os_solaris_x86.cpp revision 4991:af21010d1062
1263646Sbapt/*
2263646Sbapt * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3263646Sbapt * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4263646Sbapt *
5298166Sbapt * This code is free software; you can redistribute it and/or modify it
6298166Sbapt * under the terms of the GNU General Public License version 2 only, as
7263646Sbapt * published by the Free Software Foundation.
8263646Sbapt *
9263646Sbapt * This code is distributed in the hope that it will be useful, but WITHOUT
10298166Sbapt * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11298166Sbapt * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12298166Sbapt * version 2 for more details (a copy is included in the LICENSE file that
13298166Sbapt * accompanied this code).
14298166Sbapt *
15298166Sbapt * You should have received a copy of the GNU General Public License version
16298166Sbapt * 2 along with this work; if not, write to the Free Software Foundation,
17298166Sbapt * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18263646Sbapt *
19298166Sbapt * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20298166Sbapt * or visit www.oracle.com if you need additional information or have any
21298166Sbapt * questions.
22298166Sbapt *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_solaris.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_solaris.inline.hpp"
36#include "os_share_solaris.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <setjmp.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <thread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/filio.h>
70# include <sys/utsname.h>
71# include <sys/systeminfo.h>
72# include <sys/socket.h>
73# include <sys/trap.h>
74# include <sys/lwp.h>
75# include <pwd.h>
76# include <poll.h>
77# include <sys/lwp.h>
78# include <procfs.h>     //  see comment in <sys/procfs.h>
79
80#ifndef AMD64
81// QQQ seems useless at this point
82# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
83#endif // AMD64
84# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
85
86
87#define MAX_PATH (2 * K)
88
89// Minimum stack size for the VM.  It's easier to document a constant value
90// but it's different for x86 and sparc because the page sizes are different.
91#ifdef AMD64
92size_t os::Solaris::min_stack_allowed = 224*K;
93#define REG_SP REG_RSP
94#define REG_PC REG_RIP
95#define REG_FP REG_RBP
96#else
97size_t os::Solaris::min_stack_allowed = 64*K;
98#define REG_SP UESP
99#define REG_PC EIP
100#define REG_FP EBP
101// 4900493 counter to prevent runaway LDTR refresh attempt
102
103static volatile int ldtr_refresh = 0;
104// the libthread instruction that faults because of the stale LDTR
105
106static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
107                       };
108#endif // AMD64
109
110char* os::non_memory_address_word() {
111  // Must never look like an address returned by reserve_memory,
112  // even in its subfields (as defined by the CPU immediate fields,
113  // if the CPU splits constants across multiple instructions).
114  return (char*) -1;
115}
116
117//
118// Validate a ucontext retrieved from walking a uc_link of a ucontext.
119// There are issues with libthread giving out uc_links for different threads
120// on the same uc_link chain and bad or circular links.
121//
122bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
123  if (valid >= suspect ||
124      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
125      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
126      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
127    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
128    return false;
129  }
130
131  if (thread->is_Java_thread()) {
132    if (!valid_stack_address(thread, (address)suspect)) {
133      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
134      return false;
135    }
136    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
137      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
138      return false;
139    }
140  }
141  return true;
142}
143
144// We will only follow one level of uc_link since there are libthread
145// issues with ucontext linking and it is better to be safe and just
146// let caller retry later.
147ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
148  ucontext_t *uc) {
149
150  ucontext_t *retuc = NULL;
151
152  if (uc != NULL) {
153    if (uc->uc_link == NULL) {
154      // cannot validate without uc_link so accept current ucontext
155      retuc = uc;
156    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
157      // first ucontext is valid so try the next one
158      uc = uc->uc_link;
159      if (uc->uc_link == NULL) {
160        // cannot validate without uc_link so accept current ucontext
161        retuc = uc;
162      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
163        // the ucontext one level down is also valid so return it
164        retuc = uc;
165      }
166    }
167  }
168  return retuc;
169}
170
171// Assumes ucontext is valid
172ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
173  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
174}
175
176// Assumes ucontext is valid
177intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
178  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
179}
180
181// Assumes ucontext is valid
182intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
183  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
184}
185
186address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
187  return (address) uc->uc_mcontext.gregs[REG_PC];
188}
189
190// For Forte Analyzer AsyncGetCallTrace profiling support - thread
191// is currently interrupted by SIGPROF.
192//
193// The difference between this and os::fetch_frame_from_context() is that
194// here we try to skip nested signal frames.
195ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
196  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
197
198  assert(thread != NULL, "just checking");
199  assert(ret_sp != NULL, "just checking");
200  assert(ret_fp != NULL, "just checking");
201
202  ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
203  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
204}
205
206ExtendedPC os::fetch_frame_from_context(void* ucVoid,
207                    intptr_t** ret_sp, intptr_t** ret_fp) {
208
209  ExtendedPC  epc;
210  ucontext_t *uc = (ucontext_t*)ucVoid;
211
212  if (uc != NULL) {
213    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
214    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
215    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
216  } else {
217    // construct empty ExtendedPC for return value checking
218    epc = ExtendedPC(NULL);
219    if (ret_sp) *ret_sp = (intptr_t *)NULL;
220    if (ret_fp) *ret_fp = (intptr_t *)NULL;
221  }
222
223  return epc;
224}
225
226frame os::fetch_frame_from_context(void* ucVoid) {
227  intptr_t* sp;
228  intptr_t* fp;
229  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
230  return frame(sp, fp, epc.pc());
231}
232
233frame os::get_sender_for_C_frame(frame* fr) {
234  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
235}
236
237extern "C" intptr_t *_get_current_sp();  // in .il file
238
239address os::current_stack_pointer() {
240  return (address)_get_current_sp();
241}
242
243extern "C" intptr_t *_get_current_fp();  // in .il file
244
245frame os::current_frame() {
246  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
247  frame myframe((intptr_t*)os::current_stack_pointer(),
248                (intptr_t*)fp,
249                CAST_FROM_FN_PTR(address, os::current_frame));
250  if (os::is_first_C_frame(&myframe)) {
251    // stack is not walkable
252    frame ret; // This will be a null useless frame
253    return ret;
254  } else {
255    return os::get_sender_for_C_frame(&myframe);
256  }
257}
258
259static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
260  char lwpstatusfile[PROCFILE_LENGTH];
261  int lwpfd, err;
262
263  if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
264    return (err);
265  if (*flags == TRS_LWPID) {
266    sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
267            *lwp);
268    if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
269      perror("thr_mutator_status: open lwpstatus");
270      return (EINVAL);
271    }
272    if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
273        sizeof (lwpstatus_t)) {
274      perror("thr_mutator_status: read lwpstatus");
275      (void) close(lwpfd);
276      return (EINVAL);
277    }
278    (void) close(lwpfd);
279  }
280  return (0);
281}
282
283#ifndef AMD64
284
285// Detecting SSE support by OS
286// From solaris_i486.s
287extern "C" bool sse_check();
288extern "C" bool sse_unavailable();
289
290enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
291static int sse_status = SSE_UNKNOWN;
292
293
294static void  check_for_sse_support() {
295  if (!VM_Version::supports_sse()) {
296    sse_status = SSE_NOT_SUPPORTED;
297    return;
298  }
299  // looking for _sse_hw in libc.so, if it does not exist or
300  // the value (int) is 0, OS has no support for SSE
301  int *sse_hwp;
302  void *h;
303
304  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
305    //open failed, presume no support for SSE
306    sse_status = SSE_NOT_SUPPORTED;
307    return;
308  }
309  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
310    sse_status = SSE_NOT_SUPPORTED;
311  } else if (*sse_hwp == 0) {
312    sse_status = SSE_NOT_SUPPORTED;
313  }
314  dlclose(h);
315
316  if (sse_status == SSE_UNKNOWN) {
317    bool (*try_sse)() = (bool (*)())sse_check;
318    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
319  }
320
321}
322
323#endif // AMD64
324
325bool os::supports_sse() {
326#ifdef AMD64
327  return true;
328#else
329  if (sse_status == SSE_UNKNOWN)
330    check_for_sse_support();
331  return sse_status == SSE_SUPPORTED;
332#endif // AMD64
333}
334
335bool os::is_allocatable(size_t bytes) {
336#ifdef AMD64
337  return true;
338#else
339
340  if (bytes < 2 * G) {
341    return true;
342  }
343
344  char* addr = reserve_memory(bytes, NULL);
345
346  if (addr != NULL) {
347    release_memory(addr, bytes);
348  }
349
350  return addr != NULL;
351#endif // AMD64
352
353}
354
355extern "C" JNIEXPORT int
356JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
357                          int abort_if_unrecognized) {
358  ucontext_t* uc = (ucontext_t*) ucVoid;
359
360#ifndef AMD64
361  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
362    // the SSE instruction faulted. supports_sse() need return false.
363    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
364    return true;
365  }
366#endif // !AMD64
367
368  Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
369
370  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
371  // (no destructors can be run)
372  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
373
374  SignalHandlerMark shm(t);
375
376  if(sig == SIGPIPE || sig == SIGXFSZ) {
377    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
378      return true;
379    } else {
380      if (PrintMiscellaneous && (WizardMode || Verbose)) {
381        char buf[64];
382        warning("Ignoring %s - see 4229104 or 6499219",
383                os::exception_name(sig, buf, sizeof(buf)));
384
385      }
386      return true;
387    }
388  }
389
390  JavaThread* thread = NULL;
391  VMThread* vmthread = NULL;
392
393  if (os::Solaris::signal_handlers_are_installed) {
394    if (t != NULL ){
395      if(t->is_Java_thread()) {
396        thread = (JavaThread*)t;
397      }
398      else if(t->is_VM_thread()){
399        vmthread = (VMThread *)t;
400      }
401    }
402  }
403
404  guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
405
406  if (sig == os::Solaris::SIGasync()) {
407    if(thread || vmthread){
408      OSThread::SR_handler(t, uc);
409      return true;
410    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
411      return true;
412    } else {
413      // If os::Solaris::SIGasync not chained, and this is a non-vm and
414      // non-java thread
415      return true;
416    }
417  }
418
419  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
420    // can't decode this kind of signal
421    info = NULL;
422  } else {
423    assert(sig == info->si_signo, "bad siginfo");
424  }
425
426  // decide if this trap can be handled by a stub
427  address stub = NULL;
428
429  address pc          = NULL;
430
431  //%note os_trap_1
432  if (info != NULL && uc != NULL && thread != NULL) {
433    // factor me: getPCfromContext
434    pc = (address) uc->uc_mcontext.gregs[REG_PC];
435
436    if (StubRoutines::is_safefetch_fault(pc)) {
437      uc->uc_mcontext.gregs[REG_PC] = intptr_t(StubRoutines::continuation_for_safefetch_fault(pc));
438      return true;
439    }
440
441    // Handle ALL stack overflow variations here
442    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
443      address addr = (address) info->si_addr;
444      if (thread->in_stack_yellow_zone(addr)) {
445        thread->disable_stack_yellow_zone();
446        if (thread->thread_state() == _thread_in_Java) {
447          // Throw a stack overflow exception.  Guard pages will be reenabled
448          // while unwinding the stack.
449          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
450        } else {
451          // Thread was in the vm or native code.  Return and try to finish.
452          return true;
453        }
454      } else if (thread->in_stack_red_zone(addr)) {
455        // Fatal red zone violation.  Disable the guard pages and fall through
456        // to handle_unexpected_exception way down below.
457        thread->disable_stack_red_zone();
458        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
459      }
460    }
461
462    if (thread->thread_state() == _thread_in_vm) {
463      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
464        stub = StubRoutines::handler_for_unsafe_access();
465      }
466    }
467
468    if (thread->thread_state() == _thread_in_Java) {
469      // Support Safepoint Polling
470      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
471        stub = SharedRuntime::get_poll_stub(pc);
472      }
473      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
474        // BugId 4454115: A read from a MappedByteBuffer can fault
475        // here if the underlying file has been truncated.
476        // Do not crash the VM in such a case.
477        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
478        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
479        if (nm != NULL && nm->has_unsafe_access()) {
480          stub = StubRoutines::handler_for_unsafe_access();
481        }
482      }
483      else
484      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
485        // integer divide by zero
486        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
487      }
488#ifndef AMD64
489      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
490        // floating-point divide by zero
491        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
492      }
493      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
494        // The encoding of D2I in i486.ad can cause an exception prior
495        // to the fist instruction if there was an invalid operation
496        // pending. We want to dismiss that exception. From the win_32
497        // side it also seems that if it really was the fist causing
498        // the exception that we do the d2i by hand with different
499        // rounding. Seems kind of weird. QQQ TODO
500        // Note that we take the exception at the NEXT floating point instruction.
501        if (pc[0] == 0xDB) {
502            assert(pc[0] == 0xDB, "not a FIST opcode");
503            assert(pc[1] == 0x14, "not a FIST opcode");
504            assert(pc[2] == 0x24, "not a FIST opcode");
505            return true;
506        } else {
507            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
508            assert(pc[-2] == 0x14, "not an flt invalid opcode");
509            assert(pc[-1] == 0x24, "not an flt invalid opcode");
510        }
511      }
512      else if (sig == SIGFPE ) {
513        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
514      }
515#endif // !AMD64
516
517        // QQQ It doesn't seem that we need to do this on x86 because we should be able
518        // to return properly from the handler without this extra stuff on the back side.
519
520      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
521        // Determination of interpreter/vtable stub/compiled code null exception
522        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
523      }
524    }
525
526    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
527    // and the heap gets shrunk before the field access.
528    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
529      address addr = JNI_FastGetField::find_slowcase_pc(pc);
530      if (addr != (address)-1) {
531        stub = addr;
532      }
533    }
534
535    // Check to see if we caught the safepoint code in the
536    // process of write protecting the memory serialization page.
537    // It write enables the page immediately after protecting it
538    // so we can just return to retry the write.
539    if ((sig == SIGSEGV) &&
540        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
541      // Block current thread until the memory serialize page permission restored.
542      os::block_on_serialize_page_trap();
543      return true;
544    }
545  }
546
547  // Execution protection violation
548  //
549  // Preventative code for future versions of Solaris which may
550  // enable execution protection when running the 32-bit VM on AMD64.
551  //
552  // This should be kept as the last step in the triage.  We don't
553  // have a dedicated trap number for a no-execute fault, so be
554  // conservative and allow other handlers the first shot.
555  //
556  // Note: We don't test that info->si_code == SEGV_ACCERR here.
557  // this si_code is so generic that it is almost meaningless; and
558  // the si_code for this condition may change in the future.
559  // Furthermore, a false-positive should be harmless.
560  if (UnguardOnExecutionViolation > 0 &&
561      (sig == SIGSEGV || sig == SIGBUS) &&
562      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
563    int page_size = os::vm_page_size();
564    address addr = (address) info->si_addr;
565    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
566    // Make sure the pc and the faulting address are sane.
567    //
568    // If an instruction spans a page boundary, and the page containing
569    // the beginning of the instruction is executable but the following
570    // page is not, the pc and the faulting address might be slightly
571    // different - we still want to unguard the 2nd page in this case.
572    //
573    // 15 bytes seems to be a (very) safe value for max instruction size.
574    bool pc_is_near_addr =
575      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
576    bool instr_spans_page_boundary =
577      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
578                       (intptr_t) page_size) > 0);
579
580    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
581      static volatile address last_addr =
582        (address) os::non_memory_address_word();
583
584      // In conservative mode, don't unguard unless the address is in the VM
585      if (addr != last_addr &&
586          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
587
588        // Make memory rwx and retry
589        address page_start =
590          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
591        bool res = os::protect_memory((char*) page_start, page_size,
592                                      os::MEM_PROT_RWX);
593
594        if (PrintMiscellaneous && Verbose) {
595          char buf[256];
596          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
597                       "at " INTPTR_FORMAT
598                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
599                       page_start, (res ? "success" : "failed"), errno);
600          tty->print_raw_cr(buf);
601        }
602        stub = pc;
603
604        // Set last_addr so if we fault again at the same address, we don't end
605        // up in an endless loop.
606        //
607        // There are two potential complications here.  Two threads trapping at
608        // the same address at the same time could cause one of the threads to
609        // think it already unguarded, and abort the VM.  Likely very rare.
610        //
611        // The other race involves two threads alternately trapping at
612        // different addresses and failing to unguard the page, resulting in
613        // an endless loop.  This condition is probably even more unlikely than
614        // the first.
615        //
616        // Although both cases could be avoided by using locks or thread local
617        // last_addr, these solutions are unnecessary complication: this
618        // handler is a best-effort safety net, not a complete solution.  It is
619        // disabled by default and should only be used as a workaround in case
620        // we missed any no-execute-unsafe VM code.
621
622        last_addr = addr;
623      }
624    }
625  }
626
627  if (stub != NULL) {
628    // save all thread context in case we need to restore it
629
630    if (thread != NULL) thread->set_saved_exception_pc(pc);
631    // 12/02/99: On Sparc it appears that the full context is also saved
632    // but as yet, no one looks at or restores that saved context
633    // factor me: setPC
634    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
635    return true;
636  }
637
638  // signal-chaining
639  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
640    return true;
641  }
642
643#ifndef AMD64
644  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
645  // Handle an undefined selector caused by an attempt to assign
646  // fs in libthread getipriptr(). With the current libthread design every 512
647  // thread creations the LDT for a private thread data structure is extended
648  // and thre is a hazard that and another thread attempting a thread creation
649  // will use a stale LDTR that doesn't reflect the structure's growth,
650  // causing a GP fault.
651  // Enforce the probable limit of passes through here to guard against an
652  // infinite loop if some other move to fs caused the GP fault. Note that
653  // this loop counter is ultimately a heuristic as it is possible for
654  // more than one thread to generate this fault at a time in an MP system.
655  // In the case of the loop count being exceeded or if the poll fails
656  // just fall through to a fatal error.
657  // If there is some other source of T_GPFLT traps and the text at EIP is
658  // unreadable this code will loop infinitely until the stack is exausted.
659  // The key to diagnosis in this case is to look for the bottom signal handler
660  // frame.
661
662  if(! IgnoreLibthreadGPFault) {
663    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
664      const unsigned char *p =
665                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
666
667      // Expected instruction?
668
669      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
670
671        Atomic::inc(&ldtr_refresh);
672
673        // Infinite loop?
674
675        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
676
677          // No, force scheduling to get a fresh view of the LDTR
678
679          if(poll(NULL, 0, 10) == 0) {
680
681            // Retry the move
682
683            return false;
684          }
685        }
686      }
687    }
688  }
689#endif // !AMD64
690
691  if (!abort_if_unrecognized) {
692    // caller wants another chance, so give it to him
693    return false;
694  }
695
696  if (!os::Solaris::libjsig_is_loaded) {
697    struct sigaction oldAct;
698    sigaction(sig, (struct sigaction *)0, &oldAct);
699    if (oldAct.sa_sigaction != signalHandler) {
700      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
701                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
702      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
703    }
704  }
705
706  if (pc == NULL && uc != NULL) {
707    pc = (address) uc->uc_mcontext.gregs[REG_PC];
708  }
709
710  // unmask current signal
711  sigset_t newset;
712  sigemptyset(&newset);
713  sigaddset(&newset, sig);
714  sigprocmask(SIG_UNBLOCK, &newset, NULL);
715
716  // Determine which sort of error to throw.  Out of swap may signal
717  // on the thread stack, which could get a mapping error when touched.
718  address addr = (address) info->si_addr;
719  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
720    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
721  }
722
723  VMError err(t, sig, pc, info, ucVoid);
724  err.report_and_die();
725
726  ShouldNotReachHere();
727}
728
729void os::print_context(outputStream *st, void *context) {
730  if (context == NULL) return;
731
732  ucontext_t *uc = (ucontext_t*)context;
733  st->print_cr("Registers:");
734#ifdef AMD64
735  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
736  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
737  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
738  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
739  st->cr();
740  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
741  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
742  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
743  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
744  st->cr();
745  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
746  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
747  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
748  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
749  st->cr();
750  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
751  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
752  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
753  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
754  st->cr();
755  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
756  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
757#else
758  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
759  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
760  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
761  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
762  st->cr();
763  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
764  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
765  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
766  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
767  st->cr();
768  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
769  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
770#endif // AMD64
771  st->cr();
772  st->cr();
773
774  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
775  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
776  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
777  st->cr();
778
779  // Note: it may be unsafe to inspect memory near pc. For example, pc may
780  // point to garbage if entry point in an nmethod is corrupted. Leave
781  // this at the end, and hope for the best.
782  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
783  address pc = epc.pc();
784  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
785  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
786}
787
788void os::print_register_info(outputStream *st, void *context) {
789  if (context == NULL) return;
790
791  ucontext_t *uc = (ucontext_t*)context;
792
793  st->print_cr("Register to memory mapping:");
794  st->cr();
795
796  // this is horrendously verbose but the layout of the registers in the
797  // context does not match how we defined our abstract Register set, so
798  // we can't just iterate through the gregs area
799
800  // this is only for the "general purpose" registers
801
802#ifdef AMD64
803  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
804  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
805  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
806  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
807  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
808  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
809  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
810  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
811  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
812  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
813  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
814  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
815  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
816  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
817  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
818  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
819#else
820  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
821  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
822  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
823  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
824  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
825  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
826  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
827  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
828#endif
829
830  st->cr();
831}
832
833
834#ifdef AMD64
835void os::Solaris::init_thread_fpu_state(void) {
836  // Nothing to do
837}
838#else
839// From solaris_i486.s
840extern "C" void fixcw();
841
842void os::Solaris::init_thread_fpu_state(void) {
843  // Set fpu to 53 bit precision. This happens too early to use a stub.
844  fixcw();
845}
846
847// These routines are the initial value of atomic_xchg_entry(),
848// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
849// until initialization is complete.
850// TODO - replace with .il implementation when compiler supports it.
851
852typedef jint  xchg_func_t        (jint,  volatile jint*);
853typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
854typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
855typedef jint  add_func_t         (jint,  volatile jint*);
856
857jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
858  // try to use the stub:
859  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
860
861  if (func != NULL) {
862    os::atomic_xchg_func = func;
863    return (*func)(exchange_value, dest);
864  }
865  assert(Threads::number_of_threads() == 0, "for bootstrap only");
866
867  jint old_value = *dest;
868  *dest = exchange_value;
869  return old_value;
870}
871
872jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
873  // try to use the stub:
874  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
875
876  if (func != NULL) {
877    os::atomic_cmpxchg_func = func;
878    return (*func)(exchange_value, dest, compare_value);
879  }
880  assert(Threads::number_of_threads() == 0, "for bootstrap only");
881
882  jint old_value = *dest;
883  if (old_value == compare_value)
884    *dest = exchange_value;
885  return old_value;
886}
887
888jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
889  // try to use the stub:
890  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
891
892  if (func != NULL) {
893    os::atomic_cmpxchg_long_func = func;
894    return (*func)(exchange_value, dest, compare_value);
895  }
896  assert(Threads::number_of_threads() == 0, "for bootstrap only");
897
898  jlong old_value = *dest;
899  if (old_value == compare_value)
900    *dest = exchange_value;
901  return old_value;
902}
903
904jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
905  // try to use the stub:
906  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
907
908  if (func != NULL) {
909    os::atomic_add_func = func;
910    return (*func)(add_value, dest);
911  }
912  assert(Threads::number_of_threads() == 0, "for bootstrap only");
913
914  return (*dest) += add_value;
915}
916
917xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
918cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
919cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
920add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
921
922extern "C" void _solaris_raw_setup_fpu(address ptr);
923void os::setup_fpu() {
924  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
925  _solaris_raw_setup_fpu(fpu_cntrl);
926}
927#endif // AMD64
928
929#ifndef PRODUCT
930void os::verify_stack_alignment() {
931#ifdef AMD64
932  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
933#endif
934}
935#endif
936