os_solaris_x86.cpp revision 6267:8f18c8dbc6df
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_solaris.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_solaris.inline.hpp"
36#include "os_share_solaris.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <setjmp.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <thread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/filio.h>
70# include <sys/utsname.h>
71# include <sys/systeminfo.h>
72# include <sys/socket.h>
73# include <sys/trap.h>
74# include <sys/lwp.h>
75# include <pwd.h>
76# include <poll.h>
77# include <sys/lwp.h>
78# include <procfs.h>     //  see comment in <sys/procfs.h>
79
80#ifndef AMD64
81// QQQ seems useless at this point
82# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
83#endif // AMD64
84# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
85
86
87#define MAX_PATH (2 * K)
88
89// Minimum stack size for the VM.  It's easier to document a constant value
90// but it's different for x86 and sparc because the page sizes are different.
91#ifdef AMD64
92size_t os::Solaris::min_stack_allowed = 224*K;
93#define REG_SP REG_RSP
94#define REG_PC REG_RIP
95#define REG_FP REG_RBP
96#else
97size_t os::Solaris::min_stack_allowed = 64*K;
98#define REG_SP UESP
99#define REG_PC EIP
100#define REG_FP EBP
101// 4900493 counter to prevent runaway LDTR refresh attempt
102
103static volatile int ldtr_refresh = 0;
104// the libthread instruction that faults because of the stale LDTR
105
106static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
107                       };
108#endif // AMD64
109
110char* os::non_memory_address_word() {
111  // Must never look like an address returned by reserve_memory,
112  // even in its subfields (as defined by the CPU immediate fields,
113  // if the CPU splits constants across multiple instructions).
114  return (char*) -1;
115}
116
117//
118// Validate a ucontext retrieved from walking a uc_link of a ucontext.
119// There are issues with libthread giving out uc_links for different threads
120// on the same uc_link chain and bad or circular links.
121//
122bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
123  if (valid >= suspect ||
124      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
125      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
126      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
127    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
128    return false;
129  }
130
131  if (thread->is_Java_thread()) {
132    if (!valid_stack_address(thread, (address)suspect)) {
133      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
134      return false;
135    }
136    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
137      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
138      return false;
139    }
140  }
141  return true;
142}
143
144// We will only follow one level of uc_link since there are libthread
145// issues with ucontext linking and it is better to be safe and just
146// let caller retry later.
147ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
148  ucontext_t *uc) {
149
150  ucontext_t *retuc = NULL;
151
152  if (uc != NULL) {
153    if (uc->uc_link == NULL) {
154      // cannot validate without uc_link so accept current ucontext
155      retuc = uc;
156    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
157      // first ucontext is valid so try the next one
158      uc = uc->uc_link;
159      if (uc->uc_link == NULL) {
160        // cannot validate without uc_link so accept current ucontext
161        retuc = uc;
162      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
163        // the ucontext one level down is also valid so return it
164        retuc = uc;
165      }
166    }
167  }
168  return retuc;
169}
170
171// Assumes ucontext is valid
172ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
173  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
174}
175
176// Assumes ucontext is valid
177intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
178  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
179}
180
181// Assumes ucontext is valid
182intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
183  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
184}
185
186address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
187  return (address) uc->uc_mcontext.gregs[REG_PC];
188}
189
190// For Forte Analyzer AsyncGetCallTrace profiling support - thread
191// is currently interrupted by SIGPROF.
192//
193// The difference between this and os::fetch_frame_from_context() is that
194// here we try to skip nested signal frames.
195ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
196  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
197
198  assert(thread != NULL, "just checking");
199  assert(ret_sp != NULL, "just checking");
200  assert(ret_fp != NULL, "just checking");
201
202  ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
203  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
204}
205
206ExtendedPC os::fetch_frame_from_context(void* ucVoid,
207                    intptr_t** ret_sp, intptr_t** ret_fp) {
208
209  ExtendedPC  epc;
210  ucontext_t *uc = (ucontext_t*)ucVoid;
211
212  if (uc != NULL) {
213    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
214    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
215    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
216  } else {
217    // construct empty ExtendedPC for return value checking
218    epc = ExtendedPC(NULL);
219    if (ret_sp) *ret_sp = (intptr_t *)NULL;
220    if (ret_fp) *ret_fp = (intptr_t *)NULL;
221  }
222
223  return epc;
224}
225
226frame os::fetch_frame_from_context(void* ucVoid) {
227  intptr_t* sp;
228  intptr_t* fp;
229  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
230  return frame(sp, fp, epc.pc());
231}
232
233frame os::get_sender_for_C_frame(frame* fr) {
234  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
235}
236
237extern "C" intptr_t *_get_current_sp();  // in .il file
238
239address os::current_stack_pointer() {
240  return (address)_get_current_sp();
241}
242
243extern "C" intptr_t *_get_current_fp();  // in .il file
244
245frame os::current_frame() {
246  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
247  frame myframe((intptr_t*)os::current_stack_pointer(),
248                (intptr_t*)fp,
249                CAST_FROM_FN_PTR(address, os::current_frame));
250  if (os::is_first_C_frame(&myframe)) {
251    // stack is not walkable
252    frame ret; // This will be a null useless frame
253    return ret;
254  } else {
255    return os::get_sender_for_C_frame(&myframe);
256  }
257}
258
259#ifndef AMD64
260
261// Detecting SSE support by OS
262// From solaris_i486.s
263extern "C" bool sse_check();
264extern "C" bool sse_unavailable();
265
266enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
267static int sse_status = SSE_UNKNOWN;
268
269
270static void  check_for_sse_support() {
271  if (!VM_Version::supports_sse()) {
272    sse_status = SSE_NOT_SUPPORTED;
273    return;
274  }
275  // looking for _sse_hw in libc.so, if it does not exist or
276  // the value (int) is 0, OS has no support for SSE
277  int *sse_hwp;
278  void *h;
279
280  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
281    //open failed, presume no support for SSE
282    sse_status = SSE_NOT_SUPPORTED;
283    return;
284  }
285  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
286    sse_status = SSE_NOT_SUPPORTED;
287  } else if (*sse_hwp == 0) {
288    sse_status = SSE_NOT_SUPPORTED;
289  }
290  dlclose(h);
291
292  if (sse_status == SSE_UNKNOWN) {
293    bool (*try_sse)() = (bool (*)())sse_check;
294    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
295  }
296
297}
298
299#endif // AMD64
300
301bool os::supports_sse() {
302#ifdef AMD64
303  return true;
304#else
305  if (sse_status == SSE_UNKNOWN)
306    check_for_sse_support();
307  return sse_status == SSE_SUPPORTED;
308#endif // AMD64
309}
310
311bool os::is_allocatable(size_t bytes) {
312#ifdef AMD64
313  return true;
314#else
315
316  if (bytes < 2 * G) {
317    return true;
318  }
319
320  char* addr = reserve_memory(bytes, NULL);
321
322  if (addr != NULL) {
323    release_memory(addr, bytes);
324  }
325
326  return addr != NULL;
327#endif // AMD64
328
329}
330
331extern "C" JNIEXPORT int
332JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
333                          int abort_if_unrecognized) {
334  ucontext_t* uc = (ucontext_t*) ucVoid;
335
336#ifndef AMD64
337  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
338    // the SSE instruction faulted. supports_sse() need return false.
339    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
340    return true;
341  }
342#endif // !AMD64
343
344  Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
345
346  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
347  // (no destructors can be run)
348  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
349
350  SignalHandlerMark shm(t);
351
352  if(sig == SIGPIPE || sig == SIGXFSZ) {
353    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
354      return true;
355    } else {
356      if (PrintMiscellaneous && (WizardMode || Verbose)) {
357        char buf[64];
358        warning("Ignoring %s - see 4229104 or 6499219",
359                os::exception_name(sig, buf, sizeof(buf)));
360
361      }
362      return true;
363    }
364  }
365
366  JavaThread* thread = NULL;
367  VMThread* vmthread = NULL;
368
369  if (os::Solaris::signal_handlers_are_installed) {
370    if (t != NULL ){
371      if(t->is_Java_thread()) {
372        thread = (JavaThread*)t;
373      }
374      else if(t->is_VM_thread()){
375        vmthread = (VMThread *)t;
376      }
377    }
378  }
379
380  guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
381
382  if (sig == os::Solaris::SIGasync()) {
383    if(thread || vmthread){
384      OSThread::SR_handler(t, uc);
385      return true;
386    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
387      return true;
388    } else {
389      // If os::Solaris::SIGasync not chained, and this is a non-vm and
390      // non-java thread
391      return true;
392    }
393  }
394
395  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
396    // can't decode this kind of signal
397    info = NULL;
398  } else {
399    assert(sig == info->si_signo, "bad siginfo");
400  }
401
402  // decide if this trap can be handled by a stub
403  address stub = NULL;
404
405  address pc          = NULL;
406
407  //%note os_trap_1
408  if (info != NULL && uc != NULL && thread != NULL) {
409    // factor me: getPCfromContext
410    pc = (address) uc->uc_mcontext.gregs[REG_PC];
411
412    if (StubRoutines::is_safefetch_fault(pc)) {
413      uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
414      return true;
415    }
416
417    // Handle ALL stack overflow variations here
418    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
419      address addr = (address) info->si_addr;
420      if (thread->in_stack_yellow_zone(addr)) {
421        thread->disable_stack_yellow_zone();
422        if (thread->thread_state() == _thread_in_Java) {
423          // Throw a stack overflow exception.  Guard pages will be reenabled
424          // while unwinding the stack.
425          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
426        } else {
427          // Thread was in the vm or native code.  Return and try to finish.
428          return true;
429        }
430      } else if (thread->in_stack_red_zone(addr)) {
431        // Fatal red zone violation.  Disable the guard pages and fall through
432        // to handle_unexpected_exception way down below.
433        thread->disable_stack_red_zone();
434        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
435      }
436    }
437
438    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
439      // Verify that OS save/restore AVX registers.
440      stub = VM_Version::cpuinfo_cont_addr();
441    }
442
443    if (thread->thread_state() == _thread_in_vm) {
444      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
445        stub = StubRoutines::handler_for_unsafe_access();
446      }
447    }
448
449    if (thread->thread_state() == _thread_in_Java) {
450      // Support Safepoint Polling
451      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
452        stub = SharedRuntime::get_poll_stub(pc);
453      }
454      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
455        // BugId 4454115: A read from a MappedByteBuffer can fault
456        // here if the underlying file has been truncated.
457        // Do not crash the VM in such a case.
458        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
459        if (cb != NULL) {
460          nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
461          if (nm != NULL && nm->has_unsafe_access()) {
462            stub = StubRoutines::handler_for_unsafe_access();
463          }
464        }
465      }
466      else
467      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
468        // integer divide by zero
469        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
470      }
471#ifndef AMD64
472      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
473        // floating-point divide by zero
474        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
475      }
476      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
477        // The encoding of D2I in i486.ad can cause an exception prior
478        // to the fist instruction if there was an invalid operation
479        // pending. We want to dismiss that exception. From the win_32
480        // side it also seems that if it really was the fist causing
481        // the exception that we do the d2i by hand with different
482        // rounding. Seems kind of weird. QQQ TODO
483        // Note that we take the exception at the NEXT floating point instruction.
484        if (pc[0] == 0xDB) {
485            assert(pc[0] == 0xDB, "not a FIST opcode");
486            assert(pc[1] == 0x14, "not a FIST opcode");
487            assert(pc[2] == 0x24, "not a FIST opcode");
488            return true;
489        } else {
490            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
491            assert(pc[-2] == 0x14, "not an flt invalid opcode");
492            assert(pc[-1] == 0x24, "not an flt invalid opcode");
493        }
494      }
495      else if (sig == SIGFPE ) {
496        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
497      }
498#endif // !AMD64
499
500        // QQQ It doesn't seem that we need to do this on x86 because we should be able
501        // to return properly from the handler without this extra stuff on the back side.
502
503      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
504        // Determination of interpreter/vtable stub/compiled code null exception
505        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
506      }
507    }
508
509    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
510    // and the heap gets shrunk before the field access.
511    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
512      address addr = JNI_FastGetField::find_slowcase_pc(pc);
513      if (addr != (address)-1) {
514        stub = addr;
515      }
516    }
517
518    // Check to see if we caught the safepoint code in the
519    // process of write protecting the memory serialization page.
520    // It write enables the page immediately after protecting it
521    // so we can just return to retry the write.
522    if ((sig == SIGSEGV) &&
523        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
524      // Block current thread until the memory serialize page permission restored.
525      os::block_on_serialize_page_trap();
526      return true;
527    }
528  }
529
530  // Execution protection violation
531  //
532  // Preventative code for future versions of Solaris which may
533  // enable execution protection when running the 32-bit VM on AMD64.
534  //
535  // This should be kept as the last step in the triage.  We don't
536  // have a dedicated trap number for a no-execute fault, so be
537  // conservative and allow other handlers the first shot.
538  //
539  // Note: We don't test that info->si_code == SEGV_ACCERR here.
540  // this si_code is so generic that it is almost meaningless; and
541  // the si_code for this condition may change in the future.
542  // Furthermore, a false-positive should be harmless.
543  if (UnguardOnExecutionViolation > 0 &&
544      (sig == SIGSEGV || sig == SIGBUS) &&
545      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
546    int page_size = os::vm_page_size();
547    address addr = (address) info->si_addr;
548    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
549    // Make sure the pc and the faulting address are sane.
550    //
551    // If an instruction spans a page boundary, and the page containing
552    // the beginning of the instruction is executable but the following
553    // page is not, the pc and the faulting address might be slightly
554    // different - we still want to unguard the 2nd page in this case.
555    //
556    // 15 bytes seems to be a (very) safe value for max instruction size.
557    bool pc_is_near_addr =
558      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
559    bool instr_spans_page_boundary =
560      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
561                       (intptr_t) page_size) > 0);
562
563    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
564      static volatile address last_addr =
565        (address) os::non_memory_address_word();
566
567      // In conservative mode, don't unguard unless the address is in the VM
568      if (addr != last_addr &&
569          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
570
571        // Make memory rwx and retry
572        address page_start =
573          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
574        bool res = os::protect_memory((char*) page_start, page_size,
575                                      os::MEM_PROT_RWX);
576
577        if (PrintMiscellaneous && Verbose) {
578          char buf[256];
579          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
580                       "at " INTPTR_FORMAT
581                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
582                       page_start, (res ? "success" : "failed"), errno);
583          tty->print_raw_cr(buf);
584        }
585        stub = pc;
586
587        // Set last_addr so if we fault again at the same address, we don't end
588        // up in an endless loop.
589        //
590        // There are two potential complications here.  Two threads trapping at
591        // the same address at the same time could cause one of the threads to
592        // think it already unguarded, and abort the VM.  Likely very rare.
593        //
594        // The other race involves two threads alternately trapping at
595        // different addresses and failing to unguard the page, resulting in
596        // an endless loop.  This condition is probably even more unlikely than
597        // the first.
598        //
599        // Although both cases could be avoided by using locks or thread local
600        // last_addr, these solutions are unnecessary complication: this
601        // handler is a best-effort safety net, not a complete solution.  It is
602        // disabled by default and should only be used as a workaround in case
603        // we missed any no-execute-unsafe VM code.
604
605        last_addr = addr;
606      }
607    }
608  }
609
610  if (stub != NULL) {
611    // save all thread context in case we need to restore it
612
613    if (thread != NULL) thread->set_saved_exception_pc(pc);
614    // 12/02/99: On Sparc it appears that the full context is also saved
615    // but as yet, no one looks at or restores that saved context
616    // factor me: setPC
617    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
618    return true;
619  }
620
621  // signal-chaining
622  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
623    return true;
624  }
625
626#ifndef AMD64
627  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
628  // Handle an undefined selector caused by an attempt to assign
629  // fs in libthread getipriptr(). With the current libthread design every 512
630  // thread creations the LDT for a private thread data structure is extended
631  // and thre is a hazard that and another thread attempting a thread creation
632  // will use a stale LDTR that doesn't reflect the structure's growth,
633  // causing a GP fault.
634  // Enforce the probable limit of passes through here to guard against an
635  // infinite loop if some other move to fs caused the GP fault. Note that
636  // this loop counter is ultimately a heuristic as it is possible for
637  // more than one thread to generate this fault at a time in an MP system.
638  // In the case of the loop count being exceeded or if the poll fails
639  // just fall through to a fatal error.
640  // If there is some other source of T_GPFLT traps and the text at EIP is
641  // unreadable this code will loop infinitely until the stack is exausted.
642  // The key to diagnosis in this case is to look for the bottom signal handler
643  // frame.
644
645  if(! IgnoreLibthreadGPFault) {
646    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
647      const unsigned char *p =
648                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
649
650      // Expected instruction?
651
652      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
653
654        Atomic::inc(&ldtr_refresh);
655
656        // Infinite loop?
657
658        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
659
660          // No, force scheduling to get a fresh view of the LDTR
661
662          if(poll(NULL, 0, 10) == 0) {
663
664            // Retry the move
665
666            return false;
667          }
668        }
669      }
670    }
671  }
672#endif // !AMD64
673
674  if (!abort_if_unrecognized) {
675    // caller wants another chance, so give it to him
676    return false;
677  }
678
679  if (!os::Solaris::libjsig_is_loaded) {
680    struct sigaction oldAct;
681    sigaction(sig, (struct sigaction *)0, &oldAct);
682    if (oldAct.sa_sigaction != signalHandler) {
683      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
684                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
685      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
686    }
687  }
688
689  if (pc == NULL && uc != NULL) {
690    pc = (address) uc->uc_mcontext.gregs[REG_PC];
691  }
692
693  // unmask current signal
694  sigset_t newset;
695  sigemptyset(&newset);
696  sigaddset(&newset, sig);
697  sigprocmask(SIG_UNBLOCK, &newset, NULL);
698
699  // Determine which sort of error to throw.  Out of swap may signal
700  // on the thread stack, which could get a mapping error when touched.
701  address addr = (address) info->si_addr;
702  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
703    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
704  }
705
706  VMError err(t, sig, pc, info, ucVoid);
707  err.report_and_die();
708
709  ShouldNotReachHere();
710  return false;
711}
712
713void os::print_context(outputStream *st, void *context) {
714  if (context == NULL) return;
715
716  ucontext_t *uc = (ucontext_t*)context;
717  st->print_cr("Registers:");
718#ifdef AMD64
719  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
720  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
721  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
722  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
723  st->cr();
724  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
725  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
726  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
727  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
728  st->cr();
729  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
730  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
731  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
732  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
733  st->cr();
734  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
735  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
736  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
737  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
738  st->cr();
739  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
740  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
741#else
742  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
743  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
744  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
745  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
746  st->cr();
747  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
748  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
749  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
750  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
751  st->cr();
752  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
753  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
754#endif // AMD64
755  st->cr();
756  st->cr();
757
758  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
759  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
760  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
761  st->cr();
762
763  // Note: it may be unsafe to inspect memory near pc. For example, pc may
764  // point to garbage if entry point in an nmethod is corrupted. Leave
765  // this at the end, and hope for the best.
766  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
767  address pc = epc.pc();
768  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
769  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
770}
771
772void os::print_register_info(outputStream *st, void *context) {
773  if (context == NULL) return;
774
775  ucontext_t *uc = (ucontext_t*)context;
776
777  st->print_cr("Register to memory mapping:");
778  st->cr();
779
780  // this is horrendously verbose but the layout of the registers in the
781  // context does not match how we defined our abstract Register set, so
782  // we can't just iterate through the gregs area
783
784  // this is only for the "general purpose" registers
785
786#ifdef AMD64
787  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
788  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
789  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
790  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
791  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
792  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
793  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
794  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
795  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
796  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
797  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
798  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
799  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
800  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
801  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
802  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
803#else
804  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
805  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
806  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
807  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
808  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
809  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
810  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
811  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
812#endif
813
814  st->cr();
815}
816
817
818#ifdef AMD64
819void os::Solaris::init_thread_fpu_state(void) {
820  // Nothing to do
821}
822#else
823// From solaris_i486.s
824extern "C" void fixcw();
825
826void os::Solaris::init_thread_fpu_state(void) {
827  // Set fpu to 53 bit precision. This happens too early to use a stub.
828  fixcw();
829}
830
831// These routines are the initial value of atomic_xchg_entry(),
832// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
833// until initialization is complete.
834// TODO - replace with .il implementation when compiler supports it.
835
836typedef jint  xchg_func_t        (jint,  volatile jint*);
837typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
838typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
839typedef jint  add_func_t         (jint,  volatile jint*);
840
841jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
842  // try to use the stub:
843  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
844
845  if (func != NULL) {
846    os::atomic_xchg_func = func;
847    return (*func)(exchange_value, dest);
848  }
849  assert(Threads::number_of_threads() == 0, "for bootstrap only");
850
851  jint old_value = *dest;
852  *dest = exchange_value;
853  return old_value;
854}
855
856jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
857  // try to use the stub:
858  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
859
860  if (func != NULL) {
861    os::atomic_cmpxchg_func = func;
862    return (*func)(exchange_value, dest, compare_value);
863  }
864  assert(Threads::number_of_threads() == 0, "for bootstrap only");
865
866  jint old_value = *dest;
867  if (old_value == compare_value)
868    *dest = exchange_value;
869  return old_value;
870}
871
872jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
873  // try to use the stub:
874  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
875
876  if (func != NULL) {
877    os::atomic_cmpxchg_long_func = func;
878    return (*func)(exchange_value, dest, compare_value);
879  }
880  assert(Threads::number_of_threads() == 0, "for bootstrap only");
881
882  jlong old_value = *dest;
883  if (old_value == compare_value)
884    *dest = exchange_value;
885  return old_value;
886}
887
888jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
889  // try to use the stub:
890  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
891
892  if (func != NULL) {
893    os::atomic_add_func = func;
894    return (*func)(add_value, dest);
895  }
896  assert(Threads::number_of_threads() == 0, "for bootstrap only");
897
898  return (*dest) += add_value;
899}
900
901xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
902cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
903cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
904add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
905
906extern "C" void _solaris_raw_setup_fpu(address ptr);
907void os::setup_fpu() {
908  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
909  _solaris_raw_setup_fpu(fpu_cntrl);
910}
911#endif // AMD64
912
913#ifndef PRODUCT
914void os::verify_stack_alignment() {
915#ifdef AMD64
916  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
917#endif
918}
919#endif
920