os_solaris_x86.cpp revision 3171:da4be62fb889
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "assembler_x86.inline.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_solaris.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_solaris.inline.hpp"
36#include "nativeInst_x86.hpp"
37#include "os_share_solaris.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/timer.hpp"
52#include "thread_solaris.inline.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55#ifdef COMPILER1
56#include "c1/c1_Runtime1.hpp"
57#endif
58#ifdef COMPILER2
59#include "opto/runtime.hpp"
60#endif
61
62// put OS-includes here
63# include <sys/types.h>
64# include <sys/mman.h>
65# include <pthread.h>
66# include <signal.h>
67# include <setjmp.h>
68# include <errno.h>
69# include <dlfcn.h>
70# include <stdio.h>
71# include <unistd.h>
72# include <sys/resource.h>
73# include <thread.h>
74# include <sys/stat.h>
75# include <sys/time.h>
76# include <sys/filio.h>
77# include <sys/utsname.h>
78# include <sys/systeminfo.h>
79# include <sys/socket.h>
80# include <sys/trap.h>
81# include <sys/lwp.h>
82# include <pwd.h>
83# include <poll.h>
84# include <sys/lwp.h>
85# include <procfs.h>     //  see comment in <sys/procfs.h>
86
87#ifndef AMD64
88// QQQ seems useless at this point
89# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
90#endif // AMD64
91# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
92
93
94#define MAX_PATH (2 * K)
95
96// Minimum stack size for the VM.  It's easier to document a constant value
97// but it's different for x86 and sparc because the page sizes are different.
98#ifdef AMD64
99size_t os::Solaris::min_stack_allowed = 224*K;
100#define REG_SP REG_RSP
101#define REG_PC REG_RIP
102#define REG_FP REG_RBP
103#else
104size_t os::Solaris::min_stack_allowed = 64*K;
105#define REG_SP UESP
106#define REG_PC EIP
107#define REG_FP EBP
108// 4900493 counter to prevent runaway LDTR refresh attempt
109
110static volatile int ldtr_refresh = 0;
111// the libthread instruction that faults because of the stale LDTR
112
113static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
114                       };
115#endif // AMD64
116
117char* os::non_memory_address_word() {
118  // Must never look like an address returned by reserve_memory,
119  // even in its subfields (as defined by the CPU immediate fields,
120  // if the CPU splits constants across multiple instructions).
121  return (char*) -1;
122}
123
124//
125// Validate a ucontext retrieved from walking a uc_link of a ucontext.
126// There are issues with libthread giving out uc_links for different threads
127// on the same uc_link chain and bad or circular links.
128//
129bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
130  if (valid >= suspect ||
131      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
132      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
133      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
134    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
135    return false;
136  }
137
138  if (thread->is_Java_thread()) {
139    if (!valid_stack_address(thread, (address)suspect)) {
140      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
141      return false;
142    }
143    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
144      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
145      return false;
146    }
147  }
148  return true;
149}
150
151// We will only follow one level of uc_link since there are libthread
152// issues with ucontext linking and it is better to be safe and just
153// let caller retry later.
154ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
155  ucontext_t *uc) {
156
157  ucontext_t *retuc = NULL;
158
159  if (uc != NULL) {
160    if (uc->uc_link == NULL) {
161      // cannot validate without uc_link so accept current ucontext
162      retuc = uc;
163    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
164      // first ucontext is valid so try the next one
165      uc = uc->uc_link;
166      if (uc->uc_link == NULL) {
167        // cannot validate without uc_link so accept current ucontext
168        retuc = uc;
169      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
170        // the ucontext one level down is also valid so return it
171        retuc = uc;
172      }
173    }
174  }
175  return retuc;
176}
177
178// Assumes ucontext is valid
179ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
180  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
181}
182
183// Assumes ucontext is valid
184intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
185  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
186}
187
188// Assumes ucontext is valid
189intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
190  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
191}
192
193// For Forte Analyzer AsyncGetCallTrace profiling support - thread
194// is currently interrupted by SIGPROF.
195//
196// The difference between this and os::fetch_frame_from_context() is that
197// here we try to skip nested signal frames.
198ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
199  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
200
201  assert(thread != NULL, "just checking");
202  assert(ret_sp != NULL, "just checking");
203  assert(ret_fp != NULL, "just checking");
204
205  ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
206  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
207}
208
209ExtendedPC os::fetch_frame_from_context(void* ucVoid,
210                    intptr_t** ret_sp, intptr_t** ret_fp) {
211
212  ExtendedPC  epc;
213  ucontext_t *uc = (ucontext_t*)ucVoid;
214
215  if (uc != NULL) {
216    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
217    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
218    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
219  } else {
220    // construct empty ExtendedPC for return value checking
221    epc = ExtendedPC(NULL);
222    if (ret_sp) *ret_sp = (intptr_t *)NULL;
223    if (ret_fp) *ret_fp = (intptr_t *)NULL;
224  }
225
226  return epc;
227}
228
229frame os::fetch_frame_from_context(void* ucVoid) {
230  intptr_t* sp;
231  intptr_t* fp;
232  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
233  return frame(sp, fp, epc.pc());
234}
235
236frame os::get_sender_for_C_frame(frame* fr) {
237  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
238}
239
240extern "C" intptr_t *_get_current_sp();  // in .il file
241
242address os::current_stack_pointer() {
243  return (address)_get_current_sp();
244}
245
246extern "C" intptr_t *_get_current_fp();  // in .il file
247
248frame os::current_frame() {
249  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
250  frame myframe((intptr_t*)os::current_stack_pointer(),
251                (intptr_t*)fp,
252                CAST_FROM_FN_PTR(address, os::current_frame));
253  if (os::is_first_C_frame(&myframe)) {
254    // stack is not walkable
255    frame ret; // This will be a null useless frame
256    return ret;
257  } else {
258    return os::get_sender_for_C_frame(&myframe);
259  }
260}
261
262// This is a simple callback that just fetches a PC for an interrupted thread.
263// The thread need not be suspended and the fetched PC is just a hint.
264// This one is currently used for profiling the VMThread ONLY!
265
266// Must be synchronous
267void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
268  Thread*     thread = args->thread();
269  ucontext_t* uc     = args->ucontext();
270  intptr_t* sp;
271
272  assert(ProfileVM && thread->is_VM_thread(), "just checking");
273
274  ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
275  _addr = new_addr;
276}
277
278static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
279  char lwpstatusfile[PROCFILE_LENGTH];
280  int lwpfd, err;
281
282  if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
283    return (err);
284  if (*flags == TRS_LWPID) {
285    sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
286            *lwp);
287    if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
288      perror("thr_mutator_status: open lwpstatus");
289      return (EINVAL);
290    }
291    if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
292        sizeof (lwpstatus_t)) {
293      perror("thr_mutator_status: read lwpstatus");
294      (void) close(lwpfd);
295      return (EINVAL);
296    }
297    (void) close(lwpfd);
298  }
299  return (0);
300}
301
302#ifndef AMD64
303
304// Detecting SSE support by OS
305// From solaris_i486.s
306extern "C" bool sse_check();
307extern "C" bool sse_unavailable();
308
309enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
310static int sse_status = SSE_UNKNOWN;
311
312
313static void  check_for_sse_support() {
314  if (!VM_Version::supports_sse()) {
315    sse_status = SSE_NOT_SUPPORTED;
316    return;
317  }
318  // looking for _sse_hw in libc.so, if it does not exist or
319  // the value (int) is 0, OS has no support for SSE
320  int *sse_hwp;
321  void *h;
322
323  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
324    //open failed, presume no support for SSE
325    sse_status = SSE_NOT_SUPPORTED;
326    return;
327  }
328  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
329    sse_status = SSE_NOT_SUPPORTED;
330  } else if (*sse_hwp == 0) {
331    sse_status = SSE_NOT_SUPPORTED;
332  }
333  dlclose(h);
334
335  if (sse_status == SSE_UNKNOWN) {
336    bool (*try_sse)() = (bool (*)())sse_check;
337    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
338  }
339
340}
341
342#endif // AMD64
343
344bool os::supports_sse() {
345#ifdef AMD64
346  return true;
347#else
348  if (sse_status == SSE_UNKNOWN)
349    check_for_sse_support();
350  return sse_status == SSE_SUPPORTED;
351#endif // AMD64
352}
353
354bool os::is_allocatable(size_t bytes) {
355#ifdef AMD64
356  return true;
357#else
358
359  if (bytes < 2 * G) {
360    return true;
361  }
362
363  char* addr = reserve_memory(bytes, NULL);
364
365  if (addr != NULL) {
366    release_memory(addr, bytes);
367  }
368
369  return addr != NULL;
370#endif // AMD64
371
372}
373
374extern "C" void Fetch32PFI () ;
375extern "C" void Fetch32Resume () ;
376#ifdef AMD64
377extern "C" void FetchNPFI () ;
378extern "C" void FetchNResume () ;
379#endif // AMD64
380
381extern "C" JNIEXPORT int
382JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
383                          int abort_if_unrecognized) {
384  ucontext_t* uc = (ucontext_t*) ucVoid;
385
386#ifndef AMD64
387  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
388    // the SSE instruction faulted. supports_sse() need return false.
389    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
390    return true;
391  }
392#endif // !AMD64
393
394  Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
395
396  SignalHandlerMark shm(t);
397
398  if(sig == SIGPIPE || sig == SIGXFSZ) {
399    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
400      return true;
401    } else {
402      if (PrintMiscellaneous && (WizardMode || Verbose)) {
403        char buf[64];
404        warning("Ignoring %s - see 4229104 or 6499219",
405                os::exception_name(sig, buf, sizeof(buf)));
406
407      }
408      return true;
409    }
410  }
411
412  JavaThread* thread = NULL;
413  VMThread* vmthread = NULL;
414
415  if (os::Solaris::signal_handlers_are_installed) {
416    if (t != NULL ){
417      if(t->is_Java_thread()) {
418        thread = (JavaThread*)t;
419      }
420      else if(t->is_VM_thread()){
421        vmthread = (VMThread *)t;
422      }
423    }
424  }
425
426  guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
427
428  if (sig == os::Solaris::SIGasync()) {
429    if(thread){
430      OSThread::InterruptArguments args(thread, uc);
431      thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
432      return true;
433    }
434    else if(vmthread){
435      OSThread::InterruptArguments args(vmthread, uc);
436      vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
437      return true;
438    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
439      return true;
440    } else {
441      // If os::Solaris::SIGasync not chained, and this is a non-vm and
442      // non-java thread
443      return true;
444    }
445  }
446
447  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
448    // can't decode this kind of signal
449    info = NULL;
450  } else {
451    assert(sig == info->si_signo, "bad siginfo");
452  }
453
454  // decide if this trap can be handled by a stub
455  address stub = NULL;
456
457  address pc          = NULL;
458
459  //%note os_trap_1
460  if (info != NULL && uc != NULL && thread != NULL) {
461    // factor me: getPCfromContext
462    pc = (address) uc->uc_mcontext.gregs[REG_PC];
463
464    // SafeFetch32() support
465    if (pc == (address) Fetch32PFI) {
466      uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
467      return true ;
468    }
469#ifdef AMD64
470    if (pc == (address) FetchNPFI) {
471       uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
472       return true ;
473    }
474#endif // AMD64
475
476    // Handle ALL stack overflow variations here
477    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
478      address addr = (address) info->si_addr;
479      if (thread->in_stack_yellow_zone(addr)) {
480        thread->disable_stack_yellow_zone();
481        if (thread->thread_state() == _thread_in_Java) {
482          // Throw a stack overflow exception.  Guard pages will be reenabled
483          // while unwinding the stack.
484          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
485        } else {
486          // Thread was in the vm or native code.  Return and try to finish.
487          return true;
488        }
489      } else if (thread->in_stack_red_zone(addr)) {
490        // Fatal red zone violation.  Disable the guard pages and fall through
491        // to handle_unexpected_exception way down below.
492        thread->disable_stack_red_zone();
493        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
494      }
495    }
496
497    if (thread->thread_state() == _thread_in_vm) {
498      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
499        stub = StubRoutines::handler_for_unsafe_access();
500      }
501    }
502
503    if (thread->thread_state() == _thread_in_Java) {
504      // Support Safepoint Polling
505      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
506        stub = SharedRuntime::get_poll_stub(pc);
507      }
508      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
509        // BugId 4454115: A read from a MappedByteBuffer can fault
510        // here if the underlying file has been truncated.
511        // Do not crash the VM in such a case.
512        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
513        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
514        if (nm != NULL && nm->has_unsafe_access()) {
515          stub = StubRoutines::handler_for_unsafe_access();
516        }
517      }
518      else
519      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
520        // integer divide by zero
521        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
522      }
523#ifndef AMD64
524      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
525        // floating-point divide by zero
526        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
527      }
528      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
529        // The encoding of D2I in i486.ad can cause an exception prior
530        // to the fist instruction if there was an invalid operation
531        // pending. We want to dismiss that exception. From the win_32
532        // side it also seems that if it really was the fist causing
533        // the exception that we do the d2i by hand with different
534        // rounding. Seems kind of weird. QQQ TODO
535        // Note that we take the exception at the NEXT floating point instruction.
536        if (pc[0] == 0xDB) {
537            assert(pc[0] == 0xDB, "not a FIST opcode");
538            assert(pc[1] == 0x14, "not a FIST opcode");
539            assert(pc[2] == 0x24, "not a FIST opcode");
540            return true;
541        } else {
542            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
543            assert(pc[-2] == 0x14, "not an flt invalid opcode");
544            assert(pc[-1] == 0x24, "not an flt invalid opcode");
545        }
546      }
547      else if (sig == SIGFPE ) {
548        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
549      }
550#endif // !AMD64
551
552        // QQQ It doesn't seem that we need to do this on x86 because we should be able
553        // to return properly from the handler without this extra stuff on the back side.
554
555      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
556        // Determination of interpreter/vtable stub/compiled code null exception
557        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
558      }
559    }
560
561    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
562    // and the heap gets shrunk before the field access.
563    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
564      address addr = JNI_FastGetField::find_slowcase_pc(pc);
565      if (addr != (address)-1) {
566        stub = addr;
567      }
568    }
569
570    // Check to see if we caught the safepoint code in the
571    // process of write protecting the memory serialization page.
572    // It write enables the page immediately after protecting it
573    // so we can just return to retry the write.
574    if ((sig == SIGSEGV) &&
575        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
576      // Block current thread until the memory serialize page permission restored.
577      os::block_on_serialize_page_trap();
578      return true;
579    }
580  }
581
582  // Execution protection violation
583  //
584  // Preventative code for future versions of Solaris which may
585  // enable execution protection when running the 32-bit VM on AMD64.
586  //
587  // This should be kept as the last step in the triage.  We don't
588  // have a dedicated trap number for a no-execute fault, so be
589  // conservative and allow other handlers the first shot.
590  //
591  // Note: We don't test that info->si_code == SEGV_ACCERR here.
592  // this si_code is so generic that it is almost meaningless; and
593  // the si_code for this condition may change in the future.
594  // Furthermore, a false-positive should be harmless.
595  if (UnguardOnExecutionViolation > 0 &&
596      (sig == SIGSEGV || sig == SIGBUS) &&
597      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
598    int page_size = os::vm_page_size();
599    address addr = (address) info->si_addr;
600    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
601    // Make sure the pc and the faulting address are sane.
602    //
603    // If an instruction spans a page boundary, and the page containing
604    // the beginning of the instruction is executable but the following
605    // page is not, the pc and the faulting address might be slightly
606    // different - we still want to unguard the 2nd page in this case.
607    //
608    // 15 bytes seems to be a (very) safe value for max instruction size.
609    bool pc_is_near_addr =
610      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
611    bool instr_spans_page_boundary =
612      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
613                       (intptr_t) page_size) > 0);
614
615    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
616      static volatile address last_addr =
617        (address) os::non_memory_address_word();
618
619      // In conservative mode, don't unguard unless the address is in the VM
620      if (addr != last_addr &&
621          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
622
623        // Make memory rwx and retry
624        address page_start =
625          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
626        bool res = os::protect_memory((char*) page_start, page_size,
627                                      os::MEM_PROT_RWX);
628
629        if (PrintMiscellaneous && Verbose) {
630          char buf[256];
631          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
632                       "at " INTPTR_FORMAT
633                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
634                       page_start, (res ? "success" : "failed"), errno);
635          tty->print_raw_cr(buf);
636        }
637        stub = pc;
638
639        // Set last_addr so if we fault again at the same address, we don't end
640        // up in an endless loop.
641        //
642        // There are two potential complications here.  Two threads trapping at
643        // the same address at the same time could cause one of the threads to
644        // think it already unguarded, and abort the VM.  Likely very rare.
645        //
646        // The other race involves two threads alternately trapping at
647        // different addresses and failing to unguard the page, resulting in
648        // an endless loop.  This condition is probably even more unlikely than
649        // the first.
650        //
651        // Although both cases could be avoided by using locks or thread local
652        // last_addr, these solutions are unnecessary complication: this
653        // handler is a best-effort safety net, not a complete solution.  It is
654        // disabled by default and should only be used as a workaround in case
655        // we missed any no-execute-unsafe VM code.
656
657        last_addr = addr;
658      }
659    }
660  }
661
662  if (stub != NULL) {
663    // save all thread context in case we need to restore it
664
665    if (thread != NULL) thread->set_saved_exception_pc(pc);
666    // 12/02/99: On Sparc it appears that the full context is also saved
667    // but as yet, no one looks at or restores that saved context
668    // factor me: setPC
669    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
670    return true;
671  }
672
673  // signal-chaining
674  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
675    return true;
676  }
677
678#ifndef AMD64
679  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
680  // Handle an undefined selector caused by an attempt to assign
681  // fs in libthread getipriptr(). With the current libthread design every 512
682  // thread creations the LDT for a private thread data structure is extended
683  // and thre is a hazard that and another thread attempting a thread creation
684  // will use a stale LDTR that doesn't reflect the structure's growth,
685  // causing a GP fault.
686  // Enforce the probable limit of passes through here to guard against an
687  // infinite loop if some other move to fs caused the GP fault. Note that
688  // this loop counter is ultimately a heuristic as it is possible for
689  // more than one thread to generate this fault at a time in an MP system.
690  // In the case of the loop count being exceeded or if the poll fails
691  // just fall through to a fatal error.
692  // If there is some other source of T_GPFLT traps and the text at EIP is
693  // unreadable this code will loop infinitely until the stack is exausted.
694  // The key to diagnosis in this case is to look for the bottom signal handler
695  // frame.
696
697  if(! IgnoreLibthreadGPFault) {
698    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
699      const unsigned char *p =
700                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
701
702      // Expected instruction?
703
704      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
705
706        Atomic::inc(&ldtr_refresh);
707
708        // Infinite loop?
709
710        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
711
712          // No, force scheduling to get a fresh view of the LDTR
713
714          if(poll(NULL, 0, 10) == 0) {
715
716            // Retry the move
717
718            return false;
719          }
720        }
721      }
722    }
723  }
724#endif // !AMD64
725
726  if (!abort_if_unrecognized) {
727    // caller wants another chance, so give it to him
728    return false;
729  }
730
731  if (!os::Solaris::libjsig_is_loaded) {
732    struct sigaction oldAct;
733    sigaction(sig, (struct sigaction *)0, &oldAct);
734    if (oldAct.sa_sigaction != signalHandler) {
735      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
736                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
737      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
738    }
739  }
740
741  if (pc == NULL && uc != NULL) {
742    pc = (address) uc->uc_mcontext.gregs[REG_PC];
743  }
744
745  // unmask current signal
746  sigset_t newset;
747  sigemptyset(&newset);
748  sigaddset(&newset, sig);
749  sigprocmask(SIG_UNBLOCK, &newset, NULL);
750
751  // Determine which sort of error to throw.  Out of swap may signal
752  // on the thread stack, which could get a mapping error when touched.
753  address addr = (address) info->si_addr;
754  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
755    vm_exit_out_of_memory(0, "Out of swap space to map in thread stack.");
756  }
757
758  VMError err(t, sig, pc, info, ucVoid);
759  err.report_and_die();
760
761  ShouldNotReachHere();
762}
763
764void os::print_context(outputStream *st, void *context) {
765  if (context == NULL) return;
766
767  ucontext_t *uc = (ucontext_t*)context;
768  st->print_cr("Registers:");
769#ifdef AMD64
770  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
771  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
772  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
773  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
774  st->cr();
775  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
776  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
777  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
778  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
779  st->cr();
780  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
781  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
782  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
783  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
784  st->cr();
785  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
786  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
787  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
788  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
789  st->cr();
790  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
791  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
792#else
793  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
794  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
795  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
796  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
797  st->cr();
798  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
799  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
800  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
801  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
802  st->cr();
803  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
804  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
805#endif // AMD64
806  st->cr();
807  st->cr();
808
809  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
810  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
811  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
812  st->cr();
813
814  // Note: it may be unsafe to inspect memory near pc. For example, pc may
815  // point to garbage if entry point in an nmethod is corrupted. Leave
816  // this at the end, and hope for the best.
817  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
818  address pc = epc.pc();
819  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
820  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
821}
822
823void os::print_register_info(outputStream *st, void *context) {
824  if (context == NULL) return;
825
826  ucontext_t *uc = (ucontext_t*)context;
827
828  st->print_cr("Register to memory mapping:");
829  st->cr();
830
831  // this is horrendously verbose but the layout of the registers in the
832  // context does not match how we defined our abstract Register set, so
833  // we can't just iterate through the gregs area
834
835  // this is only for the "general purpose" registers
836
837#ifdef AMD64
838  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
839  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
840  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
841  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
842  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
843  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
844  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
845  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
846  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
847  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
848  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
849  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
850  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
851  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
852  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
853  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
854#else
855  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
856  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
857  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
858  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
859  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
860  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
861  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
862  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
863#endif
864
865  st->cr();
866}
867
868
869#ifdef AMD64
870void os::Solaris::init_thread_fpu_state(void) {
871  // Nothing to do
872}
873#else
874// From solaris_i486.s
875extern "C" void fixcw();
876
877void os::Solaris::init_thread_fpu_state(void) {
878  // Set fpu to 53 bit precision. This happens too early to use a stub.
879  fixcw();
880}
881
882// These routines are the initial value of atomic_xchg_entry(),
883// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
884// until initialization is complete.
885// TODO - replace with .il implementation when compiler supports it.
886
887typedef jint  xchg_func_t        (jint,  volatile jint*);
888typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
889typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
890typedef jint  add_func_t         (jint,  volatile jint*);
891
892jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
893  // try to use the stub:
894  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
895
896  if (func != NULL) {
897    os::atomic_xchg_func = func;
898    return (*func)(exchange_value, dest);
899  }
900  assert(Threads::number_of_threads() == 0, "for bootstrap only");
901
902  jint old_value = *dest;
903  *dest = exchange_value;
904  return old_value;
905}
906
907jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
908  // try to use the stub:
909  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
910
911  if (func != NULL) {
912    os::atomic_cmpxchg_func = func;
913    return (*func)(exchange_value, dest, compare_value);
914  }
915  assert(Threads::number_of_threads() == 0, "for bootstrap only");
916
917  jint old_value = *dest;
918  if (old_value == compare_value)
919    *dest = exchange_value;
920  return old_value;
921}
922
923jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
924  // try to use the stub:
925  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
926
927  if (func != NULL) {
928    os::atomic_cmpxchg_long_func = func;
929    return (*func)(exchange_value, dest, compare_value);
930  }
931  assert(Threads::number_of_threads() == 0, "for bootstrap only");
932
933  jlong old_value = *dest;
934  if (old_value == compare_value)
935    *dest = exchange_value;
936  return old_value;
937}
938
939jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
940  // try to use the stub:
941  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
942
943  if (func != NULL) {
944    os::atomic_add_func = func;
945    return (*func)(add_value, dest);
946  }
947  assert(Threads::number_of_threads() == 0, "for bootstrap only");
948
949  return (*dest) += add_value;
950}
951
952xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
953cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
954cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
955add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
956
957extern "C" void _solaris_raw_setup_fpu(address ptr);
958void os::setup_fpu() {
959  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
960  _solaris_raw_setup_fpu(fpu_cntrl);
961}
962#endif // AMD64
963
964#ifndef PRODUCT
965void os::verify_stack_alignment() {
966#ifdef AMD64
967  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
968#endif
969}
970#endif
971