formssel.cpp revision 1915:2f644f85485d
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// FORMS.CPP - Definitions for ADL Parser Forms Classes
26#include "adlc.hpp"
27
28//==============================Instructions===================================
29//------------------------------InstructForm-----------------------------------
30InstructForm::InstructForm(const char *id, bool ideal_only)
31  : _ident(id), _ideal_only(ideal_only),
32    _localNames(cmpstr, hashstr, Form::arena),
33    _effects(cmpstr, hashstr, Form::arena),
34    _is_mach_constant(false)
35{
36      _ftype = Form::INS;
37
38      _matrule   = NULL;
39      _insencode = NULL;
40      _constant  = NULL;
41      _opcode    = NULL;
42      _size      = NULL;
43      _attribs   = NULL;
44      _predicate = NULL;
45      _exprule   = NULL;
46      _rewrule   = NULL;
47      _format    = NULL;
48      _peephole  = NULL;
49      _ins_pipe  = NULL;
50      _uniq_idx  = NULL;
51      _num_uniq  = 0;
52      _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
53      _cisc_spill_alternate = NULL;            // possible cisc replacement
54      _cisc_reg_mask_name = NULL;
55      _is_cisc_alternate = false;
56      _is_short_branch = false;
57      _short_branch_form = NULL;
58      _alignment = 1;
59}
60
61InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
62  : _ident(id), _ideal_only(false),
63    _localNames(instr->_localNames),
64    _effects(instr->_effects),
65    _is_mach_constant(false)
66{
67      _ftype = Form::INS;
68
69      _matrule   = rule;
70      _insencode = instr->_insencode;
71      _constant  = instr->_constant;
72      _opcode    = instr->_opcode;
73      _size      = instr->_size;
74      _attribs   = instr->_attribs;
75      _predicate = instr->_predicate;
76      _exprule   = instr->_exprule;
77      _rewrule   = instr->_rewrule;
78      _format    = instr->_format;
79      _peephole  = instr->_peephole;
80      _ins_pipe  = instr->_ins_pipe;
81      _uniq_idx  = instr->_uniq_idx;
82      _num_uniq  = instr->_num_uniq;
83      _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
84      _cisc_spill_alternate = NULL;            // possible cisc replacement
85      _cisc_reg_mask_name = NULL;
86      _is_cisc_alternate = false;
87      _is_short_branch = false;
88      _short_branch_form = NULL;
89      _alignment = 1;
90     // Copy parameters
91     const char *name;
92     instr->_parameters.reset();
93     for (; (name = instr->_parameters.iter()) != NULL;)
94       _parameters.addName(name);
95}
96
97InstructForm::~InstructForm() {
98}
99
100InstructForm *InstructForm::is_instruction() const {
101  return (InstructForm*)this;
102}
103
104bool InstructForm::ideal_only() const {
105  return _ideal_only;
106}
107
108bool InstructForm::sets_result() const {
109  return (_matrule != NULL && _matrule->sets_result());
110}
111
112bool InstructForm::needs_projections() {
113  _components.reset();
114  for( Component *comp; (comp = _components.iter()) != NULL; ) {
115    if (comp->isa(Component::KILL)) {
116      return true;
117    }
118  }
119  return false;
120}
121
122
123bool InstructForm::has_temps() {
124  if (_matrule) {
125    // Examine each component to see if it is a TEMP
126    _components.reset();
127    // Skip the first component, if already handled as (SET dst (...))
128    Component *comp = NULL;
129    if (sets_result())  comp = _components.iter();
130    while ((comp = _components.iter()) != NULL) {
131      if (comp->isa(Component::TEMP)) {
132        return true;
133      }
134    }
135  }
136
137  return false;
138}
139
140uint InstructForm::num_defs_or_kills() {
141  uint   defs_or_kills = 0;
142
143  _components.reset();
144  for( Component *comp; (comp = _components.iter()) != NULL; ) {
145    if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
146      ++defs_or_kills;
147    }
148  }
149
150  return  defs_or_kills;
151}
152
153// This instruction has an expand rule?
154bool InstructForm::expands() const {
155  return ( _exprule != NULL );
156}
157
158// This instruction has a peephole rule?
159Peephole *InstructForm::peepholes() const {
160  return _peephole;
161}
162
163// This instruction has a peephole rule?
164void InstructForm::append_peephole(Peephole *peephole) {
165  if( _peephole == NULL ) {
166    _peephole = peephole;
167  } else {
168    _peephole->append_peephole(peephole);
169  }
170}
171
172
173// ideal opcode enumeration
174const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
175  if( !_matrule ) return "Node"; // Something weird
176  // Chain rules do not really have ideal Opcodes; use their source
177  // operand ideal Opcode instead.
178  if( is_simple_chain_rule(globalNames) ) {
179    const char *src = _matrule->_rChild->_opType;
180    OperandForm *src_op = globalNames[src]->is_operand();
181    assert( src_op, "Not operand class of chain rule" );
182    if( !src_op->_matrule ) return "Node";
183    return src_op->_matrule->_opType;
184  }
185  // Operand chain rules do not really have ideal Opcodes
186  if( _matrule->is_chain_rule(globalNames) )
187    return "Node";
188  return strcmp(_matrule->_opType,"Set")
189    ? _matrule->_opType
190    : _matrule->_rChild->_opType;
191}
192
193// Recursive check on all operands' match rules in my match rule
194bool InstructForm::is_pinned(FormDict &globals) {
195  if ( ! _matrule)  return false;
196
197  int  index   = 0;
198  if (_matrule->find_type("Goto",          index)) return true;
199  if (_matrule->find_type("If",            index)) return true;
200  if (_matrule->find_type("CountedLoopEnd",index)) return true;
201  if (_matrule->find_type("Return",        index)) return true;
202  if (_matrule->find_type("Rethrow",       index)) return true;
203  if (_matrule->find_type("TailCall",      index)) return true;
204  if (_matrule->find_type("TailJump",      index)) return true;
205  if (_matrule->find_type("Halt",          index)) return true;
206  if (_matrule->find_type("Jump",          index)) return true;
207
208  return is_parm(globals);
209}
210
211// Recursive check on all operands' match rules in my match rule
212bool InstructForm::is_projection(FormDict &globals) {
213  if ( ! _matrule)  return false;
214
215  int  index   = 0;
216  if (_matrule->find_type("Goto",    index)) return true;
217  if (_matrule->find_type("Return",  index)) return true;
218  if (_matrule->find_type("Rethrow", index)) return true;
219  if (_matrule->find_type("TailCall",index)) return true;
220  if (_matrule->find_type("TailJump",index)) return true;
221  if (_matrule->find_type("Halt",    index)) return true;
222
223  return false;
224}
225
226// Recursive check on all operands' match rules in my match rule
227bool InstructForm::is_parm(FormDict &globals) {
228  if ( ! _matrule)  return false;
229
230  int  index   = 0;
231  if (_matrule->find_type("Parm",index)) return true;
232
233  return false;
234}
235
236
237// Return 'true' if this instruction matches an ideal 'Copy*' node
238int InstructForm::is_ideal_copy() const {
239  return _matrule ? _matrule->is_ideal_copy() : 0;
240}
241
242// Return 'true' if this instruction is too complex to rematerialize.
243int InstructForm::is_expensive() const {
244  // We can prove it is cheap if it has an empty encoding.
245  // This helps with platform-specific nops like ThreadLocal and RoundFloat.
246  if (is_empty_encoding())
247    return 0;
248
249  if (is_tls_instruction())
250    return 1;
251
252  if (_matrule == NULL)  return 0;
253
254  return _matrule->is_expensive();
255}
256
257// Has an empty encoding if _size is a constant zero or there
258// are no ins_encode tokens.
259int InstructForm::is_empty_encoding() const {
260  if (_insencode != NULL) {
261    _insencode->reset();
262    if (_insencode->encode_class_iter() == NULL) {
263      return 1;
264    }
265  }
266  if (_size != NULL && strcmp(_size, "0") == 0) {
267    return 1;
268  }
269  return 0;
270}
271
272int InstructForm::is_tls_instruction() const {
273  if (_ident != NULL &&
274      ( ! strcmp( _ident,"tlsLoadP") ||
275        ! strncmp(_ident,"tlsLoadP_",9)) ) {
276    return 1;
277  }
278
279  if (_matrule != NULL && _insencode != NULL) {
280    const char* opType = _matrule->_opType;
281    if (strcmp(opType, "Set")==0)
282      opType = _matrule->_rChild->_opType;
283    if (strcmp(opType,"ThreadLocal")==0) {
284      fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
285              (_ident == NULL ? "NULL" : _ident));
286      return 1;
287    }
288  }
289
290  return 0;
291}
292
293
294// Return 'true' if this instruction matches an ideal 'Copy*' node
295bool InstructForm::is_ideal_unlock() const {
296  return _matrule ? _matrule->is_ideal_unlock() : false;
297}
298
299bool InstructForm::is_ideal_call_leaf() const {
300  return _matrule ? _matrule->is_ideal_call_leaf() : false;
301}
302
303// Return 'true' if this instruction matches an ideal 'If' node
304bool InstructForm::is_ideal_if() const {
305  if( _matrule == NULL ) return false;
306
307  return _matrule->is_ideal_if();
308}
309
310// Return 'true' if this instruction matches an ideal 'FastLock' node
311bool InstructForm::is_ideal_fastlock() const {
312  if( _matrule == NULL ) return false;
313
314  return _matrule->is_ideal_fastlock();
315}
316
317// Return 'true' if this instruction matches an ideal 'MemBarXXX' node
318bool InstructForm::is_ideal_membar() const {
319  if( _matrule == NULL ) return false;
320
321  return _matrule->is_ideal_membar();
322}
323
324// Return 'true' if this instruction matches an ideal 'LoadPC' node
325bool InstructForm::is_ideal_loadPC() const {
326  if( _matrule == NULL ) return false;
327
328  return _matrule->is_ideal_loadPC();
329}
330
331// Return 'true' if this instruction matches an ideal 'Box' node
332bool InstructForm::is_ideal_box() const {
333  if( _matrule == NULL ) return false;
334
335  return _matrule->is_ideal_box();
336}
337
338// Return 'true' if this instruction matches an ideal 'Goto' node
339bool InstructForm::is_ideal_goto() const {
340  if( _matrule == NULL ) return false;
341
342  return _matrule->is_ideal_goto();
343}
344
345// Return 'true' if this instruction matches an ideal 'Jump' node
346bool InstructForm::is_ideal_jump() const {
347  if( _matrule == NULL ) return false;
348
349  return _matrule->is_ideal_jump();
350}
351
352// Return 'true' if instruction matches ideal 'If' | 'Goto' |
353//                    'CountedLoopEnd' | 'Jump'
354bool InstructForm::is_ideal_branch() const {
355  if( _matrule == NULL ) return false;
356
357  return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
358}
359
360
361// Return 'true' if this instruction matches an ideal 'Return' node
362bool InstructForm::is_ideal_return() const {
363  if( _matrule == NULL ) return false;
364
365  // Check MatchRule to see if the first entry is the ideal "Return" node
366  int  index   = 0;
367  if (_matrule->find_type("Return",index)) return true;
368  if (_matrule->find_type("Rethrow",index)) return true;
369  if (_matrule->find_type("TailCall",index)) return true;
370  if (_matrule->find_type("TailJump",index)) return true;
371
372  return false;
373}
374
375// Return 'true' if this instruction matches an ideal 'Halt' node
376bool InstructForm::is_ideal_halt() const {
377  int  index   = 0;
378  return _matrule && _matrule->find_type("Halt",index);
379}
380
381// Return 'true' if this instruction matches an ideal 'SafePoint' node
382bool InstructForm::is_ideal_safepoint() const {
383  int  index   = 0;
384  return _matrule && _matrule->find_type("SafePoint",index);
385}
386
387// Return 'true' if this instruction matches an ideal 'Nop' node
388bool InstructForm::is_ideal_nop() const {
389  return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
390}
391
392bool InstructForm::is_ideal_control() const {
393  if ( ! _matrule)  return false;
394
395  return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
396}
397
398// Return 'true' if this instruction matches an ideal 'Call' node
399Form::CallType InstructForm::is_ideal_call() const {
400  if( _matrule == NULL ) return Form::invalid_type;
401
402  // Check MatchRule to see if the first entry is the ideal "Call" node
403  int  idx   = 0;
404  if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
405  idx = 0;
406  if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
407  idx = 0;
408  if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
409  idx = 0;
410  if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
411  idx = 0;
412  if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
413  idx = 0;
414  if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
415  idx = 0;
416  if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
417  idx = 0;
418
419  return Form::invalid_type;
420}
421
422// Return 'true' if this instruction matches an ideal 'Load?' node
423Form::DataType InstructForm::is_ideal_load() const {
424  if( _matrule == NULL ) return Form::none;
425
426  return  _matrule->is_ideal_load();
427}
428
429// Return 'true' if this instruction matches an ideal 'LoadKlass' node
430bool InstructForm::skip_antidep_check() const {
431  if( _matrule == NULL ) return false;
432
433  return  _matrule->skip_antidep_check();
434}
435
436// Return 'true' if this instruction matches an ideal 'Load?' node
437Form::DataType InstructForm::is_ideal_store() const {
438  if( _matrule == NULL ) return Form::none;
439
440  return  _matrule->is_ideal_store();
441}
442
443// Return the input register that must match the output register
444// If this is not required, return 0
445uint InstructForm::two_address(FormDict &globals) {
446  uint  matching_input = 0;
447  if(_components.count() == 0) return 0;
448
449  _components.reset();
450  Component *comp = _components.iter();
451  // Check if there is a DEF
452  if( comp->isa(Component::DEF) ) {
453    // Check that this is a register
454    const char  *def_type = comp->_type;
455    const Form  *form     = globals[def_type];
456    OperandForm *op       = form->is_operand();
457    if( op ) {
458      if( op->constrained_reg_class() != NULL &&
459          op->interface_type(globals) == Form::register_interface ) {
460        // Remember the local name for equality test later
461        const char *def_name = comp->_name;
462        // Check if a component has the same name and is a USE
463        do {
464          if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
465            return operand_position_format(def_name);
466          }
467        } while( (comp = _components.iter()) != NULL);
468      }
469    }
470  }
471
472  return 0;
473}
474
475
476// when chaining a constant to an instruction, returns 'true' and sets opType
477Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
478  const char *dummy  = NULL;
479  const char *dummy2 = NULL;
480  return is_chain_of_constant(globals, dummy, dummy2);
481}
482Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
483                const char * &opTypeParam) {
484  const char *result = NULL;
485
486  return is_chain_of_constant(globals, opTypeParam, result);
487}
488
489Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
490                const char * &opTypeParam, const char * &resultParam) {
491  Form::DataType  data_type = Form::none;
492  if ( ! _matrule)  return data_type;
493
494  // !!!!!
495  // The source of the chain rule is 'position = 1'
496  uint         position = 1;
497  const char  *result   = NULL;
498  const char  *name     = NULL;
499  const char  *opType   = NULL;
500  // Here base_operand is looking for an ideal type to be returned (opType).
501  if ( _matrule->is_chain_rule(globals)
502       && _matrule->base_operand(position, globals, result, name, opType) ) {
503    data_type = ideal_to_const_type(opType);
504
505    // if it isn't an ideal constant type, just return
506    if ( data_type == Form::none ) return data_type;
507
508    // Ideal constant types also adjust the opType parameter.
509    resultParam = result;
510    opTypeParam = opType;
511    return data_type;
512  }
513
514  return data_type;
515}
516
517// Check if a simple chain rule
518bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
519  if( _matrule && _matrule->sets_result()
520      && _matrule->_rChild->_lChild == NULL
521      && globals[_matrule->_rChild->_opType]
522      && globals[_matrule->_rChild->_opType]->is_opclass() ) {
523    return true;
524  }
525  return false;
526}
527
528// check for structural rematerialization
529bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
530  bool   rematerialize = false;
531
532  Form::DataType data_type = is_chain_of_constant(globals);
533  if( data_type != Form::none )
534    rematerialize = true;
535
536  // Constants
537  if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
538    rematerialize = true;
539
540  // Pseudo-constants (values easily available to the runtime)
541  if (is_empty_encoding() && is_tls_instruction())
542    rematerialize = true;
543
544  // 1-input, 1-output, such as copies or increments.
545  if( _components.count() == 2 &&
546      _components[0]->is(Component::DEF) &&
547      _components[1]->isa(Component::USE) )
548    rematerialize = true;
549
550  // Check for an ideal 'Load?' and eliminate rematerialize option
551  if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
552       is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
553       is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
554    rematerialize = false;
555  }
556
557  // Always rematerialize the flags.  They are more expensive to save &
558  // restore than to recompute (and possibly spill the compare's inputs).
559  if( _components.count() >= 1 ) {
560    Component *c = _components[0];
561    const Form *form = globals[c->_type];
562    OperandForm *opform = form->is_operand();
563    if( opform ) {
564      // Avoid the special stack_slots register classes
565      const char *rc_name = opform->constrained_reg_class();
566      if( rc_name ) {
567        if( strcmp(rc_name,"stack_slots") ) {
568          // Check for ideal_type of RegFlags
569          const char *type = opform->ideal_type( globals, registers );
570          if( !strcmp(type,"RegFlags") )
571            rematerialize = true;
572        } else
573          rematerialize = false; // Do not rematerialize things target stk
574      }
575    }
576  }
577
578  return rematerialize;
579}
580
581// loads from memory, so must check for anti-dependence
582bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
583  if ( skip_antidep_check() ) return false;
584
585  // Machine independent loads must be checked for anti-dependences
586  if( is_ideal_load() != Form::none )  return true;
587
588  // !!!!! !!!!! !!!!!
589  // TEMPORARY
590  // if( is_simple_chain_rule(globals) )  return false;
591
592  // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
593  // but writes none
594  if( _matrule && _matrule->_rChild &&
595      ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
596        strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
597        strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
598        strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
599    return true;
600
601  // Check if instruction has a USE of a memory operand class, but no defs
602  bool USE_of_memory  = false;
603  bool DEF_of_memory  = false;
604  Component     *comp = NULL;
605  ComponentList &components = (ComponentList &)_components;
606
607  components.reset();
608  while( (comp = components.iter()) != NULL ) {
609    const Form  *form = globals[comp->_type];
610    if( !form ) continue;
611    OpClassForm *op   = form->is_opclass();
612    if( !op ) continue;
613    if( form->interface_type(globals) == Form::memory_interface ) {
614      if( comp->isa(Component::USE) ) USE_of_memory = true;
615      if( comp->isa(Component::DEF) ) {
616        OperandForm *oper = form->is_operand();
617        if( oper && oper->is_user_name_for_sReg() ) {
618          // Stack slots are unaliased memory handled by allocator
619          oper = oper;  // debug stopping point !!!!!
620        } else {
621          DEF_of_memory = true;
622        }
623      }
624    }
625  }
626  return (USE_of_memory && !DEF_of_memory);
627}
628
629
630bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
631  if( _matrule == NULL ) return false;
632  if( !_matrule->_opType ) return false;
633
634  if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
635  if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
636
637  return false;
638}
639
640int InstructForm::memory_operand(FormDict &globals) const {
641  // Machine independent loads must be checked for anti-dependences
642  // Check if instruction has a USE of a memory operand class, or a def.
643  int USE_of_memory  = 0;
644  int DEF_of_memory  = 0;
645  const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
646  Component     *unique          = NULL;
647  Component     *comp            = NULL;
648  ComponentList &components      = (ComponentList &)_components;
649
650  components.reset();
651  while( (comp = components.iter()) != NULL ) {
652    const Form  *form = globals[comp->_type];
653    if( !form ) continue;
654    OpClassForm *op   = form->is_opclass();
655    if( !op ) continue;
656    if( op->stack_slots_only(globals) )  continue;
657    if( form->interface_type(globals) == Form::memory_interface ) {
658      if( comp->isa(Component::DEF) ) {
659        last_memory_DEF = comp->_name;
660        DEF_of_memory++;
661        unique = comp;
662      } else if( comp->isa(Component::USE) ) {
663        if( last_memory_DEF != NULL ) {
664          assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
665          last_memory_DEF = NULL;
666        }
667        USE_of_memory++;
668        if (DEF_of_memory == 0)  // defs take precedence
669          unique = comp;
670      } else {
671        assert(last_memory_DEF == NULL, "unpaired memory DEF");
672      }
673    }
674  }
675  assert(last_memory_DEF == NULL, "unpaired memory DEF");
676  assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
677  USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
678  if( (USE_of_memory + DEF_of_memory) > 0 ) {
679    if( is_simple_chain_rule(globals) ) {
680      //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
681      //((InstructForm*)this)->dump();
682      // Preceding code prints nothing on sparc and these insns on intel:
683      // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
684      // leaPIdxOff leaPIdxScale leaPIdxScaleOff
685      return NO_MEMORY_OPERAND;
686    }
687
688    if( DEF_of_memory == 1 ) {
689      assert(unique != NULL, "");
690      if( USE_of_memory == 0 ) {
691        // unique def, no uses
692      } else {
693        // // unique def, some uses
694        // // must return bottom unless all uses match def
695        // unique = NULL;
696      }
697    } else if( DEF_of_memory > 0 ) {
698      // multiple defs, don't care about uses
699      unique = NULL;
700    } else if( USE_of_memory == 1) {
701      // unique use, no defs
702      assert(unique != NULL, "");
703    } else if( USE_of_memory > 0 ) {
704      // multiple uses, no defs
705      unique = NULL;
706    } else {
707      assert(false, "bad case analysis");
708    }
709    // process the unique DEF or USE, if there is one
710    if( unique == NULL ) {
711      return MANY_MEMORY_OPERANDS;
712    } else {
713      int pos = components.operand_position(unique->_name);
714      if( unique->isa(Component::DEF) ) {
715        pos += 1;                // get corresponding USE from DEF
716      }
717      assert(pos >= 1, "I was just looking at it!");
718      return pos;
719    }
720  }
721
722  // missed the memory op??
723  if( true ) {  // %%% should not be necessary
724    if( is_ideal_store() != Form::none ) {
725      fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
726      ((InstructForm*)this)->dump();
727      // pretend it has multiple defs and uses
728      return MANY_MEMORY_OPERANDS;
729    }
730    if( is_ideal_load()  != Form::none ) {
731      fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
732      ((InstructForm*)this)->dump();
733      // pretend it has multiple uses and no defs
734      return MANY_MEMORY_OPERANDS;
735    }
736  }
737
738  return NO_MEMORY_OPERAND;
739}
740
741
742// This instruction captures the machine-independent bottom_type
743// Expected use is for pointer vs oop determination for LoadP
744bool InstructForm::captures_bottom_type(FormDict &globals) const {
745  if( _matrule && _matrule->_rChild &&
746       (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
747        !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
748        !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
749        !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
750        !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
751        !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
752        !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
753        !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
754  else if ( is_ideal_load() == Form::idealP )                return true;
755  else if ( is_ideal_store() != Form::none  )                return true;
756
757  if (needs_base_oop_edge(globals)) return true;
758
759  return  false;
760}
761
762
763// Access instr_cost attribute or return NULL.
764const char* InstructForm::cost() {
765  for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
766    if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
767      return cur->_val;
768    }
769  }
770  return NULL;
771}
772
773// Return count of top-level operands.
774uint InstructForm::num_opnds() {
775  int  num_opnds = _components.num_operands();
776
777  // Need special handling for matching some ideal nodes
778  // i.e. Matching a return node
779  /*
780  if( _matrule ) {
781    if( strcmp(_matrule->_opType,"Return"   )==0 ||
782        strcmp(_matrule->_opType,"Halt"     )==0 )
783      return 3;
784  }
785    */
786  return num_opnds;
787}
788
789// Return count of unmatched operands.
790uint InstructForm::num_post_match_opnds() {
791  uint  num_post_match_opnds = _components.count();
792  uint  num_match_opnds = _components.match_count();
793  num_post_match_opnds = num_post_match_opnds - num_match_opnds;
794
795  return num_post_match_opnds;
796}
797
798// Return the number of leaves below this complex operand
799uint InstructForm::num_consts(FormDict &globals) const {
800  if ( ! _matrule) return 0;
801
802  // This is a recursive invocation on all operands in the matchrule
803  return _matrule->num_consts(globals);
804}
805
806// Constants in match rule with specified type
807uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
808  if ( ! _matrule) return 0;
809
810  // This is a recursive invocation on all operands in the matchrule
811  return _matrule->num_consts(globals, type);
812}
813
814
815// Return the register class associated with 'leaf'.
816const char *InstructForm::out_reg_class(FormDict &globals) {
817  assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
818
819  return NULL;
820}
821
822
823
824// Lookup the starting position of inputs we are interested in wrt. ideal nodes
825uint InstructForm::oper_input_base(FormDict &globals) {
826  if( !_matrule ) return 1;     // Skip control for most nodes
827
828  // Need special handling for matching some ideal nodes
829  // i.e. Matching a return node
830  if( strcmp(_matrule->_opType,"Return"    )==0 ||
831      strcmp(_matrule->_opType,"Rethrow"   )==0 ||
832      strcmp(_matrule->_opType,"TailCall"  )==0 ||
833      strcmp(_matrule->_opType,"TailJump"  )==0 ||
834      strcmp(_matrule->_opType,"SafePoint" )==0 ||
835      strcmp(_matrule->_opType,"Halt"      )==0 )
836    return AdlcVMDeps::Parms;   // Skip the machine-state edges
837
838  if( _matrule->_rChild &&
839      ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
840        strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
841        strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
842        strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
843        // String.(compareTo/equals/indexOf) and Arrays.equals
844        // take 1 control and 1 memory edges.
845    return 2;
846  }
847
848  // Check for handling of 'Memory' input/edge in the ideal world.
849  // The AD file writer is shielded from knowledge of these edges.
850  int base = 1;                 // Skip control
851  base += _matrule->needs_ideal_memory_edge(globals);
852
853  // Also skip the base-oop value for uses of derived oops.
854  // The AD file writer is shielded from knowledge of these edges.
855  base += needs_base_oop_edge(globals);
856
857  return base;
858}
859
860// Implementation does not modify state of internal structures
861void InstructForm::build_components() {
862  // Add top-level operands to the components
863  if (_matrule)  _matrule->append_components(_localNames, _components);
864
865  // Add parameters that "do not appear in match rule".
866  bool has_temp = false;
867  const char *name;
868  const char *kill_name = NULL;
869  for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
870    OperandForm *opForm = (OperandForm*)_localNames[name];
871
872    Effect* e = NULL;
873    {
874      const Form* form = _effects[name];
875      e = form ? form->is_effect() : NULL;
876    }
877
878    if (e != NULL) {
879      has_temp |= e->is(Component::TEMP);
880
881      // KILLs must be declared after any TEMPs because TEMPs are real
882      // uses so their operand numbering must directly follow the real
883      // inputs from the match rule.  Fixing the numbering seems
884      // complex so simply enforce the restriction during parse.
885      if (kill_name != NULL &&
886          e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
887        OperandForm* kill = (OperandForm*)_localNames[kill_name];
888        globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
889                             _ident, kill->_ident, kill_name);
890      } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
891        kill_name = name;
892      }
893    }
894
895    const Component *component  = _components.search(name);
896    if ( component  == NULL ) {
897      if (e) {
898        _components.insert(name, opForm->_ident, e->_use_def, false);
899        component = _components.search(name);
900        if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
901          const Form *form = globalAD->globalNames()[component->_type];
902          assert( form, "component type must be a defined form");
903          OperandForm *op   = form->is_operand();
904          if (op->_interface && op->_interface->is_RegInterface()) {
905            globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
906                                 _ident, opForm->_ident, name);
907          }
908        }
909      } else {
910        // This would be a nice warning but it triggers in a few places in a benign way
911        // if (_matrule != NULL && !expands()) {
912        //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
913        //                        _ident, opForm->_ident, name);
914        // }
915        _components.insert(name, opForm->_ident, Component::INVALID, false);
916      }
917    }
918    else if (e) {
919      // Component was found in the list
920      // Check if there is a new effect that requires an extra component.
921      // This happens when adding 'USE' to a component that is not yet one.
922      if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
923        if (component->isa(Component::USE) && _matrule) {
924          const Form *form = globalAD->globalNames()[component->_type];
925          assert( form, "component type must be a defined form");
926          OperandForm *op   = form->is_operand();
927          if (op->_interface && op->_interface->is_RegInterface()) {
928            globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
929                                 _ident, opForm->_ident, name);
930          }
931        }
932        _components.insert(name, opForm->_ident, e->_use_def, false);
933      } else {
934        Component  *comp = (Component*)component;
935        comp->promote_use_def_info(e->_use_def);
936      }
937      // Component positions are zero based.
938      int  pos  = _components.operand_position(name);
939      assert( ! (component->isa(Component::DEF) && (pos >= 1)),
940              "Component::DEF can only occur in the first position");
941    }
942  }
943
944  // Resolving the interactions between expand rules and TEMPs would
945  // be complex so simply disallow it.
946  if (_matrule == NULL && has_temp) {
947    globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
948  }
949
950  return;
951}
952
953// Return zero-based position in component list;  -1 if not in list.
954int   InstructForm::operand_position(const char *name, int usedef) {
955  return unique_opnds_idx(_components.operand_position(name, usedef));
956}
957
958int   InstructForm::operand_position_format(const char *name) {
959  return unique_opnds_idx(_components.operand_position_format(name));
960}
961
962// Return zero-based position in component list; -1 if not in list.
963int   InstructForm::label_position() {
964  return unique_opnds_idx(_components.label_position());
965}
966
967int   InstructForm::method_position() {
968  return unique_opnds_idx(_components.method_position());
969}
970
971// Return number of relocation entries needed for this instruction.
972uint  InstructForm::reloc(FormDict &globals) {
973  uint reloc_entries  = 0;
974  // Check for "Call" nodes
975  if ( is_ideal_call() )      ++reloc_entries;
976  if ( is_ideal_return() )    ++reloc_entries;
977  if ( is_ideal_safepoint() ) ++reloc_entries;
978
979
980  // Check if operands MAYBE oop pointers, by checking for ConP elements
981  // Proceed through the leaves of the match-tree and check for ConPs
982  if ( _matrule != NULL ) {
983    uint         position = 0;
984    const char  *result   = NULL;
985    const char  *name     = NULL;
986    const char  *opType   = NULL;
987    while (_matrule->base_operand(position, globals, result, name, opType)) {
988      if ( strcmp(opType,"ConP") == 0 ) {
989#ifdef SPARC
990        reloc_entries += 2; // 1 for sethi + 1 for setlo
991#else
992        ++reloc_entries;
993#endif
994      }
995      ++position;
996    }
997  }
998
999  // Above is only a conservative estimate
1000  // because it did not check contents of operand classes.
1001  // !!!!! !!!!!
1002  // Add 1 to reloc info for each operand class in the component list.
1003  Component  *comp;
1004  _components.reset();
1005  while ( (comp = _components.iter()) != NULL ) {
1006    const Form        *form = globals[comp->_type];
1007    assert( form, "Did not find component's type in global names");
1008    const OpClassForm *opc  = form->is_opclass();
1009    const OperandForm *oper = form->is_operand();
1010    if ( opc && (oper == NULL) ) {
1011      ++reloc_entries;
1012    } else if ( oper ) {
1013      // floats and doubles loaded out of method's constant pool require reloc info
1014      Form::DataType type = oper->is_base_constant(globals);
1015      if ( (type == Form::idealF) || (type == Form::idealD) ) {
1016        ++reloc_entries;
1017      }
1018    }
1019  }
1020
1021  // Float and Double constants may come from the CodeBuffer table
1022  // and require relocatable addresses for access
1023  // !!!!!
1024  // Check for any component being an immediate float or double.
1025  Form::DataType data_type = is_chain_of_constant(globals);
1026  if( data_type==idealD || data_type==idealF ) {
1027#ifdef SPARC
1028    // sparc required more relocation entries for floating constants
1029    // (expires 9/98)
1030    reloc_entries += 6;
1031#else
1032    reloc_entries++;
1033#endif
1034  }
1035
1036  return reloc_entries;
1037}
1038
1039// Utility function defined in archDesc.cpp
1040extern bool is_def(int usedef);
1041
1042// Return the result of reducing an instruction
1043const char *InstructForm::reduce_result() {
1044  const char* result = "Universe";  // default
1045  _components.reset();
1046  Component *comp = _components.iter();
1047  if (comp != NULL && comp->isa(Component::DEF)) {
1048    result = comp->_type;
1049    // Override this if the rule is a store operation:
1050    if (_matrule && _matrule->_rChild &&
1051        is_store_to_memory(_matrule->_rChild->_opType))
1052      result = "Universe";
1053  }
1054  return result;
1055}
1056
1057// Return the name of the operand on the right hand side of the binary match
1058// Return NULL if there is no right hand side
1059const char *InstructForm::reduce_right(FormDict &globals)  const {
1060  if( _matrule == NULL ) return NULL;
1061  return  _matrule->reduce_right(globals);
1062}
1063
1064// Similar for left
1065const char *InstructForm::reduce_left(FormDict &globals)   const {
1066  if( _matrule == NULL ) return NULL;
1067  return  _matrule->reduce_left(globals);
1068}
1069
1070
1071// Base class for this instruction, MachNode except for calls
1072const char *InstructForm::mach_base_class(FormDict &globals)  const {
1073  if( is_ideal_call() == Form::JAVA_STATIC ) {
1074    return "MachCallStaticJavaNode";
1075  }
1076  else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1077    return "MachCallDynamicJavaNode";
1078  }
1079  else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1080    return "MachCallRuntimeNode";
1081  }
1082  else if( is_ideal_call() == Form::JAVA_LEAF ) {
1083    return "MachCallLeafNode";
1084  }
1085  else if (is_ideal_return()) {
1086    return "MachReturnNode";
1087  }
1088  else if (is_ideal_halt()) {
1089    return "MachHaltNode";
1090  }
1091  else if (is_ideal_safepoint()) {
1092    return "MachSafePointNode";
1093  }
1094  else if (is_ideal_if()) {
1095    return "MachIfNode";
1096  }
1097  else if (is_ideal_fastlock()) {
1098    return "MachFastLockNode";
1099  }
1100  else if (is_ideal_nop()) {
1101    return "MachNopNode";
1102  }
1103  else if (is_mach_constant()) {
1104    return "MachConstantNode";
1105  }
1106  else if (captures_bottom_type(globals)) {
1107    return "MachTypeNode";
1108  } else {
1109    return "MachNode";
1110  }
1111  assert( false, "ShouldNotReachHere()");
1112  return NULL;
1113}
1114
1115// Compare the instruction predicates for textual equality
1116bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1117  const Predicate *pred1  = instr1->_predicate;
1118  const Predicate *pred2  = instr2->_predicate;
1119  if( pred1 == NULL && pred2 == NULL ) {
1120    // no predicates means they are identical
1121    return true;
1122  }
1123  if( pred1 != NULL && pred2 != NULL ) {
1124    // compare the predicates
1125    if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1126      return true;
1127    }
1128  }
1129
1130  return false;
1131}
1132
1133// Check if this instruction can cisc-spill to 'alternate'
1134bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1135  assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1136  // Do not replace if a cisc-version has been found.
1137  if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1138
1139  int         cisc_spill_operand = Maybe_cisc_spillable;
1140  char       *result             = NULL;
1141  char       *result2            = NULL;
1142  const char *op_name            = NULL;
1143  const char *reg_type           = NULL;
1144  FormDict   &globals            = AD.globalNames();
1145  cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1146  if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1147    cisc_spill_operand = operand_position(op_name, Component::USE);
1148    int def_oper  = operand_position(op_name, Component::DEF);
1149    if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1150      // Do not support cisc-spilling for destination operands and
1151      // make sure they have the same number of operands.
1152      _cisc_spill_alternate = instr;
1153      instr->set_cisc_alternate(true);
1154      if( AD._cisc_spill_debug ) {
1155        fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1156        fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1157      }
1158      // Record that a stack-version of the reg_mask is needed
1159      // !!!!!
1160      OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1161      assert( oper != NULL, "cisc-spilling non operand");
1162      const char *reg_class_name = oper->constrained_reg_class();
1163      AD.set_stack_or_reg(reg_class_name);
1164      const char *reg_mask_name  = AD.reg_mask(*oper);
1165      set_cisc_reg_mask_name(reg_mask_name);
1166      const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1167    } else {
1168      cisc_spill_operand = Not_cisc_spillable;
1169    }
1170  } else {
1171    cisc_spill_operand = Not_cisc_spillable;
1172  }
1173
1174  set_cisc_spill_operand(cisc_spill_operand);
1175  return (cisc_spill_operand != Not_cisc_spillable);
1176}
1177
1178// Check to see if this instruction can be replaced with the short branch
1179// instruction `short-branch'
1180bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1181  if (_matrule != NULL &&
1182      this != short_branch &&   // Don't match myself
1183      !is_short_branch() &&     // Don't match another short branch variant
1184      reduce_result() != NULL &&
1185      strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1186      _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1187    // The instructions are equivalent.
1188    if (AD._short_branch_debug) {
1189      fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1190    }
1191    _short_branch_form = short_branch;
1192    return true;
1193  }
1194  return false;
1195}
1196
1197
1198// --------------------------- FILE *output_routines
1199//
1200// Generate the format call for the replacement variable
1201void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1202  // Handle special constant table variables.
1203  if (strcmp(rep_var, "constanttablebase") == 0) {
1204    fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
1205    fprintf(fp, "st->print(\"%%s\");\n");
1206    return;
1207  }
1208  if (strcmp(rep_var, "constantoffset") == 0) {
1209    fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
1210    return;
1211  }
1212  if (strcmp(rep_var, "constantaddress") == 0) {
1213    fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
1214    return;
1215  }
1216
1217  // Find replacement variable's type
1218  const Form *form   = _localNames[rep_var];
1219  if (form == NULL) {
1220    fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
1221    assert(false, "ShouldNotReachHere()");
1222  }
1223  OpClassForm *opc   = form->is_opclass();
1224  assert( opc, "replacement variable was not found in local names");
1225  // Lookup the index position of the replacement variable
1226  int idx  = operand_position_format(rep_var);
1227  if ( idx == -1 ) {
1228    assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
1229    assert( false, "ShouldNotReachHere()");
1230  }
1231
1232  if (is_noninput_operand(idx)) {
1233    // This component isn't in the input array.  Print out the static
1234    // name of the register.
1235    OperandForm* oper = form->is_operand();
1236    if (oper != NULL && oper->is_bound_register()) {
1237      const RegDef* first = oper->get_RegClass()->find_first_elem();
1238      fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
1239    } else {
1240      globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1241    }
1242  } else {
1243    // Output the format call for this operand
1244    fprintf(fp,"opnd_array(%d)->",idx);
1245    if (idx == 0)
1246      fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1247    else
1248      fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1249  }
1250}
1251
1252// Seach through operands to determine parameters unique positions.
1253void InstructForm::set_unique_opnds() {
1254  uint* uniq_idx = NULL;
1255  int  nopnds = num_opnds();
1256  uint  num_uniq = nopnds;
1257  int i;
1258  _uniq_idx_length = 0;
1259  if ( nopnds > 0 ) {
1260    // Allocate index array.  Worst case we're mapping from each
1261    // component back to an index and any DEF always goes at 0 so the
1262    // length of the array has to be the number of components + 1.
1263    _uniq_idx_length = _components.count() + 1;
1264    uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
1265    for( i = 0; i < _uniq_idx_length; i++ ) {
1266      uniq_idx[i] = i;
1267    }
1268  }
1269  // Do it only if there is a match rule and no expand rule.  With an
1270  // expand rule it is done by creating new mach node in Expand()
1271  // method.
1272  if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
1273    const char *name;
1274    uint count;
1275    bool has_dupl_use = false;
1276
1277    _parameters.reset();
1278    while( (name = _parameters.iter()) != NULL ) {
1279      count = 0;
1280      int position = 0;
1281      int uniq_position = 0;
1282      _components.reset();
1283      Component *comp = NULL;
1284      if( sets_result() ) {
1285        comp = _components.iter();
1286        position++;
1287      }
1288      // The next code is copied from the method operand_position().
1289      for (; (comp = _components.iter()) != NULL; ++position) {
1290        // When the first component is not a DEF,
1291        // leave space for the result operand!
1292        if ( position==0 && (! comp->isa(Component::DEF)) ) {
1293          ++position;
1294        }
1295        if( strcmp(name, comp->_name)==0 ) {
1296          if( ++count > 1 ) {
1297            assert(position < _uniq_idx_length, "out of bounds");
1298            uniq_idx[position] = uniq_position;
1299            has_dupl_use = true;
1300          } else {
1301            uniq_position = position;
1302          }
1303        }
1304        if( comp->isa(Component::DEF)
1305            && comp->isa(Component::USE) ) {
1306          ++position;
1307          if( position != 1 )
1308            --position;   // only use two slots for the 1st USE_DEF
1309        }
1310      }
1311    }
1312    if( has_dupl_use ) {
1313      for( i = 1; i < nopnds; i++ )
1314        if( i != uniq_idx[i] )
1315          break;
1316      int  j = i;
1317      for( ; i < nopnds; i++ )
1318        if( i == uniq_idx[i] )
1319          uniq_idx[i] = j++;
1320      num_uniq = j;
1321    }
1322  }
1323  _uniq_idx = uniq_idx;
1324  _num_uniq = num_uniq;
1325}
1326
1327// Generate index values needed for determining the operand position
1328void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1329  uint  idx = 0;                  // position of operand in match rule
1330  int   cur_num_opnds = num_opnds();
1331
1332  // Compute the index into vector of operand pointers:
1333  // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1334  // idx1 starts at oper_input_base()
1335  if ( cur_num_opnds >= 1 ) {
1336    fprintf(fp,"    // Start at oper_input_base() and count operands\n");
1337    fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1338    fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
1339
1340    // Generate starting points for other unique operands if they exist
1341    for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1342      if( *receiver == 0 ) {
1343        fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
1344                prefix, idx, prefix, idx-1, idx-1 );
1345      } else {
1346        fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
1347                prefix, idx, prefix, idx-1, receiver, idx-1 );
1348      }
1349    }
1350  }
1351  if( *receiver != 0 ) {
1352    // This value is used by generate_peepreplace when copying a node.
1353    // Don't emit it in other cases since it can hide bugs with the
1354    // use invalid idx's.
1355    fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1356  }
1357
1358}
1359
1360// ---------------------------
1361bool InstructForm::verify() {
1362  // !!!!! !!!!!
1363  // Check that a "label" operand occurs last in the operand list, if present
1364  return true;
1365}
1366
1367void InstructForm::dump() {
1368  output(stderr);
1369}
1370
1371void InstructForm::output(FILE *fp) {
1372  fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1373  if (_matrule)   _matrule->output(fp);
1374  if (_insencode) _insencode->output(fp);
1375  if (_constant)  _constant->output(fp);
1376  if (_opcode)    _opcode->output(fp);
1377  if (_attribs)   _attribs->output(fp);
1378  if (_predicate) _predicate->output(fp);
1379  if (_effects.Size()) {
1380    fprintf(fp,"Effects\n");
1381    _effects.dump();
1382  }
1383  if (_exprule)   _exprule->output(fp);
1384  if (_rewrule)   _rewrule->output(fp);
1385  if (_format)    _format->output(fp);
1386  if (_peephole)  _peephole->output(fp);
1387}
1388
1389void MachNodeForm::dump() {
1390  output(stderr);
1391}
1392
1393void MachNodeForm::output(FILE *fp) {
1394  fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1395}
1396
1397//------------------------------build_predicate--------------------------------
1398// Build instruction predicates.  If the user uses the same operand name
1399// twice, we need to check that the operands are pointer-eequivalent in
1400// the DFA during the labeling process.
1401Predicate *InstructForm::build_predicate() {
1402  char buf[1024], *s=buf;
1403  Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1404
1405  MatchNode *mnode =
1406    strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1407  mnode->count_instr_names(names);
1408
1409  uint first = 1;
1410  // Start with the predicate supplied in the .ad file.
1411  if( _predicate ) {
1412    if( first ) first=0;
1413    strcpy(s,"("); s += strlen(s);
1414    strcpy(s,_predicate->_pred);
1415    s += strlen(s);
1416    strcpy(s,")"); s += strlen(s);
1417  }
1418  for( DictI i(&names); i.test(); ++i ) {
1419    uintptr_t cnt = (uintptr_t)i._value;
1420    if( cnt > 1 ) {             // Need a predicate at all?
1421      assert( cnt == 2, "Unimplemented" );
1422      // Handle many pairs
1423      if( first ) first=0;
1424      else {                    // All tests must pass, so use '&&'
1425        strcpy(s," && ");
1426        s += strlen(s);
1427      }
1428      // Add predicate to working buffer
1429      sprintf(s,"/*%s*/(",(char*)i._key);
1430      s += strlen(s);
1431      mnode->build_instr_pred(s,(char*)i._key,0);
1432      s += strlen(s);
1433      strcpy(s," == "); s += strlen(s);
1434      mnode->build_instr_pred(s,(char*)i._key,1);
1435      s += strlen(s);
1436      strcpy(s,")"); s += strlen(s);
1437    }
1438  }
1439  if( s == buf ) s = NULL;
1440  else {
1441    assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1442    s = strdup(buf);
1443  }
1444  return new Predicate(s);
1445}
1446
1447//------------------------------EncodeForm-------------------------------------
1448// Constructor
1449EncodeForm::EncodeForm()
1450  : _encClass(cmpstr,hashstr, Form::arena) {
1451}
1452EncodeForm::~EncodeForm() {
1453}
1454
1455// record a new register class
1456EncClass *EncodeForm::add_EncClass(const char *className) {
1457  EncClass *encClass = new EncClass(className);
1458  _eclasses.addName(className);
1459  _encClass.Insert(className,encClass);
1460  return encClass;
1461}
1462
1463// Lookup the function body for an encoding class
1464EncClass  *EncodeForm::encClass(const char *className) {
1465  assert( className != NULL, "Must provide a defined encoding name");
1466
1467  EncClass *encClass = (EncClass*)_encClass[className];
1468  return encClass;
1469}
1470
1471// Lookup the function body for an encoding class
1472const char *EncodeForm::encClassBody(const char *className) {
1473  if( className == NULL ) return NULL;
1474
1475  EncClass *encClass = (EncClass*)_encClass[className];
1476  assert( encClass != NULL, "Encode Class is missing.");
1477  encClass->_code.reset();
1478  const char *code = (const char*)encClass->_code.iter();
1479  assert( code != NULL, "Found an empty encode class body.");
1480
1481  return code;
1482}
1483
1484// Lookup the function body for an encoding class
1485const char *EncodeForm::encClassPrototype(const char *className) {
1486  assert( className != NULL, "Encode class name must be non NULL.");
1487
1488  return className;
1489}
1490
1491void EncodeForm::dump() {                  // Debug printer
1492  output(stderr);
1493}
1494
1495void EncodeForm::output(FILE *fp) {          // Write info to output files
1496  const char *name;
1497  fprintf(fp,"\n");
1498  fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1499  for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1500    ((EncClass*)_encClass[name])->output(fp);
1501  }
1502  fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1503}
1504//------------------------------EncClass---------------------------------------
1505EncClass::EncClass(const char *name)
1506  : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1507}
1508EncClass::~EncClass() {
1509}
1510
1511// Add a parameter <type,name> pair
1512void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1513  _parameter_type.addName( parameter_type );
1514  _parameter_name.addName( parameter_name );
1515}
1516
1517// Verify operand types in parameter list
1518bool EncClass::check_parameter_types(FormDict &globals) {
1519  // !!!!!
1520  return false;
1521}
1522
1523// Add the decomposed "code" sections of an encoding's code-block
1524void EncClass::add_code(const char *code) {
1525  _code.addName(code);
1526}
1527
1528// Add the decomposed "replacement variables" of an encoding's code-block
1529void EncClass::add_rep_var(char *replacement_var) {
1530  _code.addName(NameList::_signal);
1531  _rep_vars.addName(replacement_var);
1532}
1533
1534// Lookup the function body for an encoding class
1535int EncClass::rep_var_index(const char *rep_var) {
1536  uint        position = 0;
1537  const char *name     = NULL;
1538
1539  _parameter_name.reset();
1540  while ( (name = _parameter_name.iter()) != NULL ) {
1541    if ( strcmp(rep_var,name) == 0 ) return position;
1542    ++position;
1543  }
1544
1545  return -1;
1546}
1547
1548// Check after parsing
1549bool EncClass::verify() {
1550  // 1!!!!
1551  // Check that each replacement variable, '$name' in architecture description
1552  // is actually a local variable for this encode class, or a reserved name
1553  // "primary, secondary, tertiary"
1554  return true;
1555}
1556
1557void EncClass::dump() {
1558  output(stderr);
1559}
1560
1561// Write info to output files
1562void EncClass::output(FILE *fp) {
1563  fprintf(fp,"EncClass: %s", (_name ? _name : ""));
1564
1565  // Output the parameter list
1566  _parameter_type.reset();
1567  _parameter_name.reset();
1568  const char *type = _parameter_type.iter();
1569  const char *name = _parameter_name.iter();
1570  fprintf(fp, " ( ");
1571  for ( ; (type != NULL) && (name != NULL);
1572        (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1573    fprintf(fp, " %s %s,", type, name);
1574  }
1575  fprintf(fp, " ) ");
1576
1577  // Output the code block
1578  _code.reset();
1579  _rep_vars.reset();
1580  const char *code;
1581  while ( (code = _code.iter()) != NULL ) {
1582    if ( _code.is_signal(code) ) {
1583      // A replacement variable
1584      const char *rep_var = _rep_vars.iter();
1585      fprintf(fp,"($%s)", rep_var);
1586    } else {
1587      // A section of code
1588      fprintf(fp,"%s", code);
1589    }
1590  }
1591
1592}
1593
1594//------------------------------Opcode-----------------------------------------
1595Opcode::Opcode(char *primary, char *secondary, char *tertiary)
1596  : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1597}
1598
1599Opcode::~Opcode() {
1600}
1601
1602Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1603  if( strcmp(param,"primary") == 0 ) {
1604    return Opcode::PRIMARY;
1605  }
1606  else if( strcmp(param,"secondary") == 0 ) {
1607    return Opcode::SECONDARY;
1608  }
1609  else if( strcmp(param,"tertiary") == 0 ) {
1610    return Opcode::TERTIARY;
1611  }
1612  return Opcode::NOT_AN_OPCODE;
1613}
1614
1615bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1616  // Default values previously provided by MachNode::primary()...
1617  const char *description = NULL;
1618  const char *value       = NULL;
1619  // Check if user provided any opcode definitions
1620  if( this != NULL ) {
1621    // Update 'value' if user provided a definition in the instruction
1622    switch (desired_opcode) {
1623    case PRIMARY:
1624      description = "primary()";
1625      if( _primary   != NULL)  { value = _primary;     }
1626      break;
1627    case SECONDARY:
1628      description = "secondary()";
1629      if( _secondary != NULL ) { value = _secondary;   }
1630      break;
1631    case TERTIARY:
1632      description = "tertiary()";
1633      if( _tertiary  != NULL ) { value = _tertiary;    }
1634      break;
1635    default:
1636      assert( false, "ShouldNotReachHere();");
1637      break;
1638    }
1639  }
1640  if (value != NULL) {
1641    fprintf(fp, "(%s /*%s*/)", value, description);
1642  }
1643  return value != NULL;
1644}
1645
1646void Opcode::dump() {
1647  output(stderr);
1648}
1649
1650// Write info to output files
1651void Opcode::output(FILE *fp) {
1652  if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1653  if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1654  if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1655}
1656
1657//------------------------------InsEncode--------------------------------------
1658InsEncode::InsEncode() {
1659}
1660InsEncode::~InsEncode() {
1661}
1662
1663// Add "encode class name" and its parameters
1664NameAndList *InsEncode::add_encode(char *encoding) {
1665  assert( encoding != NULL, "Must provide name for encoding");
1666
1667  // add_parameter(NameList::_signal);
1668  NameAndList *encode = new NameAndList(encoding);
1669  _encoding.addName((char*)encode);
1670
1671  return encode;
1672}
1673
1674// Access the list of encodings
1675void InsEncode::reset() {
1676  _encoding.reset();
1677  // _parameter.reset();
1678}
1679const char* InsEncode::encode_class_iter() {
1680  NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1681  return  ( encode_class != NULL ? encode_class->name() : NULL );
1682}
1683// Obtain parameter name from zero based index
1684const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1685  NameAndList *params = (NameAndList*)_encoding.current();
1686  assert( params != NULL, "Internal Error");
1687  const char *param = (*params)[param_no];
1688
1689  // Remove '$' if parser placed it there.
1690  return ( param != NULL && *param == '$') ? (param+1) : param;
1691}
1692
1693void InsEncode::dump() {
1694  output(stderr);
1695}
1696
1697// Write info to output files
1698void InsEncode::output(FILE *fp) {
1699  NameAndList *encoding  = NULL;
1700  const char  *parameter = NULL;
1701
1702  fprintf(fp,"InsEncode: ");
1703  _encoding.reset();
1704
1705  while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1706    // Output the encoding being used
1707    fprintf(fp,"%s(", encoding->name() );
1708
1709    // Output its parameter list, if any
1710    bool first_param = true;
1711    encoding->reset();
1712    while (  (parameter = encoding->iter()) != 0 ) {
1713      // Output the ',' between parameters
1714      if ( ! first_param )  fprintf(fp,", ");
1715      first_param = false;
1716      // Output the parameter
1717      fprintf(fp,"%s", parameter);
1718    } // done with parameters
1719    fprintf(fp,")  ");
1720  } // done with encodings
1721
1722  fprintf(fp,"\n");
1723}
1724
1725//------------------------------Effect-----------------------------------------
1726static int effect_lookup(const char *name) {
1727  if(!strcmp(name, "USE")) return Component::USE;
1728  if(!strcmp(name, "DEF")) return Component::DEF;
1729  if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1730  if(!strcmp(name, "KILL")) return Component::KILL;
1731  if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1732  if(!strcmp(name, "TEMP")) return Component::TEMP;
1733  if(!strcmp(name, "INVALID")) return Component::INVALID;
1734  assert( false,"Invalid effect name specified\n");
1735  return Component::INVALID;
1736}
1737
1738Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1739  _ftype = Form::EFF;
1740}
1741Effect::~Effect() {
1742}
1743
1744// Dynamic type check
1745Effect *Effect::is_effect() const {
1746  return (Effect*)this;
1747}
1748
1749
1750// True if this component is equal to the parameter.
1751bool Effect::is(int use_def_kill_enum) const {
1752  return (_use_def == use_def_kill_enum ? true : false);
1753}
1754// True if this component is used/def'd/kill'd as the parameter suggests.
1755bool Effect::isa(int use_def_kill_enum) const {
1756  return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1757}
1758
1759void Effect::dump() {
1760  output(stderr);
1761}
1762
1763void Effect::output(FILE *fp) {          // Write info to output files
1764  fprintf(fp,"Effect: %s\n", (_name?_name:""));
1765}
1766
1767//------------------------------ExpandRule-------------------------------------
1768ExpandRule::ExpandRule() : _expand_instrs(),
1769                           _newopconst(cmpstr, hashstr, Form::arena) {
1770  _ftype = Form::EXP;
1771}
1772
1773ExpandRule::~ExpandRule() {                  // Destructor
1774}
1775
1776void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1777  _expand_instrs.addName((char*)instruction_name_and_operand_list);
1778}
1779
1780void ExpandRule::reset_instructions() {
1781  _expand_instrs.reset();
1782}
1783
1784NameAndList* ExpandRule::iter_instructions() {
1785  return (NameAndList*)_expand_instrs.iter();
1786}
1787
1788
1789void ExpandRule::dump() {
1790  output(stderr);
1791}
1792
1793void ExpandRule::output(FILE *fp) {         // Write info to output files
1794  NameAndList *expand_instr = NULL;
1795  const char *opid = NULL;
1796
1797  fprintf(fp,"\nExpand Rule:\n");
1798
1799  // Iterate over the instructions 'node' expands into
1800  for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1801    fprintf(fp,"%s(", expand_instr->name());
1802
1803    // iterate over the operand list
1804    for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1805      fprintf(fp,"%s ", opid);
1806    }
1807    fprintf(fp,");\n");
1808  }
1809}
1810
1811//------------------------------RewriteRule------------------------------------
1812RewriteRule::RewriteRule(char* params, char* block)
1813  : _tempParams(params), _tempBlock(block) { };  // Constructor
1814RewriteRule::~RewriteRule() {                 // Destructor
1815}
1816
1817void RewriteRule::dump() {
1818  output(stderr);
1819}
1820
1821void RewriteRule::output(FILE *fp) {         // Write info to output files
1822  fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
1823          (_tempParams?_tempParams:""),
1824          (_tempBlock?_tempBlock:""));
1825}
1826
1827
1828//==============================MachNodes======================================
1829//------------------------------MachNodeForm-----------------------------------
1830MachNodeForm::MachNodeForm(char *id)
1831  : _ident(id) {
1832}
1833
1834MachNodeForm::~MachNodeForm() {
1835}
1836
1837MachNodeForm *MachNodeForm::is_machnode() const {
1838  return (MachNodeForm*)this;
1839}
1840
1841//==============================Operand Classes================================
1842//------------------------------OpClassForm------------------------------------
1843OpClassForm::OpClassForm(const char* id) : _ident(id) {
1844  _ftype = Form::OPCLASS;
1845}
1846
1847OpClassForm::~OpClassForm() {
1848}
1849
1850bool OpClassForm::ideal_only() const { return 0; }
1851
1852OpClassForm *OpClassForm::is_opclass() const {
1853  return (OpClassForm*)this;
1854}
1855
1856Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1857  if( _oplst.count() == 0 ) return Form::no_interface;
1858
1859  // Check that my operands have the same interface type
1860  Form::InterfaceType  interface;
1861  bool  first = true;
1862  NameList &op_list = (NameList &)_oplst;
1863  op_list.reset();
1864  const char *op_name;
1865  while( (op_name = op_list.iter()) != NULL ) {
1866    const Form  *form    = globals[op_name];
1867    OperandForm *operand = form->is_operand();
1868    assert( operand, "Entry in operand class that is not an operand");
1869    if( first ) {
1870      first     = false;
1871      interface = operand->interface_type(globals);
1872    } else {
1873      interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1874    }
1875  }
1876  return interface;
1877}
1878
1879bool OpClassForm::stack_slots_only(FormDict &globals) const {
1880  if( _oplst.count() == 0 ) return false;  // how?
1881
1882  NameList &op_list = (NameList &)_oplst;
1883  op_list.reset();
1884  const char *op_name;
1885  while( (op_name = op_list.iter()) != NULL ) {
1886    const Form  *form    = globals[op_name];
1887    OperandForm *operand = form->is_operand();
1888    assert( operand, "Entry in operand class that is not an operand");
1889    if( !operand->stack_slots_only(globals) )  return false;
1890  }
1891  return true;
1892}
1893
1894
1895void OpClassForm::dump() {
1896  output(stderr);
1897}
1898
1899void OpClassForm::output(FILE *fp) {
1900  const char *name;
1901  fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
1902  fprintf(fp,"\nCount = %d\n", _oplst.count());
1903  for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
1904    fprintf(fp,"%s, ",name);
1905  }
1906  fprintf(fp,"\n");
1907}
1908
1909
1910//==============================Operands=======================================
1911//------------------------------OperandForm------------------------------------
1912OperandForm::OperandForm(const char* id)
1913  : OpClassForm(id), _ideal_only(false),
1914    _localNames(cmpstr, hashstr, Form::arena) {
1915      _ftype = Form::OPER;
1916
1917      _matrule   = NULL;
1918      _interface = NULL;
1919      _attribs   = NULL;
1920      _predicate = NULL;
1921      _constraint= NULL;
1922      _construct = NULL;
1923      _format    = NULL;
1924}
1925OperandForm::OperandForm(const char* id, bool ideal_only)
1926  : OpClassForm(id), _ideal_only(ideal_only),
1927    _localNames(cmpstr, hashstr, Form::arena) {
1928      _ftype = Form::OPER;
1929
1930      _matrule   = NULL;
1931      _interface = NULL;
1932      _attribs   = NULL;
1933      _predicate = NULL;
1934      _constraint= NULL;
1935      _construct = NULL;
1936      _format    = NULL;
1937}
1938OperandForm::~OperandForm() {
1939}
1940
1941
1942OperandForm *OperandForm::is_operand() const {
1943  return (OperandForm*)this;
1944}
1945
1946bool OperandForm::ideal_only() const {
1947  return _ideal_only;
1948}
1949
1950Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
1951  if( _interface == NULL )  return Form::no_interface;
1952
1953  return _interface->interface_type(globals);
1954}
1955
1956
1957bool OperandForm::stack_slots_only(FormDict &globals) const {
1958  if( _constraint == NULL )  return false;
1959  return _constraint->stack_slots_only();
1960}
1961
1962
1963// Access op_cost attribute or return NULL.
1964const char* OperandForm::cost() {
1965  for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
1966    if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
1967      return cur->_val;
1968    }
1969  }
1970  return NULL;
1971}
1972
1973// Return the number of leaves below this complex operand
1974uint OperandForm::num_leaves() const {
1975  if ( ! _matrule) return 0;
1976
1977  int num_leaves = _matrule->_numleaves;
1978  return num_leaves;
1979}
1980
1981// Return the number of constants contained within this complex operand
1982uint OperandForm::num_consts(FormDict &globals) const {
1983  if ( ! _matrule) return 0;
1984
1985  // This is a recursive invocation on all operands in the matchrule
1986  return _matrule->num_consts(globals);
1987}
1988
1989// Return the number of constants in match rule with specified type
1990uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
1991  if ( ! _matrule) return 0;
1992
1993  // This is a recursive invocation on all operands in the matchrule
1994  return _matrule->num_consts(globals, type);
1995}
1996
1997// Return the number of pointer constants contained within this complex operand
1998uint OperandForm::num_const_ptrs(FormDict &globals) const {
1999  if ( ! _matrule) return 0;
2000
2001  // This is a recursive invocation on all operands in the matchrule
2002  return _matrule->num_const_ptrs(globals);
2003}
2004
2005uint OperandForm::num_edges(FormDict &globals) const {
2006  uint edges  = 0;
2007  uint leaves = num_leaves();
2008  uint consts = num_consts(globals);
2009
2010  // If we are matching a constant directly, there are no leaves.
2011  edges = ( leaves > consts ) ? leaves - consts : 0;
2012
2013  // !!!!!
2014  // Special case operands that do not have a corresponding ideal node.
2015  if( (edges == 0) && (consts == 0) ) {
2016    if( constrained_reg_class() != NULL ) {
2017      edges = 1;
2018    } else {
2019      if( _matrule
2020          && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
2021        const Form *form = globals[_matrule->_opType];
2022        OperandForm *oper = form ? form->is_operand() : NULL;
2023        if( oper ) {
2024          return oper->num_edges(globals);
2025        }
2026      }
2027    }
2028  }
2029
2030  return edges;
2031}
2032
2033
2034// Check if this operand is usable for cisc-spilling
2035bool  OperandForm::is_cisc_reg(FormDict &globals) const {
2036  const char *ideal = ideal_type(globals);
2037  bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2038  return is_cisc_reg;
2039}
2040
2041bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2042  Form::InterfaceType my_interface = interface_type(globals);
2043  return (my_interface == memory_interface);
2044}
2045
2046
2047// node matches ideal 'Bool'
2048bool OperandForm::is_ideal_bool() const {
2049  if( _matrule == NULL ) return false;
2050
2051  return _matrule->is_ideal_bool();
2052}
2053
2054// Require user's name for an sRegX to be stackSlotX
2055Form::DataType OperandForm::is_user_name_for_sReg() const {
2056  DataType data_type = none;
2057  if( _ident != NULL ) {
2058    if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2059    else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2060    else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2061    else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2062    else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2063  }
2064  assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2065
2066  return data_type;
2067}
2068
2069
2070// Return ideal type, if there is a single ideal type for this operand
2071const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2072  const char *type = NULL;
2073  if (ideal_only()) type = _ident;
2074  else if( _matrule == NULL ) {
2075    // Check for condition code register
2076    const char *rc_name = constrained_reg_class();
2077    // !!!!!
2078    if (rc_name == NULL) return NULL;
2079    // !!!!! !!!!!
2080    // Check constraints on result's register class
2081    if( registers ) {
2082      RegClass *reg_class  = registers->getRegClass(rc_name);
2083      assert( reg_class != NULL, "Register class is not defined");
2084
2085      // Check for ideal type of entries in register class, all are the same type
2086      reg_class->reset();
2087      RegDef *reg_def = reg_class->RegDef_iter();
2088      assert( reg_def != NULL, "No entries in register class");
2089      assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2090      // Return substring that names the register's ideal type
2091      type = reg_def->_idealtype + 3;
2092      assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2093      assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2094      assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2095    }
2096  }
2097  else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2098    // This operand matches a single type, at the top level.
2099    // Check for ideal type
2100    type = _matrule->_opType;
2101    if( strcmp(type,"Bool") == 0 )
2102      return "Bool";
2103    // transitive lookup
2104    const Form *frm = globals[type];
2105    OperandForm *op = frm->is_operand();
2106    type = op->ideal_type(globals, registers);
2107  }
2108  return type;
2109}
2110
2111
2112// If there is a single ideal type for this interface field, return it.
2113const char *OperandForm::interface_ideal_type(FormDict &globals,
2114                                              const char *field) const {
2115  const char  *ideal_type = NULL;
2116  const char  *value      = NULL;
2117
2118  // Check if "field" is valid for this operand's interface
2119  if ( ! is_interface_field(field, value) )   return ideal_type;
2120
2121  // !!!!! !!!!! !!!!!
2122  // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2123
2124  // Else, lookup type of field's replacement variable
2125
2126  return ideal_type;
2127}
2128
2129
2130RegClass* OperandForm::get_RegClass() const {
2131  if (_interface && !_interface->is_RegInterface()) return NULL;
2132  return globalAD->get_registers()->getRegClass(constrained_reg_class());
2133}
2134
2135
2136bool OperandForm::is_bound_register() const {
2137  RegClass *reg_class  = get_RegClass();
2138  if (reg_class == NULL) return false;
2139
2140  const char * name = ideal_type(globalAD->globalNames());
2141  if (name == NULL) return false;
2142
2143  int size = 0;
2144  if (strcmp(name,"RegFlags")==0) size =  1;
2145  if (strcmp(name,"RegI")==0) size =  1;
2146  if (strcmp(name,"RegF")==0) size =  1;
2147  if (strcmp(name,"RegD")==0) size =  2;
2148  if (strcmp(name,"RegL")==0) size =  2;
2149  if (strcmp(name,"RegN")==0) size =  1;
2150  if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
2151  if (size == 0) return false;
2152  return size == reg_class->size();
2153}
2154
2155
2156// Check if this is a valid field for this operand,
2157// Return 'true' if valid, and set the value to the string the user provided.
2158bool  OperandForm::is_interface_field(const char *field,
2159                                      const char * &value) const {
2160  return false;
2161}
2162
2163
2164// Return register class name if a constraint specifies the register class.
2165const char *OperandForm::constrained_reg_class() const {
2166  const char *reg_class  = NULL;
2167  if ( _constraint ) {
2168    // !!!!!
2169    Constraint *constraint = _constraint;
2170    if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2171      reg_class = _constraint->_arg;
2172    }
2173  }
2174
2175  return reg_class;
2176}
2177
2178
2179// Return the register class associated with 'leaf'.
2180const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2181  const char *reg_class = NULL; // "RegMask::Empty";
2182
2183  if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2184    reg_class = constrained_reg_class();
2185    return reg_class;
2186  }
2187  const char *result   = NULL;
2188  const char *name     = NULL;
2189  const char *type     = NULL;
2190  // iterate through all base operands
2191  // until we reach the register that corresponds to "leaf"
2192  // This function is not looking for an ideal type.  It needs the first
2193  // level user type associated with the leaf.
2194  for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2195    const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2196    OperandForm *oper = form ? form->is_operand() : NULL;
2197    if( oper ) {
2198      reg_class = oper->constrained_reg_class();
2199      if( reg_class ) {
2200        reg_class = reg_class;
2201      } else {
2202        // ShouldNotReachHere();
2203      }
2204    } else {
2205      // ShouldNotReachHere();
2206    }
2207
2208    // Increment our target leaf position if current leaf is not a candidate.
2209    if( reg_class == NULL)    ++leaf;
2210    // Exit the loop with the value of reg_class when at the correct index
2211    if( idx == leaf )         break;
2212    // May iterate through all base operands if reg_class for 'leaf' is NULL
2213  }
2214  return reg_class;
2215}
2216
2217
2218// Recursive call to construct list of top-level operands.
2219// Implementation does not modify state of internal structures
2220void OperandForm::build_components() {
2221  if (_matrule)  _matrule->append_components(_localNames, _components);
2222
2223  // Add parameters that "do not appear in match rule".
2224  const char *name;
2225  for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2226    OperandForm *opForm = (OperandForm*)_localNames[name];
2227
2228    if ( _components.operand_position(name) == -1 ) {
2229      _components.insert(name, opForm->_ident, Component::INVALID, false);
2230    }
2231  }
2232
2233  return;
2234}
2235
2236int OperandForm::operand_position(const char *name, int usedef) {
2237  return _components.operand_position(name, usedef);
2238}
2239
2240
2241// Return zero-based position in component list, only counting constants;
2242// Return -1 if not in list.
2243int OperandForm::constant_position(FormDict &globals, const Component *last) {
2244  // Iterate through components and count constants preceding 'constant'
2245  int position = 0;
2246  Component *comp;
2247  _components.reset();
2248  while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2249    // Special case for operands that take a single user-defined operand
2250    // Skip the initial definition in the component list.
2251    if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2252
2253    const char *type = comp->_type;
2254    // Lookup operand form for replacement variable's type
2255    const Form *form = globals[type];
2256    assert( form != NULL, "Component's type not found");
2257    OperandForm *oper = form ? form->is_operand() : NULL;
2258    if( oper ) {
2259      if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2260        ++position;
2261      }
2262    }
2263  }
2264
2265  // Check for being passed a component that was not in the list
2266  if( comp != last )  position = -1;
2267
2268  return position;
2269}
2270// Provide position of constant by "name"
2271int OperandForm::constant_position(FormDict &globals, const char *name) {
2272  const Component *comp = _components.search(name);
2273  int idx = constant_position( globals, comp );
2274
2275  return idx;
2276}
2277
2278
2279// Return zero-based position in component list, only counting constants;
2280// Return -1 if not in list.
2281int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2282  // Iterate through components and count registers preceding 'last'
2283  uint  position = 0;
2284  Component *comp;
2285  _components.reset();
2286  while( (comp = _components.iter()) != NULL
2287         && (strcmp(comp->_name,reg_name) != 0) ) {
2288    // Special case for operands that take a single user-defined operand
2289    // Skip the initial definition in the component list.
2290    if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2291
2292    const char *type = comp->_type;
2293    // Lookup operand form for component's type
2294    const Form *form = globals[type];
2295    assert( form != NULL, "Component's type not found");
2296    OperandForm *oper = form ? form->is_operand() : NULL;
2297    if( oper ) {
2298      if( oper->_matrule->is_base_register(globals) ) {
2299        ++position;
2300      }
2301    }
2302  }
2303
2304  return position;
2305}
2306
2307
2308const char *OperandForm::reduce_result()  const {
2309  return _ident;
2310}
2311// Return the name of the operand on the right hand side of the binary match
2312// Return NULL if there is no right hand side
2313const char *OperandForm::reduce_right(FormDict &globals)  const {
2314  return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2315}
2316
2317// Similar for left
2318const char *OperandForm::reduce_left(FormDict &globals)   const {
2319  return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2320}
2321
2322
2323// --------------------------- FILE *output_routines
2324//
2325// Output code for disp_is_oop, if true.
2326void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2327  //  Check it is a memory interface with a non-user-constant disp field
2328  if ( this->_interface == NULL ) return;
2329  MemInterface *mem_interface = this->_interface->is_MemInterface();
2330  if ( mem_interface == NULL )    return;
2331  const char   *disp  = mem_interface->_disp;
2332  if ( *disp != '$' )             return;
2333
2334  // Lookup replacement variable in operand's component list
2335  const char   *rep_var = disp + 1;
2336  const Component *comp = this->_components.search(rep_var);
2337  assert( comp != NULL, "Replacement variable not found in components");
2338  // Lookup operand form for replacement variable's type
2339  const char      *type = comp->_type;
2340  Form            *form = (Form*)globals[type];
2341  assert( form != NULL, "Replacement variable's type not found");
2342  OperandForm     *op   = form->is_operand();
2343  assert( op, "Memory Interface 'disp' can only emit an operand form");
2344  // Check if this is a ConP, which may require relocation
2345  if ( op->is_base_constant(globals) == Form::idealP ) {
2346    // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2347    uint idx  = op->constant_position( globals, rep_var);
2348    fprintf(fp,"  virtual bool disp_is_oop() const {");
2349    fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
2350    fprintf(fp, " }\n");
2351  }
2352}
2353
2354// Generate code for internal and external format methods
2355//
2356// internal access to reg# node->_idx
2357// access to subsumed constant _c0, _c1,
2358void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2359  Form::DataType dtype;
2360  if (_matrule && (_matrule->is_base_register(globals) ||
2361                   strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2362    // !!!!! !!!!!
2363    fprintf(fp,    "{ char reg_str[128];\n");
2364    fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2365    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2366    fprintf(fp,"    }\n");
2367  } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2368    format_constant( fp, index, dtype );
2369  } else if (ideal_to_sReg_type(_ident) != Form::none) {
2370    // Special format for Stack Slot Register
2371    fprintf(fp,    "{ char reg_str[128];\n");
2372    fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2373    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2374    fprintf(fp,"    }\n");
2375  } else {
2376    fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2377    fflush(fp);
2378    fprintf(stderr,"No format defined for %s\n", _ident);
2379    dump();
2380    assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2381  }
2382}
2383
2384// Similar to "int_format" but for cases where data is external to operand
2385// external access to reg# node->in(idx)->_idx,
2386void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2387  Form::DataType dtype;
2388  if (_matrule && (_matrule->is_base_register(globals) ||
2389                   strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2390    fprintf(fp,    "{ char reg_str[128];\n");
2391    fprintf(fp,"      ra->dump_register(node->in(idx");
2392    if ( index != 0 ) fprintf(fp,                  "+%d",index);
2393    fprintf(fp,                                       "),reg_str);\n");
2394    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2395    fprintf(fp,"    }\n");
2396  } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2397    format_constant( fp, index, dtype );
2398  } else if (ideal_to_sReg_type(_ident) != Form::none) {
2399    // Special format for Stack Slot Register
2400    fprintf(fp,    "{ char reg_str[128];\n");
2401    fprintf(fp,"      ra->dump_register(node->in(idx");
2402    if ( index != 0 ) fprintf(fp,                  "+%d",index);
2403    fprintf(fp,                                       "),reg_str);\n");
2404    fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2405    fprintf(fp,"    }\n");
2406  } else {
2407    fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2408    assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2409  }
2410}
2411
2412void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2413  switch(const_type) {
2414  case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
2415  case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2416  case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2417  case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
2418  case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2419  case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2420  default:
2421    assert( false, "ShouldNotReachHere()");
2422  }
2423}
2424
2425// Return the operand form corresponding to the given index, else NULL.
2426OperandForm *OperandForm::constant_operand(FormDict &globals,
2427                                           uint      index) {
2428  // !!!!!
2429  // Check behavior on complex operands
2430  uint n_consts = num_consts(globals);
2431  if( n_consts > 0 ) {
2432    uint i = 0;
2433    const char *type;
2434    Component  *comp;
2435    _components.reset();
2436    if ((comp = _components.iter()) == NULL) {
2437      assert(n_consts == 1, "Bad component list detected.\n");
2438      // Current operand is THE operand
2439      if ( index == 0 ) {
2440        return this;
2441      }
2442    } // end if NULL
2443    else {
2444      // Skip the first component, it can not be a DEF of a constant
2445      do {
2446        type = comp->base_type(globals);
2447        // Check that "type" is a 'ConI', 'ConP', ...
2448        if ( ideal_to_const_type(type) != Form::none ) {
2449          // When at correct component, get corresponding Operand
2450          if ( index == 0 ) {
2451            return globals[comp->_type]->is_operand();
2452          }
2453          // Decrement number of constants to go
2454          --index;
2455        }
2456      } while((comp = _components.iter()) != NULL);
2457    }
2458  }
2459
2460  // Did not find a constant for this index.
2461  return NULL;
2462}
2463
2464// If this operand has a single ideal type, return its type
2465Form::DataType OperandForm::simple_type(FormDict &globals) const {
2466  const char *type_name = ideal_type(globals);
2467  Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2468                                    : Form::none;
2469  return type;
2470}
2471
2472Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2473  if ( _matrule == NULL )    return Form::none;
2474
2475  return _matrule->is_base_constant(globals);
2476}
2477
2478// "true" if this operand is a simple type that is swallowed
2479bool  OperandForm::swallowed(FormDict &globals) const {
2480  Form::DataType type   = simple_type(globals);
2481  if( type != Form::none ) {
2482    return true;
2483  }
2484
2485  return false;
2486}
2487
2488// Output code to access the value of the index'th constant
2489void OperandForm::access_constant(FILE *fp, FormDict &globals,
2490                                  uint const_index) {
2491  OperandForm *oper = constant_operand(globals, const_index);
2492  assert( oper, "Index exceeds number of constants in operand");
2493  Form::DataType dtype = oper->is_base_constant(globals);
2494
2495  switch(dtype) {
2496  case idealI: fprintf(fp,"_c%d",           const_index); break;
2497  case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2498  case idealL: fprintf(fp,"_c%d",           const_index); break;
2499  case idealF: fprintf(fp,"_c%d",           const_index); break;
2500  case idealD: fprintf(fp,"_c%d",           const_index); break;
2501  default:
2502    assert( false, "ShouldNotReachHere()");
2503  }
2504}
2505
2506
2507void OperandForm::dump() {
2508  output(stderr);
2509}
2510
2511void OperandForm::output(FILE *fp) {
2512  fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2513  if (_matrule)    _matrule->dump();
2514  if (_interface)  _interface->dump();
2515  if (_attribs)    _attribs->dump();
2516  if (_predicate)  _predicate->dump();
2517  if (_constraint) _constraint->dump();
2518  if (_construct)  _construct->dump();
2519  if (_format)     _format->dump();
2520}
2521
2522//------------------------------Constraint-------------------------------------
2523Constraint::Constraint(const char *func, const char *arg)
2524  : _func(func), _arg(arg) {
2525}
2526Constraint::~Constraint() { /* not owner of char* */
2527}
2528
2529bool Constraint::stack_slots_only() const {
2530  return strcmp(_func, "ALLOC_IN_RC") == 0
2531      && strcmp(_arg,  "stack_slots") == 0;
2532}
2533
2534void Constraint::dump() {
2535  output(stderr);
2536}
2537
2538void Constraint::output(FILE *fp) {           // Write info to output files
2539  assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2540  fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
2541}
2542
2543//------------------------------Predicate--------------------------------------
2544Predicate::Predicate(char *pr)
2545  : _pred(pr) {
2546}
2547Predicate::~Predicate() {
2548}
2549
2550void Predicate::dump() {
2551  output(stderr);
2552}
2553
2554void Predicate::output(FILE *fp) {
2555  fprintf(fp,"Predicate");  // Write to output files
2556}
2557//------------------------------Interface--------------------------------------
2558Interface::Interface(const char *name) : _name(name) {
2559}
2560Interface::~Interface() {
2561}
2562
2563Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2564  Interface *thsi = (Interface*)this;
2565  if ( thsi->is_RegInterface()   ) return Form::register_interface;
2566  if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2567  if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2568  if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2569
2570  return Form::no_interface;
2571}
2572
2573RegInterface   *Interface::is_RegInterface() {
2574  if ( strcmp(_name,"REG_INTER") != 0 )
2575    return NULL;
2576  return (RegInterface*)this;
2577}
2578MemInterface   *Interface::is_MemInterface() {
2579  if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2580  return (MemInterface*)this;
2581}
2582ConstInterface *Interface::is_ConstInterface() {
2583  if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2584  return (ConstInterface*)this;
2585}
2586CondInterface  *Interface::is_CondInterface() {
2587  if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2588  return (CondInterface*)this;
2589}
2590
2591
2592void Interface::dump() {
2593  output(stderr);
2594}
2595
2596// Write info to output files
2597void Interface::output(FILE *fp) {
2598  fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2599}
2600
2601//------------------------------RegInterface-----------------------------------
2602RegInterface::RegInterface() : Interface("REG_INTER") {
2603}
2604RegInterface::~RegInterface() {
2605}
2606
2607void RegInterface::dump() {
2608  output(stderr);
2609}
2610
2611// Write info to output files
2612void RegInterface::output(FILE *fp) {
2613  Interface::output(fp);
2614}
2615
2616//------------------------------ConstInterface---------------------------------
2617ConstInterface::ConstInterface() : Interface("CONST_INTER") {
2618}
2619ConstInterface::~ConstInterface() {
2620}
2621
2622void ConstInterface::dump() {
2623  output(stderr);
2624}
2625
2626// Write info to output files
2627void ConstInterface::output(FILE *fp) {
2628  Interface::output(fp);
2629}
2630
2631//------------------------------MemInterface-----------------------------------
2632MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
2633  : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2634}
2635MemInterface::~MemInterface() {
2636  // not owner of any character arrays
2637}
2638
2639void MemInterface::dump() {
2640  output(stderr);
2641}
2642
2643// Write info to output files
2644void MemInterface::output(FILE *fp) {
2645  Interface::output(fp);
2646  if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2647  if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2648  if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2649  if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2650  // fprintf(fp,"\n");
2651}
2652
2653//------------------------------CondInterface----------------------------------
2654CondInterface::CondInterface(const char* equal,         const char* equal_format,
2655                             const char* not_equal,     const char* not_equal_format,
2656                             const char* less,          const char* less_format,
2657                             const char* greater_equal, const char* greater_equal_format,
2658                             const char* less_equal,    const char* less_equal_format,
2659                             const char* greater,       const char* greater_format)
2660  : Interface("COND_INTER"),
2661    _equal(equal),                 _equal_format(equal_format),
2662    _not_equal(not_equal),         _not_equal_format(not_equal_format),
2663    _less(less),                   _less_format(less_format),
2664    _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2665    _less_equal(less_equal),       _less_equal_format(less_equal_format),
2666    _greater(greater),             _greater_format(greater_format) {
2667}
2668CondInterface::~CondInterface() {
2669  // not owner of any character arrays
2670}
2671
2672void CondInterface::dump() {
2673  output(stderr);
2674}
2675
2676// Write info to output files
2677void CondInterface::output(FILE *fp) {
2678  Interface::output(fp);
2679  if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
2680  if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
2681  if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
2682  if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
2683  if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
2684  if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
2685  // fprintf(fp,"\n");
2686}
2687
2688//------------------------------ConstructRule----------------------------------
2689ConstructRule::ConstructRule(char *cnstr)
2690  : _construct(cnstr) {
2691}
2692ConstructRule::~ConstructRule() {
2693}
2694
2695void ConstructRule::dump() {
2696  output(stderr);
2697}
2698
2699void ConstructRule::output(FILE *fp) {
2700  fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2701}
2702
2703
2704//==============================Shared Forms===================================
2705//------------------------------AttributeForm----------------------------------
2706int         AttributeForm::_insId   = 0;           // start counter at 0
2707int         AttributeForm::_opId    = 0;           // start counter at 0
2708const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2709const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
2710const char* AttributeForm::_op_cost  = "op_cost";  // required name
2711
2712AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2713  : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2714    if (type==OP_ATTR) {
2715      id = ++_opId;
2716    }
2717    else if (type==INS_ATTR) {
2718      id = ++_insId;
2719    }
2720    else assert( false,"");
2721}
2722AttributeForm::~AttributeForm() {
2723}
2724
2725// Dynamic type check
2726AttributeForm *AttributeForm::is_attribute() const {
2727  return (AttributeForm*)this;
2728}
2729
2730
2731// inlined  // int  AttributeForm::type() { return id;}
2732
2733void AttributeForm::dump() {
2734  output(stderr);
2735}
2736
2737void AttributeForm::output(FILE *fp) {
2738  if( _attrname && _attrdef ) {
2739    fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2740            _attrname, _attrdef);
2741  }
2742  else {
2743    fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2744            (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2745  }
2746}
2747
2748//------------------------------Component--------------------------------------
2749Component::Component(const char *name, const char *type, int usedef)
2750  : _name(name), _type(type), _usedef(usedef) {
2751    _ftype = Form::COMP;
2752}
2753Component::~Component() {
2754}
2755
2756// True if this component is equal to the parameter.
2757bool Component::is(int use_def_kill_enum) const {
2758  return (_usedef == use_def_kill_enum ? true : false);
2759}
2760// True if this component is used/def'd/kill'd as the parameter suggests.
2761bool Component::isa(int use_def_kill_enum) const {
2762  return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2763}
2764
2765// Extend this component with additional use/def/kill behavior
2766int Component::promote_use_def_info(int new_use_def) {
2767  _usedef |= new_use_def;
2768
2769  return _usedef;
2770}
2771
2772// Check the base type of this component, if it has one
2773const char *Component::base_type(FormDict &globals) {
2774  const Form *frm = globals[_type];
2775  if (frm == NULL) return NULL;
2776  OperandForm *op = frm->is_operand();
2777  if (op == NULL) return NULL;
2778  if (op->ideal_only()) return op->_ident;
2779  return (char *)op->ideal_type(globals);
2780}
2781
2782void Component::dump() {
2783  output(stderr);
2784}
2785
2786void Component::output(FILE *fp) {
2787  fprintf(fp,"Component:");  // Write to output files
2788  fprintf(fp, "  name = %s", _name);
2789  fprintf(fp, ", type = %s", _type);
2790  const char * usedef = "Undefined Use/Def info";
2791  switch (_usedef) {
2792    case USE:      usedef = "USE";      break;
2793    case USE_DEF:  usedef = "USE_DEF";  break;
2794    case USE_KILL: usedef = "USE_KILL"; break;
2795    case KILL:     usedef = "KILL";     break;
2796    case TEMP:     usedef = "TEMP";     break;
2797    case DEF:      usedef = "DEF";      break;
2798    default: assert(false, "unknown effect");
2799  }
2800  fprintf(fp, ", use/def = %s\n", usedef);
2801}
2802
2803
2804//------------------------------ComponentList---------------------------------
2805ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2806}
2807ComponentList::~ComponentList() {
2808  // // This list may not own its elements if copied via assignment
2809  // Component *component;
2810  // for (reset(); (component = iter()) != NULL;) {
2811  //   delete component;
2812  // }
2813}
2814
2815void   ComponentList::insert(Component *component, bool mflag) {
2816  NameList::addName((char *)component);
2817  if(mflag) _matchcnt++;
2818}
2819void   ComponentList::insert(const char *name, const char *opType, int usedef,
2820                             bool mflag) {
2821  Component * component = new Component(name, opType, usedef);
2822  insert(component, mflag);
2823}
2824Component *ComponentList::current() { return (Component*)NameList::current(); }
2825Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2826Component *ComponentList::match_iter() {
2827  if(_iter < _matchcnt) return (Component*)NameList::iter();
2828  return NULL;
2829}
2830Component *ComponentList::post_match_iter() {
2831  Component *comp = iter();
2832  // At end of list?
2833  if ( comp == NULL ) {
2834    return comp;
2835  }
2836  // In post-match components?
2837  if (_iter > match_count()-1) {
2838    return comp;
2839  }
2840
2841  return post_match_iter();
2842}
2843
2844void       ComponentList::reset()   { NameList::reset(); }
2845int        ComponentList::count()   { return NameList::count(); }
2846
2847Component *ComponentList::operator[](int position) {
2848  // Shortcut complete iteration if there are not enough entries
2849  if (position >= count()) return NULL;
2850
2851  int        index     = 0;
2852  Component *component = NULL;
2853  for (reset(); (component = iter()) != NULL;) {
2854    if (index == position) {
2855      return component;
2856    }
2857    ++index;
2858  }
2859
2860  return NULL;
2861}
2862
2863const Component *ComponentList::search(const char *name) {
2864  PreserveIter pi(this);
2865  reset();
2866  for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2867    if( strcmp(comp->_name,name) == 0 ) return comp;
2868  }
2869
2870  return NULL;
2871}
2872
2873// Return number of USEs + number of DEFs
2874// When there are no components, or the first component is a USE,
2875// then we add '1' to hold a space for the 'result' operand.
2876int ComponentList::num_operands() {
2877  PreserveIter pi(this);
2878  uint       count = 1;           // result operand
2879  uint       position = 0;
2880
2881  Component *component  = NULL;
2882  for( reset(); (component = iter()) != NULL; ++position ) {
2883    if( component->isa(Component::USE) ||
2884        ( position == 0 && (! component->isa(Component::DEF))) ) {
2885      ++count;
2886    }
2887  }
2888
2889  return count;
2890}
2891
2892// Return zero-based position in list;  -1 if not in list.
2893// if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2894int ComponentList::operand_position(const char *name, int usedef) {
2895  PreserveIter pi(this);
2896  int position = 0;
2897  int num_opnds = num_operands();
2898  Component *component;
2899  Component* preceding_non_use = NULL;
2900  Component* first_def = NULL;
2901  for (reset(); (component = iter()) != NULL; ++position) {
2902    // When the first component is not a DEF,
2903    // leave space for the result operand!
2904    if ( position==0 && (! component->isa(Component::DEF)) ) {
2905      ++position;
2906      ++num_opnds;
2907    }
2908    if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
2909      // When the first entry in the component list is a DEF and a USE
2910      // Treat them as being separate, a DEF first, then a USE
2911      if( position==0
2912          && usedef==Component::USE && component->isa(Component::DEF) ) {
2913        assert(position+1 < num_opnds, "advertised index in bounds");
2914        return position+1;
2915      } else {
2916        if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
2917          fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
2918        }
2919        if( position >= num_opnds ) {
2920          fprintf(stderr, "the name '%s' is too late in its name list\n", name);
2921        }
2922        assert(position < num_opnds, "advertised index in bounds");
2923        return position;
2924      }
2925    }
2926    if( component->isa(Component::DEF)
2927        && component->isa(Component::USE) ) {
2928      ++position;
2929      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2930    }
2931    if( component->isa(Component::DEF) && !first_def ) {
2932      first_def = component;
2933    }
2934    if( !component->isa(Component::USE) && component != first_def ) {
2935      preceding_non_use = component;
2936    } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
2937      preceding_non_use = NULL;
2938    }
2939  }
2940  return Not_in_list;
2941}
2942
2943// Find position for this name, regardless of use/def information
2944int ComponentList::operand_position(const char *name) {
2945  PreserveIter pi(this);
2946  int position = 0;
2947  Component *component;
2948  for (reset(); (component = iter()) != NULL; ++position) {
2949    // When the first component is not a DEF,
2950    // leave space for the result operand!
2951    if ( position==0 && (! component->isa(Component::DEF)) ) {
2952      ++position;
2953    }
2954    if (strcmp(name, component->_name)==0) {
2955      return position;
2956    }
2957    if( component->isa(Component::DEF)
2958        && component->isa(Component::USE) ) {
2959      ++position;
2960      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2961    }
2962  }
2963  return Not_in_list;
2964}
2965
2966int ComponentList::operand_position_format(const char *name) {
2967  PreserveIter pi(this);
2968  int  first_position = operand_position(name);
2969  int  use_position   = operand_position(name, Component::USE);
2970
2971  return ((first_position < use_position) ? use_position : first_position);
2972}
2973
2974int ComponentList::label_position() {
2975  PreserveIter pi(this);
2976  int position = 0;
2977  reset();
2978  for( Component *comp; (comp = iter()) != NULL; ++position) {
2979    // When the first component is not a DEF,
2980    // leave space for the result operand!
2981    if ( position==0 && (! comp->isa(Component::DEF)) ) {
2982      ++position;
2983    }
2984    if (strcmp(comp->_type, "label")==0) {
2985      return position;
2986    }
2987    if( comp->isa(Component::DEF)
2988        && comp->isa(Component::USE) ) {
2989      ++position;
2990      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2991    }
2992  }
2993
2994  return -1;
2995}
2996
2997int ComponentList::method_position() {
2998  PreserveIter pi(this);
2999  int position = 0;
3000  reset();
3001  for( Component *comp; (comp = iter()) != NULL; ++position) {
3002    // When the first component is not a DEF,
3003    // leave space for the result operand!
3004    if ( position==0 && (! comp->isa(Component::DEF)) ) {
3005      ++position;
3006    }
3007    if (strcmp(comp->_type, "method")==0) {
3008      return position;
3009    }
3010    if( comp->isa(Component::DEF)
3011        && comp->isa(Component::USE) ) {
3012      ++position;
3013      if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
3014    }
3015  }
3016
3017  return -1;
3018}
3019
3020void ComponentList::dump() { output(stderr); }
3021
3022void ComponentList::output(FILE *fp) {
3023  PreserveIter pi(this);
3024  fprintf(fp, "\n");
3025  Component *component;
3026  for (reset(); (component = iter()) != NULL;) {
3027    component->output(fp);
3028  }
3029  fprintf(fp, "\n");
3030}
3031
3032//------------------------------MatchNode--------------------------------------
3033MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
3034                     const char *opType, MatchNode *lChild, MatchNode *rChild)
3035  : _AD(ad), _result(result), _name(mexpr), _opType(opType),
3036    _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
3037    _commutative_id(0) {
3038  _numleaves = (lChild ? lChild->_numleaves : 0)
3039               + (rChild ? rChild->_numleaves : 0);
3040}
3041
3042MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
3043  : _AD(ad), _result(mnode._result), _name(mnode._name),
3044    _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
3045    _internalop(0), _numleaves(mnode._numleaves),
3046    _commutative_id(mnode._commutative_id) {
3047}
3048
3049MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
3050  : _AD(ad), _result(mnode._result), _name(mnode._name),
3051    _opType(mnode._opType),
3052    _internalop(0), _numleaves(mnode._numleaves),
3053    _commutative_id(mnode._commutative_id) {
3054  if (mnode._lChild) {
3055    _lChild = new MatchNode(ad, *mnode._lChild, clone);
3056  } else {
3057    _lChild = NULL;
3058  }
3059  if (mnode._rChild) {
3060    _rChild = new MatchNode(ad, *mnode._rChild, clone);
3061  } else {
3062    _rChild = NULL;
3063  }
3064}
3065
3066MatchNode::~MatchNode() {
3067  // // This node may not own its children if copied via assignment
3068  // if( _lChild ) delete _lChild;
3069  // if( _rChild ) delete _rChild;
3070}
3071
3072bool  MatchNode::find_type(const char *type, int &position) const {
3073  if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3074  if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3075
3076  if (strcmp(type,_opType)==0)  {
3077    return true;
3078  } else {
3079    ++position;
3080  }
3081  return false;
3082}
3083
3084// Recursive call collecting info on top-level operands, not transitive.
3085// Implementation does not modify state of internal structures.
3086void MatchNode::append_components(FormDict& locals, ComponentList& components,
3087                                  bool def_flag) const {
3088  int usedef = def_flag ? Component::DEF : Component::USE;
3089  FormDict &globals = _AD.globalNames();
3090
3091  assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3092  // Base case
3093  if (_lChild==NULL && _rChild==NULL) {
3094    // If _opType is not an operation, do not build a component for it #####
3095    const Form *f = globals[_opType];
3096    if( f != NULL ) {
3097      // Add non-ideals that are operands, operand-classes,
3098      if( ! f->ideal_only()
3099          && (f->is_opclass() || f->is_operand()) ) {
3100        components.insert(_name, _opType, usedef, true);
3101      }
3102    }
3103    return;
3104  }
3105  // Promote results of "Set" to DEF
3106  bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
3107  if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
3108  tmpdef_flag = false;   // only applies to component immediately following 'Set'
3109  if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
3110}
3111
3112// Find the n'th base-operand in the match node,
3113// recursively investigates match rules of user-defined operands.
3114//
3115// Implementation does not modify state of internal structures since they
3116// can be shared.
3117bool MatchNode::base_operand(uint &position, FormDict &globals,
3118                             const char * &result, const char * &name,
3119                             const char * &opType) const {
3120  assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3121  // Base case
3122  if (_lChild==NULL && _rChild==NULL) {
3123    // Check for special case: "Universe", "label"
3124    if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3125      if (position == 0) {
3126        result = _result;
3127        name   = _name;
3128        opType = _opType;
3129        return 1;
3130      } else {
3131        -- position;
3132        return 0;
3133      }
3134    }
3135
3136    const Form *form = globals[_opType];
3137    MatchNode *matchNode = NULL;
3138    // Check for user-defined type
3139    if (form) {
3140      // User operand or instruction?
3141      OperandForm  *opForm = form->is_operand();
3142      InstructForm *inForm = form->is_instruction();
3143      if ( opForm ) {
3144        matchNode = (MatchNode*)opForm->_matrule;
3145      } else if ( inForm ) {
3146        matchNode = (MatchNode*)inForm->_matrule;
3147      }
3148    }
3149    // if this is user-defined, recurse on match rule
3150    // User-defined operand and instruction forms have a match-rule.
3151    if (matchNode) {
3152      return (matchNode->base_operand(position,globals,result,name,opType));
3153    } else {
3154      // Either not a form, or a system-defined form (no match rule).
3155      if (position==0) {
3156        result = _result;
3157        name   = _name;
3158        opType = _opType;
3159        return 1;
3160      } else {
3161        --position;
3162        return 0;
3163      }
3164    }
3165
3166  } else {
3167    // Examine the left child and right child as well
3168    if (_lChild) {
3169      if (_lChild->base_operand(position, globals, result, name, opType))
3170        return 1;
3171    }
3172
3173    if (_rChild) {
3174      if (_rChild->base_operand(position, globals, result, name, opType))
3175        return 1;
3176    }
3177  }
3178
3179  return 0;
3180}
3181
3182// Recursive call on all operands' match rules in my match rule.
3183uint  MatchNode::num_consts(FormDict &globals) const {
3184  uint        index      = 0;
3185  uint        num_consts = 0;
3186  const char *result;
3187  const char *name;
3188  const char *opType;
3189
3190  for (uint position = index;
3191       base_operand(position,globals,result,name,opType); position = index) {
3192    ++index;
3193    if( ideal_to_const_type(opType) )        num_consts++;
3194  }
3195
3196  return num_consts;
3197}
3198
3199// Recursive call on all operands' match rules in my match rule.
3200// Constants in match rule subtree with specified type
3201uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3202  uint        index      = 0;
3203  uint        num_consts = 0;
3204  const char *result;
3205  const char *name;
3206  const char *opType;
3207
3208  for (uint position = index;
3209       base_operand(position,globals,result,name,opType); position = index) {
3210    ++index;
3211    if( ideal_to_const_type(opType) == type ) num_consts++;
3212  }
3213
3214  return num_consts;
3215}
3216
3217// Recursive call on all operands' match rules in my match rule.
3218uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3219  return  num_consts( globals, Form::idealP );
3220}
3221
3222bool  MatchNode::sets_result() const {
3223  return   ( (strcmp(_name,"Set") == 0) ? true : false );
3224}
3225
3226const char *MatchNode::reduce_right(FormDict &globals) const {
3227  // If there is no right reduction, return NULL.
3228  const char      *rightStr    = NULL;
3229
3230  // If we are a "Set", start from the right child.
3231  const MatchNode *const mnode = sets_result() ?
3232    (const MatchNode *const)this->_rChild :
3233    (const MatchNode *const)this;
3234
3235  // If our right child exists, it is the right reduction
3236  if ( mnode->_rChild ) {
3237    rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3238      : mnode->_rChild->_opType;
3239  }
3240  // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3241  return rightStr;
3242}
3243
3244const char *MatchNode::reduce_left(FormDict &globals) const {
3245  // If there is no left reduction, return NULL.
3246  const char  *leftStr  = NULL;
3247
3248  // If we are a "Set", start from the right child.
3249  const MatchNode *const mnode = sets_result() ?
3250    (const MatchNode *const)this->_rChild :
3251    (const MatchNode *const)this;
3252
3253  // If our left child exists, it is the left reduction
3254  if ( mnode->_lChild ) {
3255    leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3256      : mnode->_lChild->_opType;
3257  } else {
3258    // May be simple chain rule: (Set dst operand_form_source)
3259    if ( sets_result() ) {
3260      OperandForm *oper = globals[mnode->_opType]->is_operand();
3261      if( oper ) {
3262        leftStr = mnode->_opType;
3263      }
3264    }
3265  }
3266  return leftStr;
3267}
3268
3269//------------------------------count_instr_names------------------------------
3270// Count occurrences of operands names in the leaves of the instruction
3271// match rule.
3272void MatchNode::count_instr_names( Dict &names ) {
3273  if( !this ) return;
3274  if( _lChild ) _lChild->count_instr_names(names);
3275  if( _rChild ) _rChild->count_instr_names(names);
3276  if( !_lChild && !_rChild ) {
3277    uintptr_t cnt = (uintptr_t)names[_name];
3278    cnt++;                      // One more name found
3279    names.Insert(_name,(void*)cnt);
3280  }
3281}
3282
3283//------------------------------build_instr_pred-------------------------------
3284// Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3285// can skip some leading instances of 'name'.
3286int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3287  if( _lChild ) {
3288    if( !cnt ) strcpy( buf, "_kids[0]->" );
3289    cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3290    if( cnt < 0 ) return cnt;   // Found it, all done
3291  }
3292  if( _rChild ) {
3293    if( !cnt ) strcpy( buf, "_kids[1]->" );
3294    cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3295    if( cnt < 0 ) return cnt;   // Found it, all done
3296  }
3297  if( !_lChild && !_rChild ) {  // Found a leaf
3298    // Wrong name?  Give up...
3299    if( strcmp(name,_name) ) return cnt;
3300    if( !cnt ) strcpy(buf,"_leaf");
3301    return cnt-1;
3302  }
3303  return cnt;
3304}
3305
3306
3307//------------------------------build_internalop-------------------------------
3308// Build string representation of subtree
3309void MatchNode::build_internalop( ) {
3310  char *iop, *subtree;
3311  const char *lstr, *rstr;
3312  // Build string representation of subtree
3313  // Operation lchildType rchildType
3314  int len = (int)strlen(_opType) + 4;
3315  lstr = (_lChild) ? ((_lChild->_internalop) ?
3316                       _lChild->_internalop : _lChild->_opType) : "";
3317  rstr = (_rChild) ? ((_rChild->_internalop) ?
3318                       _rChild->_internalop : _rChild->_opType) : "";
3319  len += (int)strlen(lstr) + (int)strlen(rstr);
3320  subtree = (char *)malloc(len);
3321  sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3322  // Hash the subtree string in _internalOps; if a name exists, use it
3323  iop = (char *)_AD._internalOps[subtree];
3324  // Else create a unique name, and add it to the hash table
3325  if (iop == NULL) {
3326    iop = subtree;
3327    _AD._internalOps.Insert(subtree, iop);
3328    _AD._internalOpNames.addName(iop);
3329    _AD._internalMatch.Insert(iop, this);
3330  }
3331  // Add the internal operand name to the MatchNode
3332  _internalop = iop;
3333  _result = iop;
3334}
3335
3336
3337void MatchNode::dump() {
3338  output(stderr);
3339}
3340
3341void MatchNode::output(FILE *fp) {
3342  if (_lChild==0 && _rChild==0) {
3343    fprintf(fp," %s",_name);    // operand
3344  }
3345  else {
3346    fprintf(fp," (%s ",_name);  // " (opcodeName "
3347    if(_lChild) _lChild->output(fp); //               left operand
3348    if(_rChild) _rChild->output(fp); //                    right operand
3349    fprintf(fp,")");                 //                                 ")"
3350  }
3351}
3352
3353int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3354  static const char *needs_ideal_memory_list[] = {
3355    "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
3356    "StoreB","StoreC","Store" ,"StoreFP",
3357    "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3358    "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load"   ,
3359    "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
3360    "Store8B","Store4B","Store8C","Store4C","Store2C",
3361    "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
3362    "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
3363    "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3364    "LoadPLocked", "LoadLLocked",
3365    "StorePConditional", "StoreIConditional", "StoreLConditional",
3366    "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3367    "StoreCM",
3368    "ClearArray"
3369  };
3370  int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3371  if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
3372    return 1;
3373  if( _lChild ) {
3374    const char *opType = _lChild->_opType;
3375    for( int i=0; i<cnt; i++ )
3376      if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3377        return 1;
3378    if( _lChild->needs_ideal_memory_edge(globals) )
3379      return 1;
3380  }
3381  if( _rChild ) {
3382    const char *opType = _rChild->_opType;
3383    for( int i=0; i<cnt; i++ )
3384      if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3385        return 1;
3386    if( _rChild->needs_ideal_memory_edge(globals) )
3387      return 1;
3388  }
3389
3390  return 0;
3391}
3392
3393// TRUE if defines a derived oop, and so needs a base oop edge present
3394// post-matching.
3395int MatchNode::needs_base_oop_edge() const {
3396  if( !strcmp(_opType,"AddP") ) return 1;
3397  if( strcmp(_opType,"Set") ) return 0;
3398  return !strcmp(_rChild->_opType,"AddP");
3399}
3400
3401int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3402  if( is_simple_chain_rule(globals) ) {
3403    const char *src = _matrule->_rChild->_opType;
3404    OperandForm *src_op = globals[src]->is_operand();
3405    assert( src_op, "Not operand class of chain rule" );
3406    return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3407  }                             // Else check instruction
3408
3409  return _matrule ? _matrule->needs_base_oop_edge() : 0;
3410}
3411
3412
3413//-------------------------cisc spilling methods-------------------------------
3414// helper routines and methods for detecting cisc-spilling instructions
3415//-------------------------cisc_spill_merge------------------------------------
3416int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3417  int cisc_spillable  = Maybe_cisc_spillable;
3418
3419  // Combine results of left and right checks
3420  if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3421    // neither side is spillable, nor prevents cisc spilling
3422    cisc_spillable = Maybe_cisc_spillable;
3423  }
3424  else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3425    // right side is spillable
3426    cisc_spillable = right_spillable;
3427  }
3428  else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3429    // left side is spillable
3430    cisc_spillable = left_spillable;
3431  }
3432  else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3433    // left or right prevents cisc spilling this instruction
3434    cisc_spillable = Not_cisc_spillable;
3435  }
3436  else {
3437    // Only allow one to spill
3438    cisc_spillable = Not_cisc_spillable;
3439  }
3440
3441  return cisc_spillable;
3442}
3443
3444//-------------------------root_ops_match--------------------------------------
3445bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3446  // Base Case: check that the current operands/operations match
3447  assert( op1, "Must have op's name");
3448  assert( op2, "Must have op's name");
3449  const Form *form1 = globals[op1];
3450  const Form *form2 = globals[op2];
3451
3452  return (form1 == form2);
3453}
3454
3455//-------------------------cisc_spill_match_node-------------------------------
3456// Recursively check two MatchRules for legal conversion via cisc-spilling
3457int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
3458  int cisc_spillable  = Maybe_cisc_spillable;
3459  int left_spillable  = Maybe_cisc_spillable;
3460  int right_spillable = Maybe_cisc_spillable;
3461
3462  // Check that each has same number of operands at this level
3463  if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
3464    return Not_cisc_spillable;
3465
3466  // Base Case: check that the current operands/operations match
3467  // or are CISC spillable
3468  assert( _opType, "Must have _opType");
3469  assert( mRule2->_opType, "Must have _opType");
3470  const Form *form  = globals[_opType];
3471  const Form *form2 = globals[mRule2->_opType];
3472  if( form == form2 ) {
3473    cisc_spillable = Maybe_cisc_spillable;
3474  } else {
3475    const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3476    const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3477    const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3478    DataType data_type = Form::none;
3479    if (form->is_operand()) {
3480      // Make sure the loadX matches the type of the reg
3481      data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
3482    }
3483    // Detect reg vs (loadX memory)
3484    if( form->is_cisc_reg(globals)
3485        && form2_inst
3486        && data_type != Form::none
3487        && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
3488        && (name_left != NULL)       // NOT (load)
3489        && (name_right == NULL) ) {  // NOT (load memory foo)
3490      const Form *form2_left = name_left ? globals[name_left] : NULL;
3491      if( form2_left && form2_left->is_cisc_mem(globals) ) {
3492        cisc_spillable = Is_cisc_spillable;
3493        operand        = _name;
3494        reg_type       = _result;
3495        return Is_cisc_spillable;
3496      } else {
3497        cisc_spillable = Not_cisc_spillable;
3498      }
3499    }
3500    // Detect reg vs memory
3501    else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3502      cisc_spillable = Is_cisc_spillable;
3503      operand        = _name;
3504      reg_type       = _result;
3505      return Is_cisc_spillable;
3506    } else {
3507      cisc_spillable = Not_cisc_spillable;
3508    }
3509  }
3510
3511  // If cisc is still possible, check rest of tree
3512  if( cisc_spillable == Maybe_cisc_spillable ) {
3513    // Check that each has same number of operands at this level
3514    if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3515
3516    // Check left operands
3517    if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3518      left_spillable = Maybe_cisc_spillable;
3519    } else {
3520      left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3521    }
3522
3523    // Check right operands
3524    if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3525      right_spillable =  Maybe_cisc_spillable;
3526    } else {
3527      right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3528    }
3529
3530    // Combine results of left and right checks
3531    cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3532  }
3533
3534  return cisc_spillable;
3535}
3536
3537//---------------------------cisc_spill_match_rule------------------------------
3538// Recursively check two MatchRules for legal conversion via cisc-spilling
3539// This method handles the root of Match tree,
3540// general recursive checks done in MatchNode
3541int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
3542                                           MatchRule* mRule2, const char* &operand,
3543                                           const char* &reg_type) {
3544  int cisc_spillable  = Maybe_cisc_spillable;
3545  int left_spillable  = Maybe_cisc_spillable;
3546  int right_spillable = Maybe_cisc_spillable;
3547
3548  // Check that each sets a result
3549  if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3550  // Check that each has same number of operands at this level
3551  if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3552
3553  // Check left operands: at root, must be target of 'Set'
3554  if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3555    left_spillable = Not_cisc_spillable;
3556  } else {
3557    // Do not support cisc-spilling instruction's target location
3558    if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3559      left_spillable = Maybe_cisc_spillable;
3560    } else {
3561      left_spillable = Not_cisc_spillable;
3562    }
3563  }
3564
3565  // Check right operands: recursive walk to identify reg->mem operand
3566  if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3567    right_spillable =  Maybe_cisc_spillable;
3568  } else {
3569    right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3570  }
3571
3572  // Combine results of left and right checks
3573  cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3574
3575  return cisc_spillable;
3576}
3577
3578//----------------------------- equivalent ------------------------------------
3579// Recursively check to see if two match rules are equivalent.
3580// This rule handles the root.
3581bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
3582  // Check that each sets a result
3583  if (sets_result() != mRule2->sets_result()) {
3584    return false;
3585  }
3586
3587  // Check that the current operands/operations match
3588  assert( _opType, "Must have _opType");
3589  assert( mRule2->_opType, "Must have _opType");
3590  const Form *form  = globals[_opType];
3591  const Form *form2 = globals[mRule2->_opType];
3592  if( form != form2 ) {
3593    return false;
3594  }
3595
3596  if (_lChild ) {
3597    if( !_lChild->equivalent(globals, mRule2->_lChild) )
3598      return false;
3599  } else if (mRule2->_lChild) {
3600    return false; // I have NULL left child, mRule2 has non-NULL left child.
3601  }
3602
3603  if (_rChild ) {
3604    if( !_rChild->equivalent(globals, mRule2->_rChild) )
3605      return false;
3606  } else if (mRule2->_rChild) {
3607    return false; // I have NULL right child, mRule2 has non-NULL right child.
3608  }
3609
3610  // We've made it through the gauntlet.
3611  return true;
3612}
3613
3614//----------------------------- equivalent ------------------------------------
3615// Recursively check to see if two match rules are equivalent.
3616// This rule handles the operands.
3617bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3618  if( !mNode2 )
3619    return false;
3620
3621  // Check that the current operands/operations match
3622  assert( _opType, "Must have _opType");
3623  assert( mNode2->_opType, "Must have _opType");
3624  const Form *form  = globals[_opType];
3625  const Form *form2 = globals[mNode2->_opType];
3626  return (form == form2);
3627}
3628
3629//-------------------------- has_commutative_op -------------------------------
3630// Recursively check for commutative operations with subtree operands
3631// which could be swapped.
3632void MatchNode::count_commutative_op(int& count) {
3633  static const char *commut_op_list[] = {
3634    "AddI","AddL","AddF","AddD",
3635    "AndI","AndL",
3636    "MaxI","MinI",
3637    "MulI","MulL","MulF","MulD",
3638    "OrI" ,"OrL" ,
3639    "XorI","XorL"
3640  };
3641  int cnt = sizeof(commut_op_list)/sizeof(char*);
3642
3643  if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3644    // Don't swap if right operand is an immediate constant.
3645    bool is_const = false;
3646    if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3647      FormDict &globals = _AD.globalNames();
3648      const Form *form = globals[_rChild->_opType];
3649      if ( form ) {
3650        OperandForm  *oper = form->is_operand();
3651        if( oper && oper->interface_type(globals) == Form::constant_interface )
3652          is_const = true;
3653      }
3654    }
3655    if( !is_const ) {
3656      for( int i=0; i<cnt; i++ ) {
3657        if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3658          count++;
3659          _commutative_id = count; // id should be > 0
3660          break;
3661        }
3662      }
3663    }
3664  }
3665  if( _lChild )
3666    _lChild->count_commutative_op(count);
3667  if( _rChild )
3668    _rChild->count_commutative_op(count);
3669}
3670
3671//-------------------------- swap_commutative_op ------------------------------
3672// Recursively swap specified commutative operation with subtree operands.
3673void MatchNode::swap_commutative_op(bool atroot, int id) {
3674  if( _commutative_id == id ) { // id should be > 0
3675    assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
3676            "not swappable operation");
3677    MatchNode* tmp = _lChild;
3678    _lChild = _rChild;
3679    _rChild = tmp;
3680    // Don't exit here since we need to build internalop.
3681  }
3682
3683  bool is_set = ( strcmp(_opType, "Set") == 0 );
3684  if( _lChild )
3685    _lChild->swap_commutative_op(is_set, id);
3686  if( _rChild )
3687    _rChild->swap_commutative_op(is_set, id);
3688
3689  // If not the root, reduce this subtree to an internal operand
3690  if( !atroot && (_lChild || _rChild) ) {
3691    build_internalop();
3692  }
3693}
3694
3695//-------------------------- swap_commutative_op ------------------------------
3696// Recursively swap specified commutative operation with subtree operands.
3697void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3698  assert(match_rules_cnt < 100," too many match rule clones");
3699  // Clone
3700  MatchRule* clone = new MatchRule(_AD, this);
3701  // Swap operands of commutative operation
3702  ((MatchNode*)clone)->swap_commutative_op(true, count);
3703  char* buf = (char*) malloc(strlen(instr_ident) + 4);
3704  sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3705  clone->_result = buf;
3706
3707  clone->_next = this->_next;
3708  this-> _next = clone;
3709  if( (--count) > 0 ) {
3710    this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3711    clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
3712  }
3713}
3714
3715//------------------------------MatchRule--------------------------------------
3716MatchRule::MatchRule(ArchDesc &ad)
3717  : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3718    _next = NULL;
3719}
3720
3721MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3722  : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
3723    _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3724    _next = NULL;
3725}
3726
3727MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3728                     int numleaves)
3729  : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3730    _numchilds(0) {
3731      _next = NULL;
3732      mroot->_lChild = NULL;
3733      mroot->_rChild = NULL;
3734      delete mroot;
3735      _numleaves = numleaves;
3736      _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3737}
3738MatchRule::~MatchRule() {
3739}
3740
3741// Recursive call collecting info on top-level operands, not transitive.
3742// Implementation does not modify state of internal structures.
3743void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
3744  assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3745
3746  MatchNode::append_components(locals, components,
3747                               false /* not necessarily a def */);
3748}
3749
3750// Recursive call on all operands' match rules in my match rule.
3751// Implementation does not modify state of internal structures  since they
3752// can be shared.
3753// The MatchNode that is called first treats its
3754bool MatchRule::base_operand(uint &position0, FormDict &globals,
3755                             const char *&result, const char * &name,
3756                             const char * &opType)const{
3757  uint position = position0;
3758
3759  return (MatchNode::base_operand( position, globals, result, name, opType));
3760}
3761
3762
3763bool MatchRule::is_base_register(FormDict &globals) const {
3764  uint   position = 1;
3765  const char  *result   = NULL;
3766  const char  *name     = NULL;
3767  const char  *opType   = NULL;
3768  if (!base_operand(position, globals, result, name, opType)) {
3769    position = 0;
3770    if( base_operand(position, globals, result, name, opType) &&
3771        (strcmp(opType,"RegI")==0 ||
3772         strcmp(opType,"RegP")==0 ||
3773         strcmp(opType,"RegN")==0 ||
3774         strcmp(opType,"RegL")==0 ||
3775         strcmp(opType,"RegF")==0 ||
3776         strcmp(opType,"RegD")==0 ||
3777         strcmp(opType,"Reg" )==0) ) {
3778      return 1;
3779    }
3780  }
3781  return 0;
3782}
3783
3784Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3785  uint         position = 1;
3786  const char  *result   = NULL;
3787  const char  *name     = NULL;
3788  const char  *opType   = NULL;
3789  if (!base_operand(position, globals, result, name, opType)) {
3790    position = 0;
3791    if (base_operand(position, globals, result, name, opType)) {
3792      return ideal_to_const_type(opType);
3793    }
3794  }
3795  return Form::none;
3796}
3797
3798bool MatchRule::is_chain_rule(FormDict &globals) const {
3799
3800  // Check for chain rule, and do not generate a match list for it
3801  if ((_lChild == NULL) && (_rChild == NULL) ) {
3802    const Form *form = globals[_opType];
3803    // If this is ideal, then it is a base match, not a chain rule.
3804    if ( form && form->is_operand() && (!form->ideal_only())) {
3805      return true;
3806    }
3807  }
3808  // Check for "Set" form of chain rule, and do not generate a match list
3809  if (_rChild) {
3810    const char *rch = _rChild->_opType;
3811    const Form *form = globals[rch];
3812    if ((!strcmp(_opType,"Set") &&
3813         ((form) && form->is_operand()))) {
3814      return true;
3815    }
3816  }
3817  return false;
3818}
3819
3820int MatchRule::is_ideal_copy() const {
3821  if( _rChild ) {
3822    const char  *opType = _rChild->_opType;
3823#if 1
3824    if( strcmp(opType,"CastIP")==0 )
3825      return 1;
3826#else
3827    if( strcmp(opType,"CastII")==0 )
3828      return 1;
3829    // Do not treat *CastPP this way, because it
3830    // may transfer a raw pointer to an oop.
3831    // If the register allocator were to coalesce this
3832    // into a single LRG, the GC maps would be incorrect.
3833    //if( strcmp(opType,"CastPP")==0 )
3834    //  return 1;
3835    //if( strcmp(opType,"CheckCastPP")==0 )
3836    //  return 1;
3837    //
3838    // Do not treat CastX2P or CastP2X this way, because
3839    // raw pointers and int types are treated differently
3840    // when saving local & stack info for safepoints in
3841    // Output().
3842    //if( strcmp(opType,"CastX2P")==0 )
3843    //  return 1;
3844    //if( strcmp(opType,"CastP2X")==0 )
3845    //  return 1;
3846#endif
3847  }
3848  if( is_chain_rule(_AD.globalNames()) &&
3849      _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3850    return 1;
3851  return 0;
3852}
3853
3854
3855int MatchRule::is_expensive() const {
3856  if( _rChild ) {
3857    const char  *opType = _rChild->_opType;
3858    if( strcmp(opType,"AtanD")==0 ||
3859        strcmp(opType,"CosD")==0 ||
3860        strcmp(opType,"DivD")==0 ||
3861        strcmp(opType,"DivF")==0 ||
3862        strcmp(opType,"DivI")==0 ||
3863        strcmp(opType,"ExpD")==0 ||
3864        strcmp(opType,"LogD")==0 ||
3865        strcmp(opType,"Log10D")==0 ||
3866        strcmp(opType,"ModD")==0 ||
3867        strcmp(opType,"ModF")==0 ||
3868        strcmp(opType,"ModI")==0 ||
3869        strcmp(opType,"PowD")==0 ||
3870        strcmp(opType,"SinD")==0 ||
3871        strcmp(opType,"SqrtD")==0 ||
3872        strcmp(opType,"TanD")==0 ||
3873        strcmp(opType,"ConvD2F")==0 ||
3874        strcmp(opType,"ConvD2I")==0 ||
3875        strcmp(opType,"ConvD2L")==0 ||
3876        strcmp(opType,"ConvF2D")==0 ||
3877        strcmp(opType,"ConvF2I")==0 ||
3878        strcmp(opType,"ConvF2L")==0 ||
3879        strcmp(opType,"ConvI2D")==0 ||
3880        strcmp(opType,"ConvI2F")==0 ||
3881        strcmp(opType,"ConvI2L")==0 ||
3882        strcmp(opType,"ConvL2D")==0 ||
3883        strcmp(opType,"ConvL2F")==0 ||
3884        strcmp(opType,"ConvL2I")==0 ||
3885        strcmp(opType,"DecodeN")==0 ||
3886        strcmp(opType,"EncodeP")==0 ||
3887        strcmp(opType,"RoundDouble")==0 ||
3888        strcmp(opType,"RoundFloat")==0 ||
3889        strcmp(opType,"ReverseBytesI")==0 ||
3890        strcmp(opType,"ReverseBytesL")==0 ||
3891        strcmp(opType,"ReverseBytesUS")==0 ||
3892        strcmp(opType,"ReverseBytesS")==0 ||
3893        strcmp(opType,"Replicate16B")==0 ||
3894        strcmp(opType,"Replicate8B")==0 ||
3895        strcmp(opType,"Replicate4B")==0 ||
3896        strcmp(opType,"Replicate8C")==0 ||
3897        strcmp(opType,"Replicate4C")==0 ||
3898        strcmp(opType,"Replicate8S")==0 ||
3899        strcmp(opType,"Replicate4S")==0 ||
3900        strcmp(opType,"Replicate4I")==0 ||
3901        strcmp(opType,"Replicate2I")==0 ||
3902        strcmp(opType,"Replicate2L")==0 ||
3903        strcmp(opType,"Replicate4F")==0 ||
3904        strcmp(opType,"Replicate2F")==0 ||
3905        strcmp(opType,"Replicate2D")==0 ||
3906        0 /* 0 to line up columns nicely */ )
3907      return 1;
3908  }
3909  return 0;
3910}
3911
3912bool MatchRule::is_ideal_unlock() const {
3913  if( !_opType ) return false;
3914  return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
3915}
3916
3917
3918bool MatchRule::is_ideal_call_leaf() const {
3919  if( !_opType ) return false;
3920  return !strcmp(_opType,"CallLeaf")     ||
3921         !strcmp(_opType,"CallLeafNoFP");
3922}
3923
3924
3925bool MatchRule::is_ideal_if() const {
3926  if( !_opType ) return false;
3927  return
3928    !strcmp(_opType,"If"            ) ||
3929    !strcmp(_opType,"CountedLoopEnd");
3930}
3931
3932bool MatchRule::is_ideal_fastlock() const {
3933  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3934    return (strcmp(_rChild->_opType,"FastLock") == 0);
3935  }
3936  return false;
3937}
3938
3939bool MatchRule::is_ideal_membar() const {
3940  if( !_opType ) return false;
3941  return
3942    !strcmp(_opType,"MemBarAcquire"  ) ||
3943    !strcmp(_opType,"MemBarRelease"  ) ||
3944    !strcmp(_opType,"MemBarVolatile" ) ||
3945    !strcmp(_opType,"MemBarCPUOrder" ) ;
3946}
3947
3948bool MatchRule::is_ideal_loadPC() const {
3949  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3950    return (strcmp(_rChild->_opType,"LoadPC") == 0);
3951  }
3952  return false;
3953}
3954
3955bool MatchRule::is_ideal_box() const {
3956  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3957    return (strcmp(_rChild->_opType,"Box") == 0);
3958  }
3959  return false;
3960}
3961
3962bool MatchRule::is_ideal_goto() const {
3963  bool   ideal_goto = false;
3964
3965  if( _opType && (strcmp(_opType,"Goto") == 0) ) {
3966    ideal_goto = true;
3967  }
3968  return ideal_goto;
3969}
3970
3971bool MatchRule::is_ideal_jump() const {
3972  if( _opType ) {
3973    if( !strcmp(_opType,"Jump") )
3974      return true;
3975  }
3976  return false;
3977}
3978
3979bool MatchRule::is_ideal_bool() const {
3980  if( _opType ) {
3981    if( !strcmp(_opType,"Bool") )
3982      return true;
3983  }
3984  return false;
3985}
3986
3987
3988Form::DataType MatchRule::is_ideal_load() const {
3989  Form::DataType ideal_load = Form::none;
3990
3991  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3992    const char *opType = _rChild->_opType;
3993    ideal_load = is_load_from_memory(opType);
3994  }
3995
3996  return ideal_load;
3997}
3998
3999
4000bool MatchRule::skip_antidep_check() const {
4001  // Some loads operate on what is effectively immutable memory so we
4002  // should skip the anti dep computations.  For some of these nodes
4003  // the rewritable field keeps the anti dep logic from triggering but
4004  // for certain kinds of LoadKlass it does not since they are
4005  // actually reading memory which could be rewritten by the runtime,
4006  // though never by generated code.  This disables it uniformly for
4007  // the nodes that behave like this: LoadKlass, LoadNKlass and
4008  // LoadRange.
4009  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4010    const char *opType = _rChild->_opType;
4011    if (strcmp("LoadKlass", opType) == 0 ||
4012        strcmp("LoadNKlass", opType) == 0 ||
4013        strcmp("LoadRange", opType) == 0) {
4014      return true;
4015    }
4016  }
4017
4018  return false;
4019}
4020
4021
4022Form::DataType MatchRule::is_ideal_store() const {
4023  Form::DataType ideal_store = Form::none;
4024
4025  if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
4026    const char *opType = _rChild->_opType;
4027    ideal_store = is_store_to_memory(opType);
4028  }
4029
4030  return ideal_store;
4031}
4032
4033
4034void MatchRule::dump() {
4035  output(stderr);
4036}
4037
4038void MatchRule::output(FILE *fp) {
4039  fprintf(fp,"MatchRule: ( %s",_name);
4040  if (_lChild) _lChild->output(fp);
4041  if (_rChild) _rChild->output(fp);
4042  fprintf(fp," )\n");
4043  fprintf(fp,"   nesting depth = %d\n", _depth);
4044  if (_result) fprintf(fp,"   Result Type = %s", _result);
4045  fprintf(fp,"\n");
4046}
4047
4048//------------------------------Attribute--------------------------------------
4049Attribute::Attribute(char *id, char* val, int type)
4050  : _ident(id), _val(val), _atype(type) {
4051}
4052Attribute::~Attribute() {
4053}
4054
4055int Attribute::int_val(ArchDesc &ad) {
4056  // Make sure it is an integer constant:
4057  int result = 0;
4058  if (!_val || !ADLParser::is_int_token(_val, result)) {
4059    ad.syntax_err(0, "Attribute %s must have an integer value: %s",
4060                  _ident, _val ? _val : "");
4061  }
4062  return result;
4063}
4064
4065void Attribute::dump() {
4066  output(stderr);
4067} // Debug printer
4068
4069// Write to output files
4070void Attribute::output(FILE *fp) {
4071  fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4072}
4073
4074//------------------------------FormatRule----------------------------------
4075FormatRule::FormatRule(char *temp)
4076  : _temp(temp) {
4077}
4078FormatRule::~FormatRule() {
4079}
4080
4081void FormatRule::dump() {
4082  output(stderr);
4083}
4084
4085// Write to output files
4086void FormatRule::output(FILE *fp) {
4087  fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4088  fprintf(fp,"\n");
4089}
4090