os_solaris_x86.cpp revision 9867:3125c4a60cc9
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "mutex_solaris.inline.hpp"
37#include "os_share_solaris.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/atomic.inline.hpp"
43#include "runtime/extendedPC.hpp"
44#include "runtime/frame.inline.hpp"
45#include "runtime/interfaceSupport.hpp"
46#include "runtime/java.hpp"
47#include "runtime/javaCalls.hpp"
48#include "runtime/mutexLocker.hpp"
49#include "runtime/osThread.hpp"
50#include "runtime/sharedRuntime.hpp"
51#include "runtime/stubRoutines.hpp"
52#include "runtime/thread.inline.hpp"
53#include "runtime/timer.hpp"
54#include "utilities/events.hpp"
55#include "utilities/vmError.hpp"
56
57// put OS-includes here
58# include <sys/types.h>
59# include <sys/mman.h>
60# include <pthread.h>
61# include <signal.h>
62# include <setjmp.h>
63# include <errno.h>
64# include <dlfcn.h>
65# include <stdio.h>
66# include <unistd.h>
67# include <sys/resource.h>
68# include <thread.h>
69# include <sys/stat.h>
70# include <sys/time.h>
71# include <sys/filio.h>
72# include <sys/utsname.h>
73# include <sys/systeminfo.h>
74# include <sys/socket.h>
75# include <sys/trap.h>
76# include <sys/lwp.h>
77# include <pwd.h>
78# include <poll.h>
79# include <sys/lwp.h>
80# include <procfs.h>     //  see comment in <sys/procfs.h>
81
82#ifndef AMD64
83// QQQ seems useless at this point
84# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
85#endif // AMD64
86# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
87
88
89#define MAX_PATH (2 * K)
90
91// Minimum stack size for the VM.  It's easier to document a constant value
92// but it's different for x86 and sparc because the page sizes are different.
93#ifdef AMD64
94size_t os::Solaris::min_stack_allowed = 224*K;
95#define REG_SP REG_RSP
96#define REG_PC REG_RIP
97#define REG_FP REG_RBP
98#else
99size_t os::Solaris::min_stack_allowed = 64*K;
100#define REG_SP UESP
101#define REG_PC EIP
102#define REG_FP EBP
103// 4900493 counter to prevent runaway LDTR refresh attempt
104
105static volatile int ldtr_refresh = 0;
106// the libthread instruction that faults because of the stale LDTR
107
108static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
109                       };
110#endif // AMD64
111
112char* os::non_memory_address_word() {
113  // Must never look like an address returned by reserve_memory,
114  // even in its subfields (as defined by the CPU immediate fields,
115  // if the CPU splits constants across multiple instructions).
116  return (char*) -1;
117}
118
119//
120// Validate a ucontext retrieved from walking a uc_link of a ucontext.
121// There are issues with libthread giving out uc_links for different threads
122// on the same uc_link chain and bad or circular links.
123//
124bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
125  if (valid >= suspect ||
126      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
127      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
128      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
129    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
130    return false;
131  }
132
133  if (thread->is_Java_thread()) {
134    if (!valid_stack_address(thread, (address)suspect)) {
135      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
136      return false;
137    }
138    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
139      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
140      return false;
141    }
142  }
143  return true;
144}
145
146// We will only follow one level of uc_link since there are libthread
147// issues with ucontext linking and it is better to be safe and just
148// let caller retry later.
149const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
150  const ucontext_t *uc) {
151
152  const ucontext_t *retuc = NULL;
153
154  if (uc != NULL) {
155    if (uc->uc_link == NULL) {
156      // cannot validate without uc_link so accept current ucontext
157      retuc = uc;
158    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
159      // first ucontext is valid so try the next one
160      uc = uc->uc_link;
161      if (uc->uc_link == NULL) {
162        // cannot validate without uc_link so accept current ucontext
163        retuc = uc;
164      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
165        // the ucontext one level down is also valid so return it
166        retuc = uc;
167      }
168    }
169  }
170  return retuc;
171}
172
173// Assumes ucontext is valid
174ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
175  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
176}
177
178void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
179  uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
180}
181
182// Assumes ucontext is valid
183intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
184  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
185}
186
187// Assumes ucontext is valid
188intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
189  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
190}
191
192address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
193  return (address) uc->uc_mcontext.gregs[REG_PC];
194}
195
196// For Forte Analyzer AsyncGetCallTrace profiling support - thread
197// is currently interrupted by SIGPROF.
198//
199// The difference between this and os::fetch_frame_from_context() is that
200// here we try to skip nested signal frames.
201// This method is also used for stack overflow signal handling.
202ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
203  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
204
205  assert(thread != NULL, "just checking");
206  assert(ret_sp != NULL, "just checking");
207  assert(ret_fp != NULL, "just checking");
208
209  const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
210  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
211}
212
213ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
214                    intptr_t** ret_sp, intptr_t** ret_fp) {
215
216  ExtendedPC  epc;
217  const ucontext_t *uc = (const ucontext_t*)ucVoid;
218
219  if (uc != NULL) {
220    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
221    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
222    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
223  } else {
224    // construct empty ExtendedPC for return value checking
225    epc = ExtendedPC(NULL);
226    if (ret_sp) *ret_sp = (intptr_t *)NULL;
227    if (ret_fp) *ret_fp = (intptr_t *)NULL;
228  }
229
230  return epc;
231}
232
233frame os::fetch_frame_from_context(const void* ucVoid) {
234  intptr_t* sp;
235  intptr_t* fp;
236  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
237  return frame(sp, fp, epc.pc());
238}
239
240frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
241  intptr_t* sp;
242  intptr_t* fp;
243  ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
244  return frame(sp, fp, epc.pc());
245}
246
247bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
248 address pc = (address) os::Solaris::ucontext_get_pc(uc);
249  if (Interpreter::contains(pc)) {
250    // interpreter performs stack banging after the fixed frame header has
251    // been generated while the compilers perform it before. To maintain
252    // semantic consistency between interpreted and compiled frames, the
253    // method returns the Java sender of the current frame.
254    *fr = os::fetch_frame_from_ucontext(thread, uc);
255    if (!fr->is_first_java_frame()) {
256      assert(fr->safe_for_sender(thread), "Safety check");
257      *fr = fr->java_sender();
258    }
259  } else {
260    // more complex code with compiled code
261    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
262    CodeBlob* cb = CodeCache::find_blob(pc);
263    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
264      // Not sure where the pc points to, fallback to default
265      // stack overflow handling
266      return false;
267    } else {
268      // in compiled code, the stack banging is performed just after the return pc
269      // has been pushed on the stack
270      intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
271      intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
272      *fr = frame(sp + 1, fp, (address)*sp);
273      if (!fr->is_java_frame()) {
274        assert(fr->safe_for_sender(thread), "Safety check");
275        *fr = fr->java_sender();
276      }
277    }
278  }
279  assert(fr->is_java_frame(), "Safety check");
280  return true;
281}
282
283frame os::get_sender_for_C_frame(frame* fr) {
284  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
285}
286
287extern "C" intptr_t *_get_current_sp();  // in .il file
288
289address os::current_stack_pointer() {
290  return (address)_get_current_sp();
291}
292
293extern "C" intptr_t *_get_current_fp();  // in .il file
294
295frame os::current_frame() {
296  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
297  frame myframe((intptr_t*)os::current_stack_pointer(),
298                (intptr_t*)fp,
299                CAST_FROM_FN_PTR(address, os::current_frame));
300  if (os::is_first_C_frame(&myframe)) {
301    // stack is not walkable
302    frame ret; // This will be a null useless frame
303    return ret;
304  } else {
305    return os::get_sender_for_C_frame(&myframe);
306  }
307}
308
309#ifndef AMD64
310
311// Detecting SSE support by OS
312// From solaris_i486.s
313extern "C" bool sse_check();
314extern "C" bool sse_unavailable();
315
316enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
317static int sse_status = SSE_UNKNOWN;
318
319
320static void  check_for_sse_support() {
321  if (!VM_Version::supports_sse()) {
322    sse_status = SSE_NOT_SUPPORTED;
323    return;
324  }
325  // looking for _sse_hw in libc.so, if it does not exist or
326  // the value (int) is 0, OS has no support for SSE
327  int *sse_hwp;
328  void *h;
329
330  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
331    //open failed, presume no support for SSE
332    sse_status = SSE_NOT_SUPPORTED;
333    return;
334  }
335  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
336    sse_status = SSE_NOT_SUPPORTED;
337  } else if (*sse_hwp == 0) {
338    sse_status = SSE_NOT_SUPPORTED;
339  }
340  dlclose(h);
341
342  if (sse_status == SSE_UNKNOWN) {
343    bool (*try_sse)() = (bool (*)())sse_check;
344    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
345  }
346
347}
348
349#endif // AMD64
350
351bool os::supports_sse() {
352#ifdef AMD64
353  return true;
354#else
355  if (sse_status == SSE_UNKNOWN)
356    check_for_sse_support();
357  return sse_status == SSE_SUPPORTED;
358#endif // AMD64
359}
360
361bool os::is_allocatable(size_t bytes) {
362#ifdef AMD64
363  return true;
364#else
365
366  if (bytes < 2 * G) {
367    return true;
368  }
369
370  char* addr = reserve_memory(bytes, NULL);
371
372  if (addr != NULL) {
373    release_memory(addr, bytes);
374  }
375
376  return addr != NULL;
377#endif // AMD64
378
379}
380
381extern "C" JNIEXPORT int
382JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
383                          int abort_if_unrecognized) {
384  ucontext_t* uc = (ucontext_t*) ucVoid;
385
386#ifndef AMD64
387  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
388    // the SSE instruction faulted. supports_sse() need return false.
389    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
390    return true;
391  }
392#endif // !AMD64
393
394  Thread* t = Thread::current_or_null_safe();
395
396  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
397  // (no destructors can be run)
398  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
399
400  SignalHandlerMark shm(t);
401
402  if(sig == SIGPIPE || sig == SIGXFSZ) {
403    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
404      return true;
405    } else {
406      if (PrintMiscellaneous && (WizardMode || Verbose)) {
407        char buf[64];
408        warning("Ignoring %s - see 4229104 or 6499219",
409                os::exception_name(sig, buf, sizeof(buf)));
410
411      }
412      return true;
413    }
414  }
415
416  JavaThread* thread = NULL;
417  VMThread* vmthread = NULL;
418
419  if (os::Solaris::signal_handlers_are_installed) {
420    if (t != NULL ){
421      if(t->is_Java_thread()) {
422        thread = (JavaThread*)t;
423      }
424      else if(t->is_VM_thread()){
425        vmthread = (VMThread *)t;
426      }
427    }
428  }
429
430  if (sig == os::Solaris::SIGasync()) {
431    if(thread || vmthread){
432      OSThread::SR_handler(t, uc);
433      return true;
434    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
435      return true;
436    } else {
437      // If os::Solaris::SIGasync not chained, and this is a non-vm and
438      // non-java thread
439      return true;
440    }
441  }
442
443  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
444    // can't decode this kind of signal
445    info = NULL;
446  } else {
447    assert(sig == info->si_signo, "bad siginfo");
448  }
449
450  // decide if this trap can be handled by a stub
451  address stub = NULL;
452
453  address pc          = NULL;
454
455  //%note os_trap_1
456  if (info != NULL && uc != NULL && thread != NULL) {
457    // factor me: getPCfromContext
458    pc = (address) uc->uc_mcontext.gregs[REG_PC];
459
460    if (StubRoutines::is_safefetch_fault(pc)) {
461      os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
462      return true;
463    }
464
465    // Handle ALL stack overflow variations here
466    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
467      address addr = (address) info->si_addr;
468      if (thread->in_stack_yellow_reserved_zone(addr)) {
469        if (thread->thread_state() == _thread_in_Java) {
470          if (thread->in_stack_reserved_zone(addr)) {
471            frame fr;
472            if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
473              assert(fr.is_java_frame(), "Must be Java frame");
474              frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
475              if (activation.sp() != NULL) {
476                thread->disable_stack_reserved_zone();
477                if (activation.is_interpreted_frame()) {
478                  thread->set_reserved_stack_activation((address)(
479                    activation.fp() + frame::interpreter_frame_initial_sp_offset));
480                } else {
481                  thread->set_reserved_stack_activation((address)activation.unextended_sp());
482                }
483                return true;
484              }
485            }
486          }
487          // Throw a stack overflow exception.  Guard pages will be reenabled
488          // while unwinding the stack.
489          thread->disable_stack_yellow_reserved_zone();
490          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
491        } else {
492          // Thread was in the vm or native code.  Return and try to finish.
493          thread->disable_stack_yellow_reserved_zone();
494          return true;
495        }
496      } else if (thread->in_stack_red_zone(addr)) {
497        // Fatal red zone violation.  Disable the guard pages and fall through
498        // to handle_unexpected_exception way down below.
499        thread->disable_stack_red_zone();
500        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
501      }
502    }
503
504    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
505      // Verify that OS save/restore AVX registers.
506      stub = VM_Version::cpuinfo_cont_addr();
507    }
508
509    if (thread->thread_state() == _thread_in_vm) {
510      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
511        stub = StubRoutines::handler_for_unsafe_access();
512      }
513    }
514
515    if (thread->thread_state() == _thread_in_Java) {
516      // Support Safepoint Polling
517      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
518        stub = SharedRuntime::get_poll_stub(pc);
519      }
520      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
521        // BugId 4454115: A read from a MappedByteBuffer can fault
522        // here if the underlying file has been truncated.
523        // Do not crash the VM in such a case.
524        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
525        if (cb != NULL) {
526          nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
527          if (nm != NULL && nm->has_unsafe_access()) {
528            stub = StubRoutines::handler_for_unsafe_access();
529          }
530        }
531      }
532      else
533      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
534        // integer divide by zero
535        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
536      }
537#ifndef AMD64
538      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
539        // floating-point divide by zero
540        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
541      }
542      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
543        // The encoding of D2I in i486.ad can cause an exception prior
544        // to the fist instruction if there was an invalid operation
545        // pending. We want to dismiss that exception. From the win_32
546        // side it also seems that if it really was the fist causing
547        // the exception that we do the d2i by hand with different
548        // rounding. Seems kind of weird. QQQ TODO
549        // Note that we take the exception at the NEXT floating point instruction.
550        if (pc[0] == 0xDB) {
551            assert(pc[0] == 0xDB, "not a FIST opcode");
552            assert(pc[1] == 0x14, "not a FIST opcode");
553            assert(pc[2] == 0x24, "not a FIST opcode");
554            return true;
555        } else {
556            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
557            assert(pc[-2] == 0x14, "not an flt invalid opcode");
558            assert(pc[-1] == 0x24, "not an flt invalid opcode");
559        }
560      }
561      else if (sig == SIGFPE ) {
562        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
563      }
564#endif // !AMD64
565
566        // QQQ It doesn't seem that we need to do this on x86 because we should be able
567        // to return properly from the handler without this extra stuff on the back side.
568
569      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
570        // Determination of interpreter/vtable stub/compiled code null exception
571        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
572      }
573    }
574
575    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
576    // and the heap gets shrunk before the field access.
577    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
578      address addr = JNI_FastGetField::find_slowcase_pc(pc);
579      if (addr != (address)-1) {
580        stub = addr;
581      }
582    }
583
584    // Check to see if we caught the safepoint code in the
585    // process of write protecting the memory serialization page.
586    // It write enables the page immediately after protecting it
587    // so we can just return to retry the write.
588    if ((sig == SIGSEGV) &&
589        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
590      // Block current thread until the memory serialize page permission restored.
591      os::block_on_serialize_page_trap();
592      return true;
593    }
594  }
595
596  // Execution protection violation
597  //
598  // Preventative code for future versions of Solaris which may
599  // enable execution protection when running the 32-bit VM on AMD64.
600  //
601  // This should be kept as the last step in the triage.  We don't
602  // have a dedicated trap number for a no-execute fault, so be
603  // conservative and allow other handlers the first shot.
604  //
605  // Note: We don't test that info->si_code == SEGV_ACCERR here.
606  // this si_code is so generic that it is almost meaningless; and
607  // the si_code for this condition may change in the future.
608  // Furthermore, a false-positive should be harmless.
609  if (UnguardOnExecutionViolation > 0 &&
610      (sig == SIGSEGV || sig == SIGBUS) &&
611      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
612    int page_size = os::vm_page_size();
613    address addr = (address) info->si_addr;
614    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
615    // Make sure the pc and the faulting address are sane.
616    //
617    // If an instruction spans a page boundary, and the page containing
618    // the beginning of the instruction is executable but the following
619    // page is not, the pc and the faulting address might be slightly
620    // different - we still want to unguard the 2nd page in this case.
621    //
622    // 15 bytes seems to be a (very) safe value for max instruction size.
623    bool pc_is_near_addr =
624      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
625    bool instr_spans_page_boundary =
626      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
627                       (intptr_t) page_size) > 0);
628
629    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
630      static volatile address last_addr =
631        (address) os::non_memory_address_word();
632
633      // In conservative mode, don't unguard unless the address is in the VM
634      if (addr != last_addr &&
635          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
636
637        // Make memory rwx and retry
638        address page_start =
639          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
640        bool res = os::protect_memory((char*) page_start, page_size,
641                                      os::MEM_PROT_RWX);
642
643        if (PrintMiscellaneous && Verbose) {
644          char buf[256];
645          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
646                       "at " INTPTR_FORMAT
647                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
648                       page_start, (res ? "success" : "failed"), errno);
649          tty->print_raw_cr(buf);
650        }
651        stub = pc;
652
653        // Set last_addr so if we fault again at the same address, we don't end
654        // up in an endless loop.
655        //
656        // There are two potential complications here.  Two threads trapping at
657        // the same address at the same time could cause one of the threads to
658        // think it already unguarded, and abort the VM.  Likely very rare.
659        //
660        // The other race involves two threads alternately trapping at
661        // different addresses and failing to unguard the page, resulting in
662        // an endless loop.  This condition is probably even more unlikely than
663        // the first.
664        //
665        // Although both cases could be avoided by using locks or thread local
666        // last_addr, these solutions are unnecessary complication: this
667        // handler is a best-effort safety net, not a complete solution.  It is
668        // disabled by default and should only be used as a workaround in case
669        // we missed any no-execute-unsafe VM code.
670
671        last_addr = addr;
672      }
673    }
674  }
675
676  if (stub != NULL) {
677    // save all thread context in case we need to restore it
678
679    if (thread != NULL) thread->set_saved_exception_pc(pc);
680    // 12/02/99: On Sparc it appears that the full context is also saved
681    // but as yet, no one looks at or restores that saved context
682    os::Solaris::ucontext_set_pc(uc, stub);
683    return true;
684  }
685
686  // signal-chaining
687  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
688    return true;
689  }
690
691#ifndef AMD64
692  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
693  // Handle an undefined selector caused by an attempt to assign
694  // fs in libthread getipriptr(). With the current libthread design every 512
695  // thread creations the LDT for a private thread data structure is extended
696  // and thre is a hazard that and another thread attempting a thread creation
697  // will use a stale LDTR that doesn't reflect the structure's growth,
698  // causing a GP fault.
699  // Enforce the probable limit of passes through here to guard against an
700  // infinite loop if some other move to fs caused the GP fault. Note that
701  // this loop counter is ultimately a heuristic as it is possible for
702  // more than one thread to generate this fault at a time in an MP system.
703  // In the case of the loop count being exceeded or if the poll fails
704  // just fall through to a fatal error.
705  // If there is some other source of T_GPFLT traps and the text at EIP is
706  // unreadable this code will loop infinitely until the stack is exausted.
707  // The key to diagnosis in this case is to look for the bottom signal handler
708  // frame.
709
710  if(! IgnoreLibthreadGPFault) {
711    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
712      const unsigned char *p =
713                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
714
715      // Expected instruction?
716
717      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
718
719        Atomic::inc(&ldtr_refresh);
720
721        // Infinite loop?
722
723        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
724
725          // No, force scheduling to get a fresh view of the LDTR
726
727          if(poll(NULL, 0, 10) == 0) {
728
729            // Retry the move
730
731            return false;
732          }
733        }
734      }
735    }
736  }
737#endif // !AMD64
738
739  if (!abort_if_unrecognized) {
740    // caller wants another chance, so give it to him
741    return false;
742  }
743
744  if (!os::Solaris::libjsig_is_loaded) {
745    struct sigaction oldAct;
746    sigaction(sig, (struct sigaction *)0, &oldAct);
747    if (oldAct.sa_sigaction != signalHandler) {
748      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
749                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
750      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
751    }
752  }
753
754  if (pc == NULL && uc != NULL) {
755    pc = (address) uc->uc_mcontext.gregs[REG_PC];
756  }
757
758  // unmask current signal
759  sigset_t newset;
760  sigemptyset(&newset);
761  sigaddset(&newset, sig);
762  sigprocmask(SIG_UNBLOCK, &newset, NULL);
763
764  // Determine which sort of error to throw.  Out of swap may signal
765  // on the thread stack, which could get a mapping error when touched.
766  address addr = (address) info->si_addr;
767  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
768    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
769  }
770
771  VMError::report_and_die(t, sig, pc, info, ucVoid);
772
773  ShouldNotReachHere();
774  return false;
775}
776
777void os::print_context(outputStream *st, const void *context) {
778  if (context == NULL) return;
779
780  const ucontext_t *uc = (const ucontext_t*)context;
781  st->print_cr("Registers:");
782#ifdef AMD64
783  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
784  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
785  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
786  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
787  st->cr();
788  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
789  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
790  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
791  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
792  st->cr();
793  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
794  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
795  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
796  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
797  st->cr();
798  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
799  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
800  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
801  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
802  st->cr();
803  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
804  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
805#else
806  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
807  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
808  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
809  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
810  st->cr();
811  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
812  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
813  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
814  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
815  st->cr();
816  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
817  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
818#endif // AMD64
819  st->cr();
820  st->cr();
821
822  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
823  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
824  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
825  st->cr();
826
827  // Note: it may be unsafe to inspect memory near pc. For example, pc may
828  // point to garbage if entry point in an nmethod is corrupted. Leave
829  // this at the end, and hope for the best.
830  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
831  address pc = epc.pc();
832  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
833  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
834}
835
836void os::print_register_info(outputStream *st, const void *context) {
837  if (context == NULL) return;
838
839  const ucontext_t *uc = (const ucontext_t*)context;
840
841  st->print_cr("Register to memory mapping:");
842  st->cr();
843
844  // this is horrendously verbose but the layout of the registers in the
845  // context does not match how we defined our abstract Register set, so
846  // we can't just iterate through the gregs area
847
848  // this is only for the "general purpose" registers
849
850#ifdef AMD64
851  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
852  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
853  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
854  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
855  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
856  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
857  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
858  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
859  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
860  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
861  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
862  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
863  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
864  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
865  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
866  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
867#else
868  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
869  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
870  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
871  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
872  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
873  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
874  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
875  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
876#endif
877
878  st->cr();
879}
880
881
882#ifdef AMD64
883void os::Solaris::init_thread_fpu_state(void) {
884  // Nothing to do
885}
886#else
887// From solaris_i486.s
888extern "C" void fixcw();
889
890void os::Solaris::init_thread_fpu_state(void) {
891  // Set fpu to 53 bit precision. This happens too early to use a stub.
892  fixcw();
893}
894
895// These routines are the initial value of atomic_xchg_entry(),
896// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
897// until initialization is complete.
898// TODO - replace with .il implementation when compiler supports it.
899
900typedef jint  xchg_func_t        (jint,  volatile jint*);
901typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
902typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
903typedef jint  add_func_t         (jint,  volatile jint*);
904
905jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
906  // try to use the stub:
907  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
908
909  if (func != NULL) {
910    os::atomic_xchg_func = func;
911    return (*func)(exchange_value, dest);
912  }
913  assert(Threads::number_of_threads() == 0, "for bootstrap only");
914
915  jint old_value = *dest;
916  *dest = exchange_value;
917  return old_value;
918}
919
920jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
921  // try to use the stub:
922  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
923
924  if (func != NULL) {
925    os::atomic_cmpxchg_func = func;
926    return (*func)(exchange_value, dest, compare_value);
927  }
928  assert(Threads::number_of_threads() == 0, "for bootstrap only");
929
930  jint old_value = *dest;
931  if (old_value == compare_value)
932    *dest = exchange_value;
933  return old_value;
934}
935
936jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
937  // try to use the stub:
938  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
939
940  if (func != NULL) {
941    os::atomic_cmpxchg_long_func = func;
942    return (*func)(exchange_value, dest, compare_value);
943  }
944  assert(Threads::number_of_threads() == 0, "for bootstrap only");
945
946  jlong old_value = *dest;
947  if (old_value == compare_value)
948    *dest = exchange_value;
949  return old_value;
950}
951
952jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
953  // try to use the stub:
954  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
955
956  if (func != NULL) {
957    os::atomic_add_func = func;
958    return (*func)(add_value, dest);
959  }
960  assert(Threads::number_of_threads() == 0, "for bootstrap only");
961
962  return (*dest) += add_value;
963}
964
965xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
966cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
967cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
968add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
969
970extern "C" void _solaris_raw_setup_fpu(address ptr);
971void os::setup_fpu() {
972  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
973  _solaris_raw_setup_fpu(fpu_cntrl);
974}
975#endif // AMD64
976
977#ifndef PRODUCT
978void os::verify_stack_alignment() {
979#ifdef AMD64
980  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
981#endif
982}
983#endif
984
985int os::extra_bang_size_in_bytes() {
986  // JDK-8050147 requires the full cache line bang for x86.
987  return VM_Version::L1_line_size();
988}
989