint _used;\n\n");
818  fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
819  fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
820  fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
821  fprintf(fp_hpp, "  bool _multiple;\n\n");
822  fprintf(fp_hpp, "  // Mask of specific used cycles\n");
823  fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
824  fprintf(fp_hpp, "public:\n");
825  fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
826  fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
827  fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
828  fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
829  fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
830  fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
831  fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
832  fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
833  fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
834  fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
835  fprintf(fp_hpp, "  }\n\n");
836  fprintf(fp_hpp, "  void step(uint cycles) {\n");
837  fprintf(fp_hpp, "    _used = 0;\n");
838  fprintf(fp_hpp, "    _mask <<= cycles;\n");
839  fprintf(fp_hpp, "  }\n\n");
840  fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
841  fprintf(fp_hpp, "};\n\n");
842
843  fprintf(fp_hpp, "// Pipeline_Use Class\n");
844  fprintf(fp_hpp, "class Pipeline_Use {\n");
845  fprintf(fp_hpp, "protected:\n");
846  fprintf(fp_hpp, "  // These resources can be used\n");
847  fprintf(fp_hpp, "  uint _resources_used;\n\n");
848  fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
849  fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
850  fprintf(fp_hpp, "  // Number of elements\n");
851  fprintf(fp_hpp, "  uint _count;\n\n");
852  fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
853  fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
854  fprintf(fp_hpp, "public:\n");
855  fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
856  fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
857  fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
858  fprintf(fp_hpp, "  , _count(count)\n");
859  fprintf(fp_hpp, "  , _elements(elements)\n");
860  fprintf(fp_hpp, "  {}\n\n");
861  fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
862  fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
863  fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
864  fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
865  fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
866  fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
867  fprintf(fp_hpp, "  void reset() {\n");
868  fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
869  fprintf(fp_hpp, "  };\n\n");
870  fprintf(fp_hpp, "  void step(uint cycles) {\n");
871  fprintf(fp_hpp, "    reset();\n");
872  fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
873    rescount);
874  fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
875  fprintf(fp_hpp, "  };\n\n");
876  fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
877  fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
878    rescount);
879  fprintf(fp_hpp, "  friend class Pipeline;\n");
880  fprintf(fp_hpp, "};\n\n");
881
882  fprintf(fp_hpp, "// Pipeline Class\n");
883  fprintf(fp_hpp, "class Pipeline {\n");
884  fprintf(fp_hpp, "public:\n");
885
886  fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
887    _pipeline ? "true" : "false" );
888
889  assert( _pipeline->_maxInstrsPerBundle &&
890        ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
891          _pipeline->_instrFetchUnitSize &&
892          _pipeline->_instrFetchUnits,
893    "unspecified pipeline architecture units");
894
895  uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
896
897  fprintf(fp_hpp, "  enum {\n");
898  fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
899    _pipeline->_variableSizeInstrs ? 1 : 0);
900  fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
901    _pipeline->_variableSizeInstrs ? 0 : 1);
902  fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
903    _pipeline->_branchHasDelaySlot ? 1 : 0);
904  fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
905    _pipeline->_maxInstrsPerBundle);
906  fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
907    _pipeline->_maxBundlesPerCycle);
908  fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
909    _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
910  fprintf(fp_hpp, "  };\n\n");
911
912  fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
913    _pipeline->_instrUnitSize != 0 ? "true" : "false" );
914  if( _pipeline->_bundleUnitSize != 0 )
915    if( _pipeline->_instrUnitSize != 0 )
916      fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
917    else
918      fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
919  else
920    fprintf(fp_hpp, "// Bundling is not supported\n\n");
921  if( _pipeline->_instrUnitSize != 0 )
922    fprintf(fp_hpp, "  // Size of an instruction\n");
923  else
924    fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
925  fprintf(fp_hpp, "  static uint instr_unit_size() {");
926  if( _pipeline->_instrUnitSize == 0 )
927    fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
928  fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
929
930  if( _pipeline->_bundleUnitSize != 0 )
931    fprintf(fp_hpp, "  // Size of a bundle\n");
932  else
933    fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
934  fprintf(fp_hpp, "  static uint bundle_unit_size() {");
935  if( _pipeline->_bundleUnitSize == 0 )
936    fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
937  fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
938
939  fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
940    _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
941
942  fprintf(fp_hpp, "private:\n");
943  fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
944  fprintf(fp_hpp, "\n");
945  fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
946  fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
947  fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
948  fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
949  fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
950  fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
951  fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
952  fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
953  fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
954  fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
955  fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
956  fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
957  fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
958  fprintf(fp_hpp, "\n");
959  fprintf(fp_hpp, "public:\n");
960  fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
961  fprintf(fp_hpp, "           uint                            count,\n");
962  fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
963  fprintf(fp_hpp, "           uint                            fixed_latency,\n");
964  fprintf(fp_hpp, "           uint                            instruction_count,\n");
965  fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
966  fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
967  fprintf(fp_hpp, "           bool                            force_serialization,\n");
968  fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
969  fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
970  fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
971  fprintf(fp_hpp, "           uint                    * const cycles,\n");
972  fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
973  fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
974  fprintf(fp_hpp, "  , _read_stage_count(count)\n");
975  fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
976  fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
977  fprintf(fp_hpp, "  , _read_stages(dst)\n");
978  fprintf(fp_hpp, "  , _resource_stage(stage)\n");
979  fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
980  fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
981  fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
982  fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
983  fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
984  fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
985  fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
986  fprintf(fp_hpp, "  {};\n");
987  fprintf(fp_hpp, "\n");
988  fprintf(fp_hpp, "  uint writeStage() const {\n");
989  fprintf(fp_hpp, "    return (_write_stage);\n");
990  fprintf(fp_hpp, "  }\n");
991  fprintf(fp_hpp, "\n");
992  fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
993  fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
994  fprintf(fp_hpp, "  }\n\n");
995  fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
996  fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
997  fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
998  fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
999  fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
1000  fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
1001  fprintf(fp_hpp, "  uint fixedLatency() const {\n");
1002  fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
1003  fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
1004  fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
1005  fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
1006  fprintf(fp_hpp, "    return (_resource_use); }\n\n");
1007  fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
1008  fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
1009  fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
1010  fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
1011  fprintf(fp_hpp, "  uint instructionCount() const {\n");
1012  fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
1013  fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
1014  fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
1015  fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
1016  fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
1017  fprintf(fp_hpp, "  bool forceSerialization() const {\n");
1018  fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
1019  fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
1020  fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
1021  fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
1022  fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
1023  fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
1024  fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
1025  fprintf(fp_hpp, "#endif\n");
1026  fprintf(fp_hpp, "};\n\n");
1027
1028  fprintf(fp_hpp, "// Bundle class\n");
1029  fprintf(fp_hpp, "class Bundle {\n");
1030
1031  uint mshift = 0;
1032  for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
1033    mshift++;
1034
1035  uint rshift = rescount;
1036
1037  fprintf(fp_hpp, "protected:\n");
1038  fprintf(fp_hpp, "  enum {\n");
1039  fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
1040  fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
1041  fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
1042  fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
1043  fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
1044  fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
1045  fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
1046  fprintf(fp_hpp, "\n");
1047  fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
1048  fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
1049  fprintf(fp_hpp, "  };\n\n");
1050  fprintf(fp_hpp, "  uint _flags          : 3,\n");
1051  fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
1052  fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
1053  fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
1054  fprintf(fp_hpp, "public:\n");
1055  fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
1056  fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
1057  fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
1058  fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
1059  fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
1060
1061  fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
1062  fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
1063  fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
1064  fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
1065
1066  fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
1067  fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
1068  fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
1069  fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
1070  fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
1071  fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
1072
1073  fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1074  fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1075  fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1076  fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1077  fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1078  fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1079  fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1080  fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1081
1082  fprintf(fp_hpp, "  enum {\n");
1083  fprintf(fp_hpp, "    _nop_count = %d\n",
1084    _pipeline->_nopcnt);
1085  fprintf(fp_hpp, "  };\n\n");
1086  fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
1087    _pipeline->_nopcnt);
1088  fprintf(fp_hpp, "#ifndef PRODUCT\n");
1089  fprintf(fp_hpp, "  void dump() const;\n");
1090  fprintf(fp_hpp, "#endif\n");
1091  fprintf(fp_hpp, "};\n\n");
1092
1093//  const char *classname;
1094//  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1095//    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1096//    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1097//  }
1098}
1099
1100//------------------------------declareClasses---------------------------------
1101// Construct the class hierarchy of MachNode classes from the instruction &
1102// operand lists
1103void ArchDesc::declareClasses(FILE *fp) {
1104
1105  // Declare an array containing the machine register names, strings.
1106  declareRegNames(fp, _register);
1107
1108  // Declare an array containing the machine register encoding values
1109  declareRegEncodes(fp, _register);
1110
1111  // Generate declarations for the total number of operands
1112  fprintf(fp,"\n");
1113  fprintf(fp,"// Total number of operands defined in architecture definition\n");
1114  int num_operands = 0;
1115  OperandForm *op;
1116  for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1117    // Ensure this is a machine-world instruction
1118    if (op->ideal_only()) continue;
1119
1120    ++num_operands;
1121  }
1122  int first_operand_class = num_operands;
1123  OpClassForm *opc;
1124  for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1125    // Ensure this is a machine-world instruction
1126    if (opc->ideal_only()) continue;
1127
1128    ++num_operands;
1129  }
1130  fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
1131  fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
1132  fprintf(fp,"\n");
1133  // Generate declarations for the total number of instructions
1134  fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1135  fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
1136
1137
1138  // Generate Machine Classes for each operand defined in AD file
1139  fprintf(fp,"\n");
1140  fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1141  // Iterate through all operands
1142  _operands.reset();
1143  OperandForm *oper;
1144  for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1145    // Ensure this is a machine-world instruction
1146    if (oper->ideal_only() ) continue;
1147    // The declaration of labelOper is in machine-independent file: machnode
1148    if ( strcmp(oper->_ident,"label")  == 0 ) continue;
1149    // The declaration of methodOper is in machine-independent file: machnode
1150    if ( strcmp(oper->_ident,"method") == 0 ) continue;
1151
1152    // Build class definition for this operand
1153    fprintf(fp,"\n");
1154    fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1155    fprintf(fp,"private:\n");
1156    // Operand definitions that depend upon number of input edges
1157    {
1158      uint num_edges = oper->num_edges(_globalNames);
1159      if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1160        fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
1161              num_edges );
1162      }
1163      if( num_edges > 0 ) {
1164        in_RegMask(fp);
1165      }
1166    }
1167
1168    // Support storing constants inside the MachOper
1169    declareConstStorage(fp,_globalNames,oper);
1170
1171    // Support storage of the condition codes
1172    if( oper->is_ideal_bool() ) {
1173      fprintf(fp,"  virtual int ccode() const { \n");
1174      fprintf(fp,"    switch (_c0) {\n");
1175      fprintf(fp,"    case  BoolTest::eq : return equal();\n");
1176      fprintf(fp,"    case  BoolTest::gt : return greater();\n");
1177      fprintf(fp,"    case  BoolTest::lt : return less();\n");
1178      fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
1179      fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
1180      fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
1181      fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
1182      fprintf(fp,"    }\n");
1183      fprintf(fp,"  };\n");
1184    }
1185
1186    // Support storage of the condition codes
1187    if( oper->is_ideal_bool() ) {
1188      fprintf(fp,"  virtual void negate() { \n");
1189      fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1190      fprintf(fp,"  };\n");
1191    }
1192
1193    // Declare constructor.
1194    // Parameters start with condition code, then all other constants
1195    //
1196    // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1197    // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1198    //
1199    Form::DataType constant_type = oper->simple_type(_globalNames);
1200    defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1201                      oper->_components, oper->is_ideal_bool(),
1202                      constant_type, _globalNames);
1203
1204    // Clone function
1205    fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
1206
1207    // Support setting a spill offset into a constant operand.
1208    // We only support setting an 'int' offset, while in the
1209    // LP64 build spill offsets are added with an AddP which
1210    // requires a long constant.  Thus we don't support spilling
1211    // in frames larger than 4Gig.
1212    if( oper->has_conI(_globalNames) ||
1213        oper->has_conL(_globalNames) )
1214      fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1215
1216    // virtual functions for encoding and format
1217    //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
1218    //            (oper->_encrule)?(oper->_encrule->_encrule):"");
1219    // Check the interface type, and generate the correct query functions
1220    // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1221
1222    fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
1223            machOperEnum(oper->_ident));
1224
1225    // virtual function to look up ideal return type of machine instruction
1226    //
1227    // (1)  virtual const Type    *type() const { return .....; }
1228    //
1229    if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1230        (oper->_matrule->_rChild == NULL)) {
1231      unsigned int position = 0;
1232      const char  *opret, *opname, *optype;
1233      oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1234      fprintf(fp,"  virtual const Type *type() const {");
1235      const char *type = getIdealType(optype);
1236      if( type != NULL ) {
1237        Form::DataType data_type = oper->is_base_constant(_globalNames);
1238        // Check if we are an ideal pointer type
1239        if( data_type == Form::idealP || data_type == Form::idealN ) {
1240          // Return the ideal type we already have: <TypePtr *>
1241          fprintf(fp," return _c0;");
1242        } else {
1243          // Return the appropriate bottom type
1244          fprintf(fp," return %s;", getIdealType(optype));
1245        }
1246      } else {
1247        fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1248      }
1249      fprintf(fp," }\n");
1250    } else {
1251      // Check for user-defined stack slots, based upon sRegX
1252      Form::DataType data_type = oper->is_user_name_for_sReg();
1253      if( data_type != Form::none ){
1254        const char *type = NULL;
1255        switch( data_type ) {
1256        case Form::idealI: type = "TypeInt::INT";   break;
1257        case Form::idealP: type = "TypePtr::BOTTOM";break;
1258        case Form::idealF: type = "Type::FLOAT";    break;
1259        case Form::idealD: type = "Type::DOUBLE";   break;
1260        case Form::idealL: type = "TypeLong::LONG"; break;
1261        case Form::none: // fall through
1262        default:
1263          assert( false, "No support for this type of stackSlot");
1264        }
1265        fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
1266      }
1267    }
1268
1269
1270    //
1271    // virtual functions for defining the encoding interface.
1272    //
1273    // Access the linearized ideal register mask,
1274    // map to physical register encoding
1275    if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1276      // Just use the default virtual 'reg' call
1277    } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1278      // Special handling for operand 'sReg', a Stack Slot Register.
1279      // Map linearized ideal register mask to stack slot number
1280      fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1281      fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1282      fprintf(fp,"  }\n");
1283      fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1284      fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1285      fprintf(fp,"  }\n");
1286    }
1287
1288    // Output the operand specific access functions used by an enc_class
1289    // These are only defined when we want to override the default virtual func
1290    if (oper->_interface != NULL) {
1291      fprintf(fp,"\n");
1292      // Check if it is a Memory Interface
1293      if ( oper->_interface->is_MemInterface() != NULL ) {
1294        MemInterface *mem_interface = oper->_interface->is_MemInterface();
1295        const char *base = mem_interface->_base;
1296        if( base != NULL ) {
1297          define_oper_interface(fp, *oper, _globalNames, "base", base);
1298        }
1299        char *index = mem_interface->_index;
1300        if( index != NULL ) {
1301          define_oper_interface(fp, *oper, _globalNames, "index", index);
1302        }
1303        const char *scale = mem_interface->_scale;
1304        if( scale != NULL ) {
1305          define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1306        }
1307        const char *disp = mem_interface->_disp;
1308        if( disp != NULL ) {
1309          define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1310          oper->disp_is_oop(fp, _globalNames);
1311        }
1312        if( oper->stack_slots_only(_globalNames) ) {
1313          // should not call this:
1314          fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
1315        } else if ( disp != NULL ) {
1316          define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1317        }
1318      } // end Memory Interface
1319      // Check if it is a Conditional Interface
1320      else if (oper->_interface->is_CondInterface() != NULL) {
1321        CondInterface *cInterface = oper->_interface->is_CondInterface();
1322        const char *equal = cInterface->_equal;
1323        if( equal != NULL ) {
1324          define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1325        }
1326        const char *not_equal = cInterface->_not_equal;
1327        if( not_equal != NULL ) {
1328          define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1329        }
1330        const char *less = cInterface->_less;
1331        if( less != NULL ) {
1332          define_oper_interface(fp, *oper, _globalNames, "less", less);
1333        }
1334        const char *greater_equal = cInterface->_greater_equal;
1335        if( greater_equal != NULL ) {
1336          define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1337        }
1338        const char *less_equal = cInterface->_less_equal;
1339        if( less_equal != NULL ) {
1340          define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1341        }
1342        const char *greater = cInterface->_greater;
1343        if( greater != NULL ) {
1344          define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1345        }
1346      } // end Conditional Interface
1347      // Check if it is a Constant Interface
1348      else if (oper->_interface->is_ConstInterface() != NULL ) {
1349        assert( oper->num_consts(_globalNames) == 1,
1350                "Must have one constant when using CONST_INTER encoding");
1351        if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1352          // Access the locally stored constant
1353          fprintf(fp,"  virtual intptr_t       constant() const {");
1354          fprintf(fp,   " return (intptr_t)_c0;");
1355          fprintf(fp,"  }\n");
1356        }
1357        else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1358          // Access the locally stored constant
1359          fprintf(fp,"  virtual intptr_t       constant() const {");
1360          fprintf(fp,   " return _c0->get_con();");
1361          fprintf(fp, " }\n");
1362          // Generate query to determine if this pointer is an oop
1363          fprintf(fp,"  virtual bool           constant_is_oop() const {");
1364          fprintf(fp,   " return _c0->isa_oop_ptr();");
1365          fprintf(fp, " }\n");
1366        }
1367        else if (!strcmp(oper->ideal_type(_globalNames), "ConN")) {
1368          // Access the locally stored constant
1369          fprintf(fp,"  virtual intptr_t       constant() const {");
1370          fprintf(fp,   " return _c0->get_ptrtype()->get_con();");
1371          fprintf(fp, " }\n");
1372          // Generate query to determine if this pointer is an oop
1373          fprintf(fp,"  virtual bool           constant_is_oop() const {");
1374          fprintf(fp,   " return _c0->get_ptrtype()->isa_oop_ptr();");
1375          fprintf(fp, " }\n");
1376        }
1377        else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1378          fprintf(fp,"  virtual intptr_t       constant() const {");
1379          // We don't support addressing modes with > 4Gig offsets.
1380          // Truncate to int.
1381          fprintf(fp,   "  return (intptr_t)_c0;");
1382          fprintf(fp, " }\n");
1383          fprintf(fp,"  virtual jlong          constantL() const {");
1384          fprintf(fp,   " return _c0;");
1385          fprintf(fp, " }\n");
1386        }
1387        else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1388          fprintf(fp,"  virtual intptr_t       constant() const {");
1389          fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1390          fprintf(fp, " }\n");
1391          fprintf(fp,"  virtual jfloat         constantF() const {");
1392          fprintf(fp,   " return (jfloat)_c0;");
1393          fprintf(fp, " }\n");
1394        }
1395        else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1396          fprintf(fp,"  virtual intptr_t       constant() const {");
1397          fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1398          fprintf(fp, " }\n");
1399          fprintf(fp,"  virtual jdouble        constantD() const {");
1400          fprintf(fp,   " return _c0;");
1401          fprintf(fp, " }\n");
1402        }
1403      }
1404      else if (oper->_interface->is_RegInterface() != NULL) {
1405        // make sure that a fixed format string isn't used for an
1406        // operand which might be assiged to multiple registers.
1407        // Otherwise the opto assembly output could be misleading.
1408        if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1409          syntax_err(oper->_linenum,
1410                     "Only bound registers can have fixed formats: %s\n",
1411                     oper->_ident);
1412        }
1413      }
1414      else {
1415        assert( false, "ShouldNotReachHere();");
1416      }
1417    }
1418
1419    fprintf(fp,"\n");
1420    // // Currently all XXXOper::hash() methods are identical (990820)
1421    // declare_hash(fp);
1422    // // Currently all XXXOper::Cmp() methods are identical (990820)
1423    // declare_cmp(fp);
1424
1425    // Do not place dump_spec() and Name() into PRODUCT code
1426    // int_format and ext_format are not needed in PRODUCT code either
1427    fprintf(fp, "#ifndef PRODUCT\n");
1428
1429    // Declare int_format() and ext_format()
1430    gen_oper_format(fp, _globalNames, *oper);
1431
1432    // Machine independent print functionality for debugging
1433    // IF we have constants, create a dump_spec function for the derived class
1434    //
1435    // (1)  virtual void           dump_spec() const {
1436    // (2)    st->print("#%d", _c#);        // Constant != ConP
1437    //  OR    _c#->dump_on(st);             // Type ConP
1438    //  ...
1439    // (3)  }
1440    uint num_consts = oper->num_consts(_globalNames);
1441    if( num_consts > 0 ) {
1442      // line (1)
1443      fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
1444      // generate format string for st->print
1445      // Iterate over the component list & spit out the right thing
1446      uint i = 0;
1447      const char *type = oper->ideal_type(_globalNames);
1448      Component  *comp;
1449      oper->_components.reset();
1450      if ((comp = oper->_components.iter()) == NULL) {
1451        assert(num_consts == 1, "Bad component list detected.\n");
1452        i = dump_spec_constant( fp, type, i, oper );
1453        // Check that type actually matched
1454        assert( i != 0, "Non-constant operand lacks component list.");
1455      } // end if NULL
1456      else {
1457        // line (2)
1458        // dump all components
1459        oper->_components.reset();
1460        while((comp = oper->_components.iter()) != NULL) {
1461          type = comp->base_type(_globalNames);
1462          i = dump_spec_constant( fp, type, i, NULL );
1463        }
1464      }
1465      // finish line (3)
1466      fprintf(fp,"  }\n");
1467    }
1468
1469    fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1470            oper->_ident);
1471
1472    fprintf(fp,"#endif\n");
1473
1474    // Close definition of this XxxMachOper
1475    fprintf(fp,"};\n");
1476  }
1477
1478
1479  // Generate Machine Classes for each instruction defined in AD file
1480  fprintf(fp,"\n");
1481  fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1482  declare_pipe_classes(fp);
1483
1484  // Generate Machine Classes for each instruction defined in AD file
1485  fprintf(fp,"\n");
1486  fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1487  _instructions.reset();
1488  InstructForm *instr;
1489  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1490    // Ensure this is a machine-world instruction
1491    if ( instr->ideal_only() ) continue;
1492
1493    // Build class definition for this instruction
1494    fprintf(fp,"\n");
1495    fprintf(fp,"class %sNode : public %s { \n",
1496            instr->_ident, instr->mach_base_class(_globalNames) );
1497    fprintf(fp,"private:\n");
1498    fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1499    if ( instr->is_ideal_jump() ) {
1500      fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
1501    }
1502    fprintf(fp,"public:\n");
1503    fprintf(fp,"  MachOper *opnd_array(uint operand_index) const { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); return _opnd_array[operand_index]; }\n");
1504    fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); _opnd_array[operand_index] = operand; }\n");
1505    fprintf(fp,"private:\n");
1506    if ( instr->is_ideal_jump() ) {
1507      fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
1508      fprintf(fp,"                                          _index2label.at_put_grow(index_num, blockLabel);}\n");
1509    }
1510    if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1511      fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
1512    }
1513
1514    out_RegMask(fp);                      // output register mask
1515    fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
1516            instr->_ident);
1517
1518    // If this instruction contains a labelOper
1519    // Declare Node::methods that set operand Label's contents
1520    int label_position = instr->label_position();
1521    if( label_position != -1 ) {
1522      // Set the label, stored in labelOper::_branch_label
1523      fprintf(fp,"  virtual void           label_set( Label& label, uint block_num );\n");
1524    }
1525
1526    // If this instruction contains a methodOper
1527    // Declare Node::methods that set operand method's contents
1528    int method_position = instr->method_position();
1529    if( method_position != -1 ) {
1530      // Set the address method, stored in methodOper::_method
1531      fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
1532    }
1533
1534    // virtual functions for attributes
1535    //
1536    // Each instruction attribute results in a virtual call of same name.
1537    // The ins_cost is not handled here.
1538    Attribute *attr = instr->_attribs;
1539    bool is_pc_relative = false;
1540    while (attr != NULL) {
1541      if (strcmp(attr->_ident,"ins_cost") &&
1542          strcmp(attr->_ident,"ins_pc_relative")) {
1543        fprintf(fp,"  int             %s() const { return %s; }\n",
1544                attr->_ident, attr->_val);
1545      }
1546      // Check value for ins_pc_relative, and if it is true (1), set the flag
1547      if (!strcmp(attr->_ident,"ins_pc_relative") && attr->int_val(*this) != 0)
1548        is_pc_relative = true;
1549      attr = (Attribute *)attr->_next;
1550    }
1551
1552    // virtual functions for encode and format
1553
1554    // Virtual function for evaluating the constant.
1555    if (instr->is_mach_constant()) {
1556      fprintf(fp,"  virtual void           eval_constant(Compile* C);\n");
1557    }
1558
1559    // Output the opcode function and the encode function here using the
1560    // encoding class information in the _insencode slot.
1561    if ( instr->_insencode ) {
1562      fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1563    }
1564
1565    // virtual function for getting the size of an instruction
1566    if ( instr->_size ) {
1567      fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
1568    }
1569
1570    // Return the top-level ideal opcode.
1571    // Use MachNode::ideal_Opcode() for nodes based on MachNode class
1572    // if the ideal_Opcode == Op_Node.
1573    if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
1574         strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1575      fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
1576            instr->ideal_Opcode(_globalNames) );
1577    }
1578
1579    // Allow machine-independent optimization, invert the sense of the IF test
1580    if( instr->is_ideal_if() ) {
1581      fprintf(fp,"  virtual void           negate() { \n");
1582      // Identify which operand contains the negate(able) ideal condition code
1583      int   idx = 0;
1584      instr->_components.reset();
1585      for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1586        // Check that component is an operand
1587        Form *form = (Form*)_globalNames[comp->_type];
1588        OperandForm *opForm = form ? form->is_operand() : NULL;
1589        if( opForm == NULL ) continue;
1590
1591        // Lookup the position of the operand in the instruction.
1592        if( opForm->is_ideal_bool() ) {
1593          idx = instr->operand_position(comp->_name, comp->_usedef);
1594          assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1595          break;
1596        }
1597      }
1598      fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
1599      fprintf(fp,"    _prob = 1.0f - _prob;\n");
1600      fprintf(fp,"  };\n");
1601    }
1602
1603
1604    // Identify which input register matches the input register.
1605    uint  matching_input = instr->two_address(_globalNames);
1606
1607    // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1608    if( matching_input != 0 ) {
1609      fprintf(fp,"  virtual uint           two_adr() const  ");
1610      fprintf(fp,"{ return oper_input_base()");
1611      for( uint i = 2; i <= matching_input; i++ )
1612        fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1613      fprintf(fp,"; }\n");
1614    }
1615
1616    // Declare cisc_version, if applicable
1617    //   MachNode *cisc_version( int offset /* ,... */ );
1618    instr->declare_cisc_version(*this, fp);
1619
1620    // If there is an explicit peephole rule, build it
1621    if ( instr->peepholes() != NULL ) {
1622      fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
1623    }
1624
1625    // Output the declaration for number of relocation entries
1626    if ( instr->reloc(_globalNames) != 0 ) {
1627      fprintf(fp,"  virtual int            reloc()   const;\n");
1628    }
1629
1630    if (instr->alignment() != 1) {
1631      fprintf(fp,"  virtual int            alignment_required()   const { return %d; }\n", instr->alignment());
1632      fprintf(fp,"  virtual int            compute_padding(int current_offset)   const;\n");
1633    }
1634
1635    // Starting point for inputs matcher wants.
1636    // Use MachNode::oper_input_base() for nodes based on MachNode class
1637    // if the base == 1.
1638    if ( instr->oper_input_base(_globalNames) != 1 ||
1639         strcmp("MachNode", instr->mach_base_class(_globalNames)) != 0 ) {
1640      fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
1641            instr->oper_input_base(_globalNames));
1642    }
1643
1644    // Make the constructor and following methods 'public:'
1645    fprintf(fp,"public:\n");
1646
1647    // Constructor
1648    if ( instr->is_ideal_jump() ) {
1649      fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1650    } else {
1651      fprintf(fp,"  %sNode() { ", instr->_ident);
1652      if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1653        fprintf(fp,"_cisc_RegMask = NULL; ");
1654      }
1655    }
1656
1657    fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1658
1659    bool node_flags_set = false;
1660    // flag: if this instruction matches an ideal 'Goto' node
1661    if ( instr->is_ideal_goto() ) {
1662      fprintf(fp,"init_flags(Flag_is_Goto");
1663      node_flags_set = true;
1664    }
1665
1666    // flag: if this instruction matches an ideal 'Copy*' node
1667    if ( instr->is_ideal_copy() != 0 ) {
1668      if ( node_flags_set ) {
1669        fprintf(fp," | Flag_is_Copy");
1670      } else {
1671        fprintf(fp,"init_flags(Flag_is_Copy");
1672        node_flags_set = true;
1673      }
1674    }
1675
1676    // Is an instruction is a constant?  If so, get its type
1677    Form::DataType  data_type;
1678    const char     *opType = NULL;
1679    const char     *result = NULL;
1680    data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
1681    // Check if this instruction is a constant
1682    if ( data_type != Form::none ) {
1683      if ( node_flags_set ) {
1684        fprintf(fp," | Flag_is_Con");
1685      } else {
1686        fprintf(fp,"init_flags(Flag_is_Con");
1687        node_flags_set = true;
1688      }
1689    }
1690
1691    // flag: if instruction matches 'If' | 'Goto' | 'CountedLoopEnd | 'Jump'
1692    if ( instr->is_ideal_branch() ) {
1693      if ( node_flags_set ) {
1694        fprintf(fp," | Flag_is_Branch");
1695      } else {
1696        fprintf(fp,"init_flags(Flag_is_Branch");
1697        node_flags_set = true;
1698      }
1699    }
1700
1701    // flag: if this instruction is cisc alternate
1702    if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1703      if ( node_flags_set ) {
1704        fprintf(fp," | Flag_is_cisc_alternate");
1705      } else {
1706        fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1707        node_flags_set = true;
1708      }
1709    }
1710
1711    // flag: if this instruction is pc relative
1712    if ( is_pc_relative ) {
1713      if ( node_flags_set ) {
1714        fprintf(fp," | Flag_is_pc_relative");
1715      } else {
1716        fprintf(fp,"init_flags(Flag_is_pc_relative");
1717        node_flags_set = true;
1718      }
1719    }
1720
1721    // flag: if this instruction has short branch form
1722    if ( instr->has_short_branch_form() ) {
1723      if ( node_flags_set ) {
1724        fprintf(fp," | Flag_may_be_short_branch");
1725      } else {
1726        fprintf(fp,"init_flags(Flag_may_be_short_branch");
1727        node_flags_set = true;
1728      }
1729    }
1730
1731    // Check if machine instructions that USE memory, but do not DEF memory,
1732    // depend upon a node that defines memory in machine-independent graph.
1733    if ( instr->needs_anti_dependence_check(_globalNames) ) {
1734      if ( node_flags_set ) {
1735        fprintf(fp," | Flag_needs_anti_dependence_check");
1736      } else {
1737        fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1738        node_flags_set = true;
1739      }
1740    }
1741
1742    if ( node_flags_set ) {
1743      fprintf(fp,"); ");
1744    }
1745
1746    if (instr->is_ideal_unlock() || instr->is_ideal_call_leaf()) {
1747      fprintf(fp,"clear_flag(Flag_is_safepoint_node); ");
1748    }
1749
1750    fprintf(fp,"}\n");
1751
1752    // size_of, used by base class's clone to obtain the correct size.
1753    fprintf(fp,"  virtual uint           size_of() const {");
1754    fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
1755    fprintf(fp, " }\n");
1756
1757    // Virtual methods which are only generated to override base class
1758    if( instr->expands() || instr->needs_projections() ||
1759        instr->has_temps() ||
1760        instr->is_mach_constant() ||
1761        instr->_matrule != NULL &&
1762        instr->num_opnds() != instr->num_unique_opnds() ) {
1763      fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list, Node* mem);\n");
1764    }
1765
1766    if (instr->is_pinned(_globalNames)) {
1767      fprintf(fp,"  virtual bool           pinned() const { return ");
1768      if (instr->is_parm(_globalNames)) {
1769        fprintf(fp,"_in[0]->pinned();");
1770      } else {
1771        fprintf(fp,"true;");
1772      }
1773      fprintf(fp," }\n");
1774    }
1775    if (instr->is_projection(_globalNames)) {
1776      fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
1777    }
1778    if ( instr->num_post_match_opnds() != 0
1779         || instr->is_chain_of_constant(_globalNames) ) {
1780      fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
1781    }
1782    if ( instr->rematerialize(_globalNames, get_registers()) ) {
1783      fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
1784    }
1785
1786    // Declare short branch methods, if applicable
1787    instr->declare_short_branch_methods(fp);
1788
1789    // See if there is an "ins_pipe" declaration for this instruction
1790    if (instr->_ins_pipe) {
1791      fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
1792      fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
1793    }
1794
1795    // Generate virtual function for MachNodeX::bottom_type when necessary
1796    //
1797    // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
1798    // or else alias analysis on the matched graph may produce bad code.
1799    // Moreover, the aliasing decisions made on machine-node graph must be
1800    // no less accurate than those made on the ideal graph, or else the graph
1801    // may fail to schedule.  (Reason:  Memory ops which are reordered in
1802    // the ideal graph might look interdependent in the machine graph,
1803    // thereby removing degrees of scheduling freedom that the optimizer
1804    // assumed would be available.)
1805    //
1806    // %%% We should handle many of these cases with an explicit ADL clause:
1807    // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1808    if( data_type != Form::none ) {
1809      // A constant's bottom_type returns a Type containing its constant value
1810
1811      // !!!!!
1812      // Convert all ints, floats, ... to machine-independent TypeXs
1813      // as is done for pointers
1814      //
1815      // Construct appropriate constant type containing the constant value.
1816      fprintf(fp,"  virtual const class Type *bottom_type() const{\n");
1817      switch( data_type ) {
1818      case Form::idealI:
1819        fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
1820        break;
1821      case Form::idealP:
1822      case Form::idealN:
1823        fprintf(fp,"    return  opnd_array(1)->type();\n");
1824        break;
1825      case Form::idealD:
1826        fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
1827        break;
1828      case Form::idealF:
1829        fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
1830        break;
1831      case Form::idealL:
1832        fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
1833        break;
1834      default:
1835        assert( false, "Unimplemented()" );
1836        break;
1837      }
1838      fprintf(fp,"  };\n");
1839    }
1840/*    else if ( instr->_matrule && instr->_matrule->_rChild &&
1841        (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1842        || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1843      // !!!!! !!!!!
1844      // Provide explicit bottom type for conversions to int
1845      // On Intel the result operand is a stackSlot, untyped.
1846      fprintf(fp,"  virtual const class Type *bottom_type() const{");
1847      fprintf(fp,   " return  TypeInt::INT;");
1848      fprintf(fp, " };\n");
1849    }*/
1850    else if( instr->is_ideal_copy() &&
1851              !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1852      // !!!!!
1853      // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
1854      fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1855    }
1856    else if( instr->is_ideal_loadPC() ) {
1857      // LoadPCNode provides the return address of a call to native code.
1858      // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1859      // since it is a pointer to an internal VM location and must have a zero offset.
1860      // Allocation detects derived pointers, in part, by their non-zero offsets.
1861      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1862    }
1863    else if( instr->is_ideal_box() ) {
1864      // BoxNode provides the address of a stack slot.
1865      // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1866      // This prevent s insert_anti_dependencies from complaining. It will
1867      // complain if it see that the pointer base is TypePtr::BOTTOM since
1868      // it doesn't understand what that might alias.
1869      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1870    }
1871    else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1872      int offset = 1;
1873      // Special special hack to see if the Cmp? has been incorporated in the conditional move
1874      MatchNode *rl = instr->_matrule->_rChild->_lChild;
1875      if( rl && !strcmp(rl->_opType, "Binary") ) {
1876          MatchNode *rlr = rl->_rChild;
1877          if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1878            offset = 2;
1879      }
1880      // Special hack for ideal CMoveP; ideal type depends on inputs
1881      fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1882        offset, offset+1, offset+1);
1883    }
1884    else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveN") ) {
1885      int offset = 1;
1886      // Special special hack to see if the Cmp? has been incorporated in the conditional move
1887      MatchNode *rl = instr->_matrule->_rChild->_lChild;
1888      if( rl && !strcmp(rl->_opType, "Binary") ) {
1889          MatchNode *rlr = rl->_rChild;
1890          if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1891            offset = 2;
1892      }
1893      // Special hack for ideal CMoveN; ideal type depends on inputs
1894      fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveN\n",
1895        offset, offset+1, offset+1);
1896    }
1897    else if (instr->is_tls_instruction()) {
1898      // Special hack for tlsLoadP
1899      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1900    }
1901    else if ( instr->is_ideal_if() ) {
1902      fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1903    }
1904    else if ( instr->is_ideal_membar() ) {
1905      fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1906    }
1907
1908    // Check where 'ideal_type' must be customized
1909    /*
1910    if ( instr->_matrule && instr->_matrule->_rChild &&
1911        (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1912        || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1913      fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
1914    }*/
1915
1916    // Analyze machine instructions that either USE or DEF memory.
1917    int memory_operand = instr->memory_operand(_globalNames);
1918    // Some guys kill all of memory
1919    if ( instr->is_wide_memory_kill(_globalNames) ) {
1920      memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
1921    }
1922    if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1923      if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
1924        fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
1925      }
1926      fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
1927    }
1928
1929    fprintf(fp, "#ifndef PRODUCT\n");
1930
1931    // virtual function for generating the user's assembler output
1932    gen_inst_format(fp, _globalNames,*instr);
1933
1934    // Machine independent print functionality for debugging
1935    fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1936            instr->_ident);
1937
1938    fprintf(fp, "#endif\n");
1939
1940    // Close definition of this XxxMachNode
1941    fprintf(fp,"};\n");
1942  };
1943
1944}
1945
1946void ArchDesc::defineStateClass(FILE *fp) {
1947  static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
1948  static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
1949
1950  fprintf(fp,"\n");
1951  fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
1952  fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
1953  fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
1954  fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
1955  fprintf(fp,"#define STATE__VALID(index) ");
1956  fprintf(fp,"    (%s)\n", state__valid);
1957  fprintf(fp,"\n");
1958  fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
1959  fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
1960  fprintf(fp,"\n");
1961  fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
1962  fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
1963  fprintf(fp,"\n");
1964  fprintf(fp,"#define STATE__SET_VALID(index) ");
1965  fprintf(fp,"  (%s)\n", state__set_valid);
1966  fprintf(fp,"\n");
1967  fprintf(fp,
1968          "//---------------------------State-------------------------------------------\n");
1969  fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
1970  fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
1971  fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
1972  fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
1973  fprintf(fp,"// two for convenience, but this could change).\n");
1974  fprintf(fp,"class State : public ResourceObj {\n");
1975  fprintf(fp,"public:\n");
1976  fprintf(fp,"  int    _id;         // State identifier\n");
1977  fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
1978  fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
1979  fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
1980  fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
1981  fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
1982  fprintf(fp,"\n");
1983  fprintf(fp,"  State(void);                      // Constructor\n");
1984  fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
1985  fprintf(fp,"\n");
1986  fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
1987  fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
1988  fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
1989  fprintf(fp,"\n");
1990  fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
1991  fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
1992  fprintf(fp,"\n");
1993  fprintf(fp,"  // Access function for _valid bit vector\n");
1994  fprintf(fp,"  bool valid(uint index) {\n");
1995  fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
1996  fprintf(fp,"  }\n");
1997  fprintf(fp,"\n");
1998  fprintf(fp,"  // Set function for _valid bit vector\n");
1999  fprintf(fp,"  void set_valid(uint index) {\n");
2000  fprintf(fp,"    STATE__SET_VALID(index);\n");
2001  fprintf(fp,"  }\n");
2002  fprintf(fp,"\n");
2003  fprintf(fp,"#ifndef PRODUCT\n");
2004  fprintf(fp,"  void dump();                // Debugging prints\n");
2005  fprintf(fp,"  void dump(int depth);\n");
2006  fprintf(fp,"#endif\n");
2007  if (_dfa_small) {
2008    // Generate the routine name we'll need
2009    for (int i = 1; i < _last_opcode; i++) {
2010      if (_mlistab[i] == NULL) continue;
2011      fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
2012    }
2013  }
2014  fprintf(fp,"};\n");
2015  fprintf(fp,"\n");
2016  fprintf(fp,"\n");
2017
2018}
2019
2020
2021//---------------------------buildMachOperEnum---------------------------------
2022// Build enumeration for densely packed operands.
2023// This enumeration is used to index into the arrays in the State objects
2024// that indicate cost and a successfull rule match.
2025
2026// Information needed to generate the ReduceOp mapping for the DFA
2027class OutputMachOperands : public OutputMap {
2028public:
2029  OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2030    : OutputMap(hpp, cpp, globals, AD) {};
2031
2032  void declaration() { }
2033  void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
2034  void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
2035                       OutputMap::closing();
2036  }
2037  void map(OpClassForm &opc)  { fprintf(_cpp, "  %s", _AD.machOperEnum(opc._ident) ); }
2038  void map(OperandForm &oper) { fprintf(_cpp, "  %s", _AD.machOperEnum(oper._ident) ); }
2039  void map(char        *name) { fprintf(_cpp, "  %s", _AD.machOperEnum(name)); }
2040
2041  bool do_instructions()      { return false; }
2042  void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
2043};
2044
2045
2046void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
2047  // Construct the table for MachOpcodes
2048  OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
2049  build_map(output_mach_operands);
2050}
2051
2052
2053//---------------------------buildMachEnum----------------------------------
2054// Build enumeration for all MachOpers and all MachNodes
2055
2056// Information needed to generate the ReduceOp mapping for the DFA
2057class OutputMachOpcodes : public OutputMap {
2058  int begin_inst_chain_rule;
2059  int end_inst_chain_rule;
2060  int begin_rematerialize;
2061  int end_rematerialize;
2062  int end_instructions;
2063public:
2064  OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
2065    : OutputMap(hpp, cpp, globals, AD),
2066      begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
2067  {};
2068
2069  void declaration() { }
2070  void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
2071  void closing()     {
2072    if( begin_inst_chain_rule != -1 )
2073      fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
2074    if( end_inst_chain_rule   != -1 )
2075      fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
2076    if( begin_rematerialize   != -1 )
2077      fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
2078    if( end_rematerialize     != -1 )
2079      fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
2080    // always execute since do_instructions() is true, and avoids trailing comma
2081    fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
2082    OutputMap::closing();
2083  }
2084  void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
2085  void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
2086  void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
2087                                else      fprintf(_cpp, "  0"); }
2088  void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
2089
2090  void record_position(OutputMap::position place, int idx ) {
2091    switch(place) {
2092    case OutputMap::BEGIN_INST_CHAIN_RULES :
2093      begin_inst_chain_rule = idx;
2094      break;
2095    case OutputMap::END_INST_CHAIN_RULES :
2096      end_inst_chain_rule   = idx;
2097      break;
2098    case OutputMap::BEGIN_REMATERIALIZE :
2099      begin_rematerialize   = idx;
2100      break;
2101    case OutputMap::END_REMATERIALIZE :
2102      end_rematerialize     = idx;
2103      break;
2104    case OutputMap::END_INSTRUCTIONS :
2105      end_instructions      = idx;
2106      break;
2107    default:
2108      break;
2109    }
2110  }
2111};
2112
2113
2114void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2115  // Construct the table for MachOpcodes
2116  OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2117  build_map(output_mach_opcodes);
2118}
2119
2120
2121// Generate an enumeration of the pipeline states, and both
2122// the functional units (resources) and the masks for
2123// specifying resources
2124void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2125  int stagelen = (int)strlen("undefined");
2126  int stagenum = 0;
2127
2128  if (_pipeline) {              // Find max enum string length
2129    const char *stage;
2130    for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2131      int len = (int)strlen(stage);
2132      if (stagelen < len) stagelen = len;
2133    }
2134  }
2135
2136  // Generate a list of stages
2137  fprintf(fp_hpp, "\n");
2138  fprintf(fp_hpp, "// Pipeline Stages\n");
2139  fprintf(fp_hpp, "enum machPipelineStages {\n");
2140  fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
2141
2142  if( _pipeline ) {
2143    const char *stage;
2144    for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2145      fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2146  }
2147
2148  fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
2149  fprintf(fp_hpp, "};\n");
2150
2151  fprintf(fp_hpp, "\n");
2152  fprintf(fp_hpp, "// Pipeline Resources\n");
2153  fprintf(fp_hpp, "enum machPipelineResources {\n");
2154  int rescount = 0;
2155
2156  if( _pipeline ) {
2157    const char *resource;
2158    int reslen = 0;
2159
2160    // Generate a list of resources, and masks
2161    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2162      int len = (int)strlen(resource);
2163      if (reslen < len)
2164        reslen = len;
2165    }
2166
2167    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2168      const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2169      int mask = resform->mask();
2170      if ((mask & (mask-1)) == 0)
2171        fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
2172    }
2173    fprintf(fp_hpp, "\n");
2174    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2175      const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2176      fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2177    }
2178    fprintf(fp_hpp, "\n");
2179  }
2180  fprintf(fp_hpp, "   resource_count = %d\n", rescount);
2181  fprintf(fp_hpp, "};\n");
2182}
2183