os_solaris_x86.cpp revision 13242:fcb4803050e8
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// no precompiled headers
26#include "asm/macroAssembler.hpp"
27#include "classfile/classLoader.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/icBuffer.hpp"
32#include "code/vtableStubs.hpp"
33#include "interpreter/interpreter.hpp"
34#include "jvm_solaris.h"
35#include "memory/allocation.inline.hpp"
36#include "os_share_solaris.hpp"
37#include "prims/jniFastGetField.hpp"
38#include "prims/jvm.h"
39#include "prims/jvm_misc.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/atomic.hpp"
42#include "runtime/extendedPC.hpp"
43#include "runtime/frame.inline.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/java.hpp"
46#include "runtime/javaCalls.hpp"
47#include "runtime/mutexLocker.hpp"
48#include "runtime/osThread.hpp"
49#include "runtime/sharedRuntime.hpp"
50#include "runtime/stubRoutines.hpp"
51#include "runtime/thread.inline.hpp"
52#include "runtime/timer.hpp"
53#include "utilities/events.hpp"
54#include "utilities/vmError.hpp"
55
56// put OS-includes here
57# include <sys/types.h>
58# include <sys/mman.h>
59# include <pthread.h>
60# include <signal.h>
61# include <setjmp.h>
62# include <errno.h>
63# include <dlfcn.h>
64# include <stdio.h>
65# include <unistd.h>
66# include <sys/resource.h>
67# include <thread.h>
68# include <sys/stat.h>
69# include <sys/time.h>
70# include <sys/filio.h>
71# include <sys/utsname.h>
72# include <sys/systeminfo.h>
73# include <sys/socket.h>
74# include <sys/trap.h>
75# include <sys/lwp.h>
76# include <poll.h>
77# include <sys/lwp.h>
78# include <procfs.h>     //  see comment in <sys/procfs.h>
79
80#ifndef AMD64
81// QQQ seems useless at this point
82# define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
83#endif // AMD64
84# include <sys/procfs.h>     //  see comment in <sys/procfs.h>
85
86
87#define MAX_PATH (2 * K)
88
89// Minimum usable stack sizes required to get to user code. Space for
90// HotSpot guard pages is added later.
91#ifdef _LP64
92// The adlc generated method 'State::MachNodeGenerator(int)' used by the C2 compiler
93// threads requires a large stack with the Solaris Studio C++ compiler version 5.13
94// and product VM builds (debug builds require significantly less stack space).
95size_t os::Posix::_compiler_thread_min_stack_allowed = 325 * K;
96size_t os::Posix::_java_thread_min_stack_allowed = 48 * K;
97size_t os::Posix::_vm_internal_thread_min_stack_allowed = 224 * K;
98#else
99size_t os::Posix::_compiler_thread_min_stack_allowed = 32 * K;
100size_t os::Posix::_java_thread_min_stack_allowed = 32 * K;
101size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
102#endif // _LP64
103
104#ifdef AMD64
105#define REG_SP REG_RSP
106#define REG_PC REG_RIP
107#define REG_FP REG_RBP
108#else
109#define REG_SP UESP
110#define REG_PC EIP
111#define REG_FP EBP
112// 4900493 counter to prevent runaway LDTR refresh attempt
113
114static volatile int ldtr_refresh = 0;
115// the libthread instruction that faults because of the stale LDTR
116
117static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
118                       };
119#endif // AMD64
120
121char* os::non_memory_address_word() {
122  // Must never look like an address returned by reserve_memory,
123  // even in its subfields (as defined by the CPU immediate fields,
124  // if the CPU splits constants across multiple instructions).
125  return (char*) -1;
126}
127
128//
129// Validate a ucontext retrieved from walking a uc_link of a ucontext.
130// There are issues with libthread giving out uc_links for different threads
131// on the same uc_link chain and bad or circular links.
132//
133bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
134  if (valid >= suspect ||
135      valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
136      valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
137      valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
138    DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
139    return false;
140  }
141
142  if (thread->is_Java_thread()) {
143    if (!valid_stack_address(thread, (address)suspect)) {
144      DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
145      return false;
146    }
147    if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
148      DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
149      return false;
150    }
151  }
152  return true;
153}
154
155// We will only follow one level of uc_link since there are libthread
156// issues with ucontext linking and it is better to be safe and just
157// let caller retry later.
158const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
159  const ucontext_t *uc) {
160
161  const ucontext_t *retuc = NULL;
162
163  if (uc != NULL) {
164    if (uc->uc_link == NULL) {
165      // cannot validate without uc_link so accept current ucontext
166      retuc = uc;
167    } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
168      // first ucontext is valid so try the next one
169      uc = uc->uc_link;
170      if (uc->uc_link == NULL) {
171        // cannot validate without uc_link so accept current ucontext
172        retuc = uc;
173      } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
174        // the ucontext one level down is also valid so return it
175        retuc = uc;
176      }
177    }
178  }
179  return retuc;
180}
181
182// Assumes ucontext is valid
183ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
184  return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
185}
186
187void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
188  uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
189}
190
191// Assumes ucontext is valid
192intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
193  return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
194}
195
196// Assumes ucontext is valid
197intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
198  return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
199}
200
201address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
202  return (address) uc->uc_mcontext.gregs[REG_PC];
203}
204
205// For Forte Analyzer AsyncGetCallTrace profiling support - thread
206// is currently interrupted by SIGPROF.
207//
208// The difference between this and os::fetch_frame_from_context() is that
209// here we try to skip nested signal frames.
210// This method is also used for stack overflow signal handling.
211ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
212  const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
213
214  assert(thread != NULL, "just checking");
215  assert(ret_sp != NULL, "just checking");
216  assert(ret_fp != NULL, "just checking");
217
218  const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
219  return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
220}
221
222ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
223                    intptr_t** ret_sp, intptr_t** ret_fp) {
224
225  ExtendedPC  epc;
226  const ucontext_t *uc = (const ucontext_t*)ucVoid;
227
228  if (uc != NULL) {
229    epc = os::Solaris::ucontext_get_ExtendedPC(uc);
230    if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
231    if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
232  } else {
233    // construct empty ExtendedPC for return value checking
234    epc = ExtendedPC(NULL);
235    if (ret_sp) *ret_sp = (intptr_t *)NULL;
236    if (ret_fp) *ret_fp = (intptr_t *)NULL;
237  }
238
239  return epc;
240}
241
242frame os::fetch_frame_from_context(const void* ucVoid) {
243  intptr_t* sp;
244  intptr_t* fp;
245  ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
246  return frame(sp, fp, epc.pc());
247}
248
249frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
250  intptr_t* sp;
251  intptr_t* fp;
252  ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
253  return frame(sp, fp, epc.pc());
254}
255
256bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
257 address pc = (address) os::Solaris::ucontext_get_pc(uc);
258  if (Interpreter::contains(pc)) {
259    // interpreter performs stack banging after the fixed frame header has
260    // been generated while the compilers perform it before. To maintain
261    // semantic consistency between interpreted and compiled frames, the
262    // method returns the Java sender of the current frame.
263    *fr = os::fetch_frame_from_ucontext(thread, uc);
264    if (!fr->is_first_java_frame()) {
265      // get_frame_at_stack_banging_point() is only called when we
266      // have well defined stacks so java_sender() calls do not need
267      // to assert safe_for_sender() first.
268      *fr = fr->java_sender();
269    }
270  } else {
271    // more complex code with compiled code
272    assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
273    CodeBlob* cb = CodeCache::find_blob(pc);
274    if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
275      // Not sure where the pc points to, fallback to default
276      // stack overflow handling
277      return false;
278    } else {
279      // in compiled code, the stack banging is performed just after the return pc
280      // has been pushed on the stack
281      intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
282      intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
283      *fr = frame(sp + 1, fp, (address)*sp);
284      if (!fr->is_java_frame()) {
285        // See java_sender() comment above.
286        *fr = fr->java_sender();
287      }
288    }
289  }
290  assert(fr->is_java_frame(), "Safety check");
291  return true;
292}
293
294frame os::get_sender_for_C_frame(frame* fr) {
295  return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
296}
297
298extern "C" intptr_t *_get_current_sp();  // in .il file
299
300address os::current_stack_pointer() {
301  return (address)_get_current_sp();
302}
303
304extern "C" intptr_t *_get_current_fp();  // in .il file
305
306frame os::current_frame() {
307  intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
308  // fp is for os::current_frame. We want the fp for our caller.
309  frame myframe((intptr_t*)os::current_stack_pointer(),
310                (intptr_t*)fp,
311                CAST_FROM_FN_PTR(address, os::current_frame));
312  frame caller_frame = os::get_sender_for_C_frame(&myframe);
313
314  if (os::is_first_C_frame(&caller_frame)) {
315    // stack is not walkable
316    frame ret; // This will be a null useless frame
317    return ret;
318  } else {
319    // return frame for our caller's caller
320    return os::get_sender_for_C_frame(&caller_frame);
321  }
322}
323
324#ifndef AMD64
325
326// Detecting SSE support by OS
327// From solaris_i486.s
328extern "C" bool sse_check();
329extern "C" bool sse_unavailable();
330
331enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
332static int sse_status = SSE_UNKNOWN;
333
334
335static void  check_for_sse_support() {
336  if (!VM_Version::supports_sse()) {
337    sse_status = SSE_NOT_SUPPORTED;
338    return;
339  }
340  // looking for _sse_hw in libc.so, if it does not exist or
341  // the value (int) is 0, OS has no support for SSE
342  int *sse_hwp;
343  void *h;
344
345  if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
346    //open failed, presume no support for SSE
347    sse_status = SSE_NOT_SUPPORTED;
348    return;
349  }
350  if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
351    sse_status = SSE_NOT_SUPPORTED;
352  } else if (*sse_hwp == 0) {
353    sse_status = SSE_NOT_SUPPORTED;
354  }
355  dlclose(h);
356
357  if (sse_status == SSE_UNKNOWN) {
358    bool (*try_sse)() = (bool (*)())sse_check;
359    sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
360  }
361
362}
363
364#endif // AMD64
365
366bool os::supports_sse() {
367#ifdef AMD64
368  return true;
369#else
370  if (sse_status == SSE_UNKNOWN)
371    check_for_sse_support();
372  return sse_status == SSE_SUPPORTED;
373#endif // AMD64
374}
375
376bool os::is_allocatable(size_t bytes) {
377#ifdef AMD64
378  return true;
379#else
380
381  if (bytes < 2 * G) {
382    return true;
383  }
384
385  char* addr = reserve_memory(bytes, NULL);
386
387  if (addr != NULL) {
388    release_memory(addr, bytes);
389  }
390
391  return addr != NULL;
392#endif // AMD64
393
394}
395
396extern "C" JNIEXPORT int
397JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
398                          int abort_if_unrecognized) {
399  ucontext_t* uc = (ucontext_t*) ucVoid;
400
401#ifndef AMD64
402  if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
403    // the SSE instruction faulted. supports_sse() need return false.
404    uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
405    return true;
406  }
407#endif // !AMD64
408
409  Thread* t = Thread::current_or_null_safe();
410
411  // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
412  // (no destructors can be run)
413  os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
414
415  SignalHandlerMark shm(t);
416
417  if(sig == SIGPIPE || sig == SIGXFSZ) {
418    if (os::Solaris::chained_handler(sig, info, ucVoid)) {
419      return true;
420    } else {
421      // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
422      return true;
423    }
424  }
425
426  JavaThread* thread = NULL;
427  VMThread* vmthread = NULL;
428
429  if (os::Solaris::signal_handlers_are_installed) {
430    if (t != NULL ){
431      if(t->is_Java_thread()) {
432        thread = (JavaThread*)t;
433      }
434      else if(t->is_VM_thread()){
435        vmthread = (VMThread *)t;
436      }
437    }
438  }
439
440  if (sig == ASYNC_SIGNAL) {
441    if(thread || vmthread){
442      OSThread::SR_handler(t, uc);
443      return true;
444    } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
445      return true;
446    } else {
447      // If ASYNC_SIGNAL not chained, and this is a non-vm and
448      // non-java thread
449      return true;
450    }
451  }
452
453  if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
454    // can't decode this kind of signal
455    info = NULL;
456  } else {
457    assert(sig == info->si_signo, "bad siginfo");
458  }
459
460  // decide if this trap can be handled by a stub
461  address stub = NULL;
462
463  address pc          = NULL;
464
465  //%note os_trap_1
466  if (info != NULL && uc != NULL && thread != NULL) {
467    // factor me: getPCfromContext
468    pc = (address) uc->uc_mcontext.gregs[REG_PC];
469
470    if (StubRoutines::is_safefetch_fault(pc)) {
471      os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
472      return true;
473    }
474
475    // Handle ALL stack overflow variations here
476    if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
477      address addr = (address) info->si_addr;
478      if (thread->in_stack_yellow_reserved_zone(addr)) {
479        if (thread->thread_state() == _thread_in_Java) {
480          if (thread->in_stack_reserved_zone(addr)) {
481            frame fr;
482            if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
483              assert(fr.is_java_frame(), "Must be Java frame");
484              frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
485              if (activation.sp() != NULL) {
486                thread->disable_stack_reserved_zone();
487                if (activation.is_interpreted_frame()) {
488                  thread->set_reserved_stack_activation((address)(
489                    activation.fp() + frame::interpreter_frame_initial_sp_offset));
490                } else {
491                  thread->set_reserved_stack_activation((address)activation.unextended_sp());
492                }
493                return true;
494              }
495            }
496          }
497          // Throw a stack overflow exception.  Guard pages will be reenabled
498          // while unwinding the stack.
499          thread->disable_stack_yellow_reserved_zone();
500          stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
501        } else {
502          // Thread was in the vm or native code.  Return and try to finish.
503          thread->disable_stack_yellow_reserved_zone();
504          return true;
505        }
506      } else if (thread->in_stack_red_zone(addr)) {
507        // Fatal red zone violation.  Disable the guard pages and fall through
508        // to handle_unexpected_exception way down below.
509        thread->disable_stack_red_zone();
510        tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
511      }
512    }
513
514    if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
515      // Verify that OS save/restore AVX registers.
516      stub = VM_Version::cpuinfo_cont_addr();
517    }
518
519    if (thread->thread_state() == _thread_in_vm) {
520      if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
521        address next_pc = Assembler::locate_next_instruction(pc);
522        stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
523      }
524    }
525
526    if (thread->thread_state() == _thread_in_Java) {
527      // Support Safepoint Polling
528      if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
529        stub = SharedRuntime::get_poll_stub(pc);
530      }
531      else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
532        // BugId 4454115: A read from a MappedByteBuffer can fault
533        // here if the underlying file has been truncated.
534        // Do not crash the VM in such a case.
535        CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
536        if (cb != NULL) {
537          CompiledMethod* nm = cb->as_compiled_method_or_null();
538          if (nm != NULL && nm->has_unsafe_access()) {
539            address next_pc = Assembler::locate_next_instruction(pc);
540            stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
541          }
542        }
543      }
544      else
545      if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
546        // integer divide by zero
547        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
548      }
549#ifndef AMD64
550      else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
551        // floating-point divide by zero
552        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
553      }
554      else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
555        // The encoding of D2I in i486.ad can cause an exception prior
556        // to the fist instruction if there was an invalid operation
557        // pending. We want to dismiss that exception. From the win_32
558        // side it also seems that if it really was the fist causing
559        // the exception that we do the d2i by hand with different
560        // rounding. Seems kind of weird. QQQ TODO
561        // Note that we take the exception at the NEXT floating point instruction.
562        if (pc[0] == 0xDB) {
563            assert(pc[0] == 0xDB, "not a FIST opcode");
564            assert(pc[1] == 0x14, "not a FIST opcode");
565            assert(pc[2] == 0x24, "not a FIST opcode");
566            return true;
567        } else {
568            assert(pc[-3] == 0xDB, "not an flt invalid opcode");
569            assert(pc[-2] == 0x14, "not an flt invalid opcode");
570            assert(pc[-1] == 0x24, "not an flt invalid opcode");
571        }
572      }
573      else if (sig == SIGFPE ) {
574        tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
575      }
576#endif // !AMD64
577
578        // QQQ It doesn't seem that we need to do this on x86 because we should be able
579        // to return properly from the handler without this extra stuff on the back side.
580
581      else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
582        // Determination of interpreter/vtable stub/compiled code null exception
583        stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
584      }
585    }
586
587    // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
588    // and the heap gets shrunk before the field access.
589    if ((sig == SIGSEGV) || (sig == SIGBUS)) {
590      address addr = JNI_FastGetField::find_slowcase_pc(pc);
591      if (addr != (address)-1) {
592        stub = addr;
593      }
594    }
595
596    // Check to see if we caught the safepoint code in the
597    // process of write protecting the memory serialization page.
598    // It write enables the page immediately after protecting it
599    // so we can just return to retry the write.
600    if ((sig == SIGSEGV) &&
601        os::is_memory_serialize_page(thread, (address)info->si_addr)) {
602      // Block current thread until the memory serialize page permission restored.
603      os::block_on_serialize_page_trap();
604      return true;
605    }
606  }
607
608  // Execution protection violation
609  //
610  // Preventative code for future versions of Solaris which may
611  // enable execution protection when running the 32-bit VM on AMD64.
612  //
613  // This should be kept as the last step in the triage.  We don't
614  // have a dedicated trap number for a no-execute fault, so be
615  // conservative and allow other handlers the first shot.
616  //
617  // Note: We don't test that info->si_code == SEGV_ACCERR here.
618  // this si_code is so generic that it is almost meaningless; and
619  // the si_code for this condition may change in the future.
620  // Furthermore, a false-positive should be harmless.
621  if (UnguardOnExecutionViolation > 0 &&
622      (sig == SIGSEGV || sig == SIGBUS) &&
623      uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
624    int page_size = os::vm_page_size();
625    address addr = (address) info->si_addr;
626    address pc = (address) uc->uc_mcontext.gregs[REG_PC];
627    // Make sure the pc and the faulting address are sane.
628    //
629    // If an instruction spans a page boundary, and the page containing
630    // the beginning of the instruction is executable but the following
631    // page is not, the pc and the faulting address might be slightly
632    // different - we still want to unguard the 2nd page in this case.
633    //
634    // 15 bytes seems to be a (very) safe value for max instruction size.
635    bool pc_is_near_addr =
636      (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
637    bool instr_spans_page_boundary =
638      (align_size_down((intptr_t) pc ^ (intptr_t) addr,
639                       (intptr_t) page_size) > 0);
640
641    if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
642      static volatile address last_addr =
643        (address) os::non_memory_address_word();
644
645      // In conservative mode, don't unguard unless the address is in the VM
646      if (addr != last_addr &&
647          (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
648
649        // Make memory rwx and retry
650        address page_start = align_ptr_down(addr, page_size);
651        bool res = os::protect_memory((char*) page_start, page_size,
652                                      os::MEM_PROT_RWX);
653
654        log_debug(os)("Execution protection violation "
655                      "at " INTPTR_FORMAT
656                      ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
657                      p2i(page_start), (res ? "success" : "failed"), errno);
658        stub = pc;
659
660        // Set last_addr so if we fault again at the same address, we don't end
661        // up in an endless loop.
662        //
663        // There are two potential complications here.  Two threads trapping at
664        // the same address at the same time could cause one of the threads to
665        // think it already unguarded, and abort the VM.  Likely very rare.
666        //
667        // The other race involves two threads alternately trapping at
668        // different addresses and failing to unguard the page, resulting in
669        // an endless loop.  This condition is probably even more unlikely than
670        // the first.
671        //
672        // Although both cases could be avoided by using locks or thread local
673        // last_addr, these solutions are unnecessary complication: this
674        // handler is a best-effort safety net, not a complete solution.  It is
675        // disabled by default and should only be used as a workaround in case
676        // we missed any no-execute-unsafe VM code.
677
678        last_addr = addr;
679      }
680    }
681  }
682
683  if (stub != NULL) {
684    // save all thread context in case we need to restore it
685
686    if (thread != NULL) thread->set_saved_exception_pc(pc);
687    // 12/02/99: On Sparc it appears that the full context is also saved
688    // but as yet, no one looks at or restores that saved context
689    os::Solaris::ucontext_set_pc(uc, stub);
690    return true;
691  }
692
693  // signal-chaining
694  if (os::Solaris::chained_handler(sig, info, ucVoid)) {
695    return true;
696  }
697
698#ifndef AMD64
699  // Workaround (bug 4900493) for Solaris kernel bug 4966651.
700  // Handle an undefined selector caused by an attempt to assign
701  // fs in libthread getipriptr(). With the current libthread design every 512
702  // thread creations the LDT for a private thread data structure is extended
703  // and thre is a hazard that and another thread attempting a thread creation
704  // will use a stale LDTR that doesn't reflect the structure's growth,
705  // causing a GP fault.
706  // Enforce the probable limit of passes through here to guard against an
707  // infinite loop if some other move to fs caused the GP fault. Note that
708  // this loop counter is ultimately a heuristic as it is possible for
709  // more than one thread to generate this fault at a time in an MP system.
710  // In the case of the loop count being exceeded or if the poll fails
711  // just fall through to a fatal error.
712  // If there is some other source of T_GPFLT traps and the text at EIP is
713  // unreadable this code will loop infinitely until the stack is exausted.
714  // The key to diagnosis in this case is to look for the bottom signal handler
715  // frame.
716
717  if(! IgnoreLibthreadGPFault) {
718    if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
719      const unsigned char *p =
720                        (unsigned const char *) uc->uc_mcontext.gregs[EIP];
721
722      // Expected instruction?
723
724      if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
725
726        Atomic::inc(&ldtr_refresh);
727
728        // Infinite loop?
729
730        if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
731
732          // No, force scheduling to get a fresh view of the LDTR
733
734          if(poll(NULL, 0, 10) == 0) {
735
736            // Retry the move
737
738            return false;
739          }
740        }
741      }
742    }
743  }
744#endif // !AMD64
745
746  if (!abort_if_unrecognized) {
747    // caller wants another chance, so give it to him
748    return false;
749  }
750
751  if (!os::Solaris::libjsig_is_loaded) {
752    struct sigaction oldAct;
753    sigaction(sig, (struct sigaction *)0, &oldAct);
754    if (oldAct.sa_sigaction != signalHandler) {
755      void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
756                                          : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
757      warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
758    }
759  }
760
761  if (pc == NULL && uc != NULL) {
762    pc = (address) uc->uc_mcontext.gregs[REG_PC];
763  }
764
765  // unmask current signal
766  sigset_t newset;
767  sigemptyset(&newset);
768  sigaddset(&newset, sig);
769  sigprocmask(SIG_UNBLOCK, &newset, NULL);
770
771  // Determine which sort of error to throw.  Out of swap may signal
772  // on the thread stack, which could get a mapping error when touched.
773  address addr = (address) info->si_addr;
774  if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
775    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
776  }
777
778  VMError::report_and_die(t, sig, pc, info, ucVoid);
779
780  ShouldNotReachHere();
781  return false;
782}
783
784void os::print_context(outputStream *st, const void *context) {
785  if (context == NULL) return;
786
787  const ucontext_t *uc = (const ucontext_t*)context;
788  st->print_cr("Registers:");
789#ifdef AMD64
790  st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
791  st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
792  st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
793  st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
794  st->cr();
795  st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
796  st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
797  st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
798  st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
799  st->cr();
800  st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
801  st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
802  st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
803  st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
804  st->cr();
805  st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
806  st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
807  st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
808  st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
809  st->cr();
810  st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
811  st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
812#else
813  st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
814  st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
815  st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
816  st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
817  st->cr();
818  st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
819  st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
820  st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
821  st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
822  st->cr();
823  st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
824  st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
825#endif // AMD64
826  st->cr();
827  st->cr();
828
829  intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
830  st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
831  print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
832  st->cr();
833
834  // Note: it may be unsafe to inspect memory near pc. For example, pc may
835  // point to garbage if entry point in an nmethod is corrupted. Leave
836  // this at the end, and hope for the best.
837  ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
838  address pc = epc.pc();
839  st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
840  print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
841}
842
843void os::print_register_info(outputStream *st, const void *context) {
844  if (context == NULL) return;
845
846  const ucontext_t *uc = (const ucontext_t*)context;
847
848  st->print_cr("Register to memory mapping:");
849  st->cr();
850
851  // this is horrendously verbose but the layout of the registers in the
852  // context does not match how we defined our abstract Register set, so
853  // we can't just iterate through the gregs area
854
855  // this is only for the "general purpose" registers
856
857#ifdef AMD64
858  st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
859  st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
860  st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
861  st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
862  st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
863  st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
864  st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
865  st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
866  st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
867  st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
868  st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
869  st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
870  st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
871  st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
872  st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
873  st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
874#else
875  st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
876  st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
877  st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
878  st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
879  st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
880  st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
881  st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
882  st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
883#endif
884
885  st->cr();
886}
887
888
889#ifdef AMD64
890void os::Solaris::init_thread_fpu_state(void) {
891  // Nothing to do
892}
893#else
894// From solaris_i486.s
895extern "C" void fixcw();
896
897void os::Solaris::init_thread_fpu_state(void) {
898  // Set fpu to 53 bit precision. This happens too early to use a stub.
899  fixcw();
900}
901
902// These routines are the initial value of atomic_xchg_entry(),
903// atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
904// until initialization is complete.
905// TODO - replace with .il implementation when compiler supports it.
906
907typedef jint  xchg_func_t        (jint,  volatile jint*);
908typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
909typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
910typedef jint  add_func_t         (jint,  volatile jint*);
911
912jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
913  // try to use the stub:
914  xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
915
916  if (func != NULL) {
917    os::atomic_xchg_func = func;
918    return (*func)(exchange_value, dest);
919  }
920  assert(Threads::number_of_threads() == 0, "for bootstrap only");
921
922  jint old_value = *dest;
923  *dest = exchange_value;
924  return old_value;
925}
926
927jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
928  // try to use the stub:
929  cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
930
931  if (func != NULL) {
932    os::atomic_cmpxchg_func = func;
933    return (*func)(exchange_value, dest, compare_value);
934  }
935  assert(Threads::number_of_threads() == 0, "for bootstrap only");
936
937  jint old_value = *dest;
938  if (old_value == compare_value)
939    *dest = exchange_value;
940  return old_value;
941}
942
943jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
944  // try to use the stub:
945  cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
946
947  if (func != NULL) {
948    os::atomic_cmpxchg_long_func = func;
949    return (*func)(exchange_value, dest, compare_value);
950  }
951  assert(Threads::number_of_threads() == 0, "for bootstrap only");
952
953  jlong old_value = *dest;
954  if (old_value == compare_value)
955    *dest = exchange_value;
956  return old_value;
957}
958
959jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
960  // try to use the stub:
961  add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
962
963  if (func != NULL) {
964    os::atomic_add_func = func;
965    return (*func)(add_value, dest);
966  }
967  assert(Threads::number_of_threads() == 0, "for bootstrap only");
968
969  return (*dest) += add_value;
970}
971
972xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
973cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
974cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
975add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
976
977extern "C" void _solaris_raw_setup_fpu(address ptr);
978void os::setup_fpu() {
979  address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
980  _solaris_raw_setup_fpu(fpu_cntrl);
981}
982#endif // AMD64
983
984#ifndef PRODUCT
985void os::verify_stack_alignment() {
986#ifdef AMD64
987  assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
988#endif
989}
990#endif
991
992int os::extra_bang_size_in_bytes() {
993  // JDK-8050147 requires the full cache line bang for x86.
994  return VM_Version::L1_line_size();
995}
996