os_solaris_x86.cpp revision 2072:d70fe6ab4436
1/*
2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "assembler_x86.inline.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "jvm_solaris.h"
34#include "memory/allocation.inline.hpp"
35#include "mutex_solaris.inline.hpp"
36#include "nativeInst_x86.hpp"
37#include "os_share_solaris.hpp"
38#include "prims/jniFastGetField.hpp"
39#include "prims/jvm.h"
40#include "prims/jvm_misc.hpp"
41#include "runtime/arguments.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/timer.hpp"
52#include "thread_solaris.inline.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55#ifdef COMPILER1
56#include "c1/c1_Runtime1.hpp"
57#endif
58#ifdef COMPILER2
59#include "opto/runtime.hpp"
60#endif
61
62// put OS-includes here
63# include <sys/types.h>
64# include <sys/mman.h>
65# include <pthread.h>
66# include <signal.h>
67# include <setjmp.h>
68# include <errno.h>
69# include <dlfcn.h>
70# include <stdio.h>
71# include <unistd.h>
72# include <sys/resource.h>
73# include <thread.h>
74# include <sys/stat.h>
75# include <sys/time.h>
76# include <sys/filio.h>
77# include <sys/utsname.h>
78# include <sys/systeminfo.h>
79# include <sys/socket.h>
80# include <sys/trap.h>
81# include <sys/lwp.h>
82# include <pwd.h>
83# include <poll.h>
84# include <sys/lwp.h>
85# include <procfs.h>     //  see comment in <sys/procfs.h>
86
87#ifndef AMD64
88// QQQ seems useless at this point
89# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
90#endif // AMD64
91# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
92
93
94#define MAX_PATH (2 * K)
95
96// Minimum stack size for the VM.  It's easier to document a constant value
97// but it's different for x86 and sparc because the page sizes are different.
98#ifdef AMD64
99size_t os::Solaris::min_stack_allowed = 224*K;
100#define REG_SP REG_RSP
101#define REG_PC REG_RIP
102#define REG_FP REG_RBP
103#else
104size_t os::Solaris::min_stack_allowed = 64*K;
105#define REG_SP UESP
106#define REG_PC EIP
107#define REG_FP EBP
108// 4900493 counter to prevent runaway LDTR refresh attempt
109
110static volatile int ldtr_refresh = 0;
111// the libthread instruction that faults because of the stale LDTR
112
113static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
114                       };
115#endif // AMD64
116
117char* os::non_memory_address_word() {
118  // Must never look like an address returned by reserve_memory,
119  // even in its subfields (as defined by the CPU immediate fields,
120  // if the CPU splits constants across multiple instructions).
121  return (char*) -1;
122}
123
124//
125// Validate a ucontext retrieved from walking a uc_link of a ucontext.
126// There are issues with libthread giving out uc_links for different threads
127// on the same uc_link chain and bad or circular links.
128//
129bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
130  if (valid >= suspect ||
131      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
132      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
133      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
134    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
135    return false;
136  }
137
138  if (thread->is_Java_thread()) {
139    if (!valid_stack_address(thread, (address)suspect)) {
140      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
141      return false;
142    }
143    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
144      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
145      return false;
146    }
147  }
148  return true;
149}
150
151// We will only follow one level of uc_link since there are libthread
152// issues with ucontext linking and it is better to be safe and just
153// let caller retry later.
154ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
155  ucontext_t *uc) {
156
157  ucontext_t *retuc = NULL;
158
159  if (uc != NULL) {
160    if (uc->uc_link == NULL) {
161      // cannot validate without uc_link so accept current ucontext
162      retuc = uc;
163    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
164      // first ucontext is valid so try the next one
165      uc = uc->uc_link;
166      if (uc->uc_link == NULL) {
167        // cannot validate without uc_link so accept current ucontext
168        retuc = uc;
169      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
170        // the ucontext one level down is also valid so return it
171        retuc = uc;
172      }
173    }
174  }
175  return retuc;
176}
177
178// Assumes ucontext is valid
179ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
180  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
181}
182
183// Assumes ucontext is valid
184intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
185  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
186}
187
188// Assumes ucontext is valid
189intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
190  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
191}
192
193// For Forte Analyzer AsyncGetCallTrace profiling support - thread
194// is currently interrupted by SIGPROF.
195//
196// The difference between this and os::fetch_frame_from_context() is that
197// here we try to skip nested signal frames.
198ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
199  ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
200
201  assert(thread != NULL, "just checking");
202  assert(ret_sp != NULL, "just checking");
203  assert(ret_fp != NULL, "just checking");
204
205  ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
206  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
207}
208
209ExtendedPC os::fetch_frame_from_context(void* ucVoid,
210                    intptr_t** ret_sp, intptr_t** ret_fp) {
211
212  ExtendedPC  epc;
213  ucontext_t *uc = (ucontext_t*)ucVoid;
214
215  if (uc != NULL) {
216    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
217    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
218    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
219  } else {
220    // construct empty ExtendedPC for return value checking
221    epc = ExtendedPC(NULL);
222    if (ret_sp) *ret_sp = (intptr_t *)NULL;
223    if (ret_fp) *ret_fp = (intptr_t *)NULL;
224  }
225
226  return epc;
227}
228
229frame os::fetch_frame_from_context(void* ucVoid) {
230  intptr_t* sp;
231  intptr_t* fp;
232  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
233  return frame(sp, fp, epc.pc());
234}
235
236frame os::get_sender_for_C_frame(frame* fr) {
237  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
238}
239
240extern "C" intptr_t *_get_current_fp();  // in .il file
241
242frame os::current_frame() {
243  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
244  frame myframe((intptr_t*)os::current_stack_pointer(),
245                (intptr_t*)fp,
246                CAST_FROM_FN_PTR(address, os::current_frame));
247  if (os::is_first_C_frame(&myframe)) {
248    // stack is not walkable
249    frame ret; // This will be a null useless frame
250    return ret;
251  } else {
252    return os::get_sender_for_C_frame(&myframe);
253  }
254}
255
256// This is a simple callback that just fetches a PC for an interrupted thread.
257// The thread need not be suspended and the fetched PC is just a hint.
258// This one is currently used for profiling the VMThread ONLY!
259
260// Must be synchronous
261void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
262  Thread*     thread = args->thread();
263  ucontext_t* uc     = args->ucontext();
264  intptr_t* sp;
265
266  assert(ProfileVM && thread->is_VM_thread(), "just checking");
267
268  ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
269  _addr = new_addr;
270}
271
272static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
273  char lwpstatusfile[PROCFILE_LENGTH];
274  int lwpfd, err;
275
276  if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
277    return (err);
278  if (*flags == TRS_LWPID) {
279    sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
280            *lwp);
281    if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
282      perror("thr_mutator_status: open lwpstatus");
283      return (EINVAL);
284    }
285    if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
286        sizeof (lwpstatus_t)) {
287      perror("thr_mutator_status: read lwpstatus");
288      (void) close(lwpfd);
289      return (EINVAL);
290    }
291    (void) close(lwpfd);
292  }
293  return (0);
294}
295
296#ifndef AMD64
297
298// Detecting SSE support by OS
299// From solaris_i486.s
300extern "C" bool sse_check();
301extern "C" bool sse_unavailable();
302
303enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
304static int sse_status = SSE_UNKNOWN;
305
306
307static void  check_for_sse_support() {
308  if (!VM_Version::supports_sse()) {
309    sse_status = SSE_NOT_SUPPORTED;
310    return;
311  }
312  // looking for _sse_hw in libc.so, if it does not exist or
313  // the value (int) is 0, OS has no support for SSE
314  int *sse_hwp;
315  void *h;
316
317  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
318    //open failed, presume no support for SSE
319    sse_status = SSE_NOT_SUPPORTED;
320    return;
321  }
322  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
323    sse_status = SSE_NOT_SUPPORTED;
324  } else if (*sse_hwp == 0) {
325    sse_status = SSE_NOT_SUPPORTED;
326  }
327  dlclose(h);
328
329  if (sse_status == SSE_UNKNOWN) {
330    bool (*try_sse)() = (bool (*)())sse_check;
331    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
332  }
333
334}
335
336#endif // AMD64
337
338bool os::supports_sse() {
339#ifdef AMD64
340  return true;
341#else
342  if (sse_status == SSE_UNKNOWN)
343    check_for_sse_support();
344  return sse_status == SSE_SUPPORTED;
345#endif // AMD64
346}
347
348bool os::is_allocatable(size_t bytes) {
349#ifdef AMD64
350  return true;
351#else
352
353  if (bytes < 2 * G) {
354    return true;
355  }
356
357  char* addr = reserve_memory(bytes, NULL);
358
359  if (addr != NULL) {
360    release_memory(addr, bytes);
361  }
362
363  return addr != NULL;
364#endif // AMD64
365
366}
367
368extern "C" void Fetch32PFI () ;
369extern "C" void Fetch32Resume () ;
370#ifdef AMD64
371extern "C" void FetchNPFI () ;
372extern "C" void FetchNResume () ;
373#endif // AMD64
374
375extern "C" JNIEXPORT int
376JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
377                          int abort_if_unrecognized) {
378  ucontext_t* uc = (ucontext_t*) ucVoid;
379
380#ifndef AMD64
381  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
382    // the SSE instruction faulted. supports_sse() need return false.
383    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
384    return true;
385  }
386#endif // !AMD64
387
388  Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
389
390  SignalHandlerMark shm(t);
391
392  if(sig == SIGPIPE || sig == SIGXFSZ) {
393    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
394      return true;
395    } else {
396      if (PrintMiscellaneous && (WizardMode || Verbose)) {
397        char buf[64];
398        warning("Ignoring %s - see 4229104 or 6499219",
399                os::exception_name(sig, buf, sizeof(buf)));
400
401      }
402      return true;
403    }
404  }
405
406  JavaThread* thread = NULL;
407  VMThread* vmthread = NULL;
408
409  if (os::Solaris::signal_handlers_are_installed) {
410    if (t != NULL ){
411      if(t->is_Java_thread()) {
412        thread = (JavaThread*)t;
413      }
414      else if(t->is_VM_thread()){
415        vmthread = (VMThread *)t;
416      }
417    }
418  }
419
420  guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
421
422  if (sig == os::Solaris::SIGasync()) {
423    if(thread){
424      OSThread::InterruptArguments args(thread, uc);
425      thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
426      return true;
427    }
428    else if(vmthread){
429      OSThread::InterruptArguments args(vmthread, uc);
430      vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
431      return true;
432    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
433      return true;
434    } else {
435      // If os::Solaris::SIGasync not chained, and this is a non-vm and
436      // non-java thread
437      return true;
438    }
439  }
440
441  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
442    // can't decode this kind of signal
443    info = NULL;
444  } else {
445    assert(sig == info->si_signo, "bad siginfo");
446  }
447
448  // decide if this trap can be handled by a stub
449  address stub = NULL;
450
451  address pc          = NULL;
452
453  //%note os_trap_1
454  if (info != NULL && uc != NULL && thread != NULL) {
455    // factor me: getPCfromContext
456    pc = (address) uc->uc_mcontext.gregs[REG_PC];
457
458    // SafeFetch32() support
459    if (pc == (address) Fetch32PFI) {
460      uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
461      return true ;
462    }
463#ifdef AMD64
464    if (pc == (address) FetchNPFI) {
465       uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
466       return true ;
467    }
468#endif // AMD64
469
470    // Handle ALL stack overflow variations here
471    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
472      address addr = (address) info->si_addr;
473      if (thread->in_stack_yellow_zone(addr)) {
474        thread->disable_stack_yellow_zone();
475        if (thread->thread_state() == _thread_in_Java) {
476          // Throw a stack overflow exception.  Guard pages will be reenabled
477          // while unwinding the stack.
478          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
479        } else {
480          // Thread was in the vm or native code.  Return and try to finish.
481          return true;
482        }
483      } else if (thread->in_stack_red_zone(addr)) {
484        // Fatal red zone violation.  Disable the guard pages and fall through
485        // to handle_unexpected_exception way down below.
486        thread->disable_stack_red_zone();
487        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
488      }
489    }
490
491    if (thread->thread_state() == _thread_in_vm) {
492      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
493        stub = StubRoutines::handler_for_unsafe_access();
494      }
495    }
496
497    if (thread->thread_state() == _thread_in_Java) {
498      // Support Safepoint Polling
499      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
500        stub = SharedRuntime::get_poll_stub(pc);
501      }
502      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
503        // BugId 4454115: A read from a MappedByteBuffer can fault
504        // here if the underlying file has been truncated.
505        // Do not crash the VM in such a case.
506        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
507        nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
508        if (nm != NULL && nm->has_unsafe_access()) {
509          stub = StubRoutines::handler_for_unsafe_access();
510        }
511      }
512      else
513      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
514        // integer divide by zero
515        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
516      }
517#ifndef AMD64
518      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
519        // floating-point divide by zero
520        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
521      }
522      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
523        // The encoding of D2I in i486.ad can cause an exception prior
524        // to the fist instruction if there was an invalid operation
525        // pending. We want to dismiss that exception. From the win_32
526        // side it also seems that if it really was the fist causing
527        // the exception that we do the d2i by hand with different
528        // rounding. Seems kind of weird. QQQ TODO
529        // Note that we take the exception at the NEXT floating point instruction.
530        if (pc[0] == 0xDB) {
531            assert(pc[0] == 0xDB, "not a FIST opcode");
532            assert(pc[1] == 0x14, "not a FIST opcode");
533            assert(pc[2] == 0x24, "not a FIST opcode");
534            return true;
535        } else {
536            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
537            assert(pc[-2] == 0x14, "not an flt invalid opcode");
538            assert(pc[-1] == 0x24, "not an flt invalid opcode");
539        }
540      }
541      else if (sig == SIGFPE ) {
542        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
543      }
544#endif // !AMD64
545
546        // QQQ It doesn't seem that we need to do this on x86 because we should be able
547        // to return properly from the handler without this extra stuff on the back side.
548
549      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
550        // Determination of interpreter/vtable stub/compiled code null exception
551        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
552      }
553    }
554
555    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
556    // and the heap gets shrunk before the field access.
557    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
558      address addr = JNI_FastGetField::find_slowcase_pc(pc);
559      if (addr != (address)-1) {
560        stub = addr;
561      }
562    }
563
564    // Check to see if we caught the safepoint code in the
565    // process of write protecting the memory serialization page.
566    // It write enables the page immediately after protecting it
567    // so we can just return to retry the write.
568    if ((sig == SIGSEGV) &&
569        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
570      // Block current thread until the memory serialize page permission restored.
571      os::block_on_serialize_page_trap();
572      return true;
573    }
574  }
575
576  // Execution protection violation
577  //
578  // Preventative code for future versions of Solaris which may
579  // enable execution protection when running the 32-bit VM on AMD64.
580  //
581  // This should be kept as the last step in the triage.  We don't
582  // have a dedicated trap number for a no-execute fault, so be
583  // conservative and allow other handlers the first shot.
584  //
585  // Note: We don't test that info->si_code == SEGV_ACCERR here.
586  // this si_code is so generic that it is almost meaningless; and
587  // the si_code for this condition may change in the future.
588  // Furthermore, a false-positive should be harmless.
589  if (UnguardOnExecutionViolation > 0 &&
590      (sig == SIGSEGV || sig == SIGBUS) &&
591      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
592    int page_size = os::vm_page_size();
593    address addr = (address) info->si_addr;
594    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
595    // Make sure the pc and the faulting address are sane.
596    //
597    // If an instruction spans a page boundary, and the page containing
598    // the beginning of the instruction is executable but the following
599    // page is not, the pc and the faulting address might be slightly
600    // different - we still want to unguard the 2nd page in this case.
601    //
602    // 15 bytes seems to be a (very) safe value for max instruction size.
603    bool pc_is_near_addr =
604      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
605    bool instr_spans_page_boundary =
606      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
607                       (intptr_t) page_size) > 0);
608
609    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
610      static volatile address last_addr =
611        (address) os::non_memory_address_word();
612
613      // In conservative mode, don't unguard unless the address is in the VM
614      if (addr != last_addr &&
615          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
616
617        // Make memory rwx and retry
618        address page_start =
619          (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
620        bool res = os::protect_memory((char*) page_start, page_size,
621                                      os::MEM_PROT_RWX);
622
623        if (PrintMiscellaneous && Verbose) {
624          char buf[256];
625          jio_snprintf(buf, sizeof(buf), "Execution protection violation "
626                       "at " INTPTR_FORMAT
627                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
628                       page_start, (res ? "success" : "failed"), errno);
629          tty->print_raw_cr(buf);
630        }
631        stub = pc;
632
633        // Set last_addr so if we fault again at the same address, we don't end
634        // up in an endless loop.
635        //
636        // There are two potential complications here.  Two threads trapping at
637        // the same address at the same time could cause one of the threads to
638        // think it already unguarded, and abort the VM.  Likely very rare.
639        //
640        // The other race involves two threads alternately trapping at
641        // different addresses and failing to unguard the page, resulting in
642        // an endless loop.  This condition is probably even more unlikely than
643        // the first.
644        //
645        // Although both cases could be avoided by using locks or thread local
646        // last_addr, these solutions are unnecessary complication: this
647        // handler is a best-effort safety net, not a complete solution.  It is
648        // disabled by default and should only be used as a workaround in case
649        // we missed any no-execute-unsafe VM code.
650
651        last_addr = addr;
652      }
653    }
654  }
655
656  if (stub != NULL) {
657    // save all thread context in case we need to restore it
658
659    if (thread != NULL) thread->set_saved_exception_pc(pc);
660    // 12/02/99: On Sparc it appears that the full context is also saved
661    // but as yet, no one looks at or restores that saved context
662    // factor me: setPC
663    uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
664    return true;
665  }
666
667  // signal-chaining
668  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
669    return true;
670  }
671
672#ifndef AMD64
673  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
674  // Handle an undefined selector caused by an attempt to assign
675  // fs in libthread getipriptr(). With the current libthread design every 512
676  // thread creations the LDT for a private thread data structure is extended
677  // and thre is a hazard that and another thread attempting a thread creation
678  // will use a stale LDTR that doesn't reflect the structure's growth,
679  // causing a GP fault.
680  // Enforce the probable limit of passes through here to guard against an
681  // infinite loop if some other move to fs caused the GP fault. Note that
682  // this loop counter is ultimately a heuristic as it is possible for
683  // more than one thread to generate this fault at a time in an MP system.
684  // In the case of the loop count being exceeded or if the poll fails
685  // just fall through to a fatal error.
686  // If there is some other source of T_GPFLT traps and the text at EIP is
687  // unreadable this code will loop infinitely until the stack is exausted.
688  // The key to diagnosis in this case is to look for the bottom signal handler
689  // frame.
690
691  if(! IgnoreLibthreadGPFault) {
692    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
693      const unsigned char *p =
694                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
695
696      // Expected instruction?
697
698      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
699
700        Atomic::inc(&ldtr_refresh);
701
702        // Infinite loop?
703
704        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
705
706          // No, force scheduling to get a fresh view of the LDTR
707
708          if(poll(NULL, 0, 10) == 0) {
709
710            // Retry the move
711
712            return false;
713          }
714        }
715      }
716    }
717  }
718#endif // !AMD64
719
720  if (!abort_if_unrecognized) {
721    // caller wants another chance, so give it to him
722    return false;
723  }
724
725  if (!os::Solaris::libjsig_is_loaded) {
726    struct sigaction oldAct;
727    sigaction(sig, (struct sigaction *)0, &oldAct);
728    if (oldAct.sa_sigaction != signalHandler) {
729      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
730                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
731      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
732    }
733  }
734
735  if (pc == NULL && uc != NULL) {
736    pc = (address) uc->uc_mcontext.gregs[REG_PC];
737  }
738
739  // unmask current signal
740  sigset_t newset;
741  sigemptyset(&newset);
742  sigaddset(&newset, sig);
743  sigprocmask(SIG_UNBLOCK, &newset, NULL);
744
745  // Determine which sort of error to throw.  Out of swap may signal
746  // on the thread stack, which could get a mapping error when touched.
747  address addr = (address) info->si_addr;
748  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
749    vm_exit_out_of_memory(0, "Out of swap space to map in thread stack.");
750  }
751
752  VMError err(t, sig, pc, info, ucVoid);
753  err.report_and_die();
754
755  ShouldNotReachHere();
756}
757
758void os::print_context(outputStream *st, void *context) {
759  if (context == NULL) return;
760
761  ucontext_t *uc = (ucontext_t*)context;
762  st->print_cr("Registers:");
763#ifdef AMD64
764  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
765  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
766  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
767  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
768  st->cr();
769  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
770  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
771  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
772  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
773  st->cr();
774  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
775  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
776  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
777  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
778  st->cr();
779  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
780  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
781  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
782  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
783  st->cr();
784  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
785  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
786#else
787  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
788  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
789  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
790  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
791  st->cr();
792  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
793  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
794  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
795  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
796  st->cr();
797  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
798  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
799#endif // AMD64
800  st->cr();
801  st->cr();
802
803  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
804  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
805  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
806  st->cr();
807
808  // Note: it may be unsafe to inspect memory near pc. For example, pc may
809  // point to garbage if entry point in an nmethod is corrupted. Leave
810  // this at the end, and hope for the best.
811  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
812  address pc = epc.pc();
813  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
814  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
815}
816
817void os::print_register_info(outputStream *st, void *context) {
818  if (context == NULL) return;
819
820  ucontext_t *uc = (ucontext_t*)context;
821
822  st->print_cr("Register to memory mapping:");
823  st->cr();
824
825  // this is horrendously verbose but the layout of the registers in the
826  // context does not match how we defined our abstract Register set, so
827  // we can't just iterate through the gregs area
828
829  // this is only for the "general purpose" registers
830
831#ifdef AMD64
832  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
833  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
834  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
835  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
836  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
837  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
838  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
839  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
840  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
841  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
842  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
843  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
844  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
845  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
846  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
847  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
848#else
849  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
850  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
851  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
852  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
853  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
854  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
855  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
856  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
857#endif
858
859  st->cr();
860}
861
862
863#ifdef AMD64
864void os::Solaris::init_thread_fpu_state(void) {
865  // Nothing to do
866}
867#else
868// From solaris_i486.s
869extern "C" void fixcw();
870
871void os::Solaris::init_thread_fpu_state(void) {
872  // Set fpu to 53 bit precision. This happens too early to use a stub.
873  fixcw();
874}
875
876// These routines are the initial value of atomic_xchg_entry(),
877// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
878// until initialization is complete.
879// TODO - replace with .il implementation when compiler supports it.
880
881typedef jint  xchg_func_t        (jint,  volatile jint*);
882typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
883typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
884typedef jint  add_func_t         (jint,  volatile jint*);
885
886jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
887  // try to use the stub:
888  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
889
890  if (func != NULL) {
891    os::atomic_xchg_func = func;
892    return (*func)(exchange_value, dest);
893  }
894  assert(Threads::number_of_threads() == 0, "for bootstrap only");
895
896  jint old_value = *dest;
897  *dest = exchange_value;
898  return old_value;
899}
900
901jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
902  // try to use the stub:
903  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
904
905  if (func != NULL) {
906    os::atomic_cmpxchg_func = func;
907    return (*func)(exchange_value, dest, compare_value);
908  }
909  assert(Threads::number_of_threads() == 0, "for bootstrap only");
910
911  jint old_value = *dest;
912  if (old_value == compare_value)
913    *dest = exchange_value;
914  return old_value;
915}
916
917jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
918  // try to use the stub:
919  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
920
921  if (func != NULL) {
922    os::atomic_cmpxchg_long_func = func;
923    return (*func)(exchange_value, dest, compare_value);
924  }
925  assert(Threads::number_of_threads() == 0, "for bootstrap only");
926
927  jlong old_value = *dest;
928  if (old_value == compare_value)
929    *dest = exchange_value;
930  return old_value;
931}
932
933jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
934  // try to use the stub:
935  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
936
937  if (func != NULL) {
938    os::atomic_add_func = func;
939    return (*func)(add_value, dest);
940  }
941  assert(Threads::number_of_threads() == 0, "for bootstrap only");
942
943  return (*dest) += add_value;
944}
945
946xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
947cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
948cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
949add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
950
951extern "C" void _solaris_raw_setup_fpu(address ptr);
952void os::setup_fpu() {
953  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
954  _solaris_raw_setup_fpu(fpu_cntrl);
955}
956#endif // AMD64
957