os_solaris_x86.cpp revision 4802:f2110083203d
1/*
2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_solaris.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_solaris.inline.hpp"
36#include "os_share_solaris.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <setjmp.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <thread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/filio.h>
70# include <sys/utsname.h>
71# include <sys/systeminfo.h>
72# include <sys/socket.h>
73# include <sys/trap.h>
74# include <sys/lwp.h>
75# include <pwd.h>
76# include <poll.h>
77# include <sys/lwp.h>
78# include <procfs.h>     //  see comment in <sys/procfs.h>
79
80#ifndef AMD64
81// QQQ seems useless at this point
82# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
83#endif // AMD64
84# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
85
86
87#define MAX_PATH (2 * K)
88
89// Minimum stack size for the VM.  It's easier to document a constant value
90// but it's different for x86 and sparc because the page sizes are different.
91#ifdef AMD64
92size_t os::Solaris::min_stack_allowed = 224*K;
93#define REG_SP REG_RSP
94#define REG_PC REG_RIP
95#define REG_FP REG_RBP
96#else
97size_t os::Solaris::min_stack_allowed = 64*K;
98#define REG_SP UESP
99#define REG_PC EIP
100#define REG_FP EBP
101// 4900493 counter to prevent runaway LDTR refresh attempt
102
103static volatile int ldtr_refresh = 0;
104// the libthread instruction that faults because of the stale LDTR
105
106static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
107                       };
108#endif // AMD64
109
110char* os::non_memory_address_word() {
111  // Must never look like an address returned by reserve_memory,
112  // even in its subfields (as defined by the CPU immediate fields,
113  // if the CPU splits constants across multiple instructions).
114  return (char*) -1;
115}
116
117//
118// Validate a ucontext retrieved from walking a uc_link of a ucontext.
119// There are issues with libthread giving out uc_links for different threads
120// on the same uc_link chain and bad or circular links.
121//
122bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
123  if (valid >= suspect ||
124      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
125      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
126      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
127    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
128    return false;
129  }
130
131  if (thread->is_Java_thread()) {
132    if (!valid_stack_address(thread, (address)suspect)) {
133      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
134      return false;
135    }
136    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
137      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
138      return false;
139    }
140  }
141  return true;
142}
143
144// We will only follow one level of uc_link since there are libthread
145// issues with ucontext linking and it is better to be safe and just
146// let caller retry later.
147ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
148  ucontext_t *uc) {
149
150  ucontext_t *retuc = NULL;
151
152  if (uc != NULL) {
153    if (uc->uc_link == NULL) {
154      // cannot validate without uc_link so accept current ucontext
155      retuc = uc;
156    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
157      // first ucontext is valid so try the next one
158      uc = uc->uc_link;
159      if (uc->uc_link == NULL) {
160        // cannot validate without uc_link so accept current ucontext
161        retuc = uc;
162      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
163        // the ucontext one level down is also valid so return it
164        retuc = uc;
165      }
166    }
167  }
168  return retuc;
169}
170
171// Assumes ucontext is valid
172ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
173  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
174}
175
176// Assumes ucontext is valid
177intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
178  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
179}
180
181// Assumes ucontext is valid
182intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
183  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
184}
185
186address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
187  return (address) uc->uc_mcontext.gregs[REG_PC];
188}
189
190// For Forte Analyzer AsyncGetCallTrace profiling support - thread
191// is currently interrupted by SIGPROF.
192//
193// The difference between this and os::fetch_frame_from_context() is that
194// here we try to skip nested signal frames.
195ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
196  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
197
198  assert(thread != NULL, "just checking");
199  assert(ret_sp != NULL, "just checking");
200  assert(ret_fp != NULL, "just checking");
201
202  ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
203  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
204}
205
206ExtendedPC os::fetch_frame_from_context(void* ucVoid,
207                    intptr_t** ret_sp, intptr_t** ret_fp) {
208
209  ExtendedPC  epc;
210  ucontext_t *uc = (ucontext_t*)ucVoid;
211
212  if (uc != NULL) {
213    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
214    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
215    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
216  } else {
217    // construct empty ExtendedPC for return value checking
218    epc = ExtendedPC(NULL);
219    if (ret_sp) *ret_sp = (intptr_t *)NULL;
220    if (ret_fp) *ret_fp = (intptr_t *)NULL;
221  }
222
223  return epc;
224}
225
226frame os::fetch_frame_from_context(void* ucVoid) {
227  intptr_t* sp;
228  intptr_t* fp;
229  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
230  return frame(sp, fp, epc.pc());
231}
232
233frame os::get_sender_for_C_frame(frame* fr) {
234  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
235}
236
237extern "C" intptr_t *_get_current_sp();  // in .il file
238
239address os::current_stack_pointer() {
240  return (address)_get_current_sp();
241}
242
243extern "C" intptr_t *_get_current_fp();  // in .il file
244
245frame os::current_frame() {
246  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
247  frame myframe((intptr_t*)os::current_stack_pointer(),
248                (intptr_t*)fp,
249                CAST_FROM_FN_PTR(address, os::current_frame));
250  if (os::is_first_C_frame(&myframe)) {
251    // stack is not walkable
252    frame ret; // This will be a null useless frame
253    return ret;
254  } else {
255    return os::get_sender_for_C_frame(&myframe);
256  }
257}
258
259static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
260  char lwpstatusfile[PROCFILE_LENGTH];
261  int lwpfd, err;
262
263  if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
264    return (err);
265  if (*flags == TRS_LWPID) {
266    sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
267            *lwp);
268    if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
269      perror("thr_mutator_status: open lwpstatus");
270      return (EINVAL);
271    }
272    if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
273        sizeof (lwpstatus_t)) {
274      perror("thr_mutator_status: read lwpstatus");
275      (void) close(lwpfd);
276      return (EINVAL);
277    }
278    (void) close(lwpfd);
279  }
280  return (0);
281}
282
283#ifndef AMD64
284
285// Detecting SSE support by OS
286// From solaris_i486.s
287extern "C" bool sse_check();
288extern "C" bool sse_unavailable();
289
290enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
291static int sse_status = SSE_UNKNOWN;
292
293
294static void  check_for_sse_support() {
295  if (!VM_Version::supports_sse()) {
296    sse_status = SSE_NOT_SUPPORTED;
297    return;
298  }
299  // looking for _sse_hw in libc.so, if it does not exist or
300  // the value (int) is 0, OS has no support for SSE
301  int *sse_hwp;
302  void *h;
303
304  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
305    //open failed, presume no support for SSE
306    sse_status = SSE_NOT_SUPPORTED;
307    return;
308  }
309  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
310    sse_status = SSE_NOT_SUPPORTED;
311  } else if (*sse_hwp == 0) {
312    sse_status = SSE_NOT_SUPPORTED;
313  }
314  dlclose(h);
315
316  if (sse_status == SSE_UNKNOWN) {
317    bool (*try_sse)() = (bool (*)())sse_check;
318    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
319  }
320
321}
322
323#endif // AMD64
324
325bool os::supports_sse() {
326#ifdef AMD64
327  return true;
328#else
329  if (sse_status == SSE_UNKNOWN)
330    check_for_sse_support();
331  return sse_status == SSE_SUPPORTED;
332#endif // AMD64
333}
334
335bool os::is_allocatable(size_t bytes) {
336#ifdef AMD64
337  return true;
338#else
339
340  if (bytes < 2 * G) {
341    return true;
342  }
343
344  char* addr = reserve_memory(bytes, NULL);
345
346  if (addr != NULL) {
347    release_memory(addr, bytes);
348  }
349
350  return addr != NULL;
351#endif // AMD64
352
353}
354
355extern "C" void Fetch32PFI () ;
356extern "C" void Fetch32Resume () ;
357#ifdef AMD64
358extern "C" void FetchNPFI () ;
359extern "C" void FetchNResume () ;
360#endif // AMD64
361
362extern "C" JNIEXPORT int
363JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
364                          int abort_if_unrecognized) {
365  ucontext_t* uc = (ucontext_t*) ucVoid;
366
367#ifndef AMD64
368  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
369    // the SSE instruction faulted. supports_sse() need return false.
370    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
371    return true;
372  }
373#endif // !AMD64
374
375  Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
376
377  SignalHandlerMark shm(t);
378
379  if(sig == SIGPIPE || sig == SIGXFSZ) {
380    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
381      return true;
382    } else {
383      if (PrintMiscellaneous && (WizardMode || Verbose)) {
384        char buf[64];
385        warning("Ignoring %s - see 4229104 or 6499219",
386                os::exception_name(sig, buf, sizeof(buf)));
387
388      }
389      return true;
390    }
391  }
392
393  JavaThread* thread = NULL;
394  VMThread* vmthread = NULL;
395
396  if (os::Solaris::signal_handlers_are_installed) {
397    if (t != NULL ){
398      if(t->is_Java_thread()) {
399        thread = (JavaThread*)t;
400      }
401      else if(t->is_VM_thread()){
402        vmthread = (VMThread *)t;
403      }
404    }
405  }
406
407  guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
408
409  if (sig == os::Solaris::SIGasync()) {
410    if(thread || vmthread){
411      OSThread::SR_handler(t, uc);
412      return true;
413    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
414      return true;
415    } else {
416      // If os::Solaris::SIGasync not chained, and this is a non-vm and
417      // non-java thread
418      return true;
419    }
420  }
421
422  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
423    // can't decode this kind of signal
424    info = NULL;
425  } else {
426    assert(sig == info->si_signo, "bad siginfo");
427  }
428
429  // decide if this trap can be handled by a stub
430  address stub = NULL;
431
432  address pc          = NULL;
433
434  //%note os_trap_1
435  if (info != NULL && uc != NULL && thread != NULL) {
436    // factor me: getPCfromContext
437    pc = (address) uc->uc_mcontext.gregs[REG_PC];
438
439    // SafeFetch32() support
440    if (pc == (address) Fetch32PFI) {
441      uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
442      return true ;
443    }
444#ifdef AMD64
445    if (pc == (address) FetchNPFI) {
446       uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
447       return true ;
448    }
449#endif // AMD64
450
451    // Handle ALL stack overflow variations here
452    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
453      address addr = (address) info->si_addr;
454      if (thread->in_stack_yellow_zone(addr)) {
455        thread->disable_stack_yellow_zone();
456        if (thread->thread_state() == _thread_in_Java) {
457          // Throw a stack overflow exception.  Guard pages will be reenabled
458          // while unwinding the stack.
459          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
460        } else {
461          // Thread was in the vm or native code.  Return and try to finish.
462          return true;
463        }
464      } else if (thread->in_stack_red_zone(addr)) {
465        // Fatal red zone violation.  Disable the guard pages and fall through
466        // to handle_unexpected_exception way down below.
467        thread->disable_stack_red_zone();
468        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
469      }
470    }
471
472    if (thread->thread_state() == _thread_in_vm) {
473      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
474        stub = StubRoutines::handler_for_unsafe_access();
475      }
476    }
477
478    if (thread->thread_state() == _thread_in_Java) {
479      // Support Safepoint Polling
480      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
481        stub = SharedRuntime::get_poll_stub(pc);
482      }
483      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
484        // BugId 4454115: A read from a MappedByteBuffer can fault
485        // here if the underlying file has been truncated.
486        // Do not crash the VM in such a case.
487        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
488        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
489        if (nm != NULL && nm->has_unsafe_access()) {
490          stub = StubRoutines::handler_for_unsafe_access();
491        }
492      }
493      else
494      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
495        // integer divide by zero
496        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
497      }
498#ifndef AMD64
499      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
500        // floating-point divide by zero
501        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
502      }
503      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
504        // The encoding of D2I in i486.ad can cause an exception prior
505        // to the fist instruction if there was an invalid operation
506        // pending. We want to dismiss that exception. From the win_32
507        // side it also seems that if it really was the fist causing
508        // the exception that we do the d2i by hand with different
509        // rounding. Seems kind of weird. QQQ TODO
510        // Note that we take the exception at the NEXT floating point instruction.
511        if (pc[0] == 0xDB) {
512            assert(pc[0] == 0xDB, "not a FIST opcode");
513            assert(pc[1] == 0x14, "not a FIST opcode");
514            assert(pc[2] == 0x24, "not a FIST opcode");
515            return true;
516        } else {
517            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
518            assert(pc[-2] == 0x14, "not an flt invalid opcode");
519            assert(pc[-1] == 0x24, "not an flt invalid opcode");
520        }
521      }
522      else if (sig == SIGFPE ) {
523        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
524      }
525#endif // !AMD64
526
527        // QQQ It doesn't seem that we need to do this on x86 because we should be able
528        // to return properly from the handler without this extra stuff on the back side.
529
530      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
531        // Determination of interpreter/vtable stub/compiled code null exception
532        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
533      }
534    }
535
536    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
537    // and the heap gets shrunk before the field access.
538    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
539      address addr = JNI_FastGetField::find_slowcase_pc(pc);
540      if (addr != (address)-1) {
541        stub = addr;
542      }
543    }
544
545    // Check to see if we caught the safepoint code in the
546    // process of write protecting the memory serialization page.
547    // It write enables the page immediately after protecting it
548    // so we can just return to retry the write.
549    if ((sig == SIGSEGV) &&
550        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
551      // Block current thread until the memory serialize page permission restored.
552      os::block_on_serialize_page_trap();
553      return true;
554    }
555  }
556
557  // Execution protection violation
558  //
559  // Preventative code for future versions of Solaris which may
560  // enable execution protection when running the 32-bit VM on AMD64.
561  //
562  // This should be kept as the last step in the triage.  We don't
563  // have a dedicated trap number for a no-execute fault, so be
564  // conservative and allow other handlers the first shot.
565  //
566  // Note: We don't test that info->si_code == SEGV_ACCERR here.
567  // this si_code is so generic that it is almost meaningless; and
568  // the si_code for this condition may change in the future.
569  // Furthermore, a false-positive should be harmless.
570  if (UnguardOnExecutionViolation > 0 &&
571      (sig == SIGSEGV || sig == SIGBUS) &&
572      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
573    int page_size = os::vm_page_size();
574    address addr = (address) info->si_addr;
575    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
576    // Make sure the pc and the faulting address are sane.
577    //
578    // If an instruction spans a page boundary, and the page containing
579    // the beginning of the instruction is executable but the following
580    // page is not, the pc and the faulting address might be slightly
581    // different - we still want to unguard the 2nd page in this case.
582    //
583    // 15 bytes seems to be a (very) safe value for max instruction size.
584    bool pc_is_near_addr =
585      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
586    bool instr_spans_page_boundary =
587      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
588                       (intptr_t) page_size) > 0);
589
590    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
591      static volatile address last_addr =
592        (address) os::non_memory_address_word();
593
594      // In conservative mode, don't unguard unless the address is in the VM
595      if (addr != last_addr &&
596          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
597
598        // Make memory rwx and retry
599        address page_start =
600          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
601        bool res = os::protect_memory((char*) page_start, page_size,
602                                      os::MEM_PROT_RWX);
603
604        if (PrintMiscellaneous && Verbose) {
605          char buf[256];
606          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
607                       "at " INTPTR_FORMAT
608                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
609                       page_start, (res ? "success" : "failed"), errno);
610          tty->print_raw_cr(buf);
611        }
612        stub = pc;
613
614        // Set last_addr so if we fault again at the same address, we don't end
615        // up in an endless loop.
616        //
617        // There are two potential complications here.  Two threads trapping at
618        // the same address at the same time could cause one of the threads to
619        // think it already unguarded, and abort the VM.  Likely very rare.
620        //
621        // The other race involves two threads alternately trapping at
622        // different addresses and failing to unguard the page, resulting in
623        // an endless loop.  This condition is probably even more unlikely than
624        // the first.
625        //
626        // Although both cases could be avoided by using locks or thread local
627        // last_addr, these solutions are unnecessary complication: this
628        // handler is a best-effort safety net, not a complete solution.  It is
629        // disabled by default and should only be used as a workaround in case
630        // we missed any no-execute-unsafe VM code.
631
632        last_addr = addr;
633      }
634    }
635  }
636
637  if (stub != NULL) {
638    // save all thread context in case we need to restore it
639
640    if (thread != NULL) thread->set_saved_exception_pc(pc);
641    // 12/02/99: On Sparc it appears that the full context is also saved
642    // but as yet, no one looks at or restores that saved context
643    // factor me: setPC
644    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
645    return true;
646  }
647
648  // signal-chaining
649  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
650    return true;
651  }
652
653#ifndef AMD64
654  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
655  // Handle an undefined selector caused by an attempt to assign
656  // fs in libthread getipriptr(). With the current libthread design every 512
657  // thread creations the LDT for a private thread data structure is extended
658  // and thre is a hazard that and another thread attempting a thread creation
659  // will use a stale LDTR that doesn't reflect the structure's growth,
660  // causing a GP fault.
661  // Enforce the probable limit of passes through here to guard against an
662  // infinite loop if some other move to fs caused the GP fault. Note that
663  // this loop counter is ultimately a heuristic as it is possible for
664  // more than one thread to generate this fault at a time in an MP system.
665  // In the case of the loop count being exceeded or if the poll fails
666  // just fall through to a fatal error.
667  // If there is some other source of T_GPFLT traps and the text at EIP is
668  // unreadable this code will loop infinitely until the stack is exausted.
669  // The key to diagnosis in this case is to look for the bottom signal handler
670  // frame.
671
672  if(! IgnoreLibthreadGPFault) {
673    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
674      const unsigned char *p =
675                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
676
677      // Expected instruction?
678
679      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
680
681        Atomic::inc(&ldtr_refresh);
682
683        // Infinite loop?
684
685        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
686
687          // No, force scheduling to get a fresh view of the LDTR
688
689          if(poll(NULL, 0, 10) == 0) {
690
691            // Retry the move
692
693            return false;
694          }
695        }
696      }
697    }
698  }
699#endif // !AMD64
700
701  if (!abort_if_unrecognized) {
702    // caller wants another chance, so give it to him
703    return false;
704  }
705
706  if (!os::Solaris::libjsig_is_loaded) {
707    struct sigaction oldAct;
708    sigaction(sig, (struct sigaction *)0, &oldAct);
709    if (oldAct.sa_sigaction != signalHandler) {
710      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
711                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
712      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
713    }
714  }
715
716  if (pc == NULL && uc != NULL) {
717    pc = (address) uc->uc_mcontext.gregs[REG_PC];
718  }
719
720  // unmask current signal
721  sigset_t newset;
722  sigemptyset(&newset);
723  sigaddset(&newset, sig);
724  sigprocmask(SIG_UNBLOCK, &newset, NULL);
725
726  // Determine which sort of error to throw.  Out of swap may signal
727  // on the thread stack, which could get a mapping error when touched.
728  address addr = (address) info->si_addr;
729  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
730    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
731  }
732
733  VMError err(t, sig, pc, info, ucVoid);
734  err.report_and_die();
735
736  ShouldNotReachHere();
737}
738
739void os::print_context(outputStream *st, void *context) {
740  if (context == NULL) return;
741
742  ucontext_t *uc = (ucontext_t*)context;
743  st->print_cr("Registers:");
744#ifdef AMD64
745  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
746  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
747  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
748  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
749  st->cr();
750  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
751  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
752  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
753  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
754  st->cr();
755  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
756  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
757  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
758  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
759  st->cr();
760  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
761  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
762  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
763  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
764  st->cr();
765  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
766  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
767#else
768  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
769  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
770  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
771  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
772  st->cr();
773  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
774  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
775  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
776  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
777  st->cr();
778  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
779  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
780#endif // AMD64
781  st->cr();
782  st->cr();
783
784  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
785  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
786  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
787  st->cr();
788
789  // Note: it may be unsafe to inspect memory near pc. For example, pc may
790  // point to garbage if entry point in an nmethod is corrupted. Leave
791  // this at the end, and hope for the best.
792  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
793  address pc = epc.pc();
794  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
795  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
796}
797
798void os::print_register_info(outputStream *st, void *context) {
799  if (context == NULL) return;
800
801  ucontext_t *uc = (ucontext_t*)context;
802
803  st->print_cr("Register to memory mapping:");
804  st->cr();
805
806  // this is horrendously verbose but the layout of the registers in the
807  // context does not match how we defined our abstract Register set, so
808  // we can't just iterate through the gregs area
809
810  // this is only for the "general purpose" registers
811
812#ifdef AMD64
813  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
814  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
815  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
816  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
817  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
818  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
819  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
820  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
821  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
822  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
823  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
824  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
825  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
826  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
827  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
828  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
829#else
830  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
831  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
832  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
833  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
834  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
835  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
836  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
837  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
838#endif
839
840  st->cr();
841}
842
843
844#ifdef AMD64
845void os::Solaris::init_thread_fpu_state(void) {
846  // Nothing to do
847}
848#else
849// From solaris_i486.s
850extern "C" void fixcw();
851
852void os::Solaris::init_thread_fpu_state(void) {
853  // Set fpu to 53 bit precision. This happens too early to use a stub.
854  fixcw();
855}
856
857// These routines are the initial value of atomic_xchg_entry(),
858// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
859// until initialization is complete.
860// TODO - replace with .il implementation when compiler supports it.
861
862typedef jint  xchg_func_t        (jint,  volatile jint*);
863typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
864typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
865typedef jint  add_func_t         (jint,  volatile jint*);
866
867jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
868  // try to use the stub:
869  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
870
871  if (func != NULL) {
872    os::atomic_xchg_func = func;
873    return (*func)(exchange_value, dest);
874  }
875  assert(Threads::number_of_threads() == 0, "for bootstrap only");
876
877  jint old_value = *dest;
878  *dest = exchange_value;
879  return old_value;
880}
881
882jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
883  // try to use the stub:
884  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
885
886  if (func != NULL) {
887    os::atomic_cmpxchg_func = func;
888    return (*func)(exchange_value, dest, compare_value);
889  }
890  assert(Threads::number_of_threads() == 0, "for bootstrap only");
891
892  jint old_value = *dest;
893  if (old_value == compare_value)
894    *dest = exchange_value;
895  return old_value;
896}
897
898jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
899  // try to use the stub:
900  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
901
902  if (func != NULL) {
903    os::atomic_cmpxchg_long_func = func;
904    return (*func)(exchange_value, dest, compare_value);
905  }
906  assert(Threads::number_of_threads() == 0, "for bootstrap only");
907
908  jlong old_value = *dest;
909  if (old_value == compare_value)
910    *dest = exchange_value;
911  return old_value;
912}
913
914jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
915  // try to use the stub:
916  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
917
918  if (func != NULL) {
919    os::atomic_add_func = func;
920    return (*func)(add_value, dest);
921  }
922  assert(Threads::number_of_threads() == 0, "for bootstrap only");
923
924  return (*dest) += add_value;
925}
926
927xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
928cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
929cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
930add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
931
932extern "C" void _solaris_raw_setup_fpu(address ptr);
933void os::setup_fpu() {
934  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
935  _solaris_raw_setup_fpu(fpu_cntrl);
936}
937#endif // AMD64
938
939#ifndef PRODUCT
940void os::verify_stack_alignment() {
941#ifdef AMD64
942  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
943#endif
944}
945#endif
946