os_solaris_x86.cpp revision 9651:f7dc8eebc3f5
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_solaris.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_solaris.inline.hpp"
36#include "os_share_solaris.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/atomic.inline.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/thread.inline.hpp"
52#include "runtime/timer.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <setjmp.h>
62# include <errno.h>
63# include <dlfcn.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <thread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/filio.h>
71# include <sys/utsname.h>
72# include <sys/systeminfo.h>
73# include <sys/socket.h>
74# include <sys/trap.h>
75# include <sys/lwp.h>
76# include <pwd.h>
77# include <poll.h>
78# include <sys/lwp.h>
79# include <procfs.h>     //  see comment in <sys/procfs.h>
80
81#ifndef AMD64
82// QQQ seems useless at this point
83# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
84#endif // AMD64
85# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
86
87
88#define MAX_PATH (2 * K)
89
90// Minimum stack size for the VM.  It's easier to document a constant value
91// but it's different for x86 and sparc because the page sizes are different.
92#ifdef AMD64
93size_t os::Solaris::min_stack_allowed = 224*K;
94#define REG_SP REG_RSP
95#define REG_PC REG_RIP
96#define REG_FP REG_RBP
97#else
98size_t os::Solaris::min_stack_allowed = 64*K;
99#define REG_SP UESP
100#define REG_PC EIP
101#define REG_FP EBP
102// 4900493 counter to prevent runaway LDTR refresh attempt
103
104static volatile int ldtr_refresh = 0;
105// the libthread instruction that faults because of the stale LDTR
106
107static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
108                       };
109#endif // AMD64
110
111char* os::non_memory_address_word() {
112  // Must never look like an address returned by reserve_memory,
113  // even in its subfields (as defined by the CPU immediate fields,
114  // if the CPU splits constants across multiple instructions).
115  return (char*) -1;
116}
117
118//
119// Validate a ucontext retrieved from walking a uc_link of a ucontext.
120// There are issues with libthread giving out uc_links for different threads
121// on the same uc_link chain and bad or circular links.
122//
123bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
124  if (valid >= suspect ||
125      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
126      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
127      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
128    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
129    return false;
130  }
131
132  if (thread->is_Java_thread()) {
133    if (!valid_stack_address(thread, (address)suspect)) {
134      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
135      return false;
136    }
137    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
138      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
139      return false;
140    }
141  }
142  return true;
143}
144
145// We will only follow one level of uc_link since there are libthread
146// issues with ucontext linking and it is better to be safe and just
147// let caller retry later.
148ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
149  ucontext_t *uc) {
150
151  ucontext_t *retuc = NULL;
152
153  if (uc != NULL) {
154    if (uc->uc_link == NULL) {
155      // cannot validate without uc_link so accept current ucontext
156      retuc = uc;
157    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
158      // first ucontext is valid so try the next one
159      uc = uc->uc_link;
160      if (uc->uc_link == NULL) {
161        // cannot validate without uc_link so accept current ucontext
162        retuc = uc;
163      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
164        // the ucontext one level down is also valid so return it
165        retuc = uc;
166      }
167    }
168  }
169  return retuc;
170}
171
172// Assumes ucontext is valid
173ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
174  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
175}
176
177void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
178  uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
179}
180
181// Assumes ucontext is valid
182intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
183  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
184}
185
186// Assumes ucontext is valid
187intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
188  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
189}
190
191address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
192  return (address) uc->uc_mcontext.gregs[REG_PC];
193}
194
195// For Forte Analyzer AsyncGetCallTrace profiling support - thread
196// is currently interrupted by SIGPROF.
197//
198// The difference between this and os::fetch_frame_from_context() is that
199// here we try to skip nested signal frames.
200ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
201  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
202
203  assert(thread != NULL, "just checking");
204  assert(ret_sp != NULL, "just checking");
205  assert(ret_fp != NULL, "just checking");
206
207  ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
208  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
209}
210
211ExtendedPC os::fetch_frame_from_context(void* ucVoid,
212                    intptr_t** ret_sp, intptr_t** ret_fp) {
213
214  ExtendedPC  epc;
215  ucontext_t *uc = (ucontext_t*)ucVoid;
216
217  if (uc != NULL) {
218    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
219    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
220    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
221  } else {
222    // construct empty ExtendedPC for return value checking
223    epc = ExtendedPC(NULL);
224    if (ret_sp) *ret_sp = (intptr_t *)NULL;
225    if (ret_fp) *ret_fp = (intptr_t *)NULL;
226  }
227
228  return epc;
229}
230
231frame os::fetch_frame_from_context(void* ucVoid) {
232  intptr_t* sp;
233  intptr_t* fp;
234  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
235  return frame(sp, fp, epc.pc());
236}
237
238frame os::get_sender_for_C_frame(frame* fr) {
239  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
240}
241
242extern "C" intptr_t *_get_current_sp();  // in .il file
243
244address os::current_stack_pointer() {
245  return (address)_get_current_sp();
246}
247
248extern "C" intptr_t *_get_current_fp();  // in .il file
249
250frame os::current_frame() {
251  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
252  frame myframe((intptr_t*)os::current_stack_pointer(),
253                (intptr_t*)fp,
254                CAST_FROM_FN_PTR(address, os::current_frame));
255  if (os::is_first_C_frame(&myframe)) {
256    // stack is not walkable
257    frame ret; // This will be a null useless frame
258    return ret;
259  } else {
260    return os::get_sender_for_C_frame(&myframe);
261  }
262}
263
264#ifndef AMD64
265
266// Detecting SSE support by OS
267// From solaris_i486.s
268extern "C" bool sse_check();
269extern "C" bool sse_unavailable();
270
271enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
272static int sse_status = SSE_UNKNOWN;
273
274
275static void  check_for_sse_support() {
276  if (!VM_Version::supports_sse()) {
277    sse_status = SSE_NOT_SUPPORTED;
278    return;
279  }
280  // looking for _sse_hw in libc.so, if it does not exist or
281  // the value (int) is 0, OS has no support for SSE
282  int *sse_hwp;
283  void *h;
284
285  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
286    //open failed, presume no support for SSE
287    sse_status = SSE_NOT_SUPPORTED;
288    return;
289  }
290  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
291    sse_status = SSE_NOT_SUPPORTED;
292  } else if (*sse_hwp == 0) {
293    sse_status = SSE_NOT_SUPPORTED;
294  }
295  dlclose(h);
296
297  if (sse_status == SSE_UNKNOWN) {
298    bool (*try_sse)() = (bool (*)())sse_check;
299    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
300  }
301
302}
303
304#endif // AMD64
305
306bool os::supports_sse() {
307#ifdef AMD64
308  return true;
309#else
310  if (sse_status == SSE_UNKNOWN)
311    check_for_sse_support();
312  return sse_status == SSE_SUPPORTED;
313#endif // AMD64
314}
315
316bool os::is_allocatable(size_t bytes) {
317#ifdef AMD64
318  return true;
319#else
320
321  if (bytes < 2 * G) {
322    return true;
323  }
324
325  char* addr = reserve_memory(bytes, NULL);
326
327  if (addr != NULL) {
328    release_memory(addr, bytes);
329  }
330
331  return addr != NULL;
332#endif // AMD64
333
334}
335
336extern "C" JNIEXPORT int
337JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
338                          int abort_if_unrecognized) {
339  ucontext_t* uc = (ucontext_t*) ucVoid;
340
341#ifndef AMD64
342  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
343    // the SSE instruction faulted. supports_sse() need return false.
344    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
345    return true;
346  }
347#endif // !AMD64
348
349  Thread* t = Thread::current_or_null_safe();
350
351  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
352  // (no destructors can be run)
353  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
354
355  SignalHandlerMark shm(t);
356
357  if(sig == SIGPIPE || sig == SIGXFSZ) {
358    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
359      return true;
360    } else {
361      if (PrintMiscellaneous && (WizardMode || Verbose)) {
362        char buf[64];
363        warning("Ignoring %s - see 4229104 or 6499219",
364                os::exception_name(sig, buf, sizeof(buf)));
365
366      }
367      return true;
368    }
369  }
370
371  JavaThread* thread = NULL;
372  VMThread* vmthread = NULL;
373
374  if (os::Solaris::signal_handlers_are_installed) {
375    if (t != NULL ){
376      if(t->is_Java_thread()) {
377        thread = (JavaThread*)t;
378      }
379      else if(t->is_VM_thread()){
380        vmthread = (VMThread *)t;
381      }
382    }
383  }
384
385  if (sig == os::Solaris::SIGasync()) {
386    if(thread || vmthread){
387      OSThread::SR_handler(t, uc);
388      return true;
389    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
390      return true;
391    } else {
392      // If os::Solaris::SIGasync not chained, and this is a non-vm and
393      // non-java thread
394      return true;
395    }
396  }
397
398  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
399    // can't decode this kind of signal
400    info = NULL;
401  } else {
402    assert(sig == info->si_signo, "bad siginfo");
403  }
404
405  // decide if this trap can be handled by a stub
406  address stub = NULL;
407
408  address pc          = NULL;
409
410  //%note os_trap_1
411  if (info != NULL && uc != NULL && thread != NULL) {
412    // factor me: getPCfromContext
413    pc = (address) uc->uc_mcontext.gregs[REG_PC];
414
415    if (StubRoutines::is_safefetch_fault(pc)) {
416      os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
417      return true;
418    }
419
420    // Handle ALL stack overflow variations here
421    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
422      address addr = (address) info->si_addr;
423      if (thread->in_stack_yellow_zone(addr)) {
424        thread->disable_stack_yellow_zone();
425        if (thread->thread_state() == _thread_in_Java) {
426          // Throw a stack overflow exception.  Guard pages will be reenabled
427          // while unwinding the stack.
428          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
429        } else {
430          // Thread was in the vm or native code.  Return and try to finish.
431          return true;
432        }
433      } else if (thread->in_stack_red_zone(addr)) {
434        // Fatal red zone violation.  Disable the guard pages and fall through
435        // to handle_unexpected_exception way down below.
436        thread->disable_stack_red_zone();
437        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
438      }
439    }
440
441    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
442      // Verify that OS save/restore AVX registers.
443      stub = VM_Version::cpuinfo_cont_addr();
444    }
445
446    if (thread->thread_state() == _thread_in_vm) {
447      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
448        stub = StubRoutines::handler_for_unsafe_access();
449      }
450    }
451
452    if (thread->thread_state() == _thread_in_Java) {
453      // Support Safepoint Polling
454      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
455        stub = SharedRuntime::get_poll_stub(pc);
456      }
457      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
458        // BugId 4454115: A read from a MappedByteBuffer can fault
459        // here if the underlying file has been truncated.
460        // Do not crash the VM in such a case.
461        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
462        if (cb != NULL) {
463          nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
464          if (nm != NULL && nm->has_unsafe_access()) {
465            stub = StubRoutines::handler_for_unsafe_access();
466          }
467        }
468      }
469      else
470      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
471        // integer divide by zero
472        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
473      }
474#ifndef AMD64
475      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
476        // floating-point divide by zero
477        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
478      }
479      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
480        // The encoding of D2I in i486.ad can cause an exception prior
481        // to the fist instruction if there was an invalid operation
482        // pending. We want to dismiss that exception. From the win_32
483        // side it also seems that if it really was the fist causing
484        // the exception that we do the d2i by hand with different
485        // rounding. Seems kind of weird. QQQ TODO
486        // Note that we take the exception at the NEXT floating point instruction.
487        if (pc[0] == 0xDB) {
488            assert(pc[0] == 0xDB, "not a FIST opcode");
489            assert(pc[1] == 0x14, "not a FIST opcode");
490            assert(pc[2] == 0x24, "not a FIST opcode");
491            return true;
492        } else {
493            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
494            assert(pc[-2] == 0x14, "not an flt invalid opcode");
495            assert(pc[-1] == 0x24, "not an flt invalid opcode");
496        }
497      }
498      else if (sig == SIGFPE ) {
499        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
500      }
501#endif // !AMD64
502
503        // QQQ It doesn't seem that we need to do this on x86 because we should be able
504        // to return properly from the handler without this extra stuff on the back side.
505
506      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
507        // Determination of interpreter/vtable stub/compiled code null exception
508        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
509      }
510    }
511
512    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
513    // and the heap gets shrunk before the field access.
514    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
515      address addr = JNI_FastGetField::find_slowcase_pc(pc);
516      if (addr != (address)-1) {
517        stub = addr;
518      }
519    }
520
521    // Check to see if we caught the safepoint code in the
522    // process of write protecting the memory serialization page.
523    // It write enables the page immediately after protecting it
524    // so we can just return to retry the write.
525    if ((sig == SIGSEGV) &&
526        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
527      // Block current thread until the memory serialize page permission restored.
528      os::block_on_serialize_page_trap();
529      return true;
530    }
531  }
532
533  // Execution protection violation
534  //
535  // Preventative code for future versions of Solaris which may
536  // enable execution protection when running the 32-bit VM on AMD64.
537  //
538  // This should be kept as the last step in the triage.  We don't
539  // have a dedicated trap number for a no-execute fault, so be
540  // conservative and allow other handlers the first shot.
541  //
542  // Note: We don't test that info->si_code == SEGV_ACCERR here.
543  // this si_code is so generic that it is almost meaningless; and
544  // the si_code for this condition may change in the future.
545  // Furthermore, a false-positive should be harmless.
546  if (UnguardOnExecutionViolation > 0 &&
547      (sig == SIGSEGV || sig == SIGBUS) &&
548      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
549    int page_size = os::vm_page_size();
550    address addr = (address) info->si_addr;
551    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
552    // Make sure the pc and the faulting address are sane.
553    //
554    // If an instruction spans a page boundary, and the page containing
555    // the beginning of the instruction is executable but the following
556    // page is not, the pc and the faulting address might be slightly
557    // different - we still want to unguard the 2nd page in this case.
558    //
559    // 15 bytes seems to be a (very) safe value for max instruction size.
560    bool pc_is_near_addr =
561      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
562    bool instr_spans_page_boundary =
563      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
564                       (intptr_t) page_size) > 0);
565
566    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
567      static volatile address last_addr =
568        (address) os::non_memory_address_word();
569
570      // In conservative mode, don't unguard unless the address is in the VM
571      if (addr != last_addr &&
572          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
573
574        // Make memory rwx and retry
575        address page_start =
576          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
577        bool res = os::protect_memory((char*) page_start, page_size,
578                                      os::MEM_PROT_RWX);
579
580        if (PrintMiscellaneous && Verbose) {
581          char buf[256];
582          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
583                       "at " INTPTR_FORMAT
584                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
585                       page_start, (res ? "success" : "failed"), errno);
586          tty->print_raw_cr(buf);
587        }
588        stub = pc;
589
590        // Set last_addr so if we fault again at the same address, we don't end
591        // up in an endless loop.
592        //
593        // There are two potential complications here.  Two threads trapping at
594        // the same address at the same time could cause one of the threads to
595        // think it already unguarded, and abort the VM.  Likely very rare.
596        //
597        // The other race involves two threads alternately trapping at
598        // different addresses and failing to unguard the page, resulting in
599        // an endless loop.  This condition is probably even more unlikely than
600        // the first.
601        //
602        // Although both cases could be avoided by using locks or thread local
603        // last_addr, these solutions are unnecessary complication: this
604        // handler is a best-effort safety net, not a complete solution.  It is
605        // disabled by default and should only be used as a workaround in case
606        // we missed any no-execute-unsafe VM code.
607
608        last_addr = addr;
609      }
610    }
611  }
612
613  if (stub != NULL) {
614    // save all thread context in case we need to restore it
615
616    if (thread != NULL) thread->set_saved_exception_pc(pc);
617    // 12/02/99: On Sparc it appears that the full context is also saved
618    // but as yet, no one looks at or restores that saved context
619    os::Solaris::ucontext_set_pc(uc, stub);
620    return true;
621  }
622
623  // signal-chaining
624  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
625    return true;
626  }
627
628#ifndef AMD64
629  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
630  // Handle an undefined selector caused by an attempt to assign
631  // fs in libthread getipriptr(). With the current libthread design every 512
632  // thread creations the LDT for a private thread data structure is extended
633  // and thre is a hazard that and another thread attempting a thread creation
634  // will use a stale LDTR that doesn't reflect the structure's growth,
635  // causing a GP fault.
636  // Enforce the probable limit of passes through here to guard against an
637  // infinite loop if some other move to fs caused the GP fault. Note that
638  // this loop counter is ultimately a heuristic as it is possible for
639  // more than one thread to generate this fault at a time in an MP system.
640  // In the case of the loop count being exceeded or if the poll fails
641  // just fall through to a fatal error.
642  // If there is some other source of T_GPFLT traps and the text at EIP is
643  // unreadable this code will loop infinitely until the stack is exausted.
644  // The key to diagnosis in this case is to look for the bottom signal handler
645  // frame.
646
647  if(! IgnoreLibthreadGPFault) {
648    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
649      const unsigned char *p =
650                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
651
652      // Expected instruction?
653
654      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
655
656        Atomic::inc(&ldtr_refresh);
657
658        // Infinite loop?
659
660        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
661
662          // No, force scheduling to get a fresh view of the LDTR
663
664          if(poll(NULL, 0, 10) == 0) {
665
666            // Retry the move
667
668            return false;
669          }
670        }
671      }
672    }
673  }
674#endif // !AMD64
675
676  if (!abort_if_unrecognized) {
677    // caller wants another chance, so give it to him
678    return false;
679  }
680
681  if (!os::Solaris::libjsig_is_loaded) {
682    struct sigaction oldAct;
683    sigaction(sig, (struct sigaction *)0, &oldAct);
684    if (oldAct.sa_sigaction != signalHandler) {
685      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
686                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
687      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
688    }
689  }
690
691  if (pc == NULL && uc != NULL) {
692    pc = (address) uc->uc_mcontext.gregs[REG_PC];
693  }
694
695  // unmask current signal
696  sigset_t newset;
697  sigemptyset(&newset);
698  sigaddset(&newset, sig);
699  sigprocmask(SIG_UNBLOCK, &newset, NULL);
700
701  // Determine which sort of error to throw.  Out of swap may signal
702  // on the thread stack, which could get a mapping error when touched.
703  address addr = (address) info->si_addr;
704  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
705    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
706  }
707
708  VMError::report_and_die(t, sig, pc, info, ucVoid);
709
710  ShouldNotReachHere();
711  return false;
712}
713
714void os::print_context(outputStream *st, void *context) {
715  if (context == NULL) return;
716
717  ucontext_t *uc = (ucontext_t*)context;
718  st->print_cr("Registers:");
719#ifdef AMD64
720  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
721  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
722  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
723  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
724  st->cr();
725  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
726  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
727  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
728  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
729  st->cr();
730  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
731  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
732  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
733  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
734  st->cr();
735  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
736  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
737  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
738  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
739  st->cr();
740  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
741  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
742#else
743  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
744  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
745  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
746  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
747  st->cr();
748  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
749  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
750  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
751  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
752  st->cr();
753  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
754  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
755#endif // AMD64
756  st->cr();
757  st->cr();
758
759  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
760  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
761  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
762  st->cr();
763
764  // Note: it may be unsafe to inspect memory near pc. For example, pc may
765  // point to garbage if entry point in an nmethod is corrupted. Leave
766  // this at the end, and hope for the best.
767  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
768  address pc = epc.pc();
769  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
770  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
771}
772
773void os::print_register_info(outputStream *st, void *context) {
774  if (context == NULL) return;
775
776  ucontext_t *uc = (ucontext_t*)context;
777
778  st->print_cr("Register to memory mapping:");
779  st->cr();
780
781  // this is horrendously verbose but the layout of the registers in the
782  // context does not match how we defined our abstract Register set, so
783  // we can't just iterate through the gregs area
784
785  // this is only for the "general purpose" registers
786
787#ifdef AMD64
788  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
789  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
790  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
791  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
792  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
793  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
794  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
795  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
796  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
797  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
798  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
799  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
800  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
801  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
802  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
803  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
804#else
805  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
806  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
807  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
808  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
809  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
810  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
811  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
812  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
813#endif
814
815  st->cr();
816}
817
818
819#ifdef AMD64
820void os::Solaris::init_thread_fpu_state(void) {
821  // Nothing to do
822}
823#else
824// From solaris_i486.s
825extern "C" void fixcw();
826
827void os::Solaris::init_thread_fpu_state(void) {
828  // Set fpu to 53 bit precision. This happens too early to use a stub.
829  fixcw();
830}
831
832// These routines are the initial value of atomic_xchg_entry(),
833// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
834// until initialization is complete.
835// TODO - replace with .il implementation when compiler supports it.
836
837typedef jint  xchg_func_t        (jint,  volatile jint*);
838typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
839typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
840typedef jint  add_func_t         (jint,  volatile jint*);
841
842jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
843  // try to use the stub:
844  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
845
846  if (func != NULL) {
847    os::atomic_xchg_func = func;
848    return (*func)(exchange_value, dest);
849  }
850  assert(Threads::number_of_threads() == 0, "for bootstrap only");
851
852  jint old_value = *dest;
853  *dest = exchange_value;
854  return old_value;
855}
856
857jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
858  // try to use the stub:
859  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
860
861  if (func != NULL) {
862    os::atomic_cmpxchg_func = func;
863    return (*func)(exchange_value, dest, compare_value);
864  }
865  assert(Threads::number_of_threads() == 0, "for bootstrap only");
866
867  jint old_value = *dest;
868  if (old_value == compare_value)
869    *dest = exchange_value;
870  return old_value;
871}
872
873jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
874  // try to use the stub:
875  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
876
877  if (func != NULL) {
878    os::atomic_cmpxchg_long_func = func;
879    return (*func)(exchange_value, dest, compare_value);
880  }
881  assert(Threads::number_of_threads() == 0, "for bootstrap only");
882
883  jlong old_value = *dest;
884  if (old_value == compare_value)
885    *dest = exchange_value;
886  return old_value;
887}
888
889jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
890  // try to use the stub:
891  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
892
893  if (func != NULL) {
894    os::atomic_add_func = func;
895    return (*func)(add_value, dest);
896  }
897  assert(Threads::number_of_threads() == 0, "for bootstrap only");
898
899  return (*dest) += add_value;
900}
901
902xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
903cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
904cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
905add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
906
907extern "C" void _solaris_raw_setup_fpu(address ptr);
908void os::setup_fpu() {
909  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
910  _solaris_raw_setup_fpu(fpu_cntrl);
911}
912#endif // AMD64
913
914#ifndef PRODUCT
915void os::verify_stack_alignment() {
916#ifdef AMD64
917  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
918#endif
919}
920#endif
921
922int os::extra_bang_size_in_bytes() {
923  // JDK-8050147 requires the full cache line bang for x86.
924  return VM_Version::L1_line_size();
925}
926