os_solaris_x86.cpp revision 3890:d2f8c38e543d
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_solaris.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_solaris.inline.hpp"
36#include "os_share_solaris.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/extendedPC.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/interfaceSupport.hpp"
44#include "runtime/java.hpp"
45#include "runtime/javaCalls.hpp"
46#include "runtime/mutexLocker.hpp"
47#include "runtime/osThread.hpp"
48#include "runtime/sharedRuntime.hpp"
49#include "runtime/stubRoutines.hpp"
50#include "runtime/thread.inline.hpp"
51#include "runtime/timer.hpp"
52#include "utilities/events.hpp"
53#include "utilities/vmError.hpp"
54
55// put OS-includes here
56# include <sys/types.h>
57# include <sys/mman.h>
58# include <pthread.h>
59# include <signal.h>
60# include <setjmp.h>
61# include <errno.h>
62# include <dlfcn.h>
63# include <stdio.h>
64# include <unistd.h>
65# include <sys/resource.h>
66# include <thread.h>
67# include <sys/stat.h>
68# include <sys/time.h>
69# include <sys/filio.h>
70# include <sys/utsname.h>
71# include <sys/systeminfo.h>
72# include <sys/socket.h>
73# include <sys/trap.h>
74# include <sys/lwp.h>
75# include <pwd.h>
76# include <poll.h>
77# include <sys/lwp.h>
78# include <procfs.h>     //  see comment in <sys/procfs.h>
79
80#ifndef AMD64
81// QQQ seems useless at this point
82# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
83#endif // AMD64
84# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
85
86
87#define MAX_PATH (2 * K)
88
89// Minimum stack size for the VM.  It's easier to document a constant value
90// but it's different for x86 and sparc because the page sizes are different.
91#ifdef AMD64
92size_t os::Solaris::min_stack_allowed = 224*K;
93#define REG_SP REG_RSP
94#define REG_PC REG_RIP
95#define REG_FP REG_RBP
96#else
97size_t os::Solaris::min_stack_allowed = 64*K;
98#define REG_SP UESP
99#define REG_PC EIP
100#define REG_FP EBP
101// 4900493 counter to prevent runaway LDTR refresh attempt
102
103static volatile int ldtr_refresh = 0;
104// the libthread instruction that faults because of the stale LDTR
105
106static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
107                       };
108#endif // AMD64
109
110char* os::non_memory_address_word() {
111  // Must never look like an address returned by reserve_memory,
112  // even in its subfields (as defined by the CPU immediate fields,
113  // if the CPU splits constants across multiple instructions).
114  return (char*) -1;
115}
116
117//
118// Validate a ucontext retrieved from walking a uc_link of a ucontext.
119// There are issues with libthread giving out uc_links for different threads
120// on the same uc_link chain and bad or circular links.
121//
122bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
123  if (valid >= suspect ||
124      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
125      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
126      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
127    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
128    return false;
129  }
130
131  if (thread->is_Java_thread()) {
132    if (!valid_stack_address(thread, (address)suspect)) {
133      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
134      return false;
135    }
136    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
137      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
138      return false;
139    }
140  }
141  return true;
142}
143
144// We will only follow one level of uc_link since there are libthread
145// issues with ucontext linking and it is better to be safe and just
146// let caller retry later.
147ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
148  ucontext_t *uc) {
149
150  ucontext_t *retuc = NULL;
151
152  if (uc != NULL) {
153    if (uc->uc_link == NULL) {
154      // cannot validate without uc_link so accept current ucontext
155      retuc = uc;
156    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
157      // first ucontext is valid so try the next one
158      uc = uc->uc_link;
159      if (uc->uc_link == NULL) {
160        // cannot validate without uc_link so accept current ucontext
161        retuc = uc;
162      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
163        // the ucontext one level down is also valid so return it
164        retuc = uc;
165      }
166    }
167  }
168  return retuc;
169}
170
171// Assumes ucontext is valid
172ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
173  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
174}
175
176// Assumes ucontext is valid
177intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
178  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
179}
180
181// Assumes ucontext is valid
182intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
183  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
184}
185
186// For Forte Analyzer AsyncGetCallTrace profiling support - thread
187// is currently interrupted by SIGPROF.
188//
189// The difference between this and os::fetch_frame_from_context() is that
190// here we try to skip nested signal frames.
191ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
192  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
193
194  assert(thread != NULL, "just checking");
195  assert(ret_sp != NULL, "just checking");
196  assert(ret_fp != NULL, "just checking");
197
198  ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
199  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
200}
201
202ExtendedPC os::fetch_frame_from_context(void* ucVoid,
203                    intptr_t** ret_sp, intptr_t** ret_fp) {
204
205  ExtendedPC  epc;
206  ucontext_t *uc = (ucontext_t*)ucVoid;
207
208  if (uc != NULL) {
209    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
210    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
211    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
212  } else {
213    // construct empty ExtendedPC for return value checking
214    epc = ExtendedPC(NULL);
215    if (ret_sp) *ret_sp = (intptr_t *)NULL;
216    if (ret_fp) *ret_fp = (intptr_t *)NULL;
217  }
218
219  return epc;
220}
221
222frame os::fetch_frame_from_context(void* ucVoid) {
223  intptr_t* sp;
224  intptr_t* fp;
225  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
226  return frame(sp, fp, epc.pc());
227}
228
229frame os::get_sender_for_C_frame(frame* fr) {
230  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
231}
232
233extern "C" intptr_t *_get_current_sp();  // in .il file
234
235address os::current_stack_pointer() {
236  return (address)_get_current_sp();
237}
238
239extern "C" intptr_t *_get_current_fp();  // in .il file
240
241frame os::current_frame() {
242  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
243  frame myframe((intptr_t*)os::current_stack_pointer(),
244                (intptr_t*)fp,
245                CAST_FROM_FN_PTR(address, os::current_frame));
246  if (os::is_first_C_frame(&myframe)) {
247    // stack is not walkable
248    frame ret; // This will be a null useless frame
249    return ret;
250  } else {
251    return os::get_sender_for_C_frame(&myframe);
252  }
253}
254
255// This is a simple callback that just fetches a PC for an interrupted thread.
256// The thread need not be suspended and the fetched PC is just a hint.
257// This one is currently used for profiling the VMThread ONLY!
258
259// Must be synchronous
260void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
261  Thread*     thread = args->thread();
262  ucontext_t* uc     = args->ucontext();
263  intptr_t* sp;
264
265  assert(ProfileVM && thread->is_VM_thread(), "just checking");
266
267  ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
268  _addr = new_addr;
269}
270
271static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
272  char lwpstatusfile[PROCFILE_LENGTH];
273  int lwpfd, err;
274
275  if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
276    return (err);
277  if (*flags == TRS_LWPID) {
278    sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
279            *lwp);
280    if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
281      perror("thr_mutator_status: open lwpstatus");
282      return (EINVAL);
283    }
284    if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
285        sizeof (lwpstatus_t)) {
286      perror("thr_mutator_status: read lwpstatus");
287      (void) close(lwpfd);
288      return (EINVAL);
289    }
290    (void) close(lwpfd);
291  }
292  return (0);
293}
294
295#ifndef AMD64
296
297// Detecting SSE support by OS
298// From solaris_i486.s
299extern "C" bool sse_check();
300extern "C" bool sse_unavailable();
301
302enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
303static int sse_status = SSE_UNKNOWN;
304
305
306static void  check_for_sse_support() {
307  if (!VM_Version::supports_sse()) {
308    sse_status = SSE_NOT_SUPPORTED;
309    return;
310  }
311  // looking for _sse_hw in libc.so, if it does not exist or
312  // the value (int) is 0, OS has no support for SSE
313  int *sse_hwp;
314  void *h;
315
316  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
317    //open failed, presume no support for SSE
318    sse_status = SSE_NOT_SUPPORTED;
319    return;
320  }
321  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
322    sse_status = SSE_NOT_SUPPORTED;
323  } else if (*sse_hwp == 0) {
324    sse_status = SSE_NOT_SUPPORTED;
325  }
326  dlclose(h);
327
328  if (sse_status == SSE_UNKNOWN) {
329    bool (*try_sse)() = (bool (*)())sse_check;
330    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
331  }
332
333}
334
335#endif // AMD64
336
337bool os::supports_sse() {
338#ifdef AMD64
339  return true;
340#else
341  if (sse_status == SSE_UNKNOWN)
342    check_for_sse_support();
343  return sse_status == SSE_SUPPORTED;
344#endif // AMD64
345}
346
347bool os::is_allocatable(size_t bytes) {
348#ifdef AMD64
349  return true;
350#else
351
352  if (bytes < 2 * G) {
353    return true;
354  }
355
356  char* addr = reserve_memory(bytes, NULL);
357
358  if (addr != NULL) {
359    release_memory(addr, bytes);
360  }
361
362  return addr != NULL;
363#endif // AMD64
364
365}
366
367extern "C" void Fetch32PFI () ;
368extern "C" void Fetch32Resume () ;
369#ifdef AMD64
370extern "C" void FetchNPFI () ;
371extern "C" void FetchNResume () ;
372#endif // AMD64
373
374extern "C" JNIEXPORT int
375JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
376                          int abort_if_unrecognized) {
377  ucontext_t* uc = (ucontext_t*) ucVoid;
378
379#ifndef AMD64
380  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
381    // the SSE instruction faulted. supports_sse() need return false.
382    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
383    return true;
384  }
385#endif // !AMD64
386
387  Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
388
389  SignalHandlerMark shm(t);
390
391  if(sig == SIGPIPE || sig == SIGXFSZ) {
392    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
393      return true;
394    } else {
395      if (PrintMiscellaneous && (WizardMode || Verbose)) {
396        char buf[64];
397        warning("Ignoring %s - see 4229104 or 6499219",
398                os::exception_name(sig, buf, sizeof(buf)));
399
400      }
401      return true;
402    }
403  }
404
405  JavaThread* thread = NULL;
406  VMThread* vmthread = NULL;
407
408  if (os::Solaris::signal_handlers_are_installed) {
409    if (t != NULL ){
410      if(t->is_Java_thread()) {
411        thread = (JavaThread*)t;
412      }
413      else if(t->is_VM_thread()){
414        vmthread = (VMThread *)t;
415      }
416    }
417  }
418
419  guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
420
421  if (sig == os::Solaris::SIGasync()) {
422    if(thread){
423      OSThread::InterruptArguments args(thread, uc);
424      thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
425      return true;
426    }
427    else if(vmthread){
428      OSThread::InterruptArguments args(vmthread, uc);
429      vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
430      return true;
431    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
432      return true;
433    } else {
434      // If os::Solaris::SIGasync not chained, and this is a non-vm and
435      // non-java thread
436      return true;
437    }
438  }
439
440  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
441    // can't decode this kind of signal
442    info = NULL;
443  } else {
444    assert(sig == info->si_signo, "bad siginfo");
445  }
446
447  // decide if this trap can be handled by a stub
448  address stub = NULL;
449
450  address pc          = NULL;
451
452  //%note os_trap_1
453  if (info != NULL && uc != NULL && thread != NULL) {
454    // factor me: getPCfromContext
455    pc = (address) uc->uc_mcontext.gregs[REG_PC];
456
457    // SafeFetch32() support
458    if (pc == (address) Fetch32PFI) {
459      uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
460      return true ;
461    }
462#ifdef AMD64
463    if (pc == (address) FetchNPFI) {
464       uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
465       return true ;
466    }
467#endif // AMD64
468
469    // Handle ALL stack overflow variations here
470    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
471      address addr = (address) info->si_addr;
472      if (thread->in_stack_yellow_zone(addr)) {
473        thread->disable_stack_yellow_zone();
474        if (thread->thread_state() == _thread_in_Java) {
475          // Throw a stack overflow exception.  Guard pages will be reenabled
476          // while unwinding the stack.
477          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
478        } else {
479          // Thread was in the vm or native code.  Return and try to finish.
480          return true;
481        }
482      } else if (thread->in_stack_red_zone(addr)) {
483        // Fatal red zone violation.  Disable the guard pages and fall through
484        // to handle_unexpected_exception way down below.
485        thread->disable_stack_red_zone();
486        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
487      }
488    }
489
490    if (thread->thread_state() == _thread_in_vm) {
491      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
492        stub = StubRoutines::handler_for_unsafe_access();
493      }
494    }
495
496    if (thread->thread_state() == _thread_in_Java) {
497      // Support Safepoint Polling
498      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
499        stub = SharedRuntime::get_poll_stub(pc);
500      }
501      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
502        // BugId 4454115: A read from a MappedByteBuffer can fault
503        // here if the underlying file has been truncated.
504        // Do not crash the VM in such a case.
505        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
506        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
507        if (nm != NULL && nm->has_unsafe_access()) {
508          stub = StubRoutines::handler_for_unsafe_access();
509        }
510      }
511      else
512      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
513        // integer divide by zero
514        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
515      }
516#ifndef AMD64
517      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
518        // floating-point divide by zero
519        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
520      }
521      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
522        // The encoding of D2I in i486.ad can cause an exception prior
523        // to the fist instruction if there was an invalid operation
524        // pending. We want to dismiss that exception. From the win_32
525        // side it also seems that if it really was the fist causing
526        // the exception that we do the d2i by hand with different
527        // rounding. Seems kind of weird. QQQ TODO
528        // Note that we take the exception at the NEXT floating point instruction.
529        if (pc[0] == 0xDB) {
530            assert(pc[0] == 0xDB, "not a FIST opcode");
531            assert(pc[1] == 0x14, "not a FIST opcode");
532            assert(pc[2] == 0x24, "not a FIST opcode");
533            return true;
534        } else {
535            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
536            assert(pc[-2] == 0x14, "not an flt invalid opcode");
537            assert(pc[-1] == 0x24, "not an flt invalid opcode");
538        }
539      }
540      else if (sig == SIGFPE ) {
541        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
542      }
543#endif // !AMD64
544
545        // QQQ It doesn't seem that we need to do this on x86 because we should be able
546        // to return properly from the handler without this extra stuff on the back side.
547
548      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
549        // Determination of interpreter/vtable stub/compiled code null exception
550        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
551      }
552    }
553
554    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
555    // and the heap gets shrunk before the field access.
556    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
557      address addr = JNI_FastGetField::find_slowcase_pc(pc);
558      if (addr != (address)-1) {
559        stub = addr;
560      }
561    }
562
563    // Check to see if we caught the safepoint code in the
564    // process of write protecting the memory serialization page.
565    // It write enables the page immediately after protecting it
566    // so we can just return to retry the write.
567    if ((sig == SIGSEGV) &&
568        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
569      // Block current thread until the memory serialize page permission restored.
570      os::block_on_serialize_page_trap();
571      return true;
572    }
573  }
574
575  // Execution protection violation
576  //
577  // Preventative code for future versions of Solaris which may
578  // enable execution protection when running the 32-bit VM on AMD64.
579  //
580  // This should be kept as the last step in the triage.  We don't
581  // have a dedicated trap number for a no-execute fault, so be
582  // conservative and allow other handlers the first shot.
583  //
584  // Note: We don't test that info->si_code == SEGV_ACCERR here.
585  // this si_code is so generic that it is almost meaningless; and
586  // the si_code for this condition may change in the future.
587  // Furthermore, a false-positive should be harmless.
588  if (UnguardOnExecutionViolation > 0 &&
589      (sig == SIGSEGV || sig == SIGBUS) &&
590      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
591    int page_size = os::vm_page_size();
592    address addr = (address) info->si_addr;
593    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
594    // Make sure the pc and the faulting address are sane.
595    //
596    // If an instruction spans a page boundary, and the page containing
597    // the beginning of the instruction is executable but the following
598    // page is not, the pc and the faulting address might be slightly
599    // different - we still want to unguard the 2nd page in this case.
600    //
601    // 15 bytes seems to be a (very) safe value for max instruction size.
602    bool pc_is_near_addr =
603      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
604    bool instr_spans_page_boundary =
605      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
606                       (intptr_t) page_size) > 0);
607
608    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
609      static volatile address last_addr =
610        (address) os::non_memory_address_word();
611
612      // In conservative mode, don't unguard unless the address is in the VM
613      if (addr != last_addr &&
614          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
615
616        // Make memory rwx and retry
617        address page_start =
618          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
619        bool res = os::protect_memory((char*) page_start, page_size,
620                                      os::MEM_PROT_RWX);
621
622        if (PrintMiscellaneous && Verbose) {
623          char buf[256];
624          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
625                       "at " INTPTR_FORMAT
626                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
627                       page_start, (res ? "success" : "failed"), errno);
628          tty->print_raw_cr(buf);
629        }
630        stub = pc;
631
632        // Set last_addr so if we fault again at the same address, we don't end
633        // up in an endless loop.
634        //
635        // There are two potential complications here.  Two threads trapping at
636        // the same address at the same time could cause one of the threads to
637        // think it already unguarded, and abort the VM.  Likely very rare.
638        //
639        // The other race involves two threads alternately trapping at
640        // different addresses and failing to unguard the page, resulting in
641        // an endless loop.  This condition is probably even more unlikely than
642        // the first.
643        //
644        // Although both cases could be avoided by using locks or thread local
645        // last_addr, these solutions are unnecessary complication: this
646        // handler is a best-effort safety net, not a complete solution.  It is
647        // disabled by default and should only be used as a workaround in case
648        // we missed any no-execute-unsafe VM code.
649
650        last_addr = addr;
651      }
652    }
653  }
654
655  if (stub != NULL) {
656    // save all thread context in case we need to restore it
657
658    if (thread != NULL) thread->set_saved_exception_pc(pc);
659    // 12/02/99: On Sparc it appears that the full context is also saved
660    // but as yet, no one looks at or restores that saved context
661    // factor me: setPC
662    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
663    return true;
664  }
665
666  // signal-chaining
667  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
668    return true;
669  }
670
671#ifndef AMD64
672  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
673  // Handle an undefined selector caused by an attempt to assign
674  // fs in libthread getipriptr(). With the current libthread design every 512
675  // thread creations the LDT for a private thread data structure is extended
676  // and thre is a hazard that and another thread attempting a thread creation
677  // will use a stale LDTR that doesn't reflect the structure's growth,
678  // causing a GP fault.
679  // Enforce the probable limit of passes through here to guard against an
680  // infinite loop if some other move to fs caused the GP fault. Note that
681  // this loop counter is ultimately a heuristic as it is possible for
682  // more than one thread to generate this fault at a time in an MP system.
683  // In the case of the loop count being exceeded or if the poll fails
684  // just fall through to a fatal error.
685  // If there is some other source of T_GPFLT traps and the text at EIP is
686  // unreadable this code will loop infinitely until the stack is exausted.
687  // The key to diagnosis in this case is to look for the bottom signal handler
688  // frame.
689
690  if(! IgnoreLibthreadGPFault) {
691    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
692      const unsigned char *p =
693                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
694
695      // Expected instruction?
696
697      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
698
699        Atomic::inc(&ldtr_refresh);
700
701        // Infinite loop?
702
703        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
704
705          // No, force scheduling to get a fresh view of the LDTR
706
707          if(poll(NULL, 0, 10) == 0) {
708
709            // Retry the move
710
711            return false;
712          }
713        }
714      }
715    }
716  }
717#endif // !AMD64
718
719  if (!abort_if_unrecognized) {
720    // caller wants another chance, so give it to him
721    return false;
722  }
723
724  if (!os::Solaris::libjsig_is_loaded) {
725    struct sigaction oldAct;
726    sigaction(sig, (struct sigaction *)0, &oldAct);
727    if (oldAct.sa_sigaction != signalHandler) {
728      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
729                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
730      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
731    }
732  }
733
734  if (pc == NULL && uc != NULL) {
735    pc = (address) uc->uc_mcontext.gregs[REG_PC];
736  }
737
738  // unmask current signal
739  sigset_t newset;
740  sigemptyset(&newset);
741  sigaddset(&newset, sig);
742  sigprocmask(SIG_UNBLOCK, &newset, NULL);
743
744  // Determine which sort of error to throw.  Out of swap may signal
745  // on the thread stack, which could get a mapping error when touched.
746  address addr = (address) info->si_addr;
747  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
748    vm_exit_out_of_memory(0, "Out of swap space to map in thread stack.");
749  }
750
751  VMError err(t, sig, pc, info, ucVoid);
752  err.report_and_die();
753
754  ShouldNotReachHere();
755}
756
757void os::print_context(outputStream *st, void *context) {
758  if (context == NULL) return;
759
760  ucontext_t *uc = (ucontext_t*)context;
761  st->print_cr("Registers:");
762#ifdef AMD64
763  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
764  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
765  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
766  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
767  st->cr();
768  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
769  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
770  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
771  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
772  st->cr();
773  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
774  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
775  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
776  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
777  st->cr();
778  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
779  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
780  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
781  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
782  st->cr();
783  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
784  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
785#else
786  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
787  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
788  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
789  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
790  st->cr();
791  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
792  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
793  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
794  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
795  st->cr();
796  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
797  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
798#endif // AMD64
799  st->cr();
800  st->cr();
801
802  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
803  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
804  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
805  st->cr();
806
807  // Note: it may be unsafe to inspect memory near pc. For example, pc may
808  // point to garbage if entry point in an nmethod is corrupted. Leave
809  // this at the end, and hope for the best.
810  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
811  address pc = epc.pc();
812  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
813  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
814}
815
816void os::print_register_info(outputStream *st, void *context) {
817  if (context == NULL) return;
818
819  ucontext_t *uc = (ucontext_t*)context;
820
821  st->print_cr("Register to memory mapping:");
822  st->cr();
823
824  // this is horrendously verbose but the layout of the registers in the
825  // context does not match how we defined our abstract Register set, so
826  // we can't just iterate through the gregs area
827
828  // this is only for the "general purpose" registers
829
830#ifdef AMD64
831  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
832  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
833  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
834  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
835  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
836  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
837  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
838  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
839  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
840  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
841  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
842  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
843  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
844  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
845  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
846  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
847#else
848  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
849  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
850  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
851  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
852  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
853  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
854  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
855  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
856#endif
857
858  st->cr();
859}
860
861
862#ifdef AMD64
863void os::Solaris::init_thread_fpu_state(void) {
864  // Nothing to do
865}
866#else
867// From solaris_i486.s
868extern "C" void fixcw();
869
870void os::Solaris::init_thread_fpu_state(void) {
871  // Set fpu to 53 bit precision. This happens too early to use a stub.
872  fixcw();
873}
874
875// These routines are the initial value of atomic_xchg_entry(),
876// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
877// until initialization is complete.
878// TODO - replace with .il implementation when compiler supports it.
879
880typedef jint  xchg_func_t        (jint,  volatile jint*);
881typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
882typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
883typedef jint  add_func_t         (jint,  volatile jint*);
884
885jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
886  // try to use the stub:
887  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
888
889  if (func != NULL) {
890    os::atomic_xchg_func = func;
891    return (*func)(exchange_value, dest);
892  }
893  assert(Threads::number_of_threads() == 0, "for bootstrap only");
894
895  jint old_value = *dest;
896  *dest = exchange_value;
897  return old_value;
898}
899
900jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
901  // try to use the stub:
902  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
903
904  if (func != NULL) {
905    os::atomic_cmpxchg_func = func;
906    return (*func)(exchange_value, dest, compare_value);
907  }
908  assert(Threads::number_of_threads() == 0, "for bootstrap only");
909
910  jint old_value = *dest;
911  if (old_value == compare_value)
912    *dest = exchange_value;
913  return old_value;
914}
915
916jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
917  // try to use the stub:
918  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
919
920  if (func != NULL) {
921    os::atomic_cmpxchg_long_func = func;
922    return (*func)(exchange_value, dest, compare_value);
923  }
924  assert(Threads::number_of_threads() == 0, "for bootstrap only");
925
926  jlong old_value = *dest;
927  if (old_value == compare_value)
928    *dest = exchange_value;
929  return old_value;
930}
931
932jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
933  // try to use the stub:
934  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
935
936  if (func != NULL) {
937    os::atomic_add_func = func;
938    return (*func)(add_value, dest);
939  }
940  assert(Threads::number_of_threads() == 0, "for bootstrap only");
941
942  return (*dest) += add_value;
943}
944
945xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
946cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
947cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
948add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
949
950extern "C" void _solaris_raw_setup_fpu(address ptr);
951void os::setup_fpu() {
952  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
953  _solaris_raw_setup_fpu(fpu_cntrl);
954}
955#endif // AMD64
956
957#ifndef PRODUCT
958void os::verify_stack_alignment() {
959#ifdef AMD64
960  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
961#endif
962}
963#endif
964