formssel.cpp revision 235:9c2ecc2ffb12
1/*
2 * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// FORMS.CPP - Definitions for ADL Parser Forms Classes
26#include "adlc.hpp"
27
28//==============================Instructions===================================
29//------------------------------InstructForm-----------------------------------
30InstructForm::InstructForm(const char *id, bool ideal_only)
31  : _ident(id), _ideal_only(ideal_only),
32    _localNames(cmpstr, hashstr, Form::arena),
33    _effects(cmpstr, hashstr, Form::arena) {
34      _ftype = Form::INS;
35
36      _matrule   = NULL;
37      _insencode = NULL;
38      _opcode    = NULL;
39      _size      = NULL;
40      _attribs   = NULL;
41      _predicate = NULL;
42      _exprule   = NULL;
43      _rewrule   = NULL;
44      _format    = NULL;
45      _peephole  = NULL;
46      _ins_pipe  = NULL;
47      _uniq_idx  = NULL;
48      _num_uniq  = 0;
49      _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
50      _cisc_spill_alternate = NULL;            // possible cisc replacement
51      _cisc_reg_mask_name = NULL;
52      _is_cisc_alternate = false;
53      _is_short_branch = false;
54      _short_branch_form = NULL;
55      _alignment = 1;
56}
57
58InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
59  : _ident(id), _ideal_only(false),
60    _localNames(instr->_localNames),
61    _effects(instr->_effects) {
62      _ftype = Form::INS;
63
64      _matrule   = rule;
65      _insencode = instr->_insencode;
66      _opcode    = instr->_opcode;
67      _size      = instr->_size;
68      _attribs   = instr->_attribs;
69      _predicate = instr->_predicate;
70      _exprule   = instr->_exprule;
71      _rewrule   = instr->_rewrule;
72      _format    = instr->_format;
73      _peephole  = instr->_peephole;
74      _ins_pipe  = instr->_ins_pipe;
75      _uniq_idx  = instr->_uniq_idx;
76      _num_uniq  = instr->_num_uniq;
77      _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
78      _cisc_spill_alternate = NULL;            // possible cisc replacement
79      _cisc_reg_mask_name = NULL;
80      _is_cisc_alternate = false;
81      _is_short_branch = false;
82      _short_branch_form = NULL;
83      _alignment = 1;
84     // Copy parameters
85     const char *name;
86     instr->_parameters.reset();
87     for (; (name = instr->_parameters.iter()) != NULL;)
88       _parameters.addName(name);
89}
90
91InstructForm::~InstructForm() {
92}
93
94InstructForm *InstructForm::is_instruction() const {
95  return (InstructForm*)this;
96}
97
98bool InstructForm::ideal_only() const {
99  return _ideal_only;
100}
101
102bool InstructForm::sets_result() const {
103  return (_matrule != NULL && _matrule->sets_result());
104}
105
106bool InstructForm::needs_projections() {
107  _components.reset();
108  for( Component *comp; (comp = _components.iter()) != NULL; ) {
109    if (comp->isa(Component::KILL)) {
110      return true;
111    }
112  }
113  return false;
114}
115
116
117bool InstructForm::has_temps() {
118  if (_matrule) {
119    // Examine each component to see if it is a TEMP
120    _components.reset();
121    // Skip the first component, if already handled as (SET dst (...))
122    Component *comp = NULL;
123    if (sets_result())  comp = _components.iter();
124    while ((comp = _components.iter()) != NULL) {
125      if (comp->isa(Component::TEMP)) {
126        return true;
127      }
128    }
129  }
130
131  return false;
132}
133
134uint InstructForm::num_defs_or_kills() {
135  uint   defs_or_kills = 0;
136
137  _components.reset();
138  for( Component *comp; (comp = _components.iter()) != NULL; ) {
139    if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
140      ++defs_or_kills;
141    }
142  }
143
144  return  defs_or_kills;
145}
146
147// This instruction has an expand rule?
148bool InstructForm::expands() const {
149  return ( _exprule != NULL );
150}
151
152// This instruction has a peephole rule?
153Peephole *InstructForm::peepholes() const {
154  return _peephole;
155}
156
157// This instruction has a peephole rule?
158void InstructForm::append_peephole(Peephole *peephole) {
159  if( _peephole == NULL ) {
160    _peephole = peephole;
161  } else {
162    _peephole->append_peephole(peephole);
163  }
164}
165
166
167// ideal opcode enumeration
168const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
169  if( !_matrule ) return "Node"; // Something weird
170  // Chain rules do not really have ideal Opcodes; use their source
171  // operand ideal Opcode instead.
172  if( is_simple_chain_rule(globalNames) ) {
173    const char *src = _matrule->_rChild->_opType;
174    OperandForm *src_op = globalNames[src]->is_operand();
175    assert( src_op, "Not operand class of chain rule" );
176    if( !src_op->_matrule ) return "Node";
177    return src_op->_matrule->_opType;
178  }
179  // Operand chain rules do not really have ideal Opcodes
180  if( _matrule->is_chain_rule(globalNames) )
181    return "Node";
182  return strcmp(_matrule->_opType,"Set")
183    ? _matrule->_opType
184    : _matrule->_rChild->_opType;
185}
186
187// Recursive check on all operands' match rules in my match rule
188bool InstructForm::is_pinned(FormDict &globals) {
189  if ( ! _matrule)  return false;
190
191  int  index   = 0;
192  if (_matrule->find_type("Goto",          index)) return true;
193  if (_matrule->find_type("If",            index)) return true;
194  if (_matrule->find_type("CountedLoopEnd",index)) return true;
195  if (_matrule->find_type("Return",        index)) return true;
196  if (_matrule->find_type("Rethrow",       index)) return true;
197  if (_matrule->find_type("TailCall",      index)) return true;
198  if (_matrule->find_type("TailJump",      index)) return true;
199  if (_matrule->find_type("Halt",          index)) return true;
200  if (_matrule->find_type("Jump",          index)) return true;
201
202  return is_parm(globals);
203}
204
205// Recursive check on all operands' match rules in my match rule
206bool InstructForm::is_projection(FormDict &globals) {
207  if ( ! _matrule)  return false;
208
209  int  index   = 0;
210  if (_matrule->find_type("Goto",    index)) return true;
211  if (_matrule->find_type("Return",  index)) return true;
212  if (_matrule->find_type("Rethrow", index)) return true;
213  if (_matrule->find_type("TailCall",index)) return true;
214  if (_matrule->find_type("TailJump",index)) return true;
215  if (_matrule->find_type("Halt",    index)) return true;
216
217  return false;
218}
219
220// Recursive check on all operands' match rules in my match rule
221bool InstructForm::is_parm(FormDict &globals) {
222  if ( ! _matrule)  return false;
223
224  int  index   = 0;
225  if (_matrule->find_type("Parm",index)) return true;
226
227  return false;
228}
229
230
231// Return 'true' if this instruction matches an ideal 'Copy*' node
232int InstructForm::is_ideal_copy() const {
233  return _matrule ? _matrule->is_ideal_copy() : 0;
234}
235
236// Return 'true' if this instruction is too complex to rematerialize.
237int InstructForm::is_expensive() const {
238  // We can prove it is cheap if it has an empty encoding.
239  // This helps with platform-specific nops like ThreadLocal and RoundFloat.
240  if (is_empty_encoding())
241    return 0;
242
243  if (is_tls_instruction())
244    return 1;
245
246  if (_matrule == NULL)  return 0;
247
248  return _matrule->is_expensive();
249}
250
251// Has an empty encoding if _size is a constant zero or there
252// are no ins_encode tokens.
253int InstructForm::is_empty_encoding() const {
254  if (_insencode != NULL) {
255    _insencode->reset();
256    if (_insencode->encode_class_iter() == NULL) {
257      return 1;
258    }
259  }
260  if (_size != NULL && strcmp(_size, "0") == 0) {
261    return 1;
262  }
263  return 0;
264}
265
266int InstructForm::is_tls_instruction() const {
267  if (_ident != NULL &&
268      ( ! strcmp( _ident,"tlsLoadP") ||
269        ! strncmp(_ident,"tlsLoadP_",9)) ) {
270    return 1;
271  }
272
273  if (_matrule != NULL && _insencode != NULL) {
274    const char* opType = _matrule->_opType;
275    if (strcmp(opType, "Set")==0)
276      opType = _matrule->_rChild->_opType;
277    if (strcmp(opType,"ThreadLocal")==0) {
278      fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
279              (_ident == NULL ? "NULL" : _ident));
280      return 1;
281    }
282  }
283
284  return 0;
285}
286
287
288// Return 'true' if this instruction matches an ideal 'Copy*' node
289bool InstructForm::is_ideal_unlock() const {
290  return _matrule ? _matrule->is_ideal_unlock() : false;
291}
292
293bool InstructForm::is_ideal_call_leaf() const {
294  return _matrule ? _matrule->is_ideal_call_leaf() : false;
295}
296
297// Return 'true' if this instruction matches an ideal 'If' node
298bool InstructForm::is_ideal_if() const {
299  if( _matrule == NULL ) return false;
300
301  return _matrule->is_ideal_if();
302}
303
304// Return 'true' if this instruction matches an ideal 'FastLock' node
305bool InstructForm::is_ideal_fastlock() const {
306  if( _matrule == NULL ) return false;
307
308  return _matrule->is_ideal_fastlock();
309}
310
311// Return 'true' if this instruction matches an ideal 'MemBarXXX' node
312bool InstructForm::is_ideal_membar() const {
313  if( _matrule == NULL ) return false;
314
315  return _matrule->is_ideal_membar();
316}
317
318// Return 'true' if this instruction matches an ideal 'LoadPC' node
319bool InstructForm::is_ideal_loadPC() const {
320  if( _matrule == NULL ) return false;
321
322  return _matrule->is_ideal_loadPC();
323}
324
325// Return 'true' if this instruction matches an ideal 'Box' node
326bool InstructForm::is_ideal_box() const {
327  if( _matrule == NULL ) return false;
328
329  return _matrule->is_ideal_box();
330}
331
332// Return 'true' if this instruction matches an ideal 'Goto' node
333bool InstructForm::is_ideal_goto() const {
334  if( _matrule == NULL ) return false;
335
336  return _matrule->is_ideal_goto();
337}
338
339// Return 'true' if this instruction matches an ideal 'Jump' node
340bool InstructForm::is_ideal_jump() const {
341  if( _matrule == NULL ) return false;
342
343  return _matrule->is_ideal_jump();
344}
345
346// Return 'true' if instruction matches ideal 'If' | 'Goto' |
347//                    'CountedLoopEnd' | 'Jump'
348bool InstructForm::is_ideal_branch() const {
349  if( _matrule == NULL ) return false;
350
351  return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
352}
353
354
355// Return 'true' if this instruction matches an ideal 'Return' node
356bool InstructForm::is_ideal_return() const {
357  if( _matrule == NULL ) return false;
358
359  // Check MatchRule to see if the first entry is the ideal "Return" node
360  int  index   = 0;
361  if (_matrule->find_type("Return",index)) return true;
362  if (_matrule->find_type("Rethrow",index)) return true;
363  if (_matrule->find_type("TailCall",index)) return true;
364  if (_matrule->find_type("TailJump",index)) return true;
365
366  return false;
367}
368
369// Return 'true' if this instruction matches an ideal 'Halt' node
370bool InstructForm::is_ideal_halt() const {
371  int  index   = 0;
372  return _matrule && _matrule->find_type("Halt",index);
373}
374
375// Return 'true' if this instruction matches an ideal 'SafePoint' node
376bool InstructForm::is_ideal_safepoint() const {
377  int  index   = 0;
378  return _matrule && _matrule->find_type("SafePoint",index);
379}
380
381// Return 'true' if this instruction matches an ideal 'Nop' node
382bool InstructForm::is_ideal_nop() const {
383  return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
384}
385
386bool InstructForm::is_ideal_control() const {
387  if ( ! _matrule)  return false;
388
389  return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
390}
391
392// Return 'true' if this instruction matches an ideal 'Call' node
393Form::CallType InstructForm::is_ideal_call() const {
394  if( _matrule == NULL ) return Form::invalid_type;
395
396  // Check MatchRule to see if the first entry is the ideal "Call" node
397  int  idx   = 0;
398  if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
399  idx = 0;
400  if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
401  idx = 0;
402  if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
403  idx = 0;
404  if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
405  idx = 0;
406  if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
407  idx = 0;
408  if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
409  idx = 0;
410  if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
411  idx = 0;
412
413  return Form::invalid_type;
414}
415
416// Return 'true' if this instruction matches an ideal 'Load?' node
417Form::DataType InstructForm::is_ideal_load() const {
418  if( _matrule == NULL ) return Form::none;
419
420  return  _matrule->is_ideal_load();
421}
422
423// Return 'true' if this instruction matches an ideal 'Load?' node
424Form::DataType InstructForm::is_ideal_store() const {
425  if( _matrule == NULL ) return Form::none;
426
427  return  _matrule->is_ideal_store();
428}
429
430// Return the input register that must match the output register
431// If this is not required, return 0
432uint InstructForm::two_address(FormDict &globals) {
433  uint  matching_input = 0;
434  if(_components.count() == 0) return 0;
435
436  _components.reset();
437  Component *comp = _components.iter();
438  // Check if there is a DEF
439  if( comp->isa(Component::DEF) ) {
440    // Check that this is a register
441    const char  *def_type = comp->_type;
442    const Form  *form     = globals[def_type];
443    OperandForm *op       = form->is_operand();
444    if( op ) {
445      if( op->constrained_reg_class() != NULL &&
446          op->interface_type(globals) == Form::register_interface ) {
447        // Remember the local name for equality test later
448        const char *def_name = comp->_name;
449        // Check if a component has the same name and is a USE
450        do {
451          if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
452            return operand_position_format(def_name);
453          }
454        } while( (comp = _components.iter()) != NULL);
455      }
456    }
457  }
458
459  return 0;
460}
461
462
463// when chaining a constant to an instruction, returns 'true' and sets opType
464Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
465  const char *dummy  = NULL;
466  const char *dummy2 = NULL;
467  return is_chain_of_constant(globals, dummy, dummy2);
468}
469Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
470                const char * &opTypeParam) {
471  const char *result = NULL;
472
473  return is_chain_of_constant(globals, opTypeParam, result);
474}
475
476Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
477                const char * &opTypeParam, const char * &resultParam) {
478  Form::DataType  data_type = Form::none;
479  if ( ! _matrule)  return data_type;
480
481  // !!!!!
482  // The source of the chain rule is 'position = 1'
483  uint         position = 1;
484  const char  *result   = NULL;
485  const char  *name     = NULL;
486  const char  *opType   = NULL;
487  // Here base_operand is looking for an ideal type to be returned (opType).
488  if ( _matrule->is_chain_rule(globals)
489       && _matrule->base_operand(position, globals, result, name, opType) ) {
490    data_type = ideal_to_const_type(opType);
491
492    // if it isn't an ideal constant type, just return
493    if ( data_type == Form::none ) return data_type;
494
495    // Ideal constant types also adjust the opType parameter.
496    resultParam = result;
497    opTypeParam = opType;
498    return data_type;
499  }
500
501  return data_type;
502}
503
504// Check if a simple chain rule
505bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
506  if( _matrule && _matrule->sets_result()
507      && _matrule->_rChild->_lChild == NULL
508      && globals[_matrule->_rChild->_opType]
509      && globals[_matrule->_rChild->_opType]->is_opclass() ) {
510    return true;
511  }
512  return false;
513}
514
515// check for structural rematerialization
516bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
517  bool   rematerialize = false;
518
519  Form::DataType data_type = is_chain_of_constant(globals);
520  if( data_type != Form::none )
521    rematerialize = true;
522
523  // Constants
524  if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
525    rematerialize = true;
526
527  // Pseudo-constants (values easily available to the runtime)
528  if (is_empty_encoding() && is_tls_instruction())
529    rematerialize = true;
530
531  // 1-input, 1-output, such as copies or increments.
532  if( _components.count() == 2 &&
533      _components[0]->is(Component::DEF) &&
534      _components[1]->isa(Component::USE) )
535    rematerialize = true;
536
537  // Check for an ideal 'Load?' and eliminate rematerialize option
538  if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
539       is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
540       is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
541    rematerialize = false;
542  }
543
544  // Always rematerialize the flags.  They are more expensive to save &
545  // restore than to recompute (and possibly spill the compare's inputs).
546  if( _components.count() >= 1 ) {
547    Component *c = _components[0];
548    const Form *form = globals[c->_type];
549    OperandForm *opform = form->is_operand();
550    if( opform ) {
551      // Avoid the special stack_slots register classes
552      const char *rc_name = opform->constrained_reg_class();
553      if( rc_name ) {
554        if( strcmp(rc_name,"stack_slots") ) {
555          // Check for ideal_type of RegFlags
556          const char *type = opform->ideal_type( globals, registers );
557          if( !strcmp(type,"RegFlags") )
558            rematerialize = true;
559        } else
560          rematerialize = false; // Do not rematerialize things target stk
561      }
562    }
563  }
564
565  return rematerialize;
566}
567
568// loads from memory, so must check for anti-dependence
569bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
570  // Machine independent loads must be checked for anti-dependences
571  if( is_ideal_load() != Form::none )  return true;
572
573  // !!!!! !!!!! !!!!!
574  // TEMPORARY
575  // if( is_simple_chain_rule(globals) )  return false;
576
577  // String-compare uses many memorys edges, but writes none
578  if( _matrule && _matrule->_rChild &&
579      strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
580    return true;
581
582  // Check if instruction has a USE of a memory operand class, but no defs
583  bool USE_of_memory  = false;
584  bool DEF_of_memory  = false;
585  Component     *comp = NULL;
586  ComponentList &components = (ComponentList &)_components;
587
588  components.reset();
589  while( (comp = components.iter()) != NULL ) {
590    const Form  *form = globals[comp->_type];
591    if( !form ) continue;
592    OpClassForm *op   = form->is_opclass();
593    if( !op ) continue;
594    if( form->interface_type(globals) == Form::memory_interface ) {
595      if( comp->isa(Component::USE) ) USE_of_memory = true;
596      if( comp->isa(Component::DEF) ) {
597        OperandForm *oper = form->is_operand();
598        if( oper && oper->is_user_name_for_sReg() ) {
599          // Stack slots are unaliased memory handled by allocator
600          oper = oper;  // debug stopping point !!!!!
601        } else {
602          DEF_of_memory = true;
603        }
604      }
605    }
606  }
607  return (USE_of_memory && !DEF_of_memory);
608}
609
610
611bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
612  if( _matrule == NULL ) return false;
613  if( !_matrule->_opType ) return false;
614
615  if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
616  if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
617
618  return false;
619}
620
621int InstructForm::memory_operand(FormDict &globals) const {
622  // Machine independent loads must be checked for anti-dependences
623  // Check if instruction has a USE of a memory operand class, or a def.
624  int USE_of_memory  = 0;
625  int DEF_of_memory  = 0;
626  const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
627  Component     *unique          = NULL;
628  Component     *comp            = NULL;
629  ComponentList &components      = (ComponentList &)_components;
630
631  components.reset();
632  while( (comp = components.iter()) != NULL ) {
633    const Form  *form = globals[comp->_type];
634    if( !form ) continue;
635    OpClassForm *op   = form->is_opclass();
636    if( !op ) continue;
637    if( op->stack_slots_only(globals) )  continue;
638    if( form->interface_type(globals) == Form::memory_interface ) {
639      if( comp->isa(Component::DEF) ) {
640        last_memory_DEF = comp->_name;
641        DEF_of_memory++;
642        unique = comp;
643      } else if( comp->isa(Component::USE) ) {
644        if( last_memory_DEF != NULL ) {
645          assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
646          last_memory_DEF = NULL;
647        }
648        USE_of_memory++;
649        if (DEF_of_memory == 0)  // defs take precedence
650          unique = comp;
651      } else {
652        assert(last_memory_DEF == NULL, "unpaired memory DEF");
653      }
654    }
655  }
656  assert(last_memory_DEF == NULL, "unpaired memory DEF");
657  assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
658  USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
659  if( (USE_of_memory + DEF_of_memory) > 0 ) {
660    if( is_simple_chain_rule(globals) ) {
661      //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
662      //((InstructForm*)this)->dump();
663      // Preceding code prints nothing on sparc and these insns on intel:
664      // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
665      // leaPIdxOff leaPIdxScale leaPIdxScaleOff
666      return NO_MEMORY_OPERAND;
667    }
668
669    if( DEF_of_memory == 1 ) {
670      assert(unique != NULL, "");
671      if( USE_of_memory == 0 ) {
672        // unique def, no uses
673      } else {
674        // // unique def, some uses
675        // // must return bottom unless all uses match def
676        // unique = NULL;
677      }
678    } else if( DEF_of_memory > 0 ) {
679      // multiple defs, don't care about uses
680      unique = NULL;
681    } else if( USE_of_memory == 1) {
682      // unique use, no defs
683      assert(unique != NULL, "");
684    } else if( USE_of_memory > 0 ) {
685      // multiple uses, no defs
686      unique = NULL;
687    } else {
688      assert(false, "bad case analysis");
689    }
690    // process the unique DEF or USE, if there is one
691    if( unique == NULL ) {
692      return MANY_MEMORY_OPERANDS;
693    } else {
694      int pos = components.operand_position(unique->_name);
695      if( unique->isa(Component::DEF) ) {
696        pos += 1;                // get corresponding USE from DEF
697      }
698      assert(pos >= 1, "I was just looking at it!");
699      return pos;
700    }
701  }
702
703  // missed the memory op??
704  if( true ) {  // %%% should not be necessary
705    if( is_ideal_store() != Form::none ) {
706      fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
707      ((InstructForm*)this)->dump();
708      // pretend it has multiple defs and uses
709      return MANY_MEMORY_OPERANDS;
710    }
711    if( is_ideal_load()  != Form::none ) {
712      fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
713      ((InstructForm*)this)->dump();
714      // pretend it has multiple uses and no defs
715      return MANY_MEMORY_OPERANDS;
716    }
717  }
718
719  return NO_MEMORY_OPERAND;
720}
721
722
723// This instruction captures the machine-independent bottom_type
724// Expected use is for pointer vs oop determination for LoadP
725bool InstructForm::captures_bottom_type() const {
726  if( _matrule && _matrule->_rChild &&
727       (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
728        !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
729        !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
730        !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
731        !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
732        !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
733        !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
734        !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
735  else if ( is_ideal_load() == Form::idealP )                return true;
736  else if ( is_ideal_store() != Form::none  )                return true;
737
738  return  false;
739}
740
741
742// Access instr_cost attribute or return NULL.
743const char* InstructForm::cost() {
744  for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
745    if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
746      return cur->_val;
747    }
748  }
749  return NULL;
750}
751
752// Return count of top-level operands.
753uint InstructForm::num_opnds() {
754  int  num_opnds = _components.num_operands();
755
756  // Need special handling for matching some ideal nodes
757  // i.e. Matching a return node
758  /*
759  if( _matrule ) {
760    if( strcmp(_matrule->_opType,"Return"   )==0 ||
761        strcmp(_matrule->_opType,"Halt"     )==0 )
762      return 3;
763  }
764    */
765  return num_opnds;
766}
767
768// Return count of unmatched operands.
769uint InstructForm::num_post_match_opnds() {
770  uint  num_post_match_opnds = _components.count();
771  uint  num_match_opnds = _components.match_count();
772  num_post_match_opnds = num_post_match_opnds - num_match_opnds;
773
774  return num_post_match_opnds;
775}
776
777// Return the number of leaves below this complex operand
778uint InstructForm::num_consts(FormDict &globals) const {
779  if ( ! _matrule) return 0;
780
781  // This is a recursive invocation on all operands in the matchrule
782  return _matrule->num_consts(globals);
783}
784
785// Constants in match rule with specified type
786uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
787  if ( ! _matrule) return 0;
788
789  // This is a recursive invocation on all operands in the matchrule
790  return _matrule->num_consts(globals, type);
791}
792
793
794// Return the register class associated with 'leaf'.
795const char *InstructForm::out_reg_class(FormDict &globals) {
796  assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
797
798  return NULL;
799}
800
801
802
803// Lookup the starting position of inputs we are interested in wrt. ideal nodes
804uint InstructForm::oper_input_base(FormDict &globals) {
805  if( !_matrule ) return 1;     // Skip control for most nodes
806
807  // Need special handling for matching some ideal nodes
808  // i.e. Matching a return node
809  if( strcmp(_matrule->_opType,"Return"    )==0 ||
810      strcmp(_matrule->_opType,"Rethrow"   )==0 ||
811      strcmp(_matrule->_opType,"TailCall"  )==0 ||
812      strcmp(_matrule->_opType,"TailJump"  )==0 ||
813      strcmp(_matrule->_opType,"SafePoint" )==0 ||
814      strcmp(_matrule->_opType,"Halt"      )==0 )
815    return AdlcVMDeps::Parms;   // Skip the machine-state edges
816
817  if( _matrule->_rChild &&
818          strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
819        // String compare takes 1 control and 4 memory edges.
820    return 5;
821  }
822
823  // Check for handling of 'Memory' input/edge in the ideal world.
824  // The AD file writer is shielded from knowledge of these edges.
825  int base = 1;                 // Skip control
826  base += _matrule->needs_ideal_memory_edge(globals);
827
828  // Also skip the base-oop value for uses of derived oops.
829  // The AD file writer is shielded from knowledge of these edges.
830  base += needs_base_oop_edge(globals);
831
832  return base;
833}
834
835// Implementation does not modify state of internal structures
836void InstructForm::build_components() {
837  // Add top-level operands to the components
838  if (_matrule)  _matrule->append_components(_localNames, _components);
839
840  // Add parameters that "do not appear in match rule".
841  bool has_temp = false;
842  const char *name;
843  const char *kill_name = NULL;
844  for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
845    OperandForm *opForm = (OperandForm*)_localNames[name];
846
847    const Form *form = _effects[name];
848    Effect     *e    = form ? form->is_effect() : NULL;
849    if (e != NULL) {
850      has_temp |= e->is(Component::TEMP);
851
852      // KILLs must be declared after any TEMPs because TEMPs are real
853      // uses so their operand numbering must directly follow the real
854      // inputs from the match rule.  Fixing the numbering seems
855      // complex so simply enforce the restriction during parse.
856      if (kill_name != NULL &&
857          e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
858        OperandForm* kill = (OperandForm*)_localNames[kill_name];
859        globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
860                             _ident, kill->_ident, kill_name);
861      } else if (e->isa(Component::KILL)) {
862        kill_name = name;
863      }
864
865      // TEMPs are real uses and need to be among the first parameters
866      // listed, otherwise the numbering of operands and inputs gets
867      // screwy, so enforce this restriction during parse.
868      if (kill_name != NULL &&
869          e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
870        OperandForm* kill = (OperandForm*)_localNames[kill_name];
871        globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
872                             _ident, kill->_ident, kill_name, opForm->_ident, name);
873      } else if (e->isa(Component::KILL)) {
874        kill_name = name;
875      }
876    }
877
878    const Component *component  = _components.search(name);
879    if ( component  == NULL ) {
880      if (e) {
881        _components.insert(name, opForm->_ident, e->_use_def, false);
882        component = _components.search(name);
883        if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
884          const Form *form = globalAD->globalNames()[component->_type];
885          assert( form, "component type must be a defined form");
886          OperandForm *op   = form->is_operand();
887          if (op->_interface && op->_interface->is_RegInterface()) {
888            globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
889                                 _ident, opForm->_ident, name);
890          }
891        }
892      } else {
893        // This would be a nice warning but it triggers in a few places in a benign way
894        // if (_matrule != NULL && !expands()) {
895        //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
896        //                        _ident, opForm->_ident, name);
897        // }
898        _components.insert(name, opForm->_ident, Component::INVALID, false);
899      }
900    }
901    else if (e) {
902      // Component was found in the list
903      // Check if there is a new effect that requires an extra component.
904      // This happens when adding 'USE' to a component that is not yet one.
905      if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
906        if (component->isa(Component::USE) && _matrule) {
907          const Form *form = globalAD->globalNames()[component->_type];
908          assert( form, "component type must be a defined form");
909          OperandForm *op   = form->is_operand();
910          if (op->_interface && op->_interface->is_RegInterface()) {
911            globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
912                                 _ident, opForm->_ident, name);
913          }
914        }
915        _components.insert(name, opForm->_ident, e->_use_def, false);
916      } else {
917        Component  *comp = (Component*)component;
918        comp->promote_use_def_info(e->_use_def);
919      }
920      // Component positions are zero based.
921      int  pos  = _components.operand_position(name);
922      assert( ! (component->isa(Component::DEF) && (pos >= 1)),
923              "Component::DEF can only occur in the first position");
924    }
925  }
926
927  // Resolving the interactions between expand rules and TEMPs would
928  // be complex so simply disallow it.
929  if (_matrule == NULL && has_temp) {
930    globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
931  }
932
933  return;
934}
935
936// Return zero-based position in component list;  -1 if not in list.
937int   InstructForm::operand_position(const char *name, int usedef) {
938  return unique_opnds_idx(_components.operand_position(name, usedef));
939}
940
941int   InstructForm::operand_position_format(const char *name) {
942  return unique_opnds_idx(_components.operand_position_format(name));
943}
944
945// Return zero-based position in component list; -1 if not in list.
946int   InstructForm::label_position() {
947  return unique_opnds_idx(_components.label_position());
948}
949
950int   InstructForm::method_position() {
951  return unique_opnds_idx(_components.method_position());
952}
953
954// Return number of relocation entries needed for this instruction.
955uint  InstructForm::reloc(FormDict &globals) {
956  uint reloc_entries  = 0;
957  // Check for "Call" nodes
958  if ( is_ideal_call() )      ++reloc_entries;
959  if ( is_ideal_return() )    ++reloc_entries;
960  if ( is_ideal_safepoint() ) ++reloc_entries;
961
962
963  // Check if operands MAYBE oop pointers, by checking for ConP elements
964  // Proceed through the leaves of the match-tree and check for ConPs
965  if ( _matrule != NULL ) {
966    uint         position = 0;
967    const char  *result   = NULL;
968    const char  *name     = NULL;
969    const char  *opType   = NULL;
970    while (_matrule->base_operand(position, globals, result, name, opType)) {
971      if ( strcmp(opType,"ConP") == 0 ) {
972#ifdef SPARC
973        reloc_entries += 2; // 1 for sethi + 1 for setlo
974#else
975        ++reloc_entries;
976#endif
977      }
978      ++position;
979    }
980  }
981
982  // Above is only a conservative estimate
983  // because it did not check contents of operand classes.
984  // !!!!! !!!!!
985  // Add 1 to reloc info for each operand class in the component list.
986  Component  *comp;
987  _components.reset();
988  while ( (comp = _components.iter()) != NULL ) {
989    const Form        *form = globals[comp->_type];
990    assert( form, "Did not find component's type in global names");
991    const OpClassForm *opc  = form->is_opclass();
992    const OperandForm *oper = form->is_operand();
993    if ( opc && (oper == NULL) ) {
994      ++reloc_entries;
995    } else if ( oper ) {
996      // floats and doubles loaded out of method's constant pool require reloc info
997      Form::DataType type = oper->is_base_constant(globals);
998      if ( (type == Form::idealF) || (type == Form::idealD) ) {
999        ++reloc_entries;
1000      }
1001    }
1002  }
1003
1004  // Float and Double constants may come from the CodeBuffer table
1005  // and require relocatable addresses for access
1006  // !!!!!
1007  // Check for any component being an immediate float or double.
1008  Form::DataType data_type = is_chain_of_constant(globals);
1009  if( data_type==idealD || data_type==idealF ) {
1010#ifdef SPARC
1011    // sparc required more relocation entries for floating constants
1012    // (expires 9/98)
1013    reloc_entries += 6;
1014#else
1015    reloc_entries++;
1016#endif
1017  }
1018
1019  return reloc_entries;
1020}
1021
1022// Utility function defined in archDesc.cpp
1023extern bool is_def(int usedef);
1024
1025// Return the result of reducing an instruction
1026const char *InstructForm::reduce_result() {
1027  const char* result = "Universe";  // default
1028  _components.reset();
1029  Component *comp = _components.iter();
1030  if (comp != NULL && comp->isa(Component::DEF)) {
1031    result = comp->_type;
1032    // Override this if the rule is a store operation:
1033    if (_matrule && _matrule->_rChild &&
1034        is_store_to_memory(_matrule->_rChild->_opType))
1035      result = "Universe";
1036  }
1037  return result;
1038}
1039
1040// Return the name of the operand on the right hand side of the binary match
1041// Return NULL if there is no right hand side
1042const char *InstructForm::reduce_right(FormDict &globals)  const {
1043  if( _matrule == NULL ) return NULL;
1044  return  _matrule->reduce_right(globals);
1045}
1046
1047// Similar for left
1048const char *InstructForm::reduce_left(FormDict &globals)   const {
1049  if( _matrule == NULL ) return NULL;
1050  return  _matrule->reduce_left(globals);
1051}
1052
1053
1054// Base class for this instruction, MachNode except for calls
1055const char *InstructForm::mach_base_class()  const {
1056  if( is_ideal_call() == Form::JAVA_STATIC ) {
1057    return "MachCallStaticJavaNode";
1058  }
1059  else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1060    return "MachCallDynamicJavaNode";
1061  }
1062  else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1063    return "MachCallRuntimeNode";
1064  }
1065  else if( is_ideal_call() == Form::JAVA_LEAF ) {
1066    return "MachCallLeafNode";
1067  }
1068  else if (is_ideal_return()) {
1069    return "MachReturnNode";
1070  }
1071  else if (is_ideal_halt()) {
1072    return "MachHaltNode";
1073  }
1074  else if (is_ideal_safepoint()) {
1075    return "MachSafePointNode";
1076  }
1077  else if (is_ideal_if()) {
1078    return "MachIfNode";
1079  }
1080  else if (is_ideal_fastlock()) {
1081    return "MachFastLockNode";
1082  }
1083  else if (is_ideal_nop()) {
1084    return "MachNopNode";
1085  }
1086  else if (captures_bottom_type()) {
1087    return "MachTypeNode";
1088  } else {
1089    return "MachNode";
1090  }
1091  assert( false, "ShouldNotReachHere()");
1092  return NULL;
1093}
1094
1095// Compare the instruction predicates for textual equality
1096bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1097  const Predicate *pred1  = instr1->_predicate;
1098  const Predicate *pred2  = instr2->_predicate;
1099  if( pred1 == NULL && pred2 == NULL ) {
1100    // no predicates means they are identical
1101    return true;
1102  }
1103  if( pred1 != NULL && pred2 != NULL ) {
1104    // compare the predicates
1105    const char *str1 = pred1->_pred;
1106    const char *str2 = pred2->_pred;
1107    if( (str1 == NULL && str2 == NULL)
1108        || (str1 != NULL && str2 != NULL && strcmp(str1,str2) == 0) ) {
1109      return true;
1110    }
1111  }
1112
1113  return false;
1114}
1115
1116// Check if this instruction can cisc-spill to 'alternate'
1117bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1118  assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1119  // Do not replace if a cisc-version has been found.
1120  if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1121
1122  int         cisc_spill_operand = Maybe_cisc_spillable;
1123  char       *result             = NULL;
1124  char       *result2            = NULL;
1125  const char *op_name            = NULL;
1126  const char *reg_type           = NULL;
1127  FormDict   &globals            = AD.globalNames();
1128  cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1129  if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1130    cisc_spill_operand = operand_position(op_name, Component::USE);
1131    int def_oper  = operand_position(op_name, Component::DEF);
1132    if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1133      // Do not support cisc-spilling for destination operands and
1134      // make sure they have the same number of operands.
1135      _cisc_spill_alternate = instr;
1136      instr->set_cisc_alternate(true);
1137      if( AD._cisc_spill_debug ) {
1138        fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1139        fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1140      }
1141      // Record that a stack-version of the reg_mask is needed
1142      // !!!!!
1143      OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1144      assert( oper != NULL, "cisc-spilling non operand");
1145      const char *reg_class_name = oper->constrained_reg_class();
1146      AD.set_stack_or_reg(reg_class_name);
1147      const char *reg_mask_name  = AD.reg_mask(*oper);
1148      set_cisc_reg_mask_name(reg_mask_name);
1149      const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1150    } else {
1151      cisc_spill_operand = Not_cisc_spillable;
1152    }
1153  } else {
1154    cisc_spill_operand = Not_cisc_spillable;
1155  }
1156
1157  set_cisc_spill_operand(cisc_spill_operand);
1158  return (cisc_spill_operand != Not_cisc_spillable);
1159}
1160
1161// Check to see if this instruction can be replaced with the short branch
1162// instruction `short-branch'
1163bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1164  if (_matrule != NULL &&
1165      this != short_branch &&   // Don't match myself
1166      !is_short_branch() &&     // Don't match another short branch variant
1167      reduce_result() != NULL &&
1168      strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1169      _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1170    // The instructions are equivalent.
1171    if (AD._short_branch_debug) {
1172      fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1173    }
1174    _short_branch_form = short_branch;
1175    return true;
1176  }
1177  return false;
1178}
1179
1180
1181// --------------------------- FILE *output_routines
1182//
1183// Generate the format call for the replacement variable
1184void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1185  // Find replacement variable's type
1186  const Form *form   = _localNames[rep_var];
1187  if (form == NULL) {
1188    fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
1189    assert(false, "ShouldNotReachHere()");
1190  }
1191  OpClassForm *opc   = form->is_opclass();
1192  assert( opc, "replacement variable was not found in local names");
1193  // Lookup the index position of the replacement variable
1194  int idx  = operand_position_format(rep_var);
1195  if ( idx == -1 ) {
1196    assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
1197    assert( false, "ShouldNotReachHere()");
1198  }
1199
1200  if (is_noninput_operand(idx)) {
1201    // This component isn't in the input array.  Print out the static
1202    // name of the register.
1203    OperandForm* oper = form->is_operand();
1204    if (oper != NULL && oper->is_bound_register()) {
1205      const RegDef* first = oper->get_RegClass()->find_first_elem();
1206      fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
1207    } else {
1208      globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1209    }
1210  } else {
1211    // Output the format call for this operand
1212    fprintf(fp,"opnd_array(%d)->",idx);
1213    if (idx == 0)
1214      fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1215    else
1216      fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1217  }
1218}
1219
1220// Seach through operands to determine parameters unique positions.
1221void InstructForm::set_unique_opnds() {
1222  uint* uniq_idx = NULL;
1223  uint  nopnds = num_opnds();
1224  uint  num_uniq = nopnds;
1225  uint i;
1226  if ( nopnds > 0 ) {
1227    // Allocate index array with reserve.
1228    uniq_idx = (uint*) malloc(sizeof(uint)*(nopnds + 2));
1229    for( i = 0; i < nopnds+2; i++ ) {
1230      uniq_idx[i] = i;
1231    }
1232  }
1233  // Do it only if there is a match rule and no expand rule.  With an
1234  // expand rule it is done by creating new mach node in Expand()
1235  // method.
1236  if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
1237    const char *name;
1238    uint count;
1239    bool has_dupl_use = false;
1240
1241    _parameters.reset();
1242    while( (name = _parameters.iter()) != NULL ) {
1243      count = 0;
1244      uint position = 0;
1245      uint uniq_position = 0;
1246      _components.reset();
1247      Component *comp = NULL;
1248      if( sets_result() ) {
1249        comp = _components.iter();
1250        position++;
1251      }
1252      // The next code is copied from the method operand_position().
1253      for (; (comp = _components.iter()) != NULL; ++position) {
1254        // When the first component is not a DEF,
1255        // leave space for the result operand!
1256        if ( position==0 && (! comp->isa(Component::DEF)) ) {
1257          ++position;
1258        }
1259        if( strcmp(name, comp->_name)==0 ) {
1260          if( ++count > 1 ) {
1261            uniq_idx[position] = uniq_position;
1262            has_dupl_use = true;
1263          } else {
1264            uniq_position = position;
1265          }
1266        }
1267        if( comp->isa(Component::DEF)
1268            && comp->isa(Component::USE) ) {
1269          ++position;
1270          if( position != 1 )
1271            --position;   // only use two slots for the 1st USE_DEF
1272        }
1273      }
1274    }
1275    if( has_dupl_use ) {
1276      for( i = 1; i < nopnds; i++ )
1277        if( i != uniq_idx[i] )
1278          break;
1279      int  j = i;
1280      for( ; i < nopnds; i++ )
1281        if( i == uniq_idx[i] )
1282          uniq_idx[i] = j++;
1283      num_uniq = j;
1284    }
1285  }
1286  _uniq_idx = uniq_idx;
1287  _num_uniq = num_uniq;
1288}
1289
1290// Generate index values needed for determing the operand position
1291void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1292  uint  idx = 0;                  // position of operand in match rule
1293  int   cur_num_opnds = num_opnds();
1294
1295  // Compute the index into vector of operand pointers:
1296  // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1297  // idx1 starts at oper_input_base()
1298  if ( cur_num_opnds >= 1 ) {
1299    fprintf(fp,"    // Start at oper_input_base() and count operands\n");
1300    fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1301    fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
1302
1303    // Generate starting points for other unique operands if they exist
1304    for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1305      if( *receiver == 0 ) {
1306        fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
1307                prefix, idx, prefix, idx-1, idx-1 );
1308      } else {
1309        fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
1310                prefix, idx, prefix, idx-1, receiver, idx-1 );
1311      }
1312    }
1313  }
1314  if( *receiver != 0 ) {
1315    // This value is used by generate_peepreplace when copying a node.
1316    // Don't emit it in other cases since it can hide bugs with the
1317    // use invalid idx's.
1318    fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1319  }
1320
1321}
1322
1323// ---------------------------
1324bool InstructForm::verify() {
1325  // !!!!! !!!!!
1326  // Check that a "label" operand occurs last in the operand list, if present
1327  return true;
1328}
1329
1330void InstructForm::dump() {
1331  output(stderr);
1332}
1333
1334void InstructForm::output(FILE *fp) {
1335  fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1336  if (_matrule)   _matrule->output(fp);
1337  if (_insencode) _insencode->output(fp);
1338  if (_opcode)    _opcode->output(fp);
1339  if (_attribs)   _attribs->output(fp);
1340  if (_predicate) _predicate->output(fp);
1341  if (_effects.Size()) {
1342    fprintf(fp,"Effects\n");
1343    _effects.dump();
1344  }
1345  if (_exprule)   _exprule->output(fp);
1346  if (_rewrule)   _rewrule->output(fp);
1347  if (_format)    _format->output(fp);
1348  if (_peephole)  _peephole->output(fp);
1349}
1350
1351void MachNodeForm::dump() {
1352  output(stderr);
1353}
1354
1355void MachNodeForm::output(FILE *fp) {
1356  fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1357}
1358
1359//------------------------------build_predicate--------------------------------
1360// Build instruction predicates.  If the user uses the same operand name
1361// twice, we need to check that the operands are pointer-eequivalent in
1362// the DFA during the labeling process.
1363Predicate *InstructForm::build_predicate() {
1364  char buf[1024], *s=buf;
1365  Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1366
1367  MatchNode *mnode =
1368    strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1369  mnode->count_instr_names(names);
1370
1371  uint first = 1;
1372  // Start with the predicate supplied in the .ad file.
1373  if( _predicate ) {
1374    if( first ) first=0;
1375    strcpy(s,"("); s += strlen(s);
1376    strcpy(s,_predicate->_pred);
1377    s += strlen(s);
1378    strcpy(s,")"); s += strlen(s);
1379  }
1380  for( DictI i(&names); i.test(); ++i ) {
1381    uintptr_t cnt = (uintptr_t)i._value;
1382    if( cnt > 1 ) {             // Need a predicate at all?
1383      assert( cnt == 2, "Unimplemented" );
1384      // Handle many pairs
1385      if( first ) first=0;
1386      else {                    // All tests must pass, so use '&&'
1387        strcpy(s," && ");
1388        s += strlen(s);
1389      }
1390      // Add predicate to working buffer
1391      sprintf(s,"/*%s*/(",(char*)i._key);
1392      s += strlen(s);
1393      mnode->build_instr_pred(s,(char*)i._key,0);
1394      s += strlen(s);
1395      strcpy(s," == "); s += strlen(s);
1396      mnode->build_instr_pred(s,(char*)i._key,1);
1397      s += strlen(s);
1398      strcpy(s,")"); s += strlen(s);
1399    }
1400  }
1401  if( s == buf ) s = NULL;
1402  else {
1403    assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1404    s = strdup(buf);
1405  }
1406  return new Predicate(s);
1407}
1408
1409//------------------------------EncodeForm-------------------------------------
1410// Constructor
1411EncodeForm::EncodeForm()
1412  : _encClass(cmpstr,hashstr, Form::arena) {
1413}
1414EncodeForm::~EncodeForm() {
1415}
1416
1417// record a new register class
1418EncClass *EncodeForm::add_EncClass(const char *className) {
1419  EncClass *encClass = new EncClass(className);
1420  _eclasses.addName(className);
1421  _encClass.Insert(className,encClass);
1422  return encClass;
1423}
1424
1425// Lookup the function body for an encoding class
1426EncClass  *EncodeForm::encClass(const char *className) {
1427  assert( className != NULL, "Must provide a defined encoding name");
1428
1429  EncClass *encClass = (EncClass*)_encClass[className];
1430  return encClass;
1431}
1432
1433// Lookup the function body for an encoding class
1434const char *EncodeForm::encClassBody(const char *className) {
1435  if( className == NULL ) return NULL;
1436
1437  EncClass *encClass = (EncClass*)_encClass[className];
1438  assert( encClass != NULL, "Encode Class is missing.");
1439  encClass->_code.reset();
1440  const char *code = (const char*)encClass->_code.iter();
1441  assert( code != NULL, "Found an empty encode class body.");
1442
1443  return code;
1444}
1445
1446// Lookup the function body for an encoding class
1447const char *EncodeForm::encClassPrototype(const char *className) {
1448  assert( className != NULL, "Encode class name must be non NULL.");
1449
1450  return className;
1451}
1452
1453void EncodeForm::dump() {                  // Debug printer
1454  output(stderr);
1455}
1456
1457void EncodeForm::output(FILE *fp) {          // Write info to output files
1458  const char *name;
1459  fprintf(fp,"\n");
1460  fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1461  for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1462    ((EncClass*)_encClass[name])->output(fp);
1463  }
1464  fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1465}
1466//------------------------------EncClass---------------------------------------
1467EncClass::EncClass(const char *name)
1468  : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1469}
1470EncClass::~EncClass() {
1471}
1472
1473// Add a parameter <type,name> pair
1474void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1475  _parameter_type.addName( parameter_type );
1476  _parameter_name.addName( parameter_name );
1477}
1478
1479// Verify operand types in parameter list
1480bool EncClass::check_parameter_types(FormDict &globals) {
1481  // !!!!!
1482  return false;
1483}
1484
1485// Add the decomposed "code" sections of an encoding's code-block
1486void EncClass::add_code(const char *code) {
1487  _code.addName(code);
1488}
1489
1490// Add the decomposed "replacement variables" of an encoding's code-block
1491void EncClass::add_rep_var(char *replacement_var) {
1492  _code.addName(NameList::_signal);
1493  _rep_vars.addName(replacement_var);
1494}
1495
1496// Lookup the function body for an encoding class
1497int EncClass::rep_var_index(const char *rep_var) {
1498  uint        position = 0;
1499  const char *name     = NULL;
1500
1501  _parameter_name.reset();
1502  while ( (name = _parameter_name.iter()) != NULL ) {
1503    if ( strcmp(rep_var,name) == 0 ) return position;
1504    ++position;
1505  }
1506
1507  return -1;
1508}
1509
1510// Check after parsing
1511bool EncClass::verify() {
1512  // 1!!!!
1513  // Check that each replacement variable, '$name' in architecture description
1514  // is actually a local variable for this encode class, or a reserved name
1515  // "primary, secondary, tertiary"
1516  return true;
1517}
1518
1519void EncClass::dump() {
1520  output(stderr);
1521}
1522
1523// Write info to output files
1524void EncClass::output(FILE *fp) {
1525  fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1526
1527  // Output the parameter list
1528  _parameter_type.reset();
1529  _parameter_name.reset();
1530  const char *type = _parameter_type.iter();
1531  const char *name = _parameter_name.iter();
1532  fprintf(fp, " ( ");
1533  for ( ; (type != NULL) && (name != NULL);
1534        (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1535    fprintf(fp, " %s %s,", type, name);
1536  }
1537  fprintf(fp, " ) ");
1538
1539  // Output the code block
1540  _code.reset();
1541  _rep_vars.reset();
1542  const char *code;
1543  while ( (code = _code.iter()) != NULL ) {
1544    if ( _code.is_signal(code) ) {
1545      // A replacement variable
1546      const char *rep_var = _rep_vars.iter();
1547      fprintf(fp,"($%s)", rep_var);
1548    } else {
1549      // A section of code
1550      fprintf(fp,"%s", code);
1551    }
1552  }
1553
1554}
1555
1556//------------------------------Opcode-----------------------------------------
1557Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1558  : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1559}
1560
1561Opcode::~Opcode() {
1562}
1563
1564Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1565  if( strcmp(param,"primary") == 0 ) {
1566    return Opcode::PRIMARY;
1567  }
1568  else if( strcmp(param,"secondary") == 0 ) {
1569    return Opcode::SECONDARY;
1570  }
1571  else if( strcmp(param,"tertiary") == 0 ) {
1572    return Opcode::TERTIARY;
1573  }
1574  return Opcode::NOT_AN_OPCODE;
1575}
1576
1577void Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1578  // Default values previously provided by MachNode::primary()...
1579  const char *description = "default_opcode()";
1580  const char *value       = "-1";
1581  // Check if user provided any opcode definitions
1582  if( this != NULL ) {
1583    // Update 'value' if user provided a definition in the instruction
1584    switch (desired_opcode) {
1585    case PRIMARY:
1586      description = "primary()";
1587      if( _primary   != NULL)  { value = _primary;     }
1588      break;
1589    case SECONDARY:
1590      description = "secondary()";
1591      if( _secondary != NULL ) { value = _secondary;   }
1592      break;
1593    case TERTIARY:
1594      description = "tertiary()";
1595      if( _tertiary  != NULL ) { value = _tertiary;    }
1596      break;
1597    default:
1598      assert( false, "ShouldNotReachHere();");
1599      break;
1600    }
1601  }
1602  fprintf(fp, "(%s /*%s*/)", value, description);
1603}
1604
1605void Opcode::dump() {
1606  output(stderr);
1607}
1608
1609// Write info to output files
1610void Opcode::output(FILE *fp) {
1611  if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1612  if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1613  if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1614}
1615
1616//------------------------------InsEncode--------------------------------------
1617InsEncode::InsEncode() {
1618}
1619InsEncode::~InsEncode() {
1620}
1621
1622// Add "encode class name" and its parameters
1623NameAndList *InsEncode::add_encode(char *encoding) {
1624  assert( encoding != NULL, "Must provide name for encoding");
1625
1626  // add_parameter(NameList::_signal);
1627  NameAndList *encode = new NameAndList(encoding);
1628  _encoding.addName((char*)encode);
1629
1630  return encode;
1631}
1632
1633// Access the list of encodings
1634void InsEncode::reset() {
1635  _encoding.reset();
1636  // _parameter.reset();
1637}
1638const char* InsEncode::encode_class_iter() {
1639  NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1640  return  ( encode_class != NULL ? encode_class->name() : NULL );
1641}
1642// Obtain parameter name from zero based index
1643const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1644  NameAndList *params = (NameAndList*)_encoding.current();
1645  assert( params != NULL, "Internal Error");
1646  const char *param = (*params)[param_no];
1647
1648  // Remove '$' if parser placed it there.
1649  return ( param != NULL && *param == '$') ? (param+1) : param;
1650}
1651
1652void InsEncode::dump() {
1653  output(stderr);
1654}
1655
1656// Write info to output files
1657void InsEncode::output(FILE *fp) {
1658  NameAndList *encoding  = NULL;
1659  const char  *parameter = NULL;
1660
1661  fprintf(fp,"InsEncode: ");
1662  _encoding.reset();
1663
1664  while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1665    // Output the encoding being used
1666    fprintf(fp,"%s(", encoding->name() );
1667
1668    // Output its parameter list, if any
1669    bool first_param = true;
1670    encoding->reset();
1671    while (  (parameter = encoding->iter()) != 0 ) {
1672      // Output the ',' between parameters
1673      if ( ! first_param )  fprintf(fp,", ");
1674      first_param = false;
1675      // Output the parameter
1676      fprintf(fp,"%s", parameter);
1677    } // done with parameters
1678    fprintf(fp,")  ");
1679  } // done with encodings
1680
1681  fprintf(fp,"\n");
1682}
1683
1684//------------------------------Effect-----------------------------------------
1685static int effect_lookup(const char *name) {
1686  if(!strcmp(name, "USE")) return Component::USE;
1687  if(!strcmp(name, "DEF")) return Component::DEF;
1688  if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1689  if(!strcmp(name, "KILL")) return Component::KILL;
1690  if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1691  if(!strcmp(name, "TEMP")) return Component::TEMP;
1692  if(!strcmp(name, "INVALID")) return Component::INVALID;
1693  assert( false,"Invalid effect name specified\n");
1694  return Component::INVALID;
1695}
1696
1697Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1698  _ftype = Form::EFF;
1699}
1700Effect::~Effect() {
1701}
1702
1703// Dynamic type check
1704Effect *Effect::is_effect() const {
1705  return (Effect*)this;
1706}
1707
1708
1709// True if this component is equal to the parameter.
1710bool Effect::is(int use_def_kill_enum) const {
1711  return (_use_def == use_def_kill_enum ? true : false);
1712}
1713// True if this component is used/def'd/kill'd as the parameter suggests.
1714bool Effect::isa(int use_def_kill_enum) const {
1715  return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1716}
1717
1718void Effect::dump() {
1719  output(stderr);
1720}
1721
1722void Effect::output(FILE *fp) {          // Write info to output files
1723  fprintf(fp,"Effect: %s\n", (_name?_name:""));
1724}
1725
1726//------------------------------ExpandRule-------------------------------------
1727ExpandRule::ExpandRule() : _expand_instrs(),
1728                           _newopconst(cmpstr, hashstr, Form::arena) {
1729  _ftype = Form::EXP;
1730}
1731
1732ExpandRule::~ExpandRule() {                  // Destructor
1733}
1734
1735void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1736  _expand_instrs.addName((char*)instruction_name_and_operand_list);
1737}
1738
1739void ExpandRule::reset_instructions() {
1740  _expand_instrs.reset();
1741}
1742
1743NameAndList* ExpandRule::iter_instructions() {
1744  return (NameAndList*)_expand_instrs.iter();
1745}
1746
1747
1748void ExpandRule::dump() {
1749  output(stderr);
1750}
1751
1752void ExpandRule::output(FILE *fp) {         // Write info to output files
1753  NameAndList *expand_instr = NULL;
1754  const char *opid = NULL;
1755
1756  fprintf(fp,"\nExpand Rule:\n");
1757
1758  // Iterate over the instructions 'node' expands into
1759  for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1760    fprintf(fp,"%s(", expand_instr->name());
1761
1762    // iterate over the operand list
1763    for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1764      fprintf(fp,"%s ", opid);
1765    }
1766    fprintf(fp,");\n");
1767  }
1768}
1769
1770//------------------------------RewriteRule------------------------------------
1771RewriteRule::RewriteRule(char* params, char* block)
1772  : _tempParams(params), _tempBlock(block) { };  // Constructor
1773RewriteRule::~RewriteRule() {                 // Destructor
1774}
1775
1776void RewriteRule::dump() {
1777  output(stderr);
1778}
1779
1780void RewriteRule::output(FILE *fp) {         // Write info to output files
1781  fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1782          (_tempParams?_tempParams:""),
1783          (_tempBlock?_tempBlock:""));
1784}
1785
1786
1787//==============================MachNodes======================================
1788//------------------------------MachNodeForm-----------------------------------
1789MachNodeForm::MachNodeForm(char *id)
1790  : _ident(id) {
1791}
1792
1793MachNodeForm::~MachNodeForm() {
1794}
1795
1796MachNodeForm *MachNodeForm::is_machnode() const {
1797  return (MachNodeForm*)this;
1798}
1799
1800//==============================Operand Classes================================
1801//------------------------------OpClassForm------------------------------------
1802OpClassForm::OpClassForm(const char* id) : _ident(id) {
1803  _ftype = Form::OPCLASS;
1804}
1805
1806OpClassForm::~OpClassForm() {
1807}
1808
1809bool OpClassForm::ideal_only() const { return 0; }
1810
1811OpClassForm *OpClassForm::is_opclass() const {
1812  return (OpClassForm*)this;
1813}
1814
1815Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1816  if( _oplst.count() == 0 ) return Form::no_interface;
1817
1818  // Check that my operands have the same interface type
1819  Form::InterfaceType  interface;
1820  bool  first = true;
1821  NameList &op_list = (NameList &)_oplst;
1822  op_list.reset();
1823  const char *op_name;
1824  while( (op_name = op_list.iter()) != NULL ) {
1825    const Form  *form    = globals[op_name];
1826    OperandForm *operand = form->is_operand();
1827    assert( operand, "Entry in operand class that is not an operand");
1828    if( first ) {
1829      first     = false;
1830      interface = operand->interface_type(globals);
1831    } else {
1832      interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1833    }
1834  }
1835  return interface;
1836}
1837
1838bool OpClassForm::stack_slots_only(FormDict &globals) const {
1839  if( _oplst.count() == 0 ) return false;  // how?
1840
1841  NameList &op_list = (NameList &)_oplst;
1842  op_list.reset();
1843  const char *op_name;
1844  while( (op_name = op_list.iter()) != NULL ) {
1845    const Form  *form    = globals[op_name];
1846    OperandForm *operand = form->is_operand();
1847    assert( operand, "Entry in operand class that is not an operand");
1848    if( !operand->stack_slots_only(globals) )  return false;
1849  }
1850  return true;
1851}
1852
1853
1854void OpClassForm::dump() {
1855  output(stderr);
1856}
1857
1858void OpClassForm::output(FILE *fp) {
1859  const char *name;
1860  fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
1861  fprintf(fp,"\nCount = %d\n", _oplst.count());
1862  for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
1863    fprintf(fp,"%s, ",name);
1864  }
1865  fprintf(fp,"\n");
1866}
1867
1868
1869//==============================Operands=======================================
1870//------------------------------OperandForm------------------------------------
1871OperandForm::OperandForm(const char* id)
1872  : OpClassForm(id), _ideal_only(false),
1873    _localNames(cmpstr, hashstr, Form::arena) {
1874      _ftype = Form::OPER;
1875
1876      _matrule   = NULL;
1877      _interface = NULL;
1878      _attribs   = NULL;
1879      _predicate = NULL;
1880      _constraint= NULL;
1881      _construct = NULL;
1882      _format    = NULL;
1883}
1884OperandForm::OperandForm(const char* id, bool ideal_only)
1885  : OpClassForm(id), _ideal_only(ideal_only),
1886    _localNames(cmpstr, hashstr, Form::arena) {
1887      _ftype = Form::OPER;
1888
1889      _matrule   = NULL;
1890      _interface = NULL;
1891      _attribs   = NULL;
1892      _predicate = NULL;
1893      _constraint= NULL;
1894      _construct = NULL;
1895      _format    = NULL;
1896}
1897OperandForm::~OperandForm() {
1898}
1899
1900
1901OperandForm *OperandForm::is_operand() const {
1902  return (OperandForm*)this;
1903}
1904
1905bool OperandForm::ideal_only() const {
1906  return _ideal_only;
1907}
1908
1909Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
1910  if( _interface == NULL )  return Form::no_interface;
1911
1912  return _interface->interface_type(globals);
1913}
1914
1915
1916bool OperandForm::stack_slots_only(FormDict &globals) const {
1917  if( _constraint == NULL )  return false;
1918  return _constraint->stack_slots_only();
1919}
1920
1921
1922// Access op_cost attribute or return NULL.
1923const char* OperandForm::cost() {
1924  for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
1925    if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
1926      return cur->_val;
1927    }
1928  }
1929  return NULL;
1930}
1931
1932// Return the number of leaves below this complex operand
1933uint OperandForm::num_leaves() const {
1934  if ( ! _matrule) return 0;
1935
1936  int num_leaves = _matrule->_numleaves;
1937  return num_leaves;
1938}
1939
1940// Return the number of constants contained within this complex operand
1941uint OperandForm::num_consts(FormDict &globals) const {
1942  if ( ! _matrule) return 0;
1943
1944  // This is a recursive invocation on all operands in the matchrule
1945  return _matrule->num_consts(globals);
1946}
1947
1948// Return the number of constants in match rule with specified type
1949uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
1950  if ( ! _matrule) return 0;
1951
1952  // This is a recursive invocation on all operands in the matchrule
1953  return _matrule->num_consts(globals, type);
1954}
1955
1956// Return the number of pointer constants contained within this complex operand
1957uint OperandForm::num_const_ptrs(FormDict &globals) const {
1958  if ( ! _matrule) return 0;
1959
1960  // This is a recursive invocation on all operands in the matchrule
1961  return _matrule->num_const_ptrs(globals);
1962}
1963
1964uint OperandForm::num_edges(FormDict &globals) const {
1965  uint edges  = 0;
1966  uint leaves = num_leaves();
1967  uint consts = num_consts(globals);
1968
1969  // If we are matching a constant directly, there are no leaves.
1970  edges = ( leaves > consts ) ? leaves - consts : 0;
1971
1972  // !!!!!
1973  // Special case operands that do not have a corresponding ideal node.
1974  if( (edges == 0) && (consts == 0) ) {
1975    if( constrained_reg_class() != NULL ) {
1976      edges = 1;
1977    } else {
1978      if( _matrule
1979          && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
1980        const Form *form = globals[_matrule->_opType];
1981        OperandForm *oper = form ? form->is_operand() : NULL;
1982        if( oper ) {
1983          return oper->num_edges(globals);
1984        }
1985      }
1986    }
1987  }
1988
1989  return edges;
1990}
1991
1992
1993// Check if this operand is usable for cisc-spilling
1994bool  OperandForm::is_cisc_reg(FormDict &globals) const {
1995  const char *ideal = ideal_type(globals);
1996  bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
1997  return is_cisc_reg;
1998}
1999
2000bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2001  Form::InterfaceType my_interface = interface_type(globals);
2002  return (my_interface == memory_interface);
2003}
2004
2005
2006// node matches ideal 'Bool'
2007bool OperandForm::is_ideal_bool() const {
2008  if( _matrule == NULL ) return false;
2009
2010  return _matrule->is_ideal_bool();
2011}
2012
2013// Require user's name for an sRegX to be stackSlotX
2014Form::DataType OperandForm::is_user_name_for_sReg() const {
2015  DataType data_type = none;
2016  if( _ident != NULL ) {
2017    if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2018    else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2019    else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2020    else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2021    else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2022  }
2023  assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2024
2025  return data_type;
2026}
2027
2028
2029// Return ideal type, if there is a single ideal type for this operand
2030const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2031  const char *type = NULL;
2032  if (ideal_only()) type = _ident;
2033  else if( _matrule == NULL ) {
2034    // Check for condition code register
2035    const char *rc_name = constrained_reg_class();
2036    // !!!!!
2037    if (rc_name == NULL) return NULL;
2038    // !!!!! !!!!!
2039    // Check constraints on result's register class
2040    if( registers ) {
2041      RegClass *reg_class  = registers->getRegClass(rc_name);
2042      assert( reg_class != NULL, "Register class is not defined");
2043
2044      // Check for ideal type of entries in register class, all are the same type
2045      reg_class->reset();
2046      RegDef *reg_def = reg_class->RegDef_iter();
2047      assert( reg_def != NULL, "No entries in register class");
2048      assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2049      // Return substring that names the register's ideal type
2050      type = reg_def->_idealtype + 3;
2051      assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2052      assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2053      assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2054    }
2055  }
2056  else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2057    // This operand matches a single type, at the top level.
2058    // Check for ideal type
2059    type = _matrule->_opType;
2060    if( strcmp(type,"Bool") == 0 )
2061      return "Bool";
2062    // transitive lookup
2063    const Form *frm = globals[type];
2064    OperandForm *op = frm->is_operand();
2065    type = op->ideal_type(globals, registers);
2066  }
2067  return type;
2068}
2069
2070
2071// If there is a single ideal type for this interface field, return it.
2072const char *OperandForm::interface_ideal_type(FormDict &globals,
2073                                              const char *field) const {
2074  const char  *ideal_type = NULL;
2075  const char  *value      = NULL;
2076
2077  // Check if "field" is valid for this operand's interface
2078  if ( ! is_interface_field(field, value) )   return ideal_type;
2079
2080  // !!!!! !!!!! !!!!!
2081  // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2082
2083  // Else, lookup type of field's replacement variable
2084
2085  return ideal_type;
2086}
2087
2088
2089RegClass* OperandForm::get_RegClass() const {
2090  if (_interface && !_interface->is_RegInterface()) return NULL;
2091  return globalAD->get_registers()->getRegClass(constrained_reg_class());
2092}
2093
2094
2095bool OperandForm::is_bound_register() const {
2096  RegClass *reg_class  = get_RegClass();
2097  if (reg_class == NULL) return false;
2098
2099  const char * name = ideal_type(globalAD->globalNames());
2100  if (name == NULL) return false;
2101
2102  int size = 0;
2103  if (strcmp(name,"RegFlags")==0) size =  1;
2104  if (strcmp(name,"RegI")==0) size =  1;
2105  if (strcmp(name,"RegF")==0) size =  1;
2106  if (strcmp(name,"RegD")==0) size =  2;
2107  if (strcmp(name,"RegL")==0) size =  2;
2108  if (strcmp(name,"RegN")==0) size =  1;
2109  if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
2110  if (size == 0) return false;
2111  return size == reg_class->size();
2112}
2113
2114
2115// Check if this is a valid field for this operand,
2116// Return 'true' if valid, and set the value to the string the user provided.
2117bool  OperandForm::is_interface_field(const char *field,
2118                                      const char * &value) const {
2119  return false;
2120}
2121
2122
2123// Return register class name if a constraint specifies the register class.
2124const char *OperandForm::constrained_reg_class() const {
2125  const char *reg_class  = NULL;
2126  if ( _constraint ) {
2127    // !!!!!
2128    Constraint *constraint = _constraint;
2129    if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2130      reg_class = _constraint->_arg;
2131    }
2132  }
2133
2134  return reg_class;
2135}
2136
2137
2138// Return the register class associated with 'leaf'.
2139const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2140  const char *reg_class = NULL; // "RegMask::Empty";
2141
2142  if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2143    reg_class = constrained_reg_class();
2144    return reg_class;
2145  }
2146  const char *result   = NULL;
2147  const char *name     = NULL;
2148  const char *type     = NULL;
2149  // iterate through all base operands
2150  // until we reach the register that corresponds to "leaf"
2151  // This function is not looking for an ideal type.  It needs the first
2152  // level user type associated with the leaf.
2153  for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2154    const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2155    OperandForm *oper = form ? form->is_operand() : NULL;
2156    if( oper ) {
2157      reg_class = oper->constrained_reg_class();
2158      if( reg_class ) {
2159        reg_class = reg_class;
2160      } else {
2161        // ShouldNotReachHere();
2162      }
2163    } else {
2164      // ShouldNotReachHere();
2165    }
2166
2167    // Increment our target leaf position if current leaf is not a candidate.
2168    if( reg_class == NULL)    ++leaf;
2169    // Exit the loop with the value of reg_class when at the correct index
2170    if( idx == leaf )         break;
2171    // May iterate through all base operands if reg_class for 'leaf' is NULL
2172  }
2173  return reg_class;
2174}
2175
2176
2177// Recursive call to construct list of top-level operands.
2178// Implementation does not modify state of internal structures
2179void OperandForm::build_components() {
2180  if (_matrule)  _matrule->append_components(_localNames, _components);
2181
2182  // Add parameters that "do not appear in match rule".
2183  const char *name;
2184  for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2185    OperandForm *opForm = (OperandForm*)_localNames[name];
2186
2187    if ( _components.operand_position(name) == -1 ) {
2188      _components.insert(name, opForm->_ident, Component::INVALID, false);
2189    }
2190  }
2191
2192  return;
2193}
2194
2195int OperandForm::operand_position(const char *name, int usedef) {
2196  return _components.operand_position(name, usedef);
2197}
2198
2199
2200// Return zero-based position in component list, only counting constants;
2201// Return -1 if not in list.
2202int OperandForm::constant_position(FormDict &globals, const Component *last) {
2203  // Iterate through components and count constants preceeding 'constant'
2204  uint  position = 0;
2205  Component *comp;
2206  _components.reset();
2207  while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2208    // Special case for operands that take a single user-defined operand
2209    // Skip the initial definition in the component list.
2210    if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2211
2212    const char *type = comp->_type;
2213    // Lookup operand form for replacement variable's type
2214    const Form *form = globals[type];
2215    assert( form != NULL, "Component's type not found");
2216    OperandForm *oper = form ? form->is_operand() : NULL;
2217    if( oper ) {
2218      if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2219        ++position;
2220      }
2221    }
2222  }
2223
2224  // Check for being passed a component that was not in the list
2225  if( comp != last )  position = -1;
2226
2227  return position;
2228}
2229// Provide position of constant by "name"
2230int OperandForm::constant_position(FormDict &globals, const char *name) {
2231  const Component *comp = _components.search(name);
2232  int idx = constant_position( globals, comp );
2233
2234  return idx;
2235}
2236
2237
2238// Return zero-based position in component list, only counting constants;
2239// Return -1 if not in list.
2240int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2241  // Iterate through components and count registers preceeding 'last'
2242  uint  position = 0;
2243  Component *comp;
2244  _components.reset();
2245  while( (comp = _components.iter()) != NULL
2246         && (strcmp(comp->_name,reg_name) != 0) ) {
2247    // Special case for operands that take a single user-defined operand
2248    // Skip the initial definition in the component list.
2249    if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2250
2251    const char *type = comp->_type;
2252    // Lookup operand form for component's type
2253    const Form *form = globals[type];
2254    assert( form != NULL, "Component's type not found");
2255    OperandForm *oper = form ? form->is_operand() : NULL;
2256    if( oper ) {
2257      if( oper->_matrule->is_base_register(globals) ) {
2258        ++position;
2259      }
2260    }
2261  }
2262
2263  return position;
2264}
2265
2266
2267const char *OperandForm::reduce_result()  const {
2268  return _ident;
2269}
2270// Return the name of the operand on the right hand side of the binary match
2271// Return NULL if there is no right hand side
2272const char *OperandForm::reduce_right(FormDict &globals)  const {
2273  return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2274}
2275
2276// Similar for left
2277const char *OperandForm::reduce_left(FormDict &globals)   const {
2278  return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2279}
2280
2281
2282// --------------------------- FILE *output_routines
2283//
2284// Output code for disp_is_oop, if true.
2285void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2286  //  Check it is a memory interface with a non-user-constant disp field
2287  if ( this->_interface == NULL ) return;
2288  MemInterface *mem_interface = this->_interface->is_MemInterface();
2289  if ( mem_interface == NULL )    return;
2290  const char   *disp  = mem_interface->_disp;
2291  if ( *disp != '$' )             return;
2292
2293  // Lookup replacement variable in operand's component list
2294  const char   *rep_var = disp + 1;
2295  const Component *comp = this->_components.search(rep_var);
2296  assert( comp != NULL, "Replacement variable not found in components");
2297  // Lookup operand form for replacement variable's type
2298  const char      *type = comp->_type;
2299  Form            *form = (Form*)globals[type];
2300  assert( form != NULL, "Replacement variable's type not found");
2301  OperandForm     *op   = form->is_operand();
2302  assert( op, "Memory Interface 'disp' can only emit an operand form");
2303  // Check if this is a ConP, which may require relocation
2304  if ( op->is_base_constant(globals) == Form::idealP ) {
2305    // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2306    uint idx  = op->constant_position( globals, rep_var);
2307    fprintf(fp,"  virtual bool disp_is_oop() const {", _ident);
2308    fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
2309    fprintf(fp, " }\n");
2310  }
2311}
2312
2313// Generate code for internal and external format methods
2314//
2315// internal access to reg# node->_idx
2316// access to subsumed constant _c0, _c1,
2317void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2318  Form::DataType dtype;
2319  if (_matrule && (_matrule->is_base_register(globals) ||
2320                   strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2321    // !!!!! !!!!!
2322    fprintf(fp,    "{ char reg_str[128];\n");
2323    fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2324    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2325    fprintf(fp,"    }\n");
2326  } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2327    format_constant( fp, index, dtype );
2328  } else if (ideal_to_sReg_type(_ident) != Form::none) {
2329    // Special format for Stack Slot Register
2330    fprintf(fp,    "{ char reg_str[128];\n");
2331    fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2332    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2333    fprintf(fp,"    }\n");
2334  } else {
2335    fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2336    fflush(fp);
2337    fprintf(stderr,"No format defined for %s\n", _ident);
2338    dump();
2339    assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2340  }
2341}
2342
2343// Similar to "int_format" but for cases where data is external to operand
2344// external access to reg# node->in(idx)->_idx,
2345void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2346  Form::DataType dtype;
2347  if (_matrule && (_matrule->is_base_register(globals) ||
2348                   strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2349    fprintf(fp,    "{ char reg_str[128];\n");
2350    fprintf(fp,"      ra->dump_register(node->in(idx");
2351    if ( index != 0 ) fprintf(fp,                  "+%d",index);
2352    fprintf(fp,                                       "),reg_str);\n");
2353    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2354    fprintf(fp,"    }\n");
2355  } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2356    format_constant( fp, index, dtype );
2357  } else if (ideal_to_sReg_type(_ident) != Form::none) {
2358    // Special format for Stack Slot Register
2359    fprintf(fp,    "{ char reg_str[128];\n");
2360    fprintf(fp,"      ra->dump_register(node->in(idx");
2361    if ( index != 0 ) fprintf(fp,                  "+%d",index);
2362    fprintf(fp,                                       "),reg_str);\n");
2363    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2364    fprintf(fp,"    }\n");
2365  } else {
2366    fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2367    assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2368  }
2369}
2370
2371void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2372  switch(const_type) {
2373  case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
2374  case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2375  case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2376  case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
2377  case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2378  case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2379  default:
2380    assert( false, "ShouldNotReachHere()");
2381  }
2382}
2383
2384// Return the operand form corresponding to the given index, else NULL.
2385OperandForm *OperandForm::constant_operand(FormDict &globals,
2386                                           uint      index) {
2387  // !!!!!
2388  // Check behavior on complex operands
2389  uint n_consts = num_consts(globals);
2390  if( n_consts > 0 ) {
2391    uint i = 0;
2392    const char *type;
2393    Component  *comp;
2394    _components.reset();
2395    if ((comp = _components.iter()) == NULL) {
2396      assert(n_consts == 1, "Bad component list detected.\n");
2397      // Current operand is THE operand
2398      if ( index == 0 ) {
2399        return this;
2400      }
2401    } // end if NULL
2402    else {
2403      // Skip the first component, it can not be a DEF of a constant
2404      do {
2405        type = comp->base_type(globals);
2406        // Check that "type" is a 'ConI', 'ConP', ...
2407        if ( ideal_to_const_type(type) != Form::none ) {
2408          // When at correct component, get corresponding Operand
2409          if ( index == 0 ) {
2410            return globals[comp->_type]->is_operand();
2411          }
2412          // Decrement number of constants to go
2413          --index;
2414        }
2415      } while((comp = _components.iter()) != NULL);
2416    }
2417  }
2418
2419  // Did not find a constant for this index.
2420  return NULL;
2421}
2422
2423// If this operand has a single ideal type, return its type
2424Form::DataType OperandForm::simple_type(FormDict &globals) const {
2425  const char *type_name = ideal_type(globals);
2426  Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2427                                    : Form::none;
2428  return type;
2429}
2430
2431Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2432  if ( _matrule == NULL )    return Form::none;
2433
2434  return _matrule->is_base_constant(globals);
2435}
2436
2437// "true" if this operand is a simple type that is swallowed
2438bool  OperandForm::swallowed(FormDict &globals) const {
2439  Form::DataType type   = simple_type(globals);
2440  if( type != Form::none ) {
2441    return true;
2442  }
2443
2444  return false;
2445}
2446
2447// Output code to access the value of the index'th constant
2448void OperandForm::access_constant(FILE *fp, FormDict &globals,
2449                                  uint const_index) {
2450  OperandForm *oper = constant_operand(globals, const_index);
2451  assert( oper, "Index exceeds number of constants in operand");
2452  Form::DataType dtype = oper->is_base_constant(globals);
2453
2454  switch(dtype) {
2455  case idealI: fprintf(fp,"_c%d",           const_index); break;
2456  case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2457  case idealL: fprintf(fp,"_c%d",           const_index); break;
2458  case idealF: fprintf(fp,"_c%d",           const_index); break;
2459  case idealD: fprintf(fp,"_c%d",           const_index); break;
2460  default:
2461    assert( false, "ShouldNotReachHere()");
2462  }
2463}
2464
2465
2466void OperandForm::dump() {
2467  output(stderr);
2468}
2469
2470void OperandForm::output(FILE *fp) {
2471  fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2472  if (_matrule)    _matrule->dump();
2473  if (_interface)  _interface->dump();
2474  if (_attribs)    _attribs->dump();
2475  if (_predicate)  _predicate->dump();
2476  if (_constraint) _constraint->dump();
2477  if (_construct)  _construct->dump();
2478  if (_format)     _format->dump();
2479}
2480
2481//------------------------------Constraint-------------------------------------
2482Constraint::Constraint(const char *func, const char *arg)
2483  : _func(func), _arg(arg) {
2484}
2485Constraint::~Constraint() { /* not owner of char* */
2486}
2487
2488bool Constraint::stack_slots_only() const {
2489  return strcmp(_func, "ALLOC_IN_RC") == 0
2490      && strcmp(_arg,  "stack_slots") == 0;
2491}
2492
2493void Constraint::dump() {
2494  output(stderr);
2495}
2496
2497void Constraint::output(FILE *fp) {           // Write info to output files
2498  assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2499  fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2500}
2501
2502//------------------------------Predicate--------------------------------------
2503Predicate::Predicate(char *pr)
2504  : _pred(pr) {
2505}
2506Predicate::~Predicate() {
2507}
2508
2509void Predicate::dump() {
2510  output(stderr);
2511}
2512
2513void Predicate::output(FILE *fp) {
2514  fprintf(fp,"Predicate");  // Write to output files
2515}
2516//------------------------------Interface--------------------------------------
2517Interface::Interface(const char *name) : _name(name) {
2518}
2519Interface::~Interface() {
2520}
2521
2522Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2523  Interface *thsi = (Interface*)this;
2524  if ( thsi->is_RegInterface()   ) return Form::register_interface;
2525  if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2526  if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2527  if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2528
2529  return Form::no_interface;
2530}
2531
2532RegInterface   *Interface::is_RegInterface() {
2533  if ( strcmp(_name,"REG_INTER") != 0 )
2534    return NULL;
2535  return (RegInterface*)this;
2536}
2537MemInterface   *Interface::is_MemInterface() {
2538  if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2539  return (MemInterface*)this;
2540}
2541ConstInterface *Interface::is_ConstInterface() {
2542  if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2543  return (ConstInterface*)this;
2544}
2545CondInterface  *Interface::is_CondInterface() {
2546  if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2547  return (CondInterface*)this;
2548}
2549
2550
2551void Interface::dump() {
2552  output(stderr);
2553}
2554
2555// Write info to output files
2556void Interface::output(FILE *fp) {
2557  fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2558}
2559
2560//------------------------------RegInterface-----------------------------------
2561RegInterface::RegInterface() : Interface("REG_INTER") {
2562}
2563RegInterface::~RegInterface() {
2564}
2565
2566void RegInterface::dump() {
2567  output(stderr);
2568}
2569
2570// Write info to output files
2571void RegInterface::output(FILE *fp) {
2572  Interface::output(fp);
2573}
2574
2575//------------------------------ConstInterface---------------------------------
2576ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2577}
2578ConstInterface::~ConstInterface() {
2579}
2580
2581void ConstInterface::dump() {
2582  output(stderr);
2583}
2584
2585// Write info to output files
2586void ConstInterface::output(FILE *fp) {
2587  Interface::output(fp);
2588}
2589
2590//------------------------------MemInterface-----------------------------------
2591MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2592  : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2593}
2594MemInterface::~MemInterface() {
2595  // not owner of any character arrays
2596}
2597
2598void MemInterface::dump() {
2599  output(stderr);
2600}
2601
2602// Write info to output files
2603void MemInterface::output(FILE *fp) {
2604  Interface::output(fp);
2605  if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2606  if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2607  if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2608  if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2609  // fprintf(fp,"\n");
2610}
2611
2612//------------------------------CondInterface----------------------------------
2613CondInterface::CondInterface(char *equal,      char *not_equal,
2614                             char *less,       char *greater_equal,
2615                             char *less_equal, char *greater)
2616  : Interface("COND_INTER"),
2617    _equal(equal), _not_equal(not_equal),
2618    _less(less), _greater_equal(greater_equal),
2619    _less_equal(less_equal), _greater(greater) {
2620      //
2621}
2622CondInterface::~CondInterface() {
2623  // not owner of any character arrays
2624}
2625
2626void CondInterface::dump() {
2627  output(stderr);
2628}
2629
2630// Write info to output files
2631void CondInterface::output(FILE *fp) {
2632  Interface::output(fp);
2633  if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
2634  if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
2635  if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
2636  if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
2637  if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
2638  if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
2639  // fprintf(fp,"\n");
2640}
2641
2642//------------------------------ConstructRule----------------------------------
2643ConstructRule::ConstructRule(char *cnstr)
2644  : _construct(cnstr) {
2645}
2646ConstructRule::~ConstructRule() {
2647}
2648
2649void ConstructRule::dump() {
2650  output(stderr);
2651}
2652
2653void ConstructRule::output(FILE *fp) {
2654  fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2655}
2656
2657
2658//==============================Shared Forms===================================
2659//------------------------------AttributeForm----------------------------------
2660int         AttributeForm::_insId   = 0;           // start counter at 0
2661int         AttributeForm::_opId    = 0;           // start counter at 0
2662const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2663const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
2664const char* AttributeForm::_op_cost  = "op_cost";  // required name
2665
2666AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2667  : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2668    if (type==OP_ATTR) {
2669      id = ++_opId;
2670    }
2671    else if (type==INS_ATTR) {
2672      id = ++_insId;
2673    }
2674    else assert( false,"");
2675}
2676AttributeForm::~AttributeForm() {
2677}
2678
2679// Dynamic type check
2680AttributeForm *AttributeForm::is_attribute() const {
2681  return (AttributeForm*)this;
2682}
2683
2684
2685// inlined  // int  AttributeForm::type() { return id;}
2686
2687void AttributeForm::dump() {
2688  output(stderr);
2689}
2690
2691void AttributeForm::output(FILE *fp) {
2692  if( _attrname && _attrdef ) {
2693    fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2694            _attrname, _attrdef);
2695  }
2696  else {
2697    fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2698            (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2699  }
2700}
2701
2702//------------------------------Component--------------------------------------
2703Component::Component(const char *name, const char *type, int usedef)
2704  : _name(name), _type(type), _usedef(usedef) {
2705    _ftype = Form::COMP;
2706}
2707Component::~Component() {
2708}
2709
2710// True if this component is equal to the parameter.
2711bool Component::is(int use_def_kill_enum) const {
2712  return (_usedef == use_def_kill_enum ? true : false);
2713}
2714// True if this component is used/def'd/kill'd as the parameter suggests.
2715bool Component::isa(int use_def_kill_enum) const {
2716  return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2717}
2718
2719// Extend this component with additional use/def/kill behavior
2720int Component::promote_use_def_info(int new_use_def) {
2721  _usedef |= new_use_def;
2722
2723  return _usedef;
2724}
2725
2726// Check the base type of this component, if it has one
2727const char *Component::base_type(FormDict &globals) {
2728  const Form *frm = globals[_type];
2729  if (frm == NULL) return NULL;
2730  OperandForm *op = frm->is_operand();
2731  if (op == NULL) return NULL;
2732  if (op->ideal_only()) return op->_ident;
2733  return (char *)op->ideal_type(globals);
2734}
2735
2736void Component::dump() {
2737  output(stderr);
2738}
2739
2740void Component::output(FILE *fp) {
2741  fprintf(fp,"Component:");  // Write to output files
2742  fprintf(fp, "  name = %s", _name);
2743  fprintf(fp, ", type = %s", _type);
2744  const char * usedef = "Undefined Use/Def info";
2745  switch (_usedef) {
2746    case USE:      usedef = "USE";      break;
2747    case USE_DEF:  usedef = "USE_DEF";  break;
2748    case USE_KILL: usedef = "USE_KILL"; break;
2749    case KILL:     usedef = "KILL";     break;
2750    case TEMP:     usedef = "TEMP";     break;
2751    case DEF:      usedef = "DEF";      break;
2752    default: assert(false, "unknown effect");
2753  }
2754  fprintf(fp, ", use/def = %s\n", usedef);
2755}
2756
2757
2758//------------------------------ComponentList---------------------------------
2759ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2760}
2761ComponentList::~ComponentList() {
2762  // // This list may not own its elements if copied via assignment
2763  // Component *component;
2764  // for (reset(); (component = iter()) != NULL;) {
2765  //   delete component;
2766  // }
2767}
2768
2769void   ComponentList::insert(Component *component, bool mflag) {
2770  NameList::addName((char *)component);
2771  if(mflag) _matchcnt++;
2772}
2773void   ComponentList::insert(const char *name, const char *opType, int usedef,
2774                             bool mflag) {
2775  Component * component = new Component(name, opType, usedef);
2776  insert(component, mflag);
2777}
2778Component *ComponentList::current() { return (Component*)NameList::current(); }
2779Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2780Component *ComponentList::match_iter() {
2781  if(_iter < _matchcnt) return (Component*)NameList::iter();
2782  return NULL;
2783}
2784Component *ComponentList::post_match_iter() {
2785  Component *comp = iter();
2786  // At end of list?
2787  if ( comp == NULL ) {
2788    return comp;
2789  }
2790  // In post-match components?
2791  if (_iter > match_count()-1) {
2792    return comp;
2793  }
2794
2795  return post_match_iter();
2796}
2797
2798void       ComponentList::reset()   { NameList::reset(); }
2799int        ComponentList::count()   { return NameList::count(); }
2800
2801Component *ComponentList::operator[](int position) {
2802  // Shortcut complete iteration if there are not enough entries
2803  if (position >= count()) return NULL;
2804
2805  int        index     = 0;
2806  Component *component = NULL;
2807  for (reset(); (component = iter()) != NULL;) {
2808    if (index == position) {
2809      return component;
2810    }
2811    ++index;
2812  }
2813
2814  return NULL;
2815}
2816
2817const Component *ComponentList::search(const char *name) {
2818  PreserveIter pi(this);
2819  reset();
2820  for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2821    if( strcmp(comp->_name,name) == 0 ) return comp;
2822  }
2823
2824  return NULL;
2825}
2826
2827// Return number of USEs + number of DEFs
2828// When there are no components, or the first component is a USE,
2829// then we add '1' to hold a space for the 'result' operand.
2830int ComponentList::num_operands() {
2831  PreserveIter pi(this);
2832  uint       count = 1;           // result operand
2833  uint       position = 0;
2834
2835  Component *component  = NULL;
2836  for( reset(); (component = iter()) != NULL; ++position ) {
2837    if( component->isa(Component::USE) ||
2838        ( position == 0 && (! component->isa(Component::DEF))) ) {
2839      ++count;
2840    }
2841  }
2842
2843  return count;
2844}
2845
2846// Return zero-based position in list;  -1 if not in list.
2847// if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2848int ComponentList::operand_position(const char *name, int usedef) {
2849  PreserveIter pi(this);
2850  int position = 0;
2851  int num_opnds = num_operands();
2852  Component *component;
2853  Component* preceding_non_use = NULL;
2854  Component* first_def = NULL;
2855  for (reset(); (component = iter()) != NULL; ++position) {
2856    // When the first component is not a DEF,
2857    // leave space for the result operand!
2858    if ( position==0 && (! component->isa(Component::DEF)) ) {
2859      ++position;
2860      ++num_opnds;
2861    }
2862    if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
2863      // When the first entry in the component list is a DEF and a USE
2864      // Treat them as being separate, a DEF first, then a USE
2865      if( position==0
2866          && usedef==Component::USE && component->isa(Component::DEF) ) {
2867        assert(position+1 < num_opnds, "advertised index in bounds");
2868        return position+1;
2869      } else {
2870        if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
2871          fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
2872        }
2873        if( position >= num_opnds ) {
2874          fprintf(stderr, "the name '%s' is too late in its name list\n", name);
2875        }
2876        assert(position < num_opnds, "advertised index in bounds");
2877        return position;
2878      }
2879    }
2880    if( component->isa(Component::DEF)
2881        && component->isa(Component::USE) ) {
2882      ++position;
2883      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2884    }
2885    if( component->isa(Component::DEF) && !first_def ) {
2886      first_def = component;
2887    }
2888    if( !component->isa(Component::USE) && component != first_def ) {
2889      preceding_non_use = component;
2890    } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
2891      preceding_non_use = NULL;
2892    }
2893  }
2894  return Not_in_list;
2895}
2896
2897// Find position for this name, regardless of use/def information
2898int ComponentList::operand_position(const char *name) {
2899  PreserveIter pi(this);
2900  int position = 0;
2901  Component *component;
2902  for (reset(); (component = iter()) != NULL; ++position) {
2903    // When the first component is not a DEF,
2904    // leave space for the result operand!
2905    if ( position==0 && (! component->isa(Component::DEF)) ) {
2906      ++position;
2907    }
2908    if (strcmp(name, component->_name)==0) {
2909      return position;
2910    }
2911    if( component->isa(Component::DEF)
2912        && component->isa(Component::USE) ) {
2913      ++position;
2914      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2915    }
2916  }
2917  return Not_in_list;
2918}
2919
2920int ComponentList::operand_position_format(const char *name) {
2921  PreserveIter pi(this);
2922  int  first_position = operand_position(name);
2923  int  use_position   = operand_position(name, Component::USE);
2924
2925  return ((first_position < use_position) ? use_position : first_position);
2926}
2927
2928int ComponentList::label_position() {
2929  PreserveIter pi(this);
2930  int position = 0;
2931  reset();
2932  for( Component *comp; (comp = iter()) != NULL; ++position) {
2933    // When the first component is not a DEF,
2934    // leave space for the result operand!
2935    if ( position==0 && (! comp->isa(Component::DEF)) ) {
2936      ++position;
2937    }
2938    if (strcmp(comp->_type, "label")==0) {
2939      return position;
2940    }
2941    if( comp->isa(Component::DEF)
2942        && comp->isa(Component::USE) ) {
2943      ++position;
2944      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2945    }
2946  }
2947
2948  return -1;
2949}
2950
2951int ComponentList::method_position() {
2952  PreserveIter pi(this);
2953  int position = 0;
2954  reset();
2955  for( Component *comp; (comp = iter()) != NULL; ++position) {
2956    // When the first component is not a DEF,
2957    // leave space for the result operand!
2958    if ( position==0 && (! comp->isa(Component::DEF)) ) {
2959      ++position;
2960    }
2961    if (strcmp(comp->_type, "method")==0) {
2962      return position;
2963    }
2964    if( comp->isa(Component::DEF)
2965        && comp->isa(Component::USE) ) {
2966      ++position;
2967      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2968    }
2969  }
2970
2971  return -1;
2972}
2973
2974void ComponentList::dump() { output(stderr); }
2975
2976void ComponentList::output(FILE *fp) {
2977  PreserveIter pi(this);
2978  fprintf(fp, "\n");
2979  Component *component;
2980  for (reset(); (component = iter()) != NULL;) {
2981    component->output(fp);
2982  }
2983  fprintf(fp, "\n");
2984}
2985
2986//------------------------------MatchNode--------------------------------------
2987MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
2988                     const char *opType, MatchNode *lChild, MatchNode *rChild)
2989  : _AD(ad), _result(result), _name(mexpr), _opType(opType),
2990    _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
2991    _commutative_id(0) {
2992  _numleaves = (lChild ? lChild->_numleaves : 0)
2993               + (rChild ? rChild->_numleaves : 0);
2994}
2995
2996MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
2997  : _AD(ad), _result(mnode._result), _name(mnode._name),
2998    _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
2999    _internalop(0), _numleaves(mnode._numleaves),
3000    _commutative_id(mnode._commutative_id) {
3001}
3002
3003MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3004  : _AD(ad), _result(mnode._result), _name(mnode._name),
3005    _opType(mnode._opType),
3006    _internalop(0), _numleaves(mnode._numleaves),
3007    _commutative_id(mnode._commutative_id) {
3008  if (mnode._lChild) {
3009    _lChild = new MatchNode(ad, *mnode._lChild, clone);
3010  } else {
3011    _lChild = NULL;
3012  }
3013  if (mnode._rChild) {
3014    _rChild = new MatchNode(ad, *mnode._rChild, clone);
3015  } else {
3016    _rChild = NULL;
3017  }
3018}
3019
3020MatchNode::~MatchNode() {
3021  // // This node may not own its children if copied via assignment
3022  // if( _lChild ) delete _lChild;
3023  // if( _rChild ) delete _rChild;
3024}
3025
3026bool  MatchNode::find_type(const char *type, int &position) const {
3027  if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3028  if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3029
3030  if (strcmp(type,_opType)==0)  {
3031    return true;
3032  } else {
3033    ++position;
3034  }
3035  return false;
3036}
3037
3038// Recursive call collecting info on top-level operands, not transitive.
3039// Implementation does not modify state of internal structures.
3040void MatchNode::append_components(FormDict &locals, ComponentList &components,
3041                                  bool deflag) const {
3042  int   usedef = deflag ? Component::DEF : Component::USE;
3043  FormDict &globals = _AD.globalNames();
3044
3045  assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3046  // Base case
3047  if (_lChild==NULL && _rChild==NULL) {
3048    // If _opType is not an operation, do not build a component for it #####
3049    const Form *f = globals[_opType];
3050    if( f != NULL ) {
3051      // Add non-ideals that are operands, operand-classes,
3052      if( ! f->ideal_only()
3053          && (f->is_opclass() || f->is_operand()) ) {
3054        components.insert(_name, _opType, usedef, true);
3055      }
3056    }
3057    return;
3058  }
3059  // Promote results of "Set" to DEF
3060  bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
3061  if (_lChild) _lChild->append_components(locals, components, def_flag);
3062  def_flag = false;   // only applies to component immediately following 'Set'
3063  if (_rChild) _rChild->append_components(locals, components, def_flag);
3064}
3065
3066// Find the n'th base-operand in the match node,
3067// recursively investigates match rules of user-defined operands.
3068//
3069// Implementation does not modify state of internal structures since they
3070// can be shared.
3071bool MatchNode::base_operand(uint &position, FormDict &globals,
3072                             const char * &result, const char * &name,
3073                             const char * &opType) const {
3074  assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3075  // Base case
3076  if (_lChild==NULL && _rChild==NULL) {
3077    // Check for special case: "Universe", "label"
3078    if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3079      if (position == 0) {
3080        result = _result;
3081        name   = _name;
3082        opType = _opType;
3083        return 1;
3084      } else {
3085        -- position;
3086        return 0;
3087      }
3088    }
3089
3090    const Form *form = globals[_opType];
3091    MatchNode *matchNode = NULL;
3092    // Check for user-defined type
3093    if (form) {
3094      // User operand or instruction?
3095      OperandForm  *opForm = form->is_operand();
3096      InstructForm *inForm = form->is_instruction();
3097      if ( opForm ) {
3098        matchNode = (MatchNode*)opForm->_matrule;
3099      } else if ( inForm ) {
3100        matchNode = (MatchNode*)inForm->_matrule;
3101      }
3102    }
3103    // if this is user-defined, recurse on match rule
3104    // User-defined operand and instruction forms have a match-rule.
3105    if (matchNode) {
3106      return (matchNode->base_operand(position,globals,result,name,opType));
3107    } else {
3108      // Either not a form, or a system-defined form (no match rule).
3109      if (position==0) {
3110        result = _result;
3111        name   = _name;
3112        opType = _opType;
3113        return 1;
3114      } else {
3115        --position;
3116        return 0;
3117      }
3118    }
3119
3120  } else {
3121    // Examine the left child and right child as well
3122    if (_lChild) {
3123      if (_lChild->base_operand(position, globals, result, name, opType))
3124        return 1;
3125    }
3126
3127    if (_rChild) {
3128      if (_rChild->base_operand(position, globals, result, name, opType))
3129        return 1;
3130    }
3131  }
3132
3133  return 0;
3134}
3135
3136// Recursive call on all operands' match rules in my match rule.
3137uint  MatchNode::num_consts(FormDict &globals) const {
3138  uint        index      = 0;
3139  uint        num_consts = 0;
3140  const char *result;
3141  const char *name;
3142  const char *opType;
3143
3144  for (uint position = index;
3145       base_operand(position,globals,result,name,opType); position = index) {
3146    ++index;
3147    if( ideal_to_const_type(opType) )        num_consts++;
3148  }
3149
3150  return num_consts;
3151}
3152
3153// Recursive call on all operands' match rules in my match rule.
3154// Constants in match rule subtree with specified type
3155uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3156  uint        index      = 0;
3157  uint        num_consts = 0;
3158  const char *result;
3159  const char *name;
3160  const char *opType;
3161
3162  for (uint position = index;
3163       base_operand(position,globals,result,name,opType); position = index) {
3164    ++index;
3165    if( ideal_to_const_type(opType) == type ) num_consts++;
3166  }
3167
3168  return num_consts;
3169}
3170
3171// Recursive call on all operands' match rules in my match rule.
3172uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3173  return  num_consts( globals, Form::idealP );
3174}
3175
3176bool  MatchNode::sets_result() const {
3177  return   ( (strcmp(_name,"Set") == 0) ? true : false );
3178}
3179
3180const char *MatchNode::reduce_right(FormDict &globals) const {
3181  // If there is no right reduction, return NULL.
3182  const char      *rightStr    = NULL;
3183
3184  // If we are a "Set", start from the right child.
3185  const MatchNode *const mnode = sets_result() ?
3186    (const MatchNode *const)this->_rChild :
3187    (const MatchNode *const)this;
3188
3189  // If our right child exists, it is the right reduction
3190  if ( mnode->_rChild ) {
3191    rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3192      : mnode->_rChild->_opType;
3193  }
3194  // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3195  return rightStr;
3196}
3197
3198const char *MatchNode::reduce_left(FormDict &globals) const {
3199  // If there is no left reduction, return NULL.
3200  const char  *leftStr  = NULL;
3201
3202  // If we are a "Set", start from the right child.
3203  const MatchNode *const mnode = sets_result() ?
3204    (const MatchNode *const)this->_rChild :
3205    (const MatchNode *const)this;
3206
3207  // If our left child exists, it is the left reduction
3208  if ( mnode->_lChild ) {
3209    leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3210      : mnode->_lChild->_opType;
3211  } else {
3212    // May be simple chain rule: (Set dst operand_form_source)
3213    if ( sets_result() ) {
3214      OperandForm *oper = globals[mnode->_opType]->is_operand();
3215      if( oper ) {
3216        leftStr = mnode->_opType;
3217      }
3218    }
3219  }
3220  return leftStr;
3221}
3222
3223//------------------------------count_instr_names------------------------------
3224// Count occurrences of operands names in the leaves of the instruction
3225// match rule.
3226void MatchNode::count_instr_names( Dict &names ) {
3227  if( !this ) return;
3228  if( _lChild ) _lChild->count_instr_names(names);
3229  if( _rChild ) _rChild->count_instr_names(names);
3230  if( !_lChild && !_rChild ) {
3231    uintptr_t cnt = (uintptr_t)names[_name];
3232    cnt++;                      // One more name found
3233    names.Insert(_name,(void*)cnt);
3234  }
3235}
3236
3237//------------------------------build_instr_pred-------------------------------
3238// Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3239// can skip some leading instances of 'name'.
3240int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3241  if( _lChild ) {
3242    if( !cnt ) strcpy( buf, "_kids[0]->" );
3243    cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3244    if( cnt < 0 ) return cnt;   // Found it, all done
3245  }
3246  if( _rChild ) {
3247    if( !cnt ) strcpy( buf, "_kids[1]->" );
3248    cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3249    if( cnt < 0 ) return cnt;   // Found it, all done
3250  }
3251  if( !_lChild && !_rChild ) {  // Found a leaf
3252    // Wrong name?  Give up...
3253    if( strcmp(name,_name) ) return cnt;
3254    if( !cnt ) strcpy(buf,"_leaf");
3255    return cnt-1;
3256  }
3257  return cnt;
3258}
3259
3260
3261//------------------------------build_internalop-------------------------------
3262// Build string representation of subtree
3263void MatchNode::build_internalop( ) {
3264  char *iop, *subtree;
3265  const char *lstr, *rstr;
3266  // Build string representation of subtree
3267  // Operation lchildType rchildType
3268  int len = (int)strlen(_opType) + 4;
3269  lstr = (_lChild) ? ((_lChild->_internalop) ?
3270                       _lChild->_internalop : _lChild->_opType) : "";
3271  rstr = (_rChild) ? ((_rChild->_internalop) ?
3272                       _rChild->_internalop : _rChild->_opType) : "";
3273  len += (int)strlen(lstr) + (int)strlen(rstr);
3274  subtree = (char *)malloc(len);
3275  sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3276  // Hash the subtree string in _internalOps; if a name exists, use it
3277  iop = (char *)_AD._internalOps[subtree];
3278  // Else create a unique name, and add it to the hash table
3279  if (iop == NULL) {
3280    iop = subtree;
3281    _AD._internalOps.Insert(subtree, iop);
3282    _AD._internalOpNames.addName(iop);
3283    _AD._internalMatch.Insert(iop, this);
3284  }
3285  // Add the internal operand name to the MatchNode
3286  _internalop = iop;
3287  _result = iop;
3288}
3289
3290
3291void MatchNode::dump() {
3292  output(stderr);
3293}
3294
3295void MatchNode::output(FILE *fp) {
3296  if (_lChild==0 && _rChild==0) {
3297    fprintf(fp," %s",_name);    // operand
3298  }
3299  else {
3300    fprintf(fp," (%s ",_name);  // " (opcodeName "
3301    if(_lChild) _lChild->output(fp); //               left operand
3302    if(_rChild) _rChild->output(fp); //                    right operand
3303    fprintf(fp,")");                 //                                 ")"
3304  }
3305}
3306
3307int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3308  static const char *needs_ideal_memory_list[] = {
3309    "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
3310    "StoreB","StoreC","Store" ,"StoreFP",
3311    "LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3312    "LoadB" ,"LoadC" ,"LoadS" ,"Load"   ,
3313    "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
3314    "Store8B","Store4B","Store8C","Store4C","Store2C",
3315    "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
3316    "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
3317    "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3318    "LoadPLocked", "LoadLLocked",
3319    "StorePConditional", "StoreLConditional",
3320    "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3321    "StoreCM",
3322    "ClearArray"
3323  };
3324  int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3325  if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
3326    return 1;
3327  if( _lChild ) {
3328    const char *opType = _lChild->_opType;
3329    for( int i=0; i<cnt; i++ )
3330      if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3331        return 1;
3332    if( _lChild->needs_ideal_memory_edge(globals) )
3333      return 1;
3334  }
3335  if( _rChild ) {
3336    const char *opType = _rChild->_opType;
3337    for( int i=0; i<cnt; i++ )
3338      if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3339        return 1;
3340    if( _rChild->needs_ideal_memory_edge(globals) )
3341      return 1;
3342  }
3343
3344  return 0;
3345}
3346
3347// TRUE if defines a derived oop, and so needs a base oop edge present
3348// post-matching.
3349int MatchNode::needs_base_oop_edge() const {
3350  if( !strcmp(_opType,"AddP") ) return 1;
3351  if( strcmp(_opType,"Set") ) return 0;
3352  return !strcmp(_rChild->_opType,"AddP");
3353}
3354
3355int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3356  if( is_simple_chain_rule(globals) ) {
3357    const char *src = _matrule->_rChild->_opType;
3358    OperandForm *src_op = globals[src]->is_operand();
3359    assert( src_op, "Not operand class of chain rule" );
3360    return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3361  }                             // Else check instruction
3362
3363  return _matrule ? _matrule->needs_base_oop_edge() : 0;
3364}
3365
3366
3367//-------------------------cisc spilling methods-------------------------------
3368// helper routines and methods for detecting cisc-spilling instructions
3369//-------------------------cisc_spill_merge------------------------------------
3370int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3371  int cisc_spillable  = Maybe_cisc_spillable;
3372
3373  // Combine results of left and right checks
3374  if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3375    // neither side is spillable, nor prevents cisc spilling
3376    cisc_spillable = Maybe_cisc_spillable;
3377  }
3378  else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3379    // right side is spillable
3380    cisc_spillable = right_spillable;
3381  }
3382  else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3383    // left side is spillable
3384    cisc_spillable = left_spillable;
3385  }
3386  else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3387    // left or right prevents cisc spilling this instruction
3388    cisc_spillable = Not_cisc_spillable;
3389  }
3390  else {
3391    // Only allow one to spill
3392    cisc_spillable = Not_cisc_spillable;
3393  }
3394
3395  return cisc_spillable;
3396}
3397
3398//-------------------------root_ops_match--------------------------------------
3399bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3400  // Base Case: check that the current operands/operations match
3401  assert( op1, "Must have op's name");
3402  assert( op2, "Must have op's name");
3403  const Form *form1 = globals[op1];
3404  const Form *form2 = globals[op2];
3405
3406  return (form1 == form2);
3407}
3408
3409//-------------------------cisc_spill_match------------------------------------
3410// Recursively check two MatchRules for legal conversion via cisc-spilling
3411int  MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
3412  int cisc_spillable  = Maybe_cisc_spillable;
3413  int left_spillable  = Maybe_cisc_spillable;
3414  int right_spillable = Maybe_cisc_spillable;
3415
3416  // Check that each has same number of operands at this level
3417  if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3418    return Not_cisc_spillable;
3419
3420  // Base Case: check that the current operands/operations match
3421  // or are CISC spillable
3422  assert( _opType, "Must have _opType");
3423  assert( mRule2->_opType, "Must have _opType");
3424  const Form *form  = globals[_opType];
3425  const Form *form2 = globals[mRule2->_opType];
3426  if( form == form2 ) {
3427    cisc_spillable = Maybe_cisc_spillable;
3428  } else {
3429    const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3430    const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3431    const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3432    // Detect reg vs (loadX memory)
3433    if( form->is_cisc_reg(globals)
3434        && form2_inst
3435        && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
3436        && (name_left != NULL)       // NOT (load)
3437        && (name_right == NULL) ) {  // NOT (load memory foo)
3438      const Form *form2_left = name_left ? globals[name_left] : NULL;
3439      if( form2_left && form2_left->is_cisc_mem(globals) ) {
3440        cisc_spillable = Is_cisc_spillable;
3441        operand        = _name;
3442        reg_type       = _result;
3443        return Is_cisc_spillable;
3444      } else {
3445        cisc_spillable = Not_cisc_spillable;
3446      }
3447    }
3448    // Detect reg vs memory
3449    else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3450      cisc_spillable = Is_cisc_spillable;
3451      operand        = _name;
3452      reg_type       = _result;
3453      return Is_cisc_spillable;
3454    } else {
3455      cisc_spillable = Not_cisc_spillable;
3456    }
3457  }
3458
3459  // If cisc is still possible, check rest of tree
3460  if( cisc_spillable == Maybe_cisc_spillable ) {
3461    // Check that each has same number of operands at this level
3462    if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3463
3464    // Check left operands
3465    if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3466      left_spillable = Maybe_cisc_spillable;
3467    } else {
3468      left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3469    }
3470
3471    // Check right operands
3472    if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3473      right_spillable =  Maybe_cisc_spillable;
3474    } else {
3475      right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3476    }
3477
3478    // Combine results of left and right checks
3479    cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3480  }
3481
3482  return cisc_spillable;
3483}
3484
3485//---------------------------cisc_spill_match----------------------------------
3486// Recursively check two MatchRules for legal conversion via cisc-spilling
3487// This method handles the root of Match tree,
3488// general recursive checks done in MatchNode
3489int  MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers,
3490                                 MatchRule *mRule2, const char * &operand,
3491                                 const char * &reg_type) {
3492  int cisc_spillable  = Maybe_cisc_spillable;
3493  int left_spillable  = Maybe_cisc_spillable;
3494  int right_spillable = Maybe_cisc_spillable;
3495
3496  // Check that each sets a result
3497  if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3498  // Check that each has same number of operands at this level
3499  if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3500
3501  // Check left operands: at root, must be target of 'Set'
3502  if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3503    left_spillable = Not_cisc_spillable;
3504  } else {
3505    // Do not support cisc-spilling instruction's target location
3506    if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3507      left_spillable = Maybe_cisc_spillable;
3508    } else {
3509      left_spillable = Not_cisc_spillable;
3510    }
3511  }
3512
3513  // Check right operands: recursive walk to identify reg->mem operand
3514  if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3515    right_spillable =  Maybe_cisc_spillable;
3516  } else {
3517    right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3518  }
3519
3520  // Combine results of left and right checks
3521  cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3522
3523  return cisc_spillable;
3524}
3525
3526//----------------------------- equivalent ------------------------------------
3527// Recursively check to see if two match rules are equivalent.
3528// This rule handles the root.
3529bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
3530  // Check that each sets a result
3531  if (sets_result() != mRule2->sets_result()) {
3532    return false;
3533  }
3534
3535  // Check that the current operands/operations match
3536  assert( _opType, "Must have _opType");
3537  assert( mRule2->_opType, "Must have _opType");
3538  const Form *form  = globals[_opType];
3539  const Form *form2 = globals[mRule2->_opType];
3540  if( form != form2 ) {
3541    return false;
3542  }
3543
3544  if (_lChild ) {
3545    if( !_lChild->equivalent(globals, mRule2->_lChild) )
3546      return false;
3547  } else if (mRule2->_lChild) {
3548    return false; // I have NULL left child, mRule2 has non-NULL left child.
3549  }
3550
3551  if (_rChild ) {
3552    if( !_rChild->equivalent(globals, mRule2->_rChild) )
3553      return false;
3554  } else if (mRule2->_rChild) {
3555    return false; // I have NULL right child, mRule2 has non-NULL right child.
3556  }
3557
3558  // We've made it through the gauntlet.
3559  return true;
3560}
3561
3562//----------------------------- equivalent ------------------------------------
3563// Recursively check to see if two match rules are equivalent.
3564// This rule handles the operands.
3565bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3566  if( !mNode2 )
3567    return false;
3568
3569  // Check that the current operands/operations match
3570  assert( _opType, "Must have _opType");
3571  assert( mNode2->_opType, "Must have _opType");
3572  const Form *form  = globals[_opType];
3573  const Form *form2 = globals[mNode2->_opType];
3574  return (form == form2);
3575}
3576
3577//-------------------------- has_commutative_op -------------------------------
3578// Recursively check for commutative operations with subtree operands
3579// which could be swapped.
3580void MatchNode::count_commutative_op(int& count) {
3581  static const char *commut_op_list[] = {
3582    "AddI","AddL","AddF","AddD",
3583    "AndI","AndL",
3584    "MaxI","MinI",
3585    "MulI","MulL","MulF","MulD",
3586    "OrI" ,"OrL" ,
3587    "XorI","XorL"
3588  };
3589  int cnt = sizeof(commut_op_list)/sizeof(char*);
3590
3591  if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3592    // Don't swap if right operand is an immediate constant.
3593    bool is_const = false;
3594    if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3595      FormDict &globals = _AD.globalNames();
3596      const Form *form = globals[_rChild->_opType];
3597      if ( form ) {
3598        OperandForm  *oper = form->is_operand();
3599        if( oper && oper->interface_type(globals) == Form::constant_interface )
3600          is_const = true;
3601      }
3602    }
3603    if( !is_const ) {
3604      for( int i=0; i<cnt; i++ ) {
3605        if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3606          count++;
3607          _commutative_id = count; // id should be > 0
3608          break;
3609        }
3610      }
3611    }
3612  }
3613  if( _lChild )
3614    _lChild->count_commutative_op(count);
3615  if( _rChild )
3616    _rChild->count_commutative_op(count);
3617}
3618
3619//-------------------------- swap_commutative_op ------------------------------
3620// Recursively swap specified commutative operation with subtree operands.
3621void MatchNode::swap_commutative_op(bool atroot, int id) {
3622  if( _commutative_id == id ) { // id should be > 0
3623    assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3624            "not swappable operation");
3625    MatchNode* tmp = _lChild;
3626    _lChild = _rChild;
3627    _rChild = tmp;
3628    // Don't exit here since we need to build internalop.
3629  }
3630
3631  bool is_set = ( strcmp(_opType, "Set") == 0 );
3632  if( _lChild )
3633    _lChild->swap_commutative_op(is_set, id);
3634  if( _rChild )
3635    _rChild->swap_commutative_op(is_set, id);
3636
3637  // If not the root, reduce this subtree to an internal operand
3638  if( !atroot && (_lChild || _rChild) ) {
3639    build_internalop();
3640  }
3641}
3642
3643//-------------------------- swap_commutative_op ------------------------------
3644// Recursively swap specified commutative operation with subtree operands.
3645void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3646  assert(match_rules_cnt < 100," too many match rule clones");
3647  // Clone
3648  MatchRule* clone = new MatchRule(_AD, this);
3649  // Swap operands of commutative operation
3650  ((MatchNode*)clone)->swap_commutative_op(true, count);
3651  char* buf = (char*) malloc(strlen(instr_ident) + 4);
3652  sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3653  clone->_result = buf;
3654
3655  clone->_next = this->_next;
3656  this-> _next = clone;
3657  if( (--count) > 0 ) {
3658    this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
3659    clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
3660  }
3661}
3662
3663//------------------------------MatchRule--------------------------------------
3664MatchRule::MatchRule(ArchDesc &ad)
3665  : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3666    _next = NULL;
3667}
3668
3669MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3670  : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3671    _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3672    _next = NULL;
3673}
3674
3675MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3676                     int numleaves)
3677  : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3678    _numchilds(0) {
3679      _next = NULL;
3680      mroot->_lChild = NULL;
3681      mroot->_rChild = NULL;
3682      delete mroot;
3683      _numleaves = numleaves;
3684      _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3685}
3686MatchRule::~MatchRule() {
3687}
3688
3689// Recursive call collecting info on top-level operands, not transitive.
3690// Implementation does not modify state of internal structures.
3691void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
3692  assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3693
3694  MatchNode::append_components(locals, components,
3695                               false /* not necessarily a def */);
3696}
3697
3698// Recursive call on all operands' match rules in my match rule.
3699// Implementation does not modify state of internal structures  since they
3700// can be shared.
3701// The MatchNode that is called first treats its
3702bool MatchRule::base_operand(uint &position0, FormDict &globals,
3703                             const char *&result, const char * &name,
3704                             const char * &opType)const{
3705  uint position = position0;
3706
3707  return (MatchNode::base_operand( position, globals, result, name, opType));
3708}
3709
3710
3711bool MatchRule::is_base_register(FormDict &globals) const {
3712  uint   position = 1;
3713  const char  *result   = NULL;
3714  const char  *name     = NULL;
3715  const char  *opType   = NULL;
3716  if (!base_operand(position, globals, result, name, opType)) {
3717    position = 0;
3718    if( base_operand(position, globals, result, name, opType) &&
3719        (strcmp(opType,"RegI")==0 ||
3720         strcmp(opType,"RegP")==0 ||
3721         strcmp(opType,"RegN")==0 ||
3722         strcmp(opType,"RegL")==0 ||
3723         strcmp(opType,"RegF")==0 ||
3724         strcmp(opType,"RegD")==0 ||
3725         strcmp(opType,"Reg" )==0) ) {
3726      return 1;
3727    }
3728  }
3729  return 0;
3730}
3731
3732Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3733  uint         position = 1;
3734  const char  *result   = NULL;
3735  const char  *name     = NULL;
3736  const char  *opType   = NULL;
3737  if (!base_operand(position, globals, result, name, opType)) {
3738    position = 0;
3739    if (base_operand(position, globals, result, name, opType)) {
3740      return ideal_to_const_type(opType);
3741    }
3742  }
3743  return Form::none;
3744}
3745
3746bool MatchRule::is_chain_rule(FormDict &globals) const {
3747
3748  // Check for chain rule, and do not generate a match list for it
3749  if ((_lChild == NULL) && (_rChild == NULL) ) {
3750    const Form *form = globals[_opType];
3751    // If this is ideal, then it is a base match, not a chain rule.
3752    if ( form && form->is_operand() && (!form->ideal_only())) {
3753      return true;
3754    }
3755  }
3756  // Check for "Set" form of chain rule, and do not generate a match list
3757  if (_rChild) {
3758    const char *rch = _rChild->_opType;
3759    const Form *form = globals[rch];
3760    if ((!strcmp(_opType,"Set") &&
3761         ((form) && form->is_operand()))) {
3762      return true;
3763    }
3764  }
3765  return false;
3766}
3767
3768int MatchRule::is_ideal_copy() const {
3769  if( _rChild ) {
3770    const char  *opType = _rChild->_opType;
3771    if( strcmp(opType,"CastII")==0 )
3772      return 1;
3773    // Do not treat *CastPP this way, because it
3774    // may transfer a raw pointer to an oop.
3775    // If the register allocator were to coalesce this
3776    // into a single LRG, the GC maps would be incorrect.
3777    //if( strcmp(opType,"CastPP")==0 )
3778    //  return 1;
3779    //if( strcmp(opType,"CheckCastPP")==0 )
3780    //  return 1;
3781    //
3782    // Do not treat CastX2P or CastP2X this way, because
3783    // raw pointers and int types are treated differently
3784    // when saving local & stack info for safepoints in
3785    // Output().
3786    //if( strcmp(opType,"CastX2P")==0 )
3787    //  return 1;
3788    //if( strcmp(opType,"CastP2X")==0 )
3789    //  return 1;
3790  }
3791  if( is_chain_rule(_AD.globalNames()) &&
3792      _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3793    return 1;
3794  return 0;
3795}
3796
3797
3798int MatchRule::is_expensive() const {
3799  if( _rChild ) {
3800    const char  *opType = _rChild->_opType;
3801    if( strcmp(opType,"AtanD")==0 ||
3802        strcmp(opType,"CosD")==0 ||
3803        strcmp(opType,"DivD")==0 ||
3804        strcmp(opType,"DivF")==0 ||
3805        strcmp(opType,"DivI")==0 ||
3806        strcmp(opType,"ExpD")==0 ||
3807        strcmp(opType,"LogD")==0 ||
3808        strcmp(opType,"Log10D")==0 ||
3809        strcmp(opType,"ModD")==0 ||
3810        strcmp(opType,"ModF")==0 ||
3811        strcmp(opType,"ModI")==0 ||
3812        strcmp(opType,"PowD")==0 ||
3813        strcmp(opType,"SinD")==0 ||
3814        strcmp(opType,"SqrtD")==0 ||
3815        strcmp(opType,"TanD")==0 ||
3816        strcmp(opType,"ConvD2F")==0 ||
3817        strcmp(opType,"ConvD2I")==0 ||
3818        strcmp(opType,"ConvD2L")==0 ||
3819        strcmp(opType,"ConvF2D")==0 ||
3820        strcmp(opType,"ConvF2I")==0 ||
3821        strcmp(opType,"ConvF2L")==0 ||
3822        strcmp(opType,"ConvI2D")==0 ||
3823        strcmp(opType,"ConvI2F")==0 ||
3824        strcmp(opType,"ConvI2L")==0 ||
3825        strcmp(opType,"ConvL2D")==0 ||
3826        strcmp(opType,"ConvL2F")==0 ||
3827        strcmp(opType,"ConvL2I")==0 ||
3828        strcmp(opType,"RoundDouble")==0 ||
3829        strcmp(opType,"RoundFloat")==0 ||
3830        strcmp(opType,"ReverseBytesI")==0 ||
3831        strcmp(opType,"ReverseBytesL")==0 ||
3832        strcmp(opType,"Replicate16B")==0 ||
3833        strcmp(opType,"Replicate8B")==0 ||
3834        strcmp(opType,"Replicate4B")==0 ||
3835        strcmp(opType,"Replicate8C")==0 ||
3836        strcmp(opType,"Replicate4C")==0 ||
3837        strcmp(opType,"Replicate8S")==0 ||
3838        strcmp(opType,"Replicate4S")==0 ||
3839        strcmp(opType,"Replicate4I")==0 ||
3840        strcmp(opType,"Replicate2I")==0 ||
3841        strcmp(opType,"Replicate2L")==0 ||
3842        strcmp(opType,"Replicate4F")==0 ||
3843        strcmp(opType,"Replicate2F")==0 ||
3844        strcmp(opType,"Replicate2D")==0 ||
3845        0 /* 0 to line up columns nicely */ )
3846      return 1;
3847  }
3848  return 0;
3849}
3850
3851bool MatchRule::is_ideal_unlock() const {
3852  if( !_opType ) return false;
3853  return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
3854}
3855
3856
3857bool MatchRule::is_ideal_call_leaf() const {
3858  if( !_opType ) return false;
3859  return !strcmp(_opType,"CallLeaf")     ||
3860         !strcmp(_opType,"CallLeafNoFP");
3861}
3862
3863
3864bool MatchRule::is_ideal_if() const {
3865  if( !_opType ) return false;
3866  return
3867    !strcmp(_opType,"If"            ) ||
3868    !strcmp(_opType,"CountedLoopEnd");
3869}
3870
3871bool MatchRule::is_ideal_fastlock() const {
3872  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3873    return (strcmp(_rChild->_opType,"FastLock") == 0);
3874  }
3875  return false;
3876}
3877
3878bool MatchRule::is_ideal_membar() const {
3879  if( !_opType ) return false;
3880  return
3881    !strcmp(_opType,"MemBarAcquire"  ) ||
3882    !strcmp(_opType,"MemBarRelease"  ) ||
3883    !strcmp(_opType,"MemBarVolatile" ) ||
3884    !strcmp(_opType,"MemBarCPUOrder" ) ;
3885}
3886
3887bool MatchRule::is_ideal_loadPC() const {
3888  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3889    return (strcmp(_rChild->_opType,"LoadPC") == 0);
3890  }
3891  return false;
3892}
3893
3894bool MatchRule::is_ideal_box() const {
3895  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3896    return (strcmp(_rChild->_opType,"Box") == 0);
3897  }
3898  return false;
3899}
3900
3901bool MatchRule::is_ideal_goto() const {
3902  bool   ideal_goto = false;
3903
3904  if( _opType && (strcmp(_opType,"Goto") == 0) ) {
3905    ideal_goto = true;
3906  }
3907  return ideal_goto;
3908}
3909
3910bool MatchRule::is_ideal_jump() const {
3911  if( _opType ) {
3912    if( !strcmp(_opType,"Jump") )
3913      return true;
3914  }
3915  return false;
3916}
3917
3918bool MatchRule::is_ideal_bool() const {
3919  if( _opType ) {
3920    if( !strcmp(_opType,"Bool") )
3921      return true;
3922  }
3923  return false;
3924}
3925
3926
3927Form::DataType MatchRule::is_ideal_load() const {
3928  Form::DataType ideal_load = Form::none;
3929
3930  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3931    const char *opType = _rChild->_opType;
3932    ideal_load = is_load_from_memory(opType);
3933  }
3934
3935  return ideal_load;
3936}
3937
3938
3939Form::DataType MatchRule::is_ideal_store() const {
3940  Form::DataType ideal_store = Form::none;
3941
3942  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3943    const char *opType = _rChild->_opType;
3944    ideal_store = is_store_to_memory(opType);
3945  }
3946
3947  return ideal_store;
3948}
3949
3950
3951void MatchRule::dump() {
3952  output(stderr);
3953}
3954
3955void MatchRule::output(FILE *fp) {
3956  fprintf(fp,"MatchRule: ( %s",_name);
3957  if (_lChild) _lChild->output(fp);
3958  if (_rChild) _rChild->output(fp);
3959  fprintf(fp," )\n");
3960  fprintf(fp,"   nesting depth = %d\n", _depth);
3961  if (_result) fprintf(fp,"   Result Type = %s", _result);
3962  fprintf(fp,"\n");
3963}
3964
3965//------------------------------Attribute--------------------------------------
3966Attribute::Attribute(char *id, char* val, int type)
3967  : _ident(id), _val(val), _atype(type) {
3968}
3969Attribute::~Attribute() {
3970}
3971
3972int Attribute::int_val(ArchDesc &ad) {
3973  // Make sure it is an integer constant:
3974  int result = 0;
3975  if (!_val || !ADLParser::is_int_token(_val, result)) {
3976    ad.syntax_err(0, "Attribute %s must have an integer value: %s",
3977                  _ident, _val ? _val : "");
3978  }
3979  return result;
3980}
3981
3982void Attribute::dump() {
3983  output(stderr);
3984} // Debug printer
3985
3986// Write to output files
3987void Attribute::output(FILE *fp) {
3988  fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
3989}
3990
3991//------------------------------FormatRule----------------------------------
3992FormatRule::FormatRule(char *temp)
3993  : _temp(temp) {
3994}
3995FormatRule::~FormatRule() {
3996}
3997
3998void FormatRule::dump() {
3999  output(stderr);
4000}
4001
4002// Write to output files
4003void FormatRule::output(FILE *fp) {
4004  fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4005  fprintf(fp,"\n");
4006}
4007