output_h.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// output_h.cpp - Class HPP file output routines for architecture definition
26#include "adlc.hpp"
27
28
29// Generate the #define that describes the number of registers.
30static void defineRegCount(FILE *fp, RegisterForm *registers) {
31  if (registers) {
32    int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
33    fprintf(fp,"\n");
34    fprintf(fp,"// the number of reserved registers + machine registers.\n");
35    fprintf(fp,"#define REG_COUNT    %d\n", regCount);
36  }
37}
38
39// Output enumeration of machine register numbers
40// (1)
41// // Enumerate machine registers starting after reserved regs.
42// // in the order of occurrence in the register block.
43// enum MachRegisterNumbers {
44//   EAX_num = 0,
45//   ...
46//   _last_Mach_Reg
47// }
48void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
49  if (_register) {
50    RegDef *reg_def = NULL;
51
52    // Output a #define for the number of machine registers
53    defineRegCount(fp_hpp, _register);
54
55    // Count all the Save_On_Entry and Always_Save registers
56    int    saved_on_entry = 0;
57    int  c_saved_on_entry = 0;
58    _register->reset_RegDefs();
59    while( (reg_def = _register->iter_RegDefs()) != NULL ) {
60      if( strcmp(reg_def->_callconv,"SOE") == 0 ||
61          strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
62      if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
63          strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
64    }
65    fprintf(fp_hpp, "\n");
66    fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
67    fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
68    fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
69    fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
70
71    // (1)
72    // Build definition for enumeration of register numbers
73    fprintf(fp_hpp, "\n");
74    fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
75    fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
76    fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
77
78    // Output the register number for each register in the allocation classes
79    _register->reset_RegDefs();
80    int i = 0;
81    while( (reg_def = _register->iter_RegDefs()) != NULL ) {
82      fprintf(fp_hpp,"  %s_num,\t\t// %d\n", reg_def->_regname, i++);
83    }
84    // Finish defining enumeration
85    fprintf(fp_hpp, "  _last_Mach_Reg\t// %d\n", i);
86    fprintf(fp_hpp, "};\n");
87  }
88
89  fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
90  fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
91  fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
92  fprintf(fp_hpp, "#define FORALL_BODY ");
93  int len = RegisterForm::RegMask_Size();
94  for( int i = 0; i < len; i++ )
95    fprintf(fp_hpp, "BODY(%d) ",i);
96  fprintf(fp_hpp, "\n\n");
97
98  fprintf(fp_hpp,"class RegMask;\n");
99  // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
100  // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
101}
102
103
104// Output enumeration of machine register encodings
105// (2)
106// // Enumerate machine registers starting after reserved regs.
107// // in the order of occurrence in the alloc_class(es).
108// enum MachRegisterEncodes {
109//   EAX_enc = 0x00,
110//   ...
111// }
112void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
113  if (_register) {
114    RegDef *reg_def = NULL;
115    RegDef *reg_def_next = NULL;
116
117    // (2)
118    // Build definition for enumeration of encode values
119    fprintf(fp_hpp, "\n");
120    fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
121    fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
122    fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
123
124    // Output the register encoding for each register in the allocation classes
125    _register->reset_RegDefs();
126    reg_def_next = _register->iter_RegDefs();
127    while( (reg_def = reg_def_next) != NULL ) {
128      reg_def_next = _register->iter_RegDefs();
129      fprintf(fp_hpp,"  %s_enc = %s%s\n",
130              reg_def->_regname, reg_def->register_encode(), reg_def_next == NULL? "" : "," );
131    }
132    // Finish defining enumeration
133    fprintf(fp_hpp, "};\n");
134
135  } // Done with register form
136}
137
138
139// Declare an array containing the machine register names, strings.
140static void declareRegNames(FILE *fp, RegisterForm *registers) {
141  if (registers) {
142//    fprintf(fp,"\n");
143//    fprintf(fp,"// An array of character pointers to machine register names.\n");
144//    fprintf(fp,"extern const char *regName[];\n");
145  }
146}
147
148// Declare an array containing the machine register sizes in 32-bit words.
149void ArchDesc::declareRegSizes(FILE *fp) {
150// regSize[] is not used
151}
152
153// Declare an array containing the machine register encoding values
154static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
155  if (registers) {
156    // // //
157    // fprintf(fp,"\n");
158    // fprintf(fp,"// An array containing the machine register encode values\n");
159    // fprintf(fp,"extern const char  regEncode[];\n");
160  }
161}
162
163
164// ---------------------------------------------------------------------------
165//------------------------------Utilities to build Instruction Classes--------
166// ---------------------------------------------------------------------------
167static void out_RegMask(FILE *fp) {
168  fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
169}
170
171// ---------------------------------------------------------------------------
172//--------Utilities to build MachOper and MachNode derived Classes------------
173// ---------------------------------------------------------------------------
174
175//------------------------------Utilities to build Operand Classes------------
176static void in_RegMask(FILE *fp) {
177  fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
178}
179
180static void declare_hash(FILE *fp) {
181  fprintf(fp,"  virtual uint           hash() const;\n");
182}
183
184static void declare_cmp(FILE *fp) {
185  fprintf(fp,"  virtual uint           cmp( const MachOper &oper ) const;\n");
186}
187
188static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
189  int i = 0;
190  Component *comp;
191
192  if (oper->num_consts(globals) == 0) return;
193  // Iterate over the component list looking for constants
194  oper->_components.reset();
195  if ((comp = oper->_components.iter()) == NULL) {
196    assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
197    const char *type = oper->ideal_type(globals);
198    if (!strcmp(type, "ConI")) {
199      if (i > 0) fprintf(fp,", ");
200      fprintf(fp,"  int32          _c%d;\n", i);
201    }
202    else if (!strcmp(type, "ConP")) {
203      if (i > 0) fprintf(fp,", ");
204      fprintf(fp,"  const TypePtr *_c%d;\n", i);
205    }
206    else if (!strcmp(type, "ConL")) {
207      if (i > 0) fprintf(fp,", ");
208      fprintf(fp,"  jlong          _c%d;\n", i);
209    }
210    else if (!strcmp(type, "ConF")) {
211      if (i > 0) fprintf(fp,", ");
212      fprintf(fp,"  jfloat         _c%d;\n", i);
213    }
214    else if (!strcmp(type, "ConD")) {
215      if (i > 0) fprintf(fp,", ");
216      fprintf(fp,"  jdouble        _c%d;\n", i);
217    }
218    else if (!strcmp(type, "Bool")) {
219      fprintf(fp,"private:\n");
220      fprintf(fp,"  BoolTest::mask _c%d;\n", i);
221      fprintf(fp,"public:\n");
222    }
223    else {
224      assert(0, "Non-constant operand lacks component list.");
225    }
226  } // end if NULL
227  else {
228    oper->_components.reset();
229    while ((comp = oper->_components.iter()) != NULL) {
230      if (!strcmp(comp->base_type(globals), "ConI")) {
231        fprintf(fp,"  jint             _c%d;\n", i);
232        i++;
233      }
234      else if (!strcmp(comp->base_type(globals), "ConP")) {
235        fprintf(fp,"  const TypePtr *_c%d;\n", i);
236        i++;
237      }
238      else if (!strcmp(comp->base_type(globals), "ConL")) {
239        fprintf(fp,"  jlong            _c%d;\n", i);
240        i++;
241      }
242      else if (!strcmp(comp->base_type(globals), "ConF")) {
243        fprintf(fp,"  jfloat           _c%d;\n", i);
244        i++;
245      }
246      else if (!strcmp(comp->base_type(globals), "ConD")) {
247        fprintf(fp,"  jdouble          _c%d;\n", i);
248        i++;
249      }
250    }
251  }
252}
253
254// Declare constructor.
255// Parameters start with condition code, then all other constants
256//
257// (0) public:
258// (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
259// (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
260//
261static void defineConstructor(FILE *fp, const char *name, uint num_consts,
262                              ComponentList &lst, bool is_ideal_bool,
263                              Form::DataType constant_type, FormDict &globals) {
264  fprintf(fp,"public:\n");
265  // generate line (1)
266  fprintf(fp,"  %sOper(", name);
267  if( num_consts == 0 ) {
268    fprintf(fp,") {}\n");
269    return;
270  }
271
272  // generate parameters for constants
273  uint i = 0;
274  Component *comp;
275  lst.reset();
276  if ((comp = lst.iter()) == NULL) {
277    assert(num_consts == 1, "Bad component list detected.\n");
278    switch( constant_type ) {
279    case Form::idealI : {
280      fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
281      break;
282    }
283    case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
284    case Form::idealL : { fprintf(fp,"jlong c%d", i);   break;        }
285    case Form::idealF : { fprintf(fp,"jfloat c%d", i);  break;        }
286    case Form::idealD : { fprintf(fp,"jdouble c%d", i); break;        }
287    default:
288      assert(!is_ideal_bool, "Non-constant operand lacks component list.");
289      break;
290    }
291  } // end if NULL
292  else {
293    lst.reset();
294    while((comp = lst.iter()) != NULL) {
295      if (!strcmp(comp->base_type(globals), "ConI")) {
296        if (i > 0) fprintf(fp,", ");
297        fprintf(fp,"int32 c%d", i);
298        i++;
299      }
300      else if (!strcmp(comp->base_type(globals), "ConP")) {
301        if (i > 0) fprintf(fp,", ");
302        fprintf(fp,"const TypePtr *c%d", i);
303        i++;
304      }
305      else if (!strcmp(comp->base_type(globals), "ConL")) {
306        if (i > 0) fprintf(fp,", ");
307        fprintf(fp,"jlong c%d", i);
308        i++;
309      }
310      else if (!strcmp(comp->base_type(globals), "ConF")) {
311        if (i > 0) fprintf(fp,", ");
312        fprintf(fp,"jfloat c%d", i);
313        i++;
314      }
315      else if (!strcmp(comp->base_type(globals), "ConD")) {
316        if (i > 0) fprintf(fp,", ");
317        fprintf(fp,"jdouble c%d", i);
318        i++;
319      }
320      else if (!strcmp(comp->base_type(globals), "Bool")) {
321        if (i > 0) fprintf(fp,", ");
322        fprintf(fp,"BoolTest::mask c%d", i);
323        i++;
324      }
325    }
326  }
327  // finish line (1) and start line (2)
328  fprintf(fp,")  : ");
329  // generate initializers for constants
330  i = 0;
331  fprintf(fp,"_c%d(c%d)", i, i);
332  for( i = 1; i < num_consts; ++i) {
333    fprintf(fp,", _c%d(c%d)", i, i);
334  }
335  // The body for the constructor is empty
336  fprintf(fp," {}\n");
337}
338
339// ---------------------------------------------------------------------------
340// Utilities to generate format rules for machine operands and instructions
341// ---------------------------------------------------------------------------
342
343// Generate the format rule for condition codes
344static void defineCCodeDump(FILE *fp, int i) {
345  fprintf(fp, "         if( _c%d == BoolTest::eq ) st->print(\"eq\");\n",i);
346  fprintf(fp, "    else if( _c%d == BoolTest::ne ) st->print(\"ne\");\n",i);
347  fprintf(fp, "    else if( _c%d == BoolTest::le ) st->print(\"le\");\n",i);
348  fprintf(fp, "    else if( _c%d == BoolTest::ge ) st->print(\"ge\");\n",i);
349  fprintf(fp, "    else if( _c%d == BoolTest::lt ) st->print(\"lt\");\n",i);
350  fprintf(fp, "    else if( _c%d == BoolTest::gt ) st->print(\"gt\");\n",i);
351}
352
353// Output code that dumps constant values, increment "i" if type is constant
354static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i) {
355  if (!strcmp(ideal_type, "ConI")) {
356    fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
357    ++i;
358  }
359  else if (!strcmp(ideal_type, "ConP")) {
360    fprintf(fp,"    _c%d->dump_on(st);\n", i);
361    ++i;
362  }
363  else if (!strcmp(ideal_type, "ConL")) {
364    fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
365    ++i;
366  }
367  else if (!strcmp(ideal_type, "ConF")) {
368    fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
369    ++i;
370  }
371  else if (!strcmp(ideal_type, "ConD")) {
372    fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
373    ++i;
374  }
375  else if (!strcmp(ideal_type, "Bool")) {
376    defineCCodeDump(fp,i);
377    ++i;
378  }
379
380  return i;
381}
382
383// Generate the format rule for an operand
384void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
385  if (!for_c_file) {
386    // invoked after output #ifndef PRODUCT to ad_<arch>.hpp
387    // compile the bodies separately, to cut down on recompilations
388    fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
389    fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
390    return;
391  }
392
393  // Local pointer indicates remaining part of format rule
394  uint  idx = 0;                   // position of operand in match rule
395
396  // Generate internal format function, used when stored locally
397  fprintf(fp, "\n#ifndef PRODUCT\n");
398  fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
399  // Generate the user-defined portion of the format
400  if (oper._format) {
401    if ( oper._format->_strings.count() != 0 ) {
402      // No initialization code for int_format
403
404      // Build the format from the entries in strings and rep_vars
405      const char  *string  = NULL;
406      oper._format->_rep_vars.reset();
407      oper._format->_strings.reset();
408      while ( (string = oper._format->_strings.iter()) != NULL ) {
409        fprintf(fp,"  ");
410
411        // Check if this is a standard string or a replacement variable
412        if ( string != NameList::_signal ) {
413          // Normal string
414          // Pass through to st->print
415          fprintf(fp,"st->print(\"%s\");\n", string);
416        } else {
417          // Replacement variable
418          const char *rep_var = oper._format->_rep_vars.iter();
419          // Check that it is a local name, and an operand
420          OperandForm *op      = oper._localNames[rep_var]->is_operand();
421          assert( op, "replacement variable was not found in local names");
422          // Get index if register or constant
423          if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
424            idx  = oper.register_position( globals, rep_var);
425          }
426          else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
427            idx  = oper.constant_position( globals, rep_var);
428          } else {
429            idx = 0;
430          }
431
432          // output invocation of "$..."s format function
433          if ( op != NULL )   op->int_format(fp, globals, idx);
434
435          if ( idx == -1 ) {
436            fprintf(stderr,
437                    "Using a name, %s, that isn't in match rule\n", rep_var);
438            assert( strcmp(op->_ident,"label")==0, "Unimplemented");
439          }
440        } // Done with a replacement variable
441      } // Done with all format strings
442    } else {
443      // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
444      oper.int_format(fp, globals, 0);
445    }
446
447  } else { // oper._format == NULL
448    // Provide a few special case formats where the AD writer cannot.
449    if ( strcmp(oper._ident,"Universe")==0 ) {
450      fprintf(fp, "  st->print(\"$$univ\");\n");
451    }
452    // labelOper::int_format is defined in ad_<...>.cpp
453  }
454  // ALWAYS! Provide a special case output for condition codes.
455  if( oper.is_ideal_bool() ) {
456    defineCCodeDump(fp,0);
457  }
458  fprintf(fp,"}\n");
459
460  // Generate external format function, when data is stored externally
461  fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
462  // Generate the user-defined portion of the format
463  if (oper._format) {
464    if ( oper._format->_strings.count() != 0 ) {
465
466      // Check for a replacement string "$..."
467      if ( oper._format->_rep_vars.count() != 0 ) {
468        // Initialization code for ext_format
469      }
470
471      // Build the format from the entries in strings and rep_vars
472      const char  *string  = NULL;
473      oper._format->_rep_vars.reset();
474      oper._format->_strings.reset();
475      while ( (string = oper._format->_strings.iter()) != NULL ) {
476        fprintf(fp,"  ");
477
478        // Check if this is a standard string or a replacement variable
479        if ( string != NameList::_signal ) {
480          // Normal string
481          // Pass through to st->print
482          fprintf(fp,"st->print(\"%s\");\n", string);
483        } else {
484          // Replacement variable
485          const char *rep_var = oper._format->_rep_vars.iter();
486          // Check that it is a local name, and an operand
487          OperandForm *op      = oper._localNames[rep_var]->is_operand();
488          assert( op, "replacement variable was not found in local names");
489          // Get index if register or constant
490          if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
491            idx  = oper.register_position( globals, rep_var);
492          }
493          else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
494            idx  = oper.constant_position( globals, rep_var);
495          } else {
496            idx = 0;
497          }
498          // output invocation of "$..."s format function
499          if ( op != NULL )   op->ext_format(fp, globals, idx);
500
501          // Lookup the index position of the replacement variable
502          idx      = oper._components.operand_position_format(rep_var);
503          if ( idx == -1 ) {
504            fprintf(stderr,
505                    "Using a name, %s, that isn't in match rule\n", rep_var);
506            assert( strcmp(op->_ident,"label")==0, "Unimplemented");
507          }
508        } // Done with a replacement variable
509      } // Done with all format strings
510
511    } else {
512      // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
513      oper.ext_format(fp, globals, 0);
514    }
515  } else { // oper._format == NULL
516    // Provide a few special case formats where the AD writer cannot.
517    if ( strcmp(oper._ident,"Universe")==0 ) {
518      fprintf(fp, "  st->print(\"$$univ\");\n");
519    }
520    // labelOper::ext_format is defined in ad_<...>.cpp
521  }
522  // ALWAYS! Provide a special case output for condition codes.
523  if( oper.is_ideal_bool() ) {
524    defineCCodeDump(fp,0);
525  }
526  fprintf(fp, "}\n");
527  fprintf(fp, "#endif\n");
528}
529
530
531// Generate the format rule for an instruction
532void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
533  if (!for_c_file) {
534    // compile the bodies separately, to cut down on recompilations
535    // #ifndef PRODUCT region generated by caller
536    fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
537    return;
538  }
539
540  // Define the format function
541  fprintf(fp, "#ifndef PRODUCT\n");
542  fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
543
544  // Generate the user-defined portion of the format
545  if( inst._format ) {
546    // If there are replacement variables,
547    // Generate index values needed for determing the operand position
548    if( inst._format->_rep_vars.count() )
549      inst.index_temps(fp, globals);
550
551    // Build the format from the entries in strings and rep_vars
552    const char  *string  = NULL;
553    inst._format->_rep_vars.reset();
554    inst._format->_strings.reset();
555    while( (string = inst._format->_strings.iter()) != NULL ) {
556      fprintf(fp,"    ");
557      // Check if this is a standard string or a replacement variable
558      if( string != NameList::_signal )  // Normal string.  Pass through.
559        fprintf(fp,"st->print(\"%s\");\n", string);
560      else                      // Replacement variable
561        inst.rep_var_format( fp, inst._format->_rep_vars.iter() );
562    } // Done with all format strings
563  } // Done generating the user-defined portion of the format
564
565  // Add call debug info automatically
566  Form::CallType call_type = inst.is_ideal_call();
567  if( call_type != Form::invalid_type ) {
568    switch( call_type ) {
569    case Form::JAVA_DYNAMIC:
570      fprintf(fp,"    _method->print_short_name();\n");
571      break;
572    case Form::JAVA_STATIC:
573      fprintf(fp,"    if( _method ) _method->print_short_name(st); else st->print(\" wrapper for: %%s\", _name);\n");
574      fprintf(fp,"    if( !_method ) dump_trap_args(st);\n");
575      break;
576    case Form::JAVA_COMPILED:
577    case Form::JAVA_INTERP:
578      break;
579    case Form::JAVA_RUNTIME:
580    case Form::JAVA_LEAF:
581    case Form::JAVA_NATIVE:
582      fprintf(fp,"    st->print(\" %%s\", _name);");
583      break;
584    default:
585      assert(0,"ShouldNotReacHere");
586    }
587    fprintf(fp,  "    st->print_cr(\"\");\n" );
588    fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
589    fprintf(fp,  "    st->print(\"        # \");\n" );
590    fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
591  }
592  else if(inst.is_ideal_safepoint()) {
593    fprintf(fp,  "    st->print(\"\");\n" );
594    fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
595    fprintf(fp,  "    st->print(\"        # \");\n" );
596    fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
597  }
598  else if( inst.is_ideal_if() ) {
599    fprintf(fp,  "    st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
600  }
601  else if( inst.is_ideal_mem() ) {
602    // Print out the field name if available to improve readability
603    fprintf(fp,  "    if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
604    fprintf(fp,  "      st->print(\" ! Field \");\n");
605    fprintf(fp,  "      if( ra->C->alias_type(adr_type())->is_volatile() )\n");
606    fprintf(fp,  "        st->print(\" Volatile\");\n");
607    fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->holder()->name()->print_symbol_on(st);\n");
608    fprintf(fp,  "      st->print(\".\");\n");
609    fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->name()->print_symbol_on(st);\n");
610    fprintf(fp,  "    } else\n");
611    // Make sure 'Volatile' gets printed out
612    fprintf(fp,  "    if( ra->C->alias_type(adr_type())->is_volatile() )\n");
613    fprintf(fp,  "      st->print(\" Volatile!\");\n");
614  }
615
616  // Complete the definition of the format function
617  fprintf(fp, "  }\n#endif\n");
618}
619
620static bool is_non_constant(char* x) {
621  // Tells whether the string (part of an operator interface) is non-constant.
622  // Simply detect whether there is an occurrence of a formal parameter,
623  // which will always begin with '$'.
624  return strchr(x, '$') == 0;
625}
626
627void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
628  if (!_pipeline)
629    return;
630
631  fprintf(fp_hpp, "\n");
632  fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
633  fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
634
635  if (_pipeline->_maxcycleused <=
636#ifdef SPARC
637    64
638#else
639    32
640#endif
641      ) {
642    fprintf(fp_hpp, "protected:\n");
643    fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
644    fprintf(fp_hpp, "public:\n");
645    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
646    if (_pipeline->_maxcycleused <= 32)
647      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
648    else {
649      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
650      fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
651    }
652    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
653    fprintf(fp_hpp, "    _mask = in._mask;\n");
654    fprintf(fp_hpp, "    return *this;\n");
655    fprintf(fp_hpp, "  }\n\n");
656    fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
657    fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
658    fprintf(fp_hpp, "  }\n\n");
659    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
660    fprintf(fp_hpp, "    _mask <<= n;\n");
661    fprintf(fp_hpp, "    return *this;\n");
662    fprintf(fp_hpp, "  }\n\n");
663    fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
664    fprintf(fp_hpp, "    _mask |= in2._mask;\n");
665    fprintf(fp_hpp, "  }\n\n");
666    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
667    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
668  }
669  else {
670    fprintf(fp_hpp, "protected:\n");
671    uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
672    uint l;
673    fprintf(fp_hpp, "  uint ");
674    for (l = 1; l <= masklen; l++)
675      fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
676    fprintf(fp_hpp, "public:\n");
677    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
678    for (l = 1; l <= masklen; l++)
679      fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
680    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
681    for (l = 1; l <= masklen; l++)
682      fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
683    for (l = 1; l <= masklen; l++)
684      fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
685
686    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
687    for (l = 1; l <= masklen; l++)
688      fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
689    fprintf(fp_hpp, "    return *this;\n");
690    fprintf(fp_hpp, "  }\n\n");
691    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
692    fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
693    for (l = 1; l <= masklen; l++)
694      fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
695    fprintf(fp_hpp, "    return out;\n");
696    fprintf(fp_hpp, "  }\n\n");
697    fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
698    fprintf(fp_hpp, "    return (");
699    for (l = 1; l <= masklen; l++)
700      fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
701    fprintf(fp_hpp, ") ? true : false;\n");
702    fprintf(fp_hpp, "  }\n\n");
703    fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
704    fprintf(fp_hpp, "    if (n >= 32)\n");
705    fprintf(fp_hpp, "      do {\n       ");
706    for (l = masklen; l > 1; l--)
707      fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
708    fprintf(fp_hpp, " _mask%d = 0;\n", 1);
709    fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
710    fprintf(fp_hpp, "    if (n > 0) {\n");
711    fprintf(fp_hpp, "      uint m = 32 - n;\n");
712    fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
713    fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
714    for (l = 2; l < masklen; l++) {
715      fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
716    }
717    fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
718    fprintf(fp_hpp, "    }\n");
719
720    fprintf(fp_hpp, "    return *this;\n");
721    fprintf(fp_hpp, "  }\n\n");
722    fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
723    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
724    fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
725  }
726
727  fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
728  fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
729  fprintf(fp_hpp, "};\n\n");
730
731  uint rescount = 0;
732  const char *resource;
733
734  for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
735      int mask = _pipeline->_resdict[resource]->is_resource()->mask();
736      if ((mask & (mask-1)) == 0)
737        rescount++;
738    }
739
740  fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
741  fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
742  fprintf(fp_hpp, "protected:\n");
743  fprintf(fp_hpp, "  // Mask of used functional units\n");
744  fprintf(fp_hpp, "  uint _used;\n\n");
745  fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
746  fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
747  fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
748  fprintf(fp_hpp, "  bool _multiple;\n\n");
749  fprintf(fp_hpp, "  // Mask of specific used cycles\n");
750  fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
751  fprintf(fp_hpp, "public:\n");
752  fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
753  fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
754  fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
755  fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
756  fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
757  fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
758  fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
759  fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
760  fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
761  fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
762  fprintf(fp_hpp, "  }\n\n");
763  fprintf(fp_hpp, "  void step(uint cycles) {\n");
764  fprintf(fp_hpp, "    _used = 0;\n");
765  fprintf(fp_hpp, "    _mask <<= cycles;\n");
766  fprintf(fp_hpp, "  }\n\n");
767  fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
768  fprintf(fp_hpp, "};\n\n");
769
770  fprintf(fp_hpp, "// Pipeline_Use Class\n");
771  fprintf(fp_hpp, "class Pipeline_Use {\n");
772  fprintf(fp_hpp, "protected:\n");
773  fprintf(fp_hpp, "  // These resources can be used\n");
774  fprintf(fp_hpp, "  uint _resources_used;\n\n");
775  fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
776  fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
777  fprintf(fp_hpp, "  // Number of elements\n");
778  fprintf(fp_hpp, "  uint _count;\n\n");
779  fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
780  fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
781  fprintf(fp_hpp, "public:\n");
782  fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
783  fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
784  fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
785  fprintf(fp_hpp, "  , _count(count)\n");
786  fprintf(fp_hpp, "  , _elements(elements)\n");
787  fprintf(fp_hpp, "  {}\n\n");
788  fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
789  fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
790  fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
791  fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
792  fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
793  fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
794  fprintf(fp_hpp, "  void reset() {\n");
795  fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
796  fprintf(fp_hpp, "  };\n\n");
797  fprintf(fp_hpp, "  void step(uint cycles) {\n");
798  fprintf(fp_hpp, "    reset();\n");
799  fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
800    rescount);
801  fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
802  fprintf(fp_hpp, "  };\n\n");
803  fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
804  fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
805    rescount);
806  fprintf(fp_hpp, "  friend class Pipeline;\n");
807  fprintf(fp_hpp, "};\n\n");
808
809  fprintf(fp_hpp, "// Pipeline Class\n");
810  fprintf(fp_hpp, "class Pipeline {\n");
811  fprintf(fp_hpp, "public:\n");
812
813  fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
814    _pipeline ? "true" : "false" );
815
816  assert( _pipeline->_maxInstrsPerBundle &&
817        ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
818          _pipeline->_instrFetchUnitSize &&
819          _pipeline->_instrFetchUnits,
820    "unspecified pipeline architecture units");
821
822  uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
823
824  fprintf(fp_hpp, "  enum {\n");
825  fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
826    _pipeline->_variableSizeInstrs ? 1 : 0);
827  fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
828    _pipeline->_variableSizeInstrs ? 0 : 1);
829  fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
830    _pipeline->_branchHasDelaySlot ? 1 : 0);
831  fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
832    _pipeline->_maxInstrsPerBundle);
833  fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
834    _pipeline->_maxBundlesPerCycle);
835  fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
836    _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
837  fprintf(fp_hpp, "  };\n\n");
838
839  fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
840    _pipeline->_instrUnitSize != 0 ? "true" : "false" );
841  if( _pipeline->_bundleUnitSize != 0 )
842    if( _pipeline->_instrUnitSize != 0 )
843      fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
844    else
845      fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
846  else
847    fprintf(fp_hpp, "// Bundling is not supported\n\n");
848  if( _pipeline->_instrUnitSize != 0 )
849    fprintf(fp_hpp, "  // Size of an instruction\n");
850  else
851    fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
852  fprintf(fp_hpp, "  static uint instr_unit_size() {");
853  if( _pipeline->_instrUnitSize == 0 )
854    fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
855  fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
856
857  if( _pipeline->_bundleUnitSize != 0 )
858    fprintf(fp_hpp, "  // Size of a bundle\n");
859  else
860    fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
861  fprintf(fp_hpp, "  static uint bundle_unit_size() {");
862  if( _pipeline->_bundleUnitSize == 0 )
863    fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
864  fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
865
866  fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
867    _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
868
869  fprintf(fp_hpp, "private:\n");
870  fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
871  fprintf(fp_hpp, "\n");
872  fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
873  fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
874  fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
875  fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
876  fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
877  fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
878  fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
879  fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
880  fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
881  fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
882  fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
883  fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
884  fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
885  fprintf(fp_hpp, "\n");
886  fprintf(fp_hpp, "public:\n");
887  fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
888  fprintf(fp_hpp, "           uint                            count,\n");
889  fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
890  fprintf(fp_hpp, "           uint                            fixed_latency,\n");
891  fprintf(fp_hpp, "           uint                            instruction_count,\n");
892  fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
893  fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
894  fprintf(fp_hpp, "           bool                            force_serialization,\n");
895  fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
896  fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
897  fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
898  fprintf(fp_hpp, "           uint                    * const cycles,\n");
899  fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
900  fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
901  fprintf(fp_hpp, "  , _read_stage_count(count)\n");
902  fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
903  fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
904  fprintf(fp_hpp, "  , _read_stages(dst)\n");
905  fprintf(fp_hpp, "  , _resource_stage(stage)\n");
906  fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
907  fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
908  fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
909  fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
910  fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
911  fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
912  fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
913  fprintf(fp_hpp, "  {};\n");
914  fprintf(fp_hpp, "\n");
915  fprintf(fp_hpp, "  uint writeStage() const {\n");
916  fprintf(fp_hpp, "    return (_write_stage);\n");
917  fprintf(fp_hpp, "  }\n");
918  fprintf(fp_hpp, "\n");
919  fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
920  fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
921  fprintf(fp_hpp, "  }\n\n");
922  fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
923  fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
924  fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
925  fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
926  fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
927  fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
928  fprintf(fp_hpp, "  uint fixedLatency() const {\n");
929  fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
930  fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
931  fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
932  fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
933  fprintf(fp_hpp, "    return (_resource_use); }\n\n");
934  fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
935  fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
936  fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
937  fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
938  fprintf(fp_hpp, "  uint instructionCount() const {\n");
939  fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
940  fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
941  fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
942  fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
943  fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
944  fprintf(fp_hpp, "  bool forceSerialization() const {\n");
945  fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
946  fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
947  fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
948  fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
949  fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
950  fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
951  fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
952  fprintf(fp_hpp, "#endif\n");
953  fprintf(fp_hpp, "};\n\n");
954
955  fprintf(fp_hpp, "// Bundle class\n");
956  fprintf(fp_hpp, "class Bundle {\n");
957
958  uint mshift = 0;
959  for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
960    mshift++;
961
962  uint rshift = rescount;
963
964  fprintf(fp_hpp, "protected:\n");
965  fprintf(fp_hpp, "  enum {\n");
966  fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
967  fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
968  fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
969  fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
970  fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
971  fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
972  fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
973  fprintf(fp_hpp, "\n");
974  fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
975  fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
976  fprintf(fp_hpp, "  };\n\n");
977  fprintf(fp_hpp, "  uint _flags          : 3,\n");
978  fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
979  fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
980  fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
981  fprintf(fp_hpp, "public:\n");
982  fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
983  fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
984  fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
985  fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
986  fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
987
988  fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
989  fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
990  fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
991  fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
992
993  fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
994  fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
995  fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
996  fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
997  fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
998  fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
999
1000  fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1001  fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1002  fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1003  fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1004  fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1005  fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1006  fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1007  fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1008
1009  fprintf(fp_hpp, "  enum {\n");
1010  fprintf(fp_hpp, "    _nop_count = %d\n",
1011    _pipeline->_nopcnt);
1012  fprintf(fp_hpp, "  };\n\n");
1013  fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
1014    _pipeline->_nopcnt);
1015  fprintf(fp_hpp, "#ifndef PRODUCT\n");
1016  fprintf(fp_hpp, "  void dump() const;\n");
1017  fprintf(fp_hpp, "#endif\n");
1018  fprintf(fp_hpp, "};\n\n");
1019
1020//  const char *classname;
1021//  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1022//    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1023//    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1024//  }
1025}
1026
1027//------------------------------declareClasses---------------------------------
1028// Construct the class hierarchy of MachNode classes from the instruction &
1029// operand lists
1030void ArchDesc::declareClasses(FILE *fp) {
1031
1032  // Declare an array containing the machine register names, strings.
1033  declareRegNames(fp, _register);
1034
1035  // Declare an array containing the machine register encoding values
1036  declareRegEncodes(fp, _register);
1037
1038  // Generate declarations for the total number of operands
1039  fprintf(fp,"\n");
1040  fprintf(fp,"// Total number of operands defined in architecture definition\n");
1041  int num_operands = 0;
1042  OperandForm *op;
1043  for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1044    // Ensure this is a machine-world instruction
1045    if (op->ideal_only()) continue;
1046
1047    ++num_operands;
1048  }
1049  int first_operand_class = num_operands;
1050  OpClassForm *opc;
1051  for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1052    // Ensure this is a machine-world instruction
1053    if (opc->ideal_only()) continue;
1054
1055    ++num_operands;
1056  }
1057  fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
1058  fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
1059  fprintf(fp,"\n");
1060  // Generate declarations for the total number of instructions
1061  fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1062  fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
1063
1064
1065  // Generate Machine Classes for each operand defined in AD file
1066  fprintf(fp,"\n");
1067  fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1068  // Iterate through all operands
1069  _operands.reset();
1070  OperandForm *oper;
1071  for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1072    // Ensure this is a machine-world instruction
1073    if (oper->ideal_only() ) continue;
1074    // The declaration of labelOper is in machine-independent file: machnode
1075    if ( strcmp(oper->_ident,"label")  == 0 ) continue;
1076    // The declaration of methodOper is in machine-independent file: machnode
1077    if ( strcmp(oper->_ident,"method") == 0 ) continue;
1078
1079    // Build class definition for this operand
1080    fprintf(fp,"\n");
1081    fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1082    fprintf(fp,"private:\n");
1083    // Operand definitions that depend upon number of input edges
1084    {
1085      uint num_edges = oper->num_edges(_globalNames);
1086      if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1087        fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
1088              num_edges );
1089      }
1090      if( num_edges > 0 ) {
1091        in_RegMask(fp);
1092      }
1093    }
1094
1095    // Support storing constants inside the MachOper
1096    declareConstStorage(fp,_globalNames,oper);
1097
1098    // Support storage of the condition codes
1099    if( oper->is_ideal_bool() ) {
1100      fprintf(fp,"  virtual int ccode() const { \n");
1101      fprintf(fp,"    switch (_c0) {\n");
1102      fprintf(fp,"    case  BoolTest::eq : return equal();\n");
1103      fprintf(fp,"    case  BoolTest::gt : return greater();\n");
1104      fprintf(fp,"    case  BoolTest::lt : return less();\n");
1105      fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
1106      fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
1107      fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
1108      fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
1109      fprintf(fp,"    }\n");
1110      fprintf(fp,"  };\n");
1111    }
1112
1113    // Support storage of the condition codes
1114    if( oper->is_ideal_bool() ) {
1115      fprintf(fp,"  virtual void negate() { \n");
1116      fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1117      fprintf(fp,"  };\n");
1118    }
1119
1120    // Declare constructor.
1121    // Parameters start with condition code, then all other constants
1122    //
1123    // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1124    // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1125    //
1126    Form::DataType constant_type = oper->simple_type(_globalNames);
1127    defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1128                      oper->_components, oper->is_ideal_bool(),
1129                      constant_type, _globalNames);
1130
1131    // Clone function
1132    fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
1133
1134    // Support setting a spill offset into a constant operand.
1135    // We only support setting an 'int' offset, while in the
1136    // LP64 build spill offsets are added with an AddP which
1137    // requires a long constant.  Thus we don't support spilling
1138    // in frames larger than 4Gig.
1139    if( oper->has_conI(_globalNames) ||
1140        oper->has_conL(_globalNames) )
1141      fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1142
1143    // virtual functions for encoding and format
1144    //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
1145    //            (oper->_encrule)?(oper->_encrule->_encrule):"");
1146    // Check the interface type, and generate the correct query functions
1147    // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1148
1149    fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
1150            machOperEnum(oper->_ident));
1151
1152    // virtual function to look up ideal return type of machine instruction
1153    //
1154    // (1)  virtual const Type    *type() const { return .....; }
1155    //
1156    if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1157        (oper->_matrule->_rChild == NULL)) {
1158      unsigned int position = 0;
1159      const char  *opret, *opname, *optype;
1160      oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1161      fprintf(fp,"  virtual const Type *type() const {");
1162      const char *type = getIdealType(optype);
1163      if( type != NULL ) {
1164        Form::DataType data_type = oper->is_base_constant(_globalNames);
1165        // Check if we are an ideal pointer type
1166        if( data_type == Form::idealP ) {
1167          // Return the ideal type we already have: <TypePtr *>
1168          fprintf(fp," return _c0;");
1169        } else {
1170          // Return the appropriate bottom type
1171          fprintf(fp," return %s;", getIdealType(optype));
1172        }
1173      } else {
1174        fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1175      }
1176      fprintf(fp," }\n");
1177    } else {
1178      // Check for user-defined stack slots, based upon sRegX
1179      Form::DataType data_type = oper->is_user_name_for_sReg();
1180      if( data_type != Form::none ){
1181        const char *type = NULL;
1182        switch( data_type ) {
1183        case Form::idealI: type = "TypeInt::INT";   break;
1184        case Form::idealP: type = "TypePtr::BOTTOM";break;
1185        case Form::idealF: type = "Type::FLOAT";    break;
1186        case Form::idealD: type = "Type::DOUBLE";   break;
1187        case Form::idealL: type = "TypeLong::LONG"; break;
1188        case Form::none: // fall through
1189        default:
1190          assert( false, "No support for this type of stackSlot");
1191        }
1192        fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
1193      }
1194    }
1195
1196
1197    //
1198    // virtual functions for defining the encoding interface.
1199    //
1200    // Access the linearized ideal register mask,
1201    // map to physical register encoding
1202    if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1203      // Just use the default virtual 'reg' call
1204    } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1205      // Special handling for operand 'sReg', a Stack Slot Register.
1206      // Map linearized ideal register mask to stack slot number
1207      fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1208      fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1209      fprintf(fp,"  }\n");
1210      fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1211      fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1212      fprintf(fp,"  }\n");
1213    }
1214
1215    // Output the operand specific access functions used by an enc_class
1216    // These are only defined when we want to override the default virtual func
1217    if (oper->_interface != NULL) {
1218      fprintf(fp,"\n");
1219      // Check if it is a Memory Interface
1220      if ( oper->_interface->is_MemInterface() != NULL ) {
1221        MemInterface *mem_interface = oper->_interface->is_MemInterface();
1222        const char *base = mem_interface->_base;
1223        if( base != NULL ) {
1224          define_oper_interface(fp, *oper, _globalNames, "base", base);
1225        }
1226        char *index = mem_interface->_index;
1227        if( index != NULL ) {
1228          define_oper_interface(fp, *oper, _globalNames, "index", index);
1229        }
1230        const char *scale = mem_interface->_scale;
1231        if( scale != NULL ) {
1232          define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1233        }
1234        const char *disp = mem_interface->_disp;
1235        if( disp != NULL ) {
1236          define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1237          oper->disp_is_oop(fp, _globalNames);
1238        }
1239        if( oper->stack_slots_only(_globalNames) ) {
1240          // should not call this:
1241          fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
1242        } else if ( disp != NULL ) {
1243          define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1244        }
1245      } // end Memory Interface
1246      // Check if it is a Conditional Interface
1247      else if (oper->_interface->is_CondInterface() != NULL) {
1248        CondInterface *cInterface = oper->_interface->is_CondInterface();
1249        const char *equal = cInterface->_equal;
1250        if( equal != NULL ) {
1251          define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1252        }
1253        const char *not_equal = cInterface->_not_equal;
1254        if( not_equal != NULL ) {
1255          define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1256        }
1257        const char *less = cInterface->_less;
1258        if( less != NULL ) {
1259          define_oper_interface(fp, *oper, _globalNames, "less", less);
1260        }
1261        const char *greater_equal = cInterface->_greater_equal;
1262        if( greater_equal != NULL ) {
1263          define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1264        }
1265        const char *less_equal = cInterface->_less_equal;
1266        if( less_equal != NULL ) {
1267          define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1268        }
1269        const char *greater = cInterface->_greater;
1270        if( greater != NULL ) {
1271          define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1272        }
1273      } // end Conditional Interface
1274      // Check if it is a Constant Interface
1275      else if (oper->_interface->is_ConstInterface() != NULL ) {
1276        assert( oper->num_consts(_globalNames) == 1,
1277                "Must have one constant when using CONST_INTER encoding");
1278        if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1279          // Access the locally stored constant
1280          fprintf(fp,"  virtual intptr_t       constant() const {");
1281          fprintf(fp,   " return (intptr_t)_c0;");
1282          fprintf(fp,"  }\n");
1283        }
1284        else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1285          // Access the locally stored constant
1286          fprintf(fp,"  virtual intptr_t       constant() const {");
1287          fprintf(fp,   " return _c0->get_con();");
1288          fprintf(fp, " }\n");
1289          // Generate query to determine if this pointer is an oop
1290          fprintf(fp,"  virtual bool           constant_is_oop() const {");
1291          fprintf(fp,   " return _c0->isa_oop_ptr();");
1292          fprintf(fp, " }\n");
1293        }
1294        else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1295          fprintf(fp,"  virtual intptr_t       constant() const {");
1296          // We don't support addressing modes with > 4Gig offsets.
1297          // Truncate to int.
1298          fprintf(fp,   "  return (intptr_t)_c0;");
1299          fprintf(fp, " }\n");
1300          fprintf(fp,"  virtual jlong          constantL() const {");
1301          fprintf(fp,   " return _c0;");
1302          fprintf(fp, " }\n");
1303        }
1304        else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1305          fprintf(fp,"  virtual intptr_t       constant() const {");
1306          fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1307          fprintf(fp, " }\n");
1308          fprintf(fp,"  virtual jfloat         constantF() const {");
1309          fprintf(fp,   " return (jfloat)_c0;");
1310          fprintf(fp, " }\n");
1311        }
1312        else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1313          fprintf(fp,"  virtual intptr_t       constant() const {");
1314          fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1315          fprintf(fp, " }\n");
1316          fprintf(fp,"  virtual jdouble        constantD() const {");
1317          fprintf(fp,   " return _c0;");
1318          fprintf(fp, " }\n");
1319        }
1320      }
1321      else if (oper->_interface->is_RegInterface() != NULL) {
1322        // make sure that a fixed format string isn't used for an
1323        // operand which might be assiged to multiple registers.
1324        // Otherwise the opto assembly output could be misleading.
1325        if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1326          syntax_err(oper->_linenum,
1327                     "Only bound registers can have fixed formats: %s\n",
1328                     oper->_ident);
1329        }
1330      }
1331      else {
1332        assert( false, "ShouldNotReachHere();");
1333      }
1334    }
1335
1336    fprintf(fp,"\n");
1337    // // Currently all XXXOper::hash() methods are identical (990820)
1338    // declare_hash(fp);
1339    // // Currently all XXXOper::Cmp() methods are identical (990820)
1340    // declare_cmp(fp);
1341
1342    // Do not place dump_spec() and Name() into PRODUCT code
1343    // int_format and ext_format are not needed in PRODUCT code either
1344    fprintf(fp, "#ifndef PRODUCT\n");
1345
1346    // Declare int_format() and ext_format()
1347    gen_oper_format(fp, _globalNames, *oper);
1348
1349    // Machine independent print functionality for debugging
1350    // IF we have constants, create a dump_spec function for the derived class
1351    //
1352    // (1)  virtual void           dump_spec() const {
1353    // (2)    st->print("#%d", _c#);        // Constant != ConP
1354    //  OR    _c#->dump_on(st);             // Type ConP
1355    //  ...
1356    // (3)  }
1357    uint num_consts = oper->num_consts(_globalNames);
1358    if( num_consts > 0 ) {
1359      // line (1)
1360      fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
1361      // generate format string for st->print
1362      // Iterate over the component list & spit out the right thing
1363      uint i = 0;
1364      const char *type = oper->ideal_type(_globalNames);
1365      Component  *comp;
1366      oper->_components.reset();
1367      if ((comp = oper->_components.iter()) == NULL) {
1368        assert(num_consts == 1, "Bad component list detected.\n");
1369        i = dump_spec_constant( fp, type, i );
1370        // Check that type actually matched
1371        assert( i != 0, "Non-constant operand lacks component list.");
1372      } // end if NULL
1373      else {
1374        // line (2)
1375        // dump all components
1376        oper->_components.reset();
1377        while((comp = oper->_components.iter()) != NULL) {
1378          type = comp->base_type(_globalNames);
1379          i = dump_spec_constant( fp, type, i );
1380        }
1381      }
1382      // finish line (3)
1383      fprintf(fp,"  }\n");
1384    }
1385
1386    fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1387            oper->_ident);
1388
1389    fprintf(fp,"#endif\n");
1390
1391    // Close definition of this XxxMachOper
1392    fprintf(fp,"};\n");
1393  }
1394
1395
1396  // Generate Machine Classes for each instruction defined in AD file
1397  fprintf(fp,"\n");
1398  fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1399  declare_pipe_classes(fp);
1400
1401  // Generate Machine Classes for each instruction defined in AD file
1402  fprintf(fp,"\n");
1403  fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1404  _instructions.reset();
1405  InstructForm *instr;
1406  for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1407    // Ensure this is a machine-world instruction
1408    if ( instr->ideal_only() ) continue;
1409
1410    // Build class definition for this instruction
1411    fprintf(fp,"\n");
1412    fprintf(fp,"class %sNode : public %s { \n",
1413            instr->_ident, instr->mach_base_class() );
1414    fprintf(fp,"private:\n");
1415    fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1416    if ( instr->is_ideal_jump() ) {
1417      fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
1418    }
1419    fprintf(fp,"public:\n");
1420    fprintf(fp,"  MachOper *opnd_array(uint operand_index) const { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); return _opnd_array[operand_index]; }\n");
1421    fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); _opnd_array[operand_index] = operand; }\n");
1422    fprintf(fp,"private:\n");
1423    if ( instr->is_ideal_jump() ) {
1424      fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
1425      fprintf(fp,"                                          _index2label.at_put_grow(index_num, blockLabel);}\n");
1426    }
1427    if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1428      fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
1429    }
1430
1431    out_RegMask(fp);                      // output register mask
1432    fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
1433            instr->_ident);
1434
1435    // If this instruction contains a labelOper
1436    // Declare Node::methods that set operand Label's contents
1437    int label_position = instr->label_position();
1438    if( label_position != -1 ) {
1439      // Set the label, stored in labelOper::_branch_label
1440      fprintf(fp,"  virtual void           label_set( Label& label, uint block_num );\n");
1441    }
1442
1443    // If this instruction contains a methodOper
1444    // Declare Node::methods that set operand method's contents
1445    int method_position = instr->method_position();
1446    if( method_position != -1 ) {
1447      // Set the address method, stored in methodOper::_method
1448      fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
1449    }
1450
1451    // virtual functions for attributes
1452    //
1453    // Each instruction attribute results in a virtual call of same name.
1454    // The ins_cost is not handled here.
1455    Attribute *attr = instr->_attribs;
1456    bool is_pc_relative = false;
1457    while (attr != NULL) {
1458      if (strcmp(attr->_ident,"ins_cost") &&
1459          strcmp(attr->_ident,"ins_pc_relative")) {
1460        fprintf(fp,"  int             %s() const { return %s; }\n",
1461                attr->_ident, attr->_val);
1462      }
1463      // Check value for ins_pc_relative, and if it is true (1), set the flag
1464      if (!strcmp(attr->_ident,"ins_pc_relative") && attr->int_val(*this) != 0)
1465        is_pc_relative = true;
1466      attr = (Attribute *)attr->_next;
1467    }
1468
1469    // virtual functions for encode and format
1470    //
1471    // Output the opcode function and the encode function here using the
1472    // encoding class information in the _insencode slot.
1473    if ( instr->_insencode ) {
1474      fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1475    }
1476
1477    // virtual function for getting the size of an instruction
1478    if ( instr->_size ) {
1479       fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
1480    }
1481
1482    // Return the top-level ideal opcode.
1483    // Use MachNode::ideal_Opcode() for nodes based on MachNode class
1484    // if the ideal_Opcode == Op_Node.
1485    if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 ||
1486         strcmp("MachNode", instr->mach_base_class()) != 0 ) {
1487      fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
1488            instr->ideal_Opcode(_globalNames) );
1489    }
1490
1491    // Allow machine-independent optimization, invert the sense of the IF test
1492    if( instr->is_ideal_if() ) {
1493      fprintf(fp,"  virtual void           negate() { \n");
1494      // Identify which operand contains the negate(able) ideal condition code
1495      int   idx = 0;
1496      instr->_components.reset();
1497      for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1498        // Check that component is an operand
1499        Form *form = (Form*)_globalNames[comp->_type];
1500        OperandForm *opForm = form ? form->is_operand() : NULL;
1501        if( opForm == NULL ) continue;
1502
1503        // Lookup the position of the operand in the instruction.
1504        if( opForm->is_ideal_bool() ) {
1505          idx = instr->operand_position(comp->_name, comp->_usedef);
1506          assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1507          break;
1508        }
1509      }
1510      fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
1511      fprintf(fp,"    _prob = 1.0f - _prob;\n");
1512      fprintf(fp,"  };\n");
1513    }
1514
1515
1516    // Identify which input register matches the input register.
1517    uint  matching_input = instr->two_address(_globalNames);
1518
1519    // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1520    if( matching_input != 0 ) {
1521      fprintf(fp,"  virtual uint           two_adr() const  ");
1522      fprintf(fp,"{ return oper_input_base()");
1523      for( uint i = 2; i <= matching_input; i++ )
1524        fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1525      fprintf(fp,"; }\n");
1526    }
1527
1528    // Declare cisc_version, if applicable
1529    //   MachNode *cisc_version( int offset /* ,... */ );
1530    instr->declare_cisc_version(*this, fp);
1531
1532    // If there is an explicit peephole rule, build it
1533    if ( instr->peepholes() != NULL ) {
1534      fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
1535    }
1536
1537    // Output the declaration for number of relocation entries
1538    if ( instr->reloc(_globalNames) != 0 ) {
1539      fprintf(fp,"  virtual int            reloc()   const;\n");
1540    }
1541
1542    if (instr->alignment() != 1) {
1543      fprintf(fp,"  virtual int            alignment_required()   const { return %d; }\n", instr->alignment());
1544      fprintf(fp,"  virtual int            compute_padding(int current_offset)   const;\n");
1545    }
1546
1547    // Starting point for inputs matcher wants.
1548    // Use MachNode::oper_input_base() for nodes based on MachNode class
1549    // if the base == 1.
1550    if ( instr->oper_input_base(_globalNames) != 1 ||
1551         strcmp("MachNode", instr->mach_base_class()) != 0 ) {
1552      fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
1553            instr->oper_input_base(_globalNames));
1554    }
1555
1556    // Make the constructor and following methods 'public:'
1557    fprintf(fp,"public:\n");
1558
1559    // Constructor
1560    if ( instr->is_ideal_jump() ) {
1561      fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1562    } else {
1563      fprintf(fp,"  %sNode() { ", instr->_ident);
1564      if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1565        fprintf(fp,"_cisc_RegMask = NULL; ");
1566      }
1567    }
1568
1569    fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1570
1571    bool node_flags_set = false;
1572    // flag: if this instruction matches an ideal 'Goto' node
1573    if ( instr->is_ideal_goto() ) {
1574      fprintf(fp,"init_flags(Flag_is_Goto");
1575      node_flags_set = true;
1576    }
1577
1578    // flag: if this instruction matches an ideal 'Copy*' node
1579    if ( instr->is_ideal_copy() != 0 ) {
1580      if ( node_flags_set ) {
1581        fprintf(fp," | Flag_is_Copy");
1582      } else {
1583        fprintf(fp,"init_flags(Flag_is_Copy");
1584        node_flags_set = true;
1585      }
1586    }
1587
1588    // Is an instruction is a constant?  If so, get its type
1589    Form::DataType  data_type;
1590    const char     *opType = NULL;
1591    const char     *result = NULL;
1592    data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
1593    // Check if this instruction is a constant
1594    if ( data_type != Form::none ) {
1595      if ( node_flags_set ) {
1596        fprintf(fp," | Flag_is_Con");
1597      } else {
1598        fprintf(fp,"init_flags(Flag_is_Con");
1599        node_flags_set = true;
1600      }
1601    }
1602
1603    // flag: if instruction matches 'If' | 'Goto' | 'CountedLoopEnd | 'Jump'
1604    if ( instr->is_ideal_branch() ) {
1605      if ( node_flags_set ) {
1606        fprintf(fp," | Flag_is_Branch");
1607      } else {
1608        fprintf(fp,"init_flags(Flag_is_Branch");
1609        node_flags_set = true;
1610      }
1611    }
1612
1613    // flag: if this instruction is cisc alternate
1614    if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1615      if ( node_flags_set ) {
1616        fprintf(fp," | Flag_is_cisc_alternate");
1617      } else {
1618        fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1619        node_flags_set = true;
1620      }
1621    }
1622
1623    // flag: if this instruction is pc relative
1624    if ( is_pc_relative ) {
1625      if ( node_flags_set ) {
1626        fprintf(fp," | Flag_is_pc_relative");
1627      } else {
1628        fprintf(fp,"init_flags(Flag_is_pc_relative");
1629        node_flags_set = true;
1630      }
1631    }
1632
1633    // flag: if this instruction has short branch form
1634    if ( instr->has_short_branch_form() ) {
1635      if ( node_flags_set ) {
1636        fprintf(fp," | Flag_may_be_short_branch");
1637      } else {
1638        fprintf(fp,"init_flags(Flag_may_be_short_branch");
1639        node_flags_set = true;
1640      }
1641    }
1642
1643    // Check if machine instructions that USE memory, but do not DEF memory,
1644    // depend upon a node that defines memory in machine-independent graph.
1645    if ( instr->needs_anti_dependence_check(_globalNames) ) {
1646      if ( node_flags_set ) {
1647        fprintf(fp," | Flag_needs_anti_dependence_check");
1648      } else {
1649        fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1650        node_flags_set = true;
1651      }
1652    }
1653
1654    if ( node_flags_set ) {
1655      fprintf(fp,"); ");
1656    }
1657
1658    if (instr->is_ideal_unlock() || instr->is_ideal_call_leaf()) {
1659      fprintf(fp,"clear_flag(Flag_is_safepoint_node); ");
1660    }
1661
1662    fprintf(fp,"}\n");
1663
1664    // size_of, used by base class's clone to obtain the correct size.
1665    fprintf(fp,"  virtual uint           size_of() const {");
1666    fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
1667    fprintf(fp, " }\n");
1668
1669    // Virtual methods which are only generated to override base class
1670    if( instr->expands() || instr->needs_projections() ||
1671        instr->has_temps() ||
1672        instr->_matrule != NULL &&
1673        instr->num_opnds() != instr->num_unique_opnds() ) {
1674      fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list);\n");
1675    }
1676
1677    if (instr->is_pinned(_globalNames)) {
1678      fprintf(fp,"  virtual bool           pinned() const { return ");
1679      if (instr->is_parm(_globalNames)) {
1680        fprintf(fp,"_in[0]->pinned();");
1681      } else {
1682        fprintf(fp,"true;");
1683      }
1684      fprintf(fp," }\n");
1685    }
1686    if (instr->is_projection(_globalNames)) {
1687      fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
1688    }
1689    if ( instr->num_post_match_opnds() != 0
1690         || instr->is_chain_of_constant(_globalNames) ) {
1691      fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
1692    }
1693    if ( instr->rematerialize(_globalNames, get_registers()) ) {
1694      fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
1695    }
1696
1697    // Declare short branch methods, if applicable
1698    instr->declare_short_branch_methods(fp);
1699
1700    // Instructions containing a constant that will be entered into the
1701    // float/double table redefine the base virtual function
1702#ifdef SPARC
1703    // Sparc doubles entries in the constant table require more space for
1704    // alignment. (expires 9/98)
1705    int table_entries = (3 * instr->num_consts( _globalNames, Form::idealD ))
1706      + instr->num_consts( _globalNames, Form::idealF );
1707#else
1708    int table_entries = instr->num_consts( _globalNames, Form::idealD )
1709      + instr->num_consts( _globalNames, Form::idealF );
1710#endif
1711    if( table_entries != 0 ) {
1712      fprintf(fp,"  virtual int            const_size() const {");
1713      fprintf(fp,   " return %d;", table_entries);
1714      fprintf(fp, " }\n");
1715    }
1716
1717
1718    // See if there is an "ins_pipe" declaration for this instruction
1719    if (instr->_ins_pipe) {
1720      fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
1721      fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
1722    }
1723
1724    // Generate virtual function for MachNodeX::bottom_type when necessary
1725    //
1726    // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
1727    // or else alias analysis on the matched graph may produce bad code.
1728    // Moreover, the aliasing decisions made on machine-node graph must be
1729    // no less accurate than those made on the ideal graph, or else the graph
1730    // may fail to schedule.  (Reason:  Memory ops which are reordered in
1731    // the ideal graph might look interdependent in the machine graph,
1732    // thereby removing degrees of scheduling freedom that the optimizer
1733    // assumed would be available.)
1734    //
1735    // %%% We should handle many of these cases with an explicit ADL clause:
1736    // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1737    if( data_type != Form::none ) {
1738      // A constant's bottom_type returns a Type containing its constant value
1739
1740      // !!!!!
1741      // Convert all ints, floats, ... to machine-independent TypeXs
1742      // as is done for pointers
1743      //
1744      // Construct appropriate constant type containing the constant value.
1745      fprintf(fp,"  virtual const class Type *bottom_type() const{\n");
1746      switch( data_type ) {
1747      case Form::idealI:
1748        fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
1749        break;
1750      case Form::idealP:
1751        fprintf(fp,"    return  opnd_array(1)->type();\n",result);
1752        break;
1753      case Form::idealD:
1754        fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
1755        break;
1756      case Form::idealF:
1757        fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
1758        break;
1759      case Form::idealL:
1760        fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
1761        break;
1762      default:
1763        assert( false, "Unimplemented()" );
1764        break;
1765      }
1766      fprintf(fp,"  };\n");
1767    }
1768/*    else if ( instr->_matrule && instr->_matrule->_rChild &&
1769        (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1770        || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1771      // !!!!! !!!!!
1772      // Provide explicit bottom type for conversions to int
1773      // On Intel the result operand is a stackSlot, untyped.
1774      fprintf(fp,"  virtual const class Type *bottom_type() const{");
1775      fprintf(fp,   " return  TypeInt::INT;");
1776      fprintf(fp, " };\n");
1777    }*/
1778    else if( instr->is_ideal_copy() &&
1779              !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1780      // !!!!!
1781      // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
1782      fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1783    }
1784    else if( instr->is_ideal_loadPC() ) {
1785      // LoadPCNode provides the return address of a call to native code.
1786      // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1787      // since it is a pointer to an internal VM location and must have a zero offset.
1788      // Allocation detects derived pointers, in part, by their non-zero offsets.
1789      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1790    }
1791    else if( instr->is_ideal_box() ) {
1792      // BoxNode provides the address of a stack slot.
1793      // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1794      // This prevent s insert_anti_dependencies from complaining. It will
1795      // complain if it see that the pointer base is TypePtr::BOTTOM since
1796      // it doesn't understand what that might alias.
1797      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1798    }
1799    else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1800      int offset = 1;
1801      // Special special hack to see if the Cmp? has been incorporated in the conditional move
1802      MatchNode *rl = instr->_matrule->_rChild->_lChild;
1803      if( rl && !strcmp(rl->_opType, "Binary") ) {
1804          MatchNode *rlr = rl->_rChild;
1805          if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1806            offset = 2;
1807      }
1808      // Special hack for ideal CMoveP; ideal type depends on inputs
1809      fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1810        offset, offset+1, offset+1);
1811    }
1812    else if( instr->needs_base_oop_edge(_globalNames) ) {
1813      // Special hack for ideal AddP.  Bottom type is an oop IFF it has a
1814      // legal base-pointer input.  Otherwise it is NOT an oop.
1815      fprintf(fp,"  const Type *bottom_type() const { return AddPNode::mach_bottom_type(this); } // AddP\n");
1816    }
1817    else if (instr->is_tls_instruction()) {
1818      // Special hack for tlsLoadP
1819      fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1820    }
1821    else if ( instr->is_ideal_if() ) {
1822      fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1823    }
1824    else if ( instr->is_ideal_membar() ) {
1825      fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1826    }
1827
1828    // Check where 'ideal_type' must be customized
1829    /*
1830    if ( instr->_matrule && instr->_matrule->_rChild &&
1831        (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1832        || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1833      fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
1834    }*/
1835
1836    // Analyze machine instructions that either USE or DEF memory.
1837    int memory_operand = instr->memory_operand(_globalNames);
1838    // Some guys kill all of memory
1839    if ( instr->is_wide_memory_kill(_globalNames) ) {
1840      memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
1841    }
1842    if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1843      if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
1844        fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
1845      }
1846      fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
1847    }
1848
1849    fprintf(fp, "#ifndef PRODUCT\n");
1850
1851    // virtual function for generating the user's assembler output
1852    gen_inst_format(fp, _globalNames,*instr);
1853
1854    // Machine independent print functionality for debugging
1855    fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1856            instr->_ident);
1857
1858    fprintf(fp, "#endif\n");
1859
1860    // Close definition of this XxxMachNode
1861    fprintf(fp,"};\n");
1862  };
1863
1864}
1865
1866void ArchDesc::defineStateClass(FILE *fp) {
1867  static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
1868  static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
1869
1870  fprintf(fp,"\n");
1871  fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
1872  fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
1873  fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
1874  fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
1875  fprintf(fp,"#define STATE__VALID(index) ");
1876  fprintf(fp,"    (%s)\n", state__valid);
1877  fprintf(fp,"\n");
1878  fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
1879  fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
1880  fprintf(fp,"\n");
1881  fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
1882  fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
1883  fprintf(fp,"\n");
1884  fprintf(fp,"#define STATE__SET_VALID(index) ");
1885  fprintf(fp,"  (%s)\n", state__set_valid);
1886  fprintf(fp,"\n");
1887  fprintf(fp,
1888          "//---------------------------State-------------------------------------------\n");
1889  fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
1890  fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
1891  fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
1892  fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
1893  fprintf(fp,"// two for convenience, but this could change).\n");
1894  fprintf(fp,"class State : public ResourceObj {\n");
1895  fprintf(fp,"public:\n");
1896  fprintf(fp,"  int    _id;         // State identifier\n");
1897  fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
1898  fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
1899  fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
1900  fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
1901  fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
1902  fprintf(fp,"\n");
1903  fprintf(fp,"  State(void);                      // Constructor\n");
1904  fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
1905  fprintf(fp,"\n");
1906  fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
1907  fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
1908  fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
1909  fprintf(fp,"\n");
1910  fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
1911  fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
1912  fprintf(fp,"\n");
1913  fprintf(fp,"  // Access function for _valid bit vector\n");
1914  fprintf(fp,"  bool valid(uint index) {\n");
1915  fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
1916  fprintf(fp,"  }\n");
1917  fprintf(fp,"\n");
1918  fprintf(fp,"  // Set function for _valid bit vector\n");
1919  fprintf(fp,"  void set_valid(uint index) {\n");
1920  fprintf(fp,"    STATE__SET_VALID(index);\n");
1921  fprintf(fp,"  }\n");
1922  fprintf(fp,"\n");
1923  fprintf(fp,"#ifndef PRODUCT\n");
1924  fprintf(fp,"  void dump();                // Debugging prints\n");
1925  fprintf(fp,"  void dump(int depth);\n");
1926  fprintf(fp,"#endif\n");
1927  if (_dfa_small) {
1928    // Generate the routine name we'll need
1929    for (int i = 1; i < _last_opcode; i++) {
1930      if (_mlistab[i] == NULL) continue;
1931      fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
1932    }
1933  }
1934  fprintf(fp,"};\n");
1935  fprintf(fp,"\n");
1936  fprintf(fp,"\n");
1937
1938}
1939
1940
1941//---------------------------buildMachOperEnum---------------------------------
1942// Build enumeration for densely packed operands.
1943// This enumeration is used to index into the arrays in the State objects
1944// that indicate cost and a successfull rule match.
1945
1946// Information needed to generate the ReduceOp mapping for the DFA
1947class OutputMachOperands : public OutputMap {
1948public:
1949  OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
1950    : OutputMap(hpp, cpp, globals, AD) {};
1951
1952  void declaration() { }
1953  void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
1954  void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
1955                       OutputMap::closing();
1956  }
1957  void map(OpClassForm &opc)  { fprintf(_cpp, "  %s", _AD.machOperEnum(opc._ident) ); }
1958  void map(OperandForm &oper) { fprintf(_cpp, "  %s", _AD.machOperEnum(oper._ident) ); }
1959  void map(char        *name) { fprintf(_cpp, "  %s", _AD.machOperEnum(name)); }
1960
1961  bool do_instructions()      { return false; }
1962  void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
1963};
1964
1965
1966void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
1967  // Construct the table for MachOpcodes
1968  OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
1969  build_map(output_mach_operands);
1970}
1971
1972
1973//---------------------------buildMachEnum----------------------------------
1974// Build enumeration for all MachOpers and all MachNodes
1975
1976// Information needed to generate the ReduceOp mapping for the DFA
1977class OutputMachOpcodes : public OutputMap {
1978  int begin_inst_chain_rule;
1979  int end_inst_chain_rule;
1980  int begin_rematerialize;
1981  int end_rematerialize;
1982  int end_instructions;
1983public:
1984  OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
1985    : OutputMap(hpp, cpp, globals, AD),
1986      begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
1987  {};
1988
1989  void declaration() { }
1990  void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
1991  void closing()     {
1992    if( begin_inst_chain_rule != -1 )
1993      fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
1994    if( end_inst_chain_rule   != -1 )
1995      fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
1996    if( begin_rematerialize   != -1 )
1997      fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
1998    if( end_rematerialize     != -1 )
1999      fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
2000    // always execute since do_instructions() is true, and avoids trailing comma
2001    fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
2002    OutputMap::closing();
2003  }
2004  void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
2005  void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
2006  void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
2007                                else      fprintf(_cpp, "  0"); }
2008  void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
2009
2010  void record_position(OutputMap::position place, int idx ) {
2011    switch(place) {
2012    case OutputMap::BEGIN_INST_CHAIN_RULES :
2013      begin_inst_chain_rule = idx;
2014      break;
2015    case OutputMap::END_INST_CHAIN_RULES :
2016      end_inst_chain_rule   = idx;
2017      break;
2018    case OutputMap::BEGIN_REMATERIALIZE :
2019      begin_rematerialize   = idx;
2020      break;
2021    case OutputMap::END_REMATERIALIZE :
2022      end_rematerialize     = idx;
2023      break;
2024    case OutputMap::END_INSTRUCTIONS :
2025      end_instructions      = idx;
2026      break;
2027    default:
2028      break;
2029    }
2030  }
2031};
2032
2033
2034void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2035  // Construct the table for MachOpcodes
2036  OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2037  build_map(output_mach_opcodes);
2038}
2039
2040
2041// Generate an enumeration of the pipeline states, and both
2042// the functional units (resources) and the masks for
2043// specifying resources
2044void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2045  int stagelen = (int)strlen("undefined");
2046  int stagenum = 0;
2047
2048  if (_pipeline) {              // Find max enum string length
2049    const char *stage;
2050    for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2051      int len = (int)strlen(stage);
2052      if (stagelen < len) stagelen = len;
2053    }
2054  }
2055
2056  // Generate a list of stages
2057  fprintf(fp_hpp, "\n");
2058  fprintf(fp_hpp, "// Pipeline Stages\n");
2059  fprintf(fp_hpp, "enum machPipelineStages {\n");
2060  fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
2061
2062  if( _pipeline ) {
2063    const char *stage;
2064    for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2065      fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2066  }
2067
2068  fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
2069  fprintf(fp_hpp, "};\n");
2070
2071  fprintf(fp_hpp, "\n");
2072  fprintf(fp_hpp, "// Pipeline Resources\n");
2073  fprintf(fp_hpp, "enum machPipelineResources {\n");
2074  int rescount = 0;
2075
2076  if( _pipeline ) {
2077    const char *resource;
2078    int reslen = 0;
2079
2080    // Generate a list of resources, and masks
2081    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2082      int len = (int)strlen(resource);
2083      if (reslen < len)
2084        reslen = len;
2085    }
2086
2087    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2088      const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2089      int mask = resform->mask();
2090      if ((mask & (mask-1)) == 0)
2091        fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
2092    }
2093    fprintf(fp_hpp, "\n");
2094    for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2095      const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2096      fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2097    }
2098    fprintf(fp_hpp, "\n");
2099  }
2100  fprintf(fp_hpp, "   resource_count = %d\n", rescount);
2101  fprintf(fp_hpp, "};\n");
2102}
2103